JP2010249693A - On-ice friction tester and on-ice friction test method using the same - Google Patents

On-ice friction tester and on-ice friction test method using the same Download PDF

Info

Publication number
JP2010249693A
JP2010249693A JP2009100144A JP2009100144A JP2010249693A JP 2010249693 A JP2010249693 A JP 2010249693A JP 2009100144 A JP2009100144 A JP 2009100144A JP 2009100144 A JP2009100144 A JP 2009100144A JP 2010249693 A JP2010249693 A JP 2010249693A
Authority
JP
Japan
Prior art keywords
test piece
ice
plate
ice plate
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009100144A
Other languages
Japanese (ja)
Other versions
JP5425513B2 (en
Inventor
Kentaro Kayashima
堅太郎 萱嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009100144A priority Critical patent/JP5425513B2/en
Publication of JP2010249693A publication Critical patent/JP2010249693A/en
Application granted granted Critical
Publication of JP5425513B2 publication Critical patent/JP5425513B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an on-ice friction tester for simplifying a reference test, and correctly obtaining an aspect of an ice plate, and also to provide an on-ice friction test method using it. <P>SOLUTION: The on-ice friction tester is an on-ice friction tester for implementing a measurement by using a main test piece and a reference test piece, and comprises: a rotational shaft; the ice plate rotated on the rotational shaft; a holding means for holding the main test piece facing a surface of the ice plate; and at least one holding means for holding at least one reference test piece. The holding means is displaced along the rotational shaft in the direction in which the holding means approaches or is separated from the ice plate. The main test piece and the reference test piece contact with and separate from the same ice plate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、対比試験を簡略化しつつ、氷盤の性状をより正確に把握できる氷上摩擦試験機およびこれを用いた氷上摩擦試験方法に関する。   The present invention relates to an on-ice friction tester capable of more accurately grasping ice properties while simplifying a comparison test, and an on-ice friction test method using the same.

積雪寒冷地域で多く利用されているタイヤには、いかなる氷雪路面にも対応し得る氷上性能が付与されていることが強く望まれる。しかし、タイヤの氷上性能は氷雪路面における氷の性状によって大きく変化してしまうという状況下、万能な性能を発揮するタイヤを実現すべく、種々の開発がなされている。   It is strongly desired that tires that are widely used in snowy and cold regions have on-ice performance that can handle any snowy road surface. However, various developments have been made in order to realize a tire that exhibits versatile performance in a situation where the performance on the ice of the tire greatly changes depending on the properties of the ice on the snowy road surface.

こうしたタイヤの開発に欠かせないものの一つに、タイヤの氷上性能を評価する氷上摩擦試験機がある(例えば、特許文献1参照)。かかる氷上摩擦試験機は氷盤を形成して氷路に見立て、これにゴム試験片を押圧することにより摩擦力を測定し、氷路上での実車走行試験に近似させて評価するものである。ここでもやはり氷盤の性状によって得られる試験結果が大きく変動し得るため、通常、別途対比試験片を用いた測定を行うことで本試験時の氷の状態を把握し、本試験片を用いた測定を行う。   One of the indispensable elements for the development of such a tire is an on-ice friction tester for evaluating the on-ice performance of the tire (see, for example, Patent Document 1). Such an on-ice friction tester forms an ice plate and looks like an icy road, and measures the frictional force by pressing a rubber test piece against the icy road, and evaluates it by approximating an actual vehicle running test on the icy road. Again, the test results obtained depending on the properties of the ice plate can fluctuate greatly. Therefore, the ice condition at the time of the main test is usually grasped by performing measurement using a separate test piece, and the test piece is used. Measure.

特開2001−356088号公報JP 2001-356088 A

しかしながら、こうした試験機を用いた測定であると、ゴム試験片との摩擦などによって氷盤が融解して水分が発生し、これが再びゴム摩耗粉などの不純物を交えた状態で氷結するため、特に複数回にわたる試験を実施すると、その度ごとに氷盤の性状が大きく変動することとなる。したがって、本試験片を用いた試験を実施する度に、その前或いは後に対比試験片を用いた測定を行って、本試験時における氷盤の状態を推測しなければならず、試験時間が長期化するとともに、本試験中における路面状態を直接測定するものではないために、複数回にわたる試験を同一条件下での評価として近似すると、評価精度が低下するおそれもある。   However, in the measurement using such a testing machine, the ice plate melts due to friction with the rubber test piece and moisture is generated, and this freezes again with impurities such as rubber wear powder. If the test is conducted multiple times, the ice sheet properties will fluctuate greatly each time. Therefore, each time a test using this test piece is performed, the measurement using the comparison test piece must be performed before or after the test piece to estimate the state of the ice disk at the time of this test, and the test time is long. In addition, since the road surface condition during the main test is not directly measured, the evaluation accuracy may be reduced if a test over a plurality of times is approximated as an evaluation under the same conditions.

そこで、本発明は、対比試験を簡略化しつつ、氷盤の性状をより正確に把握できる氷上摩擦試験機およびこれを用いた氷上摩擦試験方法を提供することを目的としている。   Therefore, an object of the present invention is to provide an on-ice friction tester capable of more accurately grasping the properties of ice sheets while simplifying the comparison test, and an on-ice friction test method using the same.

本発明者は、上記課題を解決すべく、本試験片を用いた測定を行う間に対比試験片を用いた測定を行うことのできる氷上摩擦試験機を見出し、本発明を完成させるに至った。
すなわち、本発明の氷上摩擦試験機は、本試験片および対比試験片を用いた測定を行う氷上摩擦試験機であって、
回転軸を有し、該回転軸周りに回転可能な氷盤と、
前記氷盤の表面に対向して本試験片を保持する保持手段および少なくとも1つの対比試験片を保持する少なくとも1つの保持手段とを具え、
前記保持手段は、前記回転軸に沿って、前記氷盤に対して近接および離間する方向に変位して、前記本試験片および前記対比試験片を同一の氷盤に対して接触および離間させることを特徴とする。
In order to solve the above-mentioned problems, the present inventors have found an on-ice friction tester capable of performing measurement using a comparative test piece while performing measurement using the present test piece, and have completed the present invention. .
That is, the on-ice friction tester of the present invention is an on-ice friction tester that performs measurement using the present test piece and the contrast test piece,
An ice plate having a rotation axis and rotatable about the rotation axis;
Holding means for holding the test piece facing the surface of the ice plate and at least one holding means for holding at least one contrast test piece;
The holding means is displaced in a direction approaching and separating from the ice plate along the rotation axis to bring the main test piece and the contrast test piece into contact with and separated from the same ice plate. It is characterized by.

前記氷盤は、略円環形状を呈する氷盤であるのが望ましい。
また、前記本試験片および前記対比試験片を前記氷盤に対して接触させた際に、これら本試験片および対比試験片が、本試験片における氷盤との接触面の中心から氷盤の回転軸までの距離と、対比試験片における氷盤との接触面の中心から氷盤の回転軸までの距離とが等しくなるよう配置されてなるのが好ましい。
さらに、前記対比試験片を用いた測定が、前記対比試験片と前記氷盤との間の摩擦係数μsの測定であるのが好ましく、前記本試験片を用いた測定が、前記本試験片と前記氷盤との間の摩擦係数μmの測定であるのが好ましい。
The ice plate is preferably an ice plate having a substantially annular shape.
Further, when the main test piece and the comparative test piece are brought into contact with the ice plate, the main test piece and the comparative test piece are separated from the center of the contact surface of the main test piece with the ice plate. It is preferable that the distance to the rotation axis and the distance from the center of the contact surface of the comparison test piece with the ice plate to the rotation axis of the ice plate are equal.
Furthermore, the measurement using the contrast test piece is preferably a measurement of a friction coefficient μs between the contrast test piece and the ice plate, and the measurement using the test specimen is It is preferable to measure the coefficient of friction μm between the ice plates.

また、前記本試験片および前記対比試験片を前記氷盤に対して接触させた際に、これら本試験片および対比試験片が、氷盤の回転軸に直交する直線上で対向するよう配置されてなるのが望ましい。
前記本試験片および前記対比試験片を前記氷盤に対して接触させた際に、本試験片における氷盤との接触面の面積Sm、本試験片に掛かる押圧力Pm、対比試験片における氷盤との接触面の面積Ss、および対比試験片に掛かる押圧力Psが、下記式(II−1)を満たすのが望ましく、
Ps×Ss<Pm×Sm・・・(II−1)
さらに、下記式(II−2)を満たすのが望ましい。
1/10×Pm×Sm≦Ps×Ss≦2/3×Pm×Sm・・・(II−2)
Further, when the main test piece and the comparison test piece are brought into contact with the ice plate, the main test piece and the comparison test piece are arranged to face each other on a straight line perpendicular to the rotation axis of the ice plate. It is desirable that
When the main test piece and the comparison test piece are brought into contact with the ice plate, the area Sm of the contact surface of the main test piece with the ice plate, the pressing force Pm applied to the main test piece, the ice in the comparison test piece It is desirable that the area Ss of the contact surface with the board and the pressing force Ps applied to the comparison test piece satisfy the following formula (II-1):
Ps × Ss <Pm × Sm (II-1)
Furthermore, it is desirable to satisfy the following formula (II-2).
1/10 × Pm × Sm ≦ Ps × Ss ≦ 2/3 × Pm × Sm (II-2)

また、前記本試験片における氷盤との接触面での氷盤の回転方向に直交する方向に対する最大差し渡し長さAm、および前記対比試験片における氷盤との接触面での氷盤の回転方向に直交する方向に対する最大差し渡し長さAsが、下記式(III−1)を満たすのが望ましく、
As≦Am・・・(III−1)
さらに、下記式(III−2)を満たすのが望ましい。
As=Am・・・(III−2)
また、前記本試験片における氷盤との接触面での氷盤の回転方向に対する最大差し渡し長さBm、および前記対比試験片における氷盤との接触面での氷盤の回転方向に対する最大差し渡し長さBsが、下記式(IV−1)を満たしてもよく、
Bs≦Bm・・・(IV−1)
さらに、下記式(IV−2)を満たしてもよい。
Bs<Bm・・・(IV−2)
In addition, the maximum span length Am with respect to the direction perpendicular to the rotation direction of the ice plate at the contact surface with the ice plate in the test piece, and the rotation direction of the ice plate at the contact surface with the ice plate in the comparison test piece It is desirable that the maximum passing length As for the direction orthogonal to the following formula (III-1):
As ≦ Am (III-1)
Furthermore, it is desirable to satisfy the following formula (III-2).
As = Am (III-2)
Further, the maximum length Bm with respect to the rotation direction of the ice plate at the contact surface with the ice plate in the test piece, and the maximum transfer length with respect to the rotation direction of the ice plate at the contact surface with the ice plate in the comparative test piece. Bs may satisfy the following formula (IV-1):
Bs ≦ Bm (IV-1)
Furthermore, the following formula (IV-2) may be satisfied.
Bs <Bm (IV-2)

前記氷盤の回転方向に対して前記対比試験片の前方または後方であって、前記本試験片よりも前記対比試験片に近接した位置に水膜測定装置が配置されてなるものであってもよく、氷盤の回転方向に対して前記対比試験片の前方または後方であって、前記本試験片よりも前記対比試験片に近接した位置に水膜除去装置が配置されてなるものであってもよい。
さらに、前記摩擦係数μsおよびμmを測定するための、垂直荷重計測器と接線力計測器とを有する摩擦係数計測システムを備えてもよい。
本発明の氷上摩擦試験方法は、ゴムの氷上性能を評価するにあたり、上記氷上摩擦試験機を用いて、本試験片を用いた測定を行う間に対比試験片を用いた測定を行うことを特徴とする。
A water film measuring device may be arranged in front of or behind the comparison test piece with respect to the rotation direction of the ice plate and closer to the comparison test piece than the main test piece. Well, a water film removing device is arranged in front of or behind the comparison test piece with respect to the rotation direction of the ice plate, and closer to the comparison test piece than the main test piece. Also good.
Further, a friction coefficient measuring system having a vertical load measuring instrument and a tangential force measuring instrument for measuring the friction coefficients μs and μm may be provided.
The on-ice friction test method of the present invention is characterized in that, when evaluating the on-ice performance of rubber, using the above-mentioned on-ice friction tester, the measurement using the test piece is performed while the measurement using the test piece is performed. And

なお、本明細書において、本試験片とは、タイヤの実車走行による氷上性能試験に近似した評価データを採取するため、本試験時に用いるゴム試験片を意味し、対比試験片とはより正確なデータを本試験片から採取するため、本試験時の氷状を把握するために用いるゴム試験片を意味する。   In the present specification, the term “test specimen” means a rubber specimen used in the main test in order to collect evaluation data that approximates the performance test on ice by running a tire, and the contrast specimen is more accurate. It means a rubber test piece used for grasping the ice state at the time of the main test in order to collect data from the test piece.

本発明の氷上摩擦試験機によれば、本試験時における氷上性状を瞬時に把握することができ、複数回に亘り氷上摩擦試験を実施しても氷上性状の変動に左右されることなく測定結果を得ることができる。また、本発明の氷上摩擦試験機を用いれば、本試験を実施するごとに別途対比試験を行って本試験時における氷上性状を推測する必要がなく、試験工程が簡略化された氷上摩擦試験方法を実現することができる。   According to the on-ice friction tester of the present invention, the on-ice property at the time of the main test can be grasped instantaneously, and the measurement result is not affected by fluctuations on the on-ice property even if the on-ice friction test is performed multiple times. Can be obtained. In addition, if the on-ice friction tester of the present invention is used, it is not necessary to perform a separate comparison test every time this test is performed to estimate the on-ice properties at the time of the test, and the on-ice friction test method in which the test process is simplified. Can be realized.

本発明に係る氷上摩擦試験機の全体を示す部分断面略線側面図である。It is a partial section outline line side view showing the whole friction tester on ice concerning the present invention. 本試験片および対比試験片を保持する保持手段およびこれに保持されてなる本試験片および対比試験片を示す部分断面略線正面図および側面図である。It is the partial cross-section approximate line front view and side view which show the holding means which hold | maintains this test piece and a comparison test piece, and this test piece and a comparison test piece which are hold | maintained at this. 本試験片の形状を示す図であり、図3(a)は略筒状を呈する本試験片Xmの斜視図であり、図3(b)は略立方体形状を呈する本試験片Xmである。FIG. 3A is a perspective view of the main test piece Xm having a substantially cylindrical shape, and FIG. 3B is a main test piece Xm having a substantially cubic shape. 本試験片Xmおよび対比試験片Xsが配置されてなる氷盤2の上面概略図である。It is the upper surface schematic diagram of the ice board 2 by which this test piece Xm and contrast test piece Xs are arrange | positioned. 本試験片Xmおよび対比試験片Xsが配置されてなる氷盤2の上面概略図である。It is the upper surface schematic diagram of the ice board 2 by which this test piece Xm and contrast test piece Xs are arrange | positioned.

以下、本発明について、必要に応じて図面を参照しつつ、詳細に説明する。
図1は、本発明に係る氷上摩擦試験機の概略構成図を示し、該試験機は冷凍装置(図示せず)及び加熱装置(図示せず)を備えた温度調節(−20℃〜40℃)が可能な恒温室1の中央部に、氷盤2を水平姿勢で配置するとともに、この氷盤2を氷盤駆動モータ3により、減速機4を介して回転軸2a周りを所望の速度で回転可能ならしめる。氷盤2は回転軸2aを有していれば特に制限されるものではないが、円環形状を呈した氷盤であるのが好ましい。また、氷盤2は水平姿勢で配置されるものに制限されず、例えば垂直姿勢で配置されるものであってもよい。
Hereinafter, the present invention will be described in detail with reference to the drawings as necessary.
FIG. 1 is a schematic configuration diagram of an on-ice friction tester according to the present invention, and the tester is provided with a temperature control (−20 ° C. to 40 ° C.) provided with a refrigeration device (not shown) and a heating device (not shown). The ice plate 2 is arranged in a horizontal position in the central portion of the temperature-controlled room 1 capable of being), and the ice plate 2 is moved around the rotary shaft 2a by the ice plate drive motor 3 through the speed reducer 4 at a desired speed. Rotate if possible. The ice plate 2 is not particularly limited as long as it has the rotation shaft 2a, but is preferably an ice plate having an annular shape. Moreover, the ice board 2 is not restricted to what is arrange | positioned with a horizontal attitude | position, For example, you may arrange | position with a vertical attitude | position.

ここで、氷盤2は冷水機6内の、冷却機により冷却した水を、略桶状を呈する氷盤枠2bに供給するとともに、その枠内の冷却水を、試験機のほぼ全体を囲繞する恒温室1内へ、冷気発生装置5で所望温度に冷却した冷却空気を送給することによって氷結させて形成することができ、これによりその氷盤2は冷却空気温度に応じた氷温に維持される。   Here, the ice plate 2 supplies the water cooled by the cooler in the chiller 6 to the ice plate frame 2b having a substantially bowl shape, and the cooling water in the frame surrounds almost the entire tester. The cooling air cooled to a desired temperature by the cold air generator 5 can be fed into the temperature-controlled room 1 to be frozen, thereby forming the ice plate 2 at an ice temperature corresponding to the cooling air temperature. Maintained.

図2は、本試験片Xmおよび対比試験片Xsを保持する保持手段およびこれに保持されてなる本試験片Xmおよび対比試験片Xsを示す概略図である。ここでは、氷盤2の上方に水平姿勢で配設されてなる試料軸7mによって、試料軸7mの氷盤2側の一端に本試験片Xmを着脱自在に保持させる。同様にして、氷盤2の他の上方に水平姿勢で配設されてなる試料軸7sによって、試料軸7sの氷盤2側の一端に対比試験片Xsを着脱自在に保持させる。なお、図2では、保持された本試験片Xmと対比試験片Xsとが、氷盤2上方において回転軸2aを中心として対向するよう配置されてなる例を示しているが、これに制限されるものではなく、少なくとも保持された本試験片Xmと対比試験片Xsとが氷盤2の表面に対向して配置されていればよい。また、本発明の氷上摩擦試験機は、上記対比試験片Xsを保持する保持手段およびこれに保持されてなる対比試験片Xsを少なくとも1つ具えていればよく、これらを複数具えていてもよい。   FIG. 2 is a schematic view showing holding means for holding the test piece Xm and the contrast test piece Xs, and the test piece Xm and the contrast test piece Xs held on the holding means. Here, the test piece Xm is detachably held at one end of the sample shaft 7m on the ice plate 2 side by the sample shaft 7m disposed in a horizontal posture above the ice plate 2. Similarly, the test piece Xs is detachably held at one end of the sample shaft 7 s on the ice plate 2 side by the sample shaft 7 s arranged in a horizontal posture above the other of the ice plate 2. FIG. 2 shows an example in which the held main test piece Xm and the contrast test piece Xs are arranged so as to face each other around the rotation axis 2a above the ice plate 2. However, the present invention is not limited to this. Instead, it is sufficient that at least the main test piece Xm and the comparative test piece Xs held are arranged to face the surface of the ice plate 2. The on-ice friction tester of the present invention only needs to have at least one holding means for holding the above-mentioned comparison test piece Xs and at least one comparison test piece Xs, and a plurality of these may be provided. .

図2では本試験片Xmおよび対比試験片Xsの形状は図3(a)の部分拡大図に示すような略筒状Xm(a)を呈しているが、かかる本試験片Xmの形状は特に制限されるものではなく、図3(b)の部分拡大図に示すように、一部の相対する面が等脚台形を呈してなるような略立方体状Xm(b)を呈していてもよい。また対比試験片Xsの形状も本試験片Xmと同様の形状を呈し得る。本試験片Xm(または対比試験片Xs)の形状が略筒状の場合、例えば図3(a)に示すように、試料ホルダ30m(a)によって本試験片Xm(a)(または対比試験片Xs(a))は保持され、本試験片Xm(または対比試験片Xs)の形状が略立方体状の場合、例えば図3(b)に示すように、試料ホルダ30m(b)によって本試験片Xm(b)(または対比試験片Xs(b))は保持される。なお、本試験片Xmを保持する保持手段と対比試験片Xsを保持する保持手段とは同一の構成を有するので、以下、かかる保持手段については本試験片Xmの保持手段の構成を中心に説示する。   In FIG. 2, the shapes of the test piece Xm and the contrast test piece Xs are substantially cylindrical Xm (a) as shown in the partially enlarged view of FIG. It is not limited, and as shown in the partially enlarged view of FIG. 3 (b), it may have a substantially cubic shape Xm (b) in which some opposing surfaces have an isosceles trapezoid shape. . The shape of the contrast test piece Xs can also be the same shape as the test piece Xm. When the shape of the test specimen Xm (or the contrast test specimen Xs) is substantially cylindrical, for example, as shown in FIG. 3A, the test specimen Xm (a) (or the contrast test specimen) is taken by the sample holder 30m (a). Xs (a)) is held, and when the shape of the test piece Xm (or the contrast test piece Xs) is substantially cubic, for example, as shown in FIG. Xm (b) (or the contrast specimen Xs (b)) is held. Since the holding means for holding the test piece Xm and the holding means for holding the contrast test piece Xs have the same configuration, the holding means will be described below with a focus on the configuration of the holding means for the test piece Xm. To do.

一方、試料軸7mの他端には、特に本試験片Xmが略筒状Xm(a)を呈するような場合、本試験片Xmを所望の周速で回転させる試料軸駆動モータ10mを取り付けてもよく、その中間部に、試料軸7mに発生する軸線周りのトルクを計測するトルクメータ11mを配設してもよい。この際、略筒状を呈する本試験片Xm(a)を、試料軸7mの作用によって試験片自体を回転揺動させたり自由転動させたりすることが可能となる。なお、試料軸7mは必ずしも回転することを要せず、本試験片Xmの形状が略立方体(Xm(b))である場合のように、試料軸の一端に配置された本試験片Xmを保持しつつ氷盤2に押圧する際のガイドとして機能するものであってもよい。   On the other hand, a sample shaft driving motor 10m for rotating the test piece Xm at a desired peripheral speed is attached to the other end of the sample shaft 7m, particularly when the test piece Xm exhibits a substantially cylindrical shape Xm (a). Alternatively, a torque meter 11m for measuring the torque around the axis generated on the sample shaft 7m may be disposed in the middle portion thereof. At this time, the test piece Xm (a) having a substantially cylindrical shape can be rotated and oscillated or freely rolled by the action of the sample shaft 7m. It should be noted that the sample shaft 7m does not necessarily need to be rotated, and the test piece Xm disposed at one end of the sample shaft is not used as in the case where the shape of the test piece Xm is substantially a cube (Xm (b)). You may function as a guide at the time of pressing on the ice board 2 hold | maintaining.

本試験片Xm(a)を試料軸7mの作用によって回転させる場合、一定のスリップ率が付加されるように回転速度を制御するのが望ましい。一般に、氷盤2の回転速度をVr(m/sec)、本試験片Xm(a)の回転速度をv(m/sec)とすると、スリップ率(%)は下記式(A)で表される。
スリップ率(%)=(Vr−v)/Vr×100・・・(A)
ここで、本発明では上記スリップ率が、通常−20%〜+20%(但し、0%を除く)、好ましくは−10%〜+10%(但し、0%を除く)となるように氷盤2の回転速度Vおよび本試験片Xm(a)の回転速度vを適宜制御するのが望ましい。
When the test piece Xm (a) is rotated by the action of the sample shaft 7m, it is desirable to control the rotation speed so that a constant slip ratio is added. In general, when the rotation speed of the ice plate 2 is Vr (m / sec) and the rotation speed of the test piece Xm (a) is v (m / sec), the slip ratio (%) is expressed by the following formula (A). The
Slip rate (%) = (Vr−v) / Vr × 100 (A)
Here, in the present invention, the ice slip 2 is adjusted so that the slip ratio is usually −20% to + 20% (excluding 0%), preferably −10% to + 10% (excluding 0%). It is desirable to appropriately control the rotational speed V and the rotational speed v of the test piece Xm (a).

氷盤2が水平姿勢で配置されてなる場合において、回転軸2aに沿った、氷盤2に対して近接および離間する方向に変位する上記保持手段の一例では、試料軸7m(および試料軸駆動モータ10m)をこれらの背面側の昇降プレート12mで支持する。そして、この昇降プレート12mの、固定フレーム13mに対する昇降を、昇降プレート12mの更に背面側に配設した直動ガイド(図示せず)をもって案内するとともに、固定フレーム13mに取り付けた往復駆動手段の一例としての試験部昇降シリンダ14mの作用をもって、回転軸2aに沿った、氷盤2に対して近接および離間する方向への保持手段の変位を実現する。なお、これら試料軸7m(および試料軸駆動モータ10m/トルクメータ11m)の重量を、例えばワイヤを介してバランスウェイト(図示せず)をもって昇降プレート12mに掛かる重量を相殺してもよい。   In the case where the ice plate 2 is arranged in a horizontal posture, in the example of the holding means that moves in the direction of approaching and separating from the ice plate 2 along the rotation shaft 2a, the sample shaft 7m (and the sample shaft drive) The motor 10m) is supported by the back plate 12m on the back side. An example of the reciprocating drive means attached to the fixed frame 13m is guided by a linear guide (not shown) disposed on the back side of the lifting plate 12m with respect to the lifting plate 12m. With the action of the test unit elevating cylinder 14m as described above, displacement of the holding means in the direction of approaching and separating from the ice plate 2 along the rotating shaft 2a is realized. The weight of the sample shaft 7m (and the sample shaft drive motor 10m / torque meter 11m) may be offset by the weight applied to the lift plate 12m with a balance weight (not shown) via a wire, for example.

上記のような保持手段により、本試験片Xmが氷盤2の表面に対向して保持され、試験時には、かかる保持手段が回転軸2aに沿って氷盤2に対して近接する方向に変位することで、本試験片Xmを氷盤2に対して接触させて、圧下シリンダ19mにより所望の押圧荷重を本試験片Xmに掛ける。この押圧荷重を所望により変動させることができるよう、垂直荷重センサや三分力計などを圧下シリンダ19mと試料軸7mとの間に介装してもよい。また、圧下シリンダ19mの配設位置を、本試験片Xmに作用する押圧力の中心が氷盤2への接触幅の中央部となるよう、選択するのが好ましい。   The test piece Xm is held facing the surface of the ice plate 2 by the holding means as described above, and at the time of the test, the holding means is displaced in the direction of approaching the ice plate 2 along the rotation axis 2a. Thus, the test piece Xm is brought into contact with the ice plate 2, and a desired pressing load is applied to the test piece Xm by the reduction cylinder 19m. A vertical load sensor, a three-component force meter, or the like may be interposed between the reduction cylinder 19m and the sample shaft 7m so that the pressing load can be changed as desired. Further, it is preferable to select the arrangement position of the reduction cylinder 19m so that the center of the pressing force acting on the test piece Xm is the center of the contact width to the ice plate 2.

さらにここでは、固定フレーム13mに取付けた試験部昇降シリンダ14mのロッド15mに、試料軸7mおよび昇降プレート12mとともに氷盤2に対して近接および離間する方向に変位する圧下シリンダ19mを中間プレート20mを介して取り付ける。ここで例えば、本試験片Xmを氷盤2に対して接触させる場合は、試料軸7mとともに昇降シリンダ14mのロッド15mを最下端まで下降させることにより、保持手段を回転軸2aに沿って氷盤2に対して近接させる方向に変位させる。このとき試料軸昇降ガイドシャフト21mの上部と中間プレート20mとの拘束が解除され、試料軸7m及び昇降プレート12mがフリーの状態になる。またこの時、昇降シリンダ14mは最下端でエアーによって固定されるため、圧下シリンダ19mにより所要の押圧荷重が負荷できる。   Further, here, the rod 15m of the test unit elevating cylinder 14m attached to the fixed frame 13m is moved together with the sample shaft 7m and the elevating plate 12m together with the pressing plate 19m which is displaced in the direction of approaching and separating from the ice plate 2, and the intermediate plate 20m Install through. Here, for example, when the test piece Xm is brought into contact with the ice plate 2, the holding means is moved along the rotary shaft 2a by lowering the rod 15m of the elevating cylinder 14m to the lowest end together with the sample shaft 7m. 2 is displaced in the direction of approaching. At this time, the restraint between the upper part of the sample shaft lifting guide shaft 21m and the intermediate plate 20m is released, and the sample shaft 7m and the lifting plate 12m are in a free state. At this time, the elevating cylinder 14m is fixed by air at the lowermost end, so that a required pressing load can be applied by the reduction cylinder 19m.

なお、本試験片Xmが略立方体(Xm(b))である場合、試料軸7mを圧下シリンダ19mに直結してもよく、図3に示すように、本試験片がいずれの形状であってもY方向(氷盤2に対して近接する方向)に向けて氷盤2に対して接触し、押圧されることとなる。   When the test piece Xm is substantially cubic (Xm (b)), the sample shaft 7m may be directly connected to the reduction cylinder 19m. As shown in FIG. 3, the test piece has any shape. Is also in contact with and pressed against the ice plate 2 in the Y direction (direction approaching the ice plate 2).

一方、本試験片Xmを氷盤2に対して離間させる場合は、試料軸7mとともに昇降シリンダ14mのロッド15mを最上端まで上昇させることにより試料軸昇降ガイドシャフト21mの上部と中間プレート20とが拘束されて、保持手段が回転軸2aに沿って氷盤2に対して離間する。   On the other hand, when the test piece Xm is separated from the ice plate 2, the upper portion of the sample shaft elevating guide shaft 21m and the intermediate plate 20 are moved by raising the rod 15m of the elevating cylinder 14m to the uppermost end together with the sample shaft 7m. The holding means is separated from the ice plate 2 along the rotation axis 2a.

このように構成することにより、試験部昇降シリンダ14mは、本試験片Xmを保持する試料軸7mを、その本試験片Xmが氷盤2に対して大きく離間する上昇位置と、本試験片Xmが氷盤2に対して接触する位置との間で変位させることができ、また、圧下シリンダ19mは、本試験片Xmを氷盤2に所要の力で押圧し、そして、その押圧力を所要に応じて増減させることができる。   By configuring in this way, the test unit elevating cylinder 14m allows the sample shaft 7m holding the main test piece Xm to be moved to the rising position where the main test piece Xm is largely separated from the ice plate 2, and the main test piece Xm. Can be displaced between a position where the ice plate 2 is in contact with the ice plate 2, and the reduction cylinder 19m presses the test piece Xm against the ice plate 2 with a required force, and the pressing force is required. It can be increased or decreased depending on

図2に示す対比試験片Xsを保持する保持手段も上記本試験片Xmの保持手段と同様の構成を有し、試験開始にあたっては、氷盤2の表面に対向して保持されてなる本試験片Xmが、試料軸7mおよび本試験片Xmの上部に配置される圧下シリンダ19mによって、所望温度に冷却されつつ回転軸2a周りに回転されてなる氷盤2に対して接触し、所望の力で押圧され、また氷盤2の表面に対向して保持されてなる対比試験片Xsが、試料軸7sおよび対比試験片Xsの上部に配置される圧下シリンダ19sによって、上記同一の氷盤2に対して接触し、所望の力で押圧される。   The holding means for holding the contrast test piece Xs shown in FIG. 2 has the same configuration as the holding means for the main test piece Xm. At the start of the test, the main test is held facing the surface of the ice plate 2. The piece Xm is brought into contact with the ice plate 2 which is rotated around the rotation axis 2a while being cooled to a desired temperature by the sample cylinder 7m and the reduction cylinder 19m arranged on the upper part of the test piece Xm, and the desired force The comparison test piece Xs pressed against the surface of the ice plate 2 and held against the surface of the ice plate 2 is brought into contact with the same ice plate 2 by the reduction cylinder 19s disposed above the sample shaft 7s and the comparison test piece Xs. It contacts and is pressed with a desired force.

本発明の氷上摩擦試験機は、上述のように本試験片Xmを保持する保持手段と、少なくとも1つの対比試験片Xsを保持する少なくとも1つの保持手段とを具え、これら保持手段は氷盤2の回転軸2aに沿って、氷盤2に対して近接する方向に変位して、これら試験片を同一の氷盤2に対して接触させることができるので、かかる氷上摩擦試験機を用いれば、本試験片Xmを用いた測定を行う間に対比試験片Xsを用いた測定を行うことが可能となる。上記本試験片Xmと氷盤2とが接触して摩擦熱等が発生すると、氷盤2の一部が融解して生じる水分により氷盤2上に水膜が発生したり、対比試験片Xsに起因するゴム摩耗粉等の不純物とともにこの水分が再氷結したりすることで氷盤2の性状が大きく変化するおそれがある。しかしながら、本発明の氷上摩擦試験機を用いて、本試験片Xmを用いて測定を行う間に対比試験片Xsを用いた測定を行うことで、本試験片Xmを用いた測定時の氷盤2の性状を瞬時に把握することが可能となるとともに、本試験片Xmと対比試験片Xsとにおける氷盤2の性状を均一化した元で測定を行うことができる。   The on-ice friction tester of the present invention comprises holding means for holding the test piece Xm and at least one holding means for holding at least one comparison test piece Xs as described above. The test piece can be brought into contact with the same ice plate 2 by being displaced in a direction close to the ice plate 2 along the rotation axis 2a of the ice. During the measurement using the test piece Xm, the measurement using the comparative test piece Xs can be performed. When frictional heat or the like is generated by the contact between the test piece Xm and the ice plate 2, a water film is generated on the ice plate 2 due to the water generated by melting a part of the ice plate 2, or the contrast test piece Xs. The moisture re-freezes with impurities such as rubber wear powder caused by the above, so that the properties of the ice plate 2 may be greatly changed. However, using the friction tester on ice of the present invention, the measurement using the test specimen Xs during the measurement using the test specimen Xm enables the ice disk during the measurement using the test specimen Xm. 2 can be grasped instantaneously, and measurement can be performed with the properties of the ice plate 2 in the test piece Xm and the contrast test piece Xs made uniform.

一般に、氷盤2の性状は試験片と氷盤との接触による水膜発生量、表面粗さ、温度、試験片に起因するゴム摩耗粉等を含む不純物の発生等の要因によって変動し得るが、これらの要因のうち、特に不純物の発生は、かかる不純物が氷盤上の水分ととともに再氷結することで氷盤の性状が大きく変動するため、測定結果に最も大きな影響を与える。しかしながら、本発明の氷上摩擦試験機を用いれば、本試験片Xmを用いた測定時の前または後に別途対比試験片Xsを用いた測定を行う必要がなく、度重なる試験の実施による氷盤2の性状の変動やゴム摩耗粉の発生等の影響を極力低減することができ、全試験時間が短縮化されるとともに試験工程全体を簡略化することも可能となる。   In general, the properties of the ice plate 2 may vary depending on factors such as the amount of water film generated due to contact between the test piece and the ice plate, the surface roughness, the temperature, and the generation of impurities including rubber wear powder caused by the test piece. Among these factors, the generation of impurities particularly affects the measurement result because the properties of the ice plate largely fluctuate due to the re-freezing of the impurities together with the moisture on the ice plate. However, if the on-ice friction tester of the present invention is used, it is not necessary to separately perform the measurement using the comparative test piece Xs before or after the measurement using the test piece Xm, and the ice plate 2 by performing repeated tests. As a result, it is possible to reduce the influence of fluctuations in the properties and the generation of rubber wear powder as much as possible, thereby shortening the entire test time and simplifying the entire test process.

さらに本発明の氷上摩擦試験機では、本試験片Xmおよび対比試験片Xsを試験部昇降シリンダ14m(14s)および圧下シリンダ19m(19s)等を有する保持手段により氷盤2に接触させた際、これら試験片の氷盤2との接触面の中心から氷盤2の回転軸2aまでの距離が等しくなるよう、本試験片Xmおよび対比試験片Xsを配置するのが望ましい。この場合、具体的には、図4(a)の氷盤2上面図に示すように、本試験片Xmの氷盤2との接触面Cmの中心をOm、対比試験片Xsの氷盤2との接触面Csの中心をOsとすると、Omから回転軸2aまでの距離dmとOsから回転軸2aまでの距離dsとが等しくなる。すなわち、回転軸2aを中心とする同心円上にOmおよびOsが位置することとなり、氷盤2が回転軸2a周りに回転すると、これら本試験片Xmおよび対比試験片Xsの接触面CmおよびCsが同一の氷盤2上で同一軌道を描くこととなる。このようにすることで、対比試験片Xsが氷盤2に接触および押圧されることによって形成される轍によって、本試験片Xmに与える影響を可能な限り低減することができる。   Further, in the friction tester on ice of the present invention, when the test piece Xm and the contrast test piece Xs are brought into contact with the ice plate 2 by the holding means having the test unit elevating cylinder 14m (14s) and the reduction cylinder 19m (19s), It is desirable to arrange the test piece Xm and the contrast test piece Xs so that the distances from the center of the contact surface of the test piece with the ice plate 2 to the rotation axis 2a of the ice plate 2 are equal. In this case, specifically, as shown in the top view of the ice plate 2 in FIG. 4A, the center of the contact surface Cm of the test piece Xm with the ice plate 2 is Om, and the ice plate 2 of the contrast test piece Xs. When the center of the contact surface Cs with Os is Os, the distance dm from Om to the rotating shaft 2a is equal to the distance ds from Os to the rotating shaft 2a. That is, Om and Os are positioned on a concentric circle centered on the rotating shaft 2a, and when the ice plate 2 rotates around the rotating shaft 2a, the contact surfaces Cm and Cs of the main test piece Xm and the contrast test piece Xs are changed. The same trajectory is drawn on the same ice plate 2. By doing in this way, the influence which this test piece Xm has by the wrinkle formed when the contrast test piece Xs contacts and presses the ice board 2 can be reduced as much as possible.

さらに、本試験片Xmおよび対比試験片Xsが、上記条件を満たしつつ氷盤2の回転軸2aに直交する直線R上で対向するよう配置するのがより望ましい。この場合、具体的には、図4(b)の氷盤2上面図に示すように、本試験片Xmの氷盤2との接触面Cmの中心Omから回転軸2aまでの距離dmと対比試験片Xsの氷盤2との接触面Csの中心Osから回転軸2aまでの距離dsとが等しく、かつ上記中心Omと上記中心Osとが、回転軸2aに直交する直線R上に位置することとなる。このようにすることで、本試験片Xmと対比試験片Xsとを最大限離間して氷盤2上方に配置することとなり、対比試験片Xsが氷盤2に接触および押圧されることによって発生する水膜やゴム摩耗粉等によって、本試験片Xmに与える影響をも低減しやすくなる。   Further, it is more desirable that the test piece Xm and the contrast test piece Xs are arranged so as to face each other on a straight line R orthogonal to the rotation axis 2a of the ice plate 2 while satisfying the above conditions. In this case, specifically, as shown in the top view of the ice plate 2 in FIG. 4B, the distance dm from the center Om of the contact surface Cm of the test piece Xm with the ice plate 2 to the rotating shaft 2a is compared. The distance ds from the center Os of the contact surface Cs of the test piece Xs with the ice plate 2 to the rotating shaft 2a is equal, and the center Om and the center Os are located on a straight line R perpendicular to the rotating shaft 2a. It will be. By doing in this way, this test piece Xm and the contrast test piece Xs will be spaced apart from each other at the maximum and placed above the ice plate 2, and the test piece Xs is generated by contacting and pressing the ice plate 2. It is easy to reduce the influence on the test specimen Xm due to the water film and rubber abrasion powder.

図4に示すdmおよびdsの具体例としては、例えば氷盤2が直径100〜200cmの略円環状である場合、dmおよびdsは45〜95cmであるのが望ましい。   As specific examples of dm and ds shown in FIG. 4, for example, when the ice plate 2 has a substantially annular shape with a diameter of 100 to 200 cm, dm and ds are preferably 45 to 95 cm.

また、摩擦係数をμ、試験片の接触面(CmまたはCs)の面積をS(m2)、試験片に掛かる押圧力をP(N/m2)とすると、一般に荷重W(N)は下記式(I−1)で表され、摩擦力F(N)は下記式(I−2)で表される。
W=P×S・・・(I−1)
F=μ×W・・・(I−2)
ここで、氷盤上に発生する水分量は上記摩擦力Fに比例して増減するため、荷重Wを可能な限り抑制すると、試験片前後に発生する水分量をより低減することができ、氷盤の性状の変動を効果的に抑制することが可能となる。したがって、対比試験片Xsによる本試験片Xmへの影響を極力低減するには、本試験片Xmの氷盤2との接触面Cmの面積をSm、対比試験片Xsに掛かる押圧力をPmとし、対比試験片Xsの氷盤2との接触面Csの面積をSs、対比試験片Xsに掛かる押圧力をPsとすると、これらが下記式(II−1)を満たすのが望ましい。
Ps×Ss<Pm×Sm・・・(II−1)
より好ましくは、下記式(II−2)
1/10×Pm×Sm≦Ps×Ss≦2/3×Pm×Sm・・・(II−2)
を満たし、最も好ましくは下記式(II−3)
Ss<Sm・・・(II−3)
を満たすのが望ましい。
When the friction coefficient is μ, the area of the contact surface (Cm or Cs) of the test piece is S (m 2 ), and the pressing force applied to the test piece is P (N / m 2 ), the load W (N) is generally It is represented by the following formula (I-1), and the frictional force F (N) is represented by the following formula (I-2).
W = P × S (I-1)
F = μ × W (I-2)
Here, the amount of water generated on the ice plate increases and decreases in proportion to the friction force F. Therefore, if the load W is suppressed as much as possible, the amount of water generated before and after the test piece can be further reduced. It is possible to effectively suppress fluctuations in the properties of the board. Therefore, in order to reduce the influence of the contrast specimen Xs on the specimen Xm as much as possible, the area of the contact surface Cm of the specimen Xm with the ice plate 2 is Sm, and the pressing force applied to the contrast specimen Xs is Pm. When the area of the contact surface Cs of the contrast test piece Xs with the ice plate 2 is Ss and the pressing force applied to the contrast test piece Xs is Ps, it is desirable that these satisfy the following formula (II-1).
Ps × Ss <Pm × Sm (II-1)
More preferably, the following formula (II-2)
1/10 × Pm × Sm ≦ Ps × Ss ≦ 2/3 × Pm × Sm (II-2)
And most preferably the following formula (II-3)
Ss <Sm (II-3)
It is desirable to satisfy.

このような関係を満たすことにより、同一の氷盤2に対して接触しつつも対比試験片Xsが氷盤2に接触および押圧されることにより発生する水分量を低減することが可能となり、本試験時における氷盤性状の変動を効果的に抑制することができる。また、対比試験片Xsに負荷される荷重W(=μ×Ps×Ss)が必要以上に減じられるのを回避することができるので、得られる測定結果のバラつきを低減することが可能となる。さらに、例えば各々の試験片と氷盤2との間の摩擦係数μ(μsおよびμm)の値が計測不能となるのを回避することもできる。   By satisfying such a relationship, it is possible to reduce the amount of moisture generated by the comparison test piece Xs contacting and pressing the ice plate 2 while contacting the same ice plate 2. Fluctuations in ice properties during testing can be effectively suppressed. In addition, since it is possible to avoid the load W (= μ × Ps × Ss) applied to the contrast test piece Xs from being reduced more than necessary, it is possible to reduce the variation in the measurement results obtained. Further, for example, it is possible to avoid that the value of the friction coefficient μ (μs and μm) between each test piece and the ice plate 2 cannot be measured.

なお、氷盤2が直径100〜200cmの略円環状である場合、本試験片Xmの氷盤2との接触面Cmの面積Smは、通常1〜50cm2、好ましくは1〜10cm2であり、対比試験片Xsの氷盤2との接触面Csの面積Ssは、通常1〜50cm2、好ましくは1〜10cm2である。 In addition, when the ice plate 2 is a substantially annular shape having a diameter of 100 to 200 cm, the area Sm of the contact surface Cm of the test piece Xm with the ice plate 2 is usually 1 to 50 cm 2 , preferably 1 to 10 cm 2 . The area Ss of the contact surface Cs of the contrast test piece Xs with the ice plate 2 is usually 1 to 50 cm 2 , preferably 1 to 10 cm 2 .

さらに、図5に示すように、図4における接触面Cmでの氷盤2の回転方向Yに直交する方向に対する最大差し渡し長さをAm、接触面Csでの氷盤2の回転方向Yに直交する方向に対する最大差し渡し長さをAsとすると、下記式(III−1)を満たすのが望ましく、
As≦Am・・・(III−1)
下記式(III−2)を満たすのがより望ましい。
As=Am・・・(III−2)
なお、上記最大差し渡し長さとは、上記接触面における回転方向Yに直交する方向に対する差し渡し長さのうち、最も長い差し渡し長さを意味する。
Further, as shown in FIG. 5, the maximum passing length with respect to the direction orthogonal to the rotation direction Y of the ice plate 2 at the contact surface Cm in FIG. 4 is Am, and orthogonal to the rotation direction Y of the ice plate 2 at the contact surface Cs. Assuming that the maximum passing length in the direction to be taken is As, it is desirable to satisfy the following formula (III-1):
As ≦ Am (III-1)
It is more desirable to satisfy the following formula (III-2).
As = Am (III-2)
In addition, the said maximum delivery length means the longest delivery length among the delivery lengths with respect to the direction orthogonal to the rotation direction Y in the said contact surface.

通常、試験片が上記圧下シリンダ19の作用によって下降し、回転軸2a周りに回転してなる氷盤2に押圧されると、接触した氷盤2との間に生じる摩擦によって氷盤2の一部が次第に融解し、氷盤2上に凹部を呈する轍が形成される。したがって、特に複数回に亘る試験を実施する際、試験片が実際に氷盤2と接触するのはこの凹部の底面となる。ここで、本試験片XmのAmと対比試験片XsのAsが上記式(III−1)を満たせば、対比試験片Xsによって氷盤2に形成された轍の凹部内に埋設されるように本試験片Xmが氷盤2と接触することになるため、本試験片Xmと対比試験片Xsとの双方を凹部の底面と接触させることができる。さらに上記式(III−2)を満たす場合には、対比試験片Xsにより形成される轍の凹部内に嵌合されるような状態で本試験片Xmが氷盤2と接触することになり、より確実に本試験片Xmと対比試験片Xsとの双方を凹部の底面と接触させることができるため、より望ましい。このようにすることで、同一の氷盤2に対して接触しつつも対比試験片Xsが形成する轍によって本試験片Xmが受ける影響をより低減することが可能となる。   Normally, when the test piece is lowered by the action of the reduction cylinder 19 and pressed against the ice plate 2 rotated about the rotation axis 2a, one piece of the ice plate 2 is caused by friction generated between the test piece and the ice plate 2 in contact therewith. The portion gradually melts, and a ridge that forms a recess is formed on the ice plate 2. Therefore, when the test is performed a plurality of times, it is the bottom surface of the recess that the test piece actually contacts the ice plate 2. Here, if Am of the test piece Xm and As of the contrast test piece Xs satisfy the above formula (III-1), the test specimen Xm is embedded in the recess of the bowl formed in the ice plate 2 by the contrast test piece Xs. Since the main test piece Xm comes into contact with the ice plate 2, both the main test piece Xm and the contrast test piece Xs can be brought into contact with the bottom surface of the recess. Further, when the above formula (III-2) is satisfied, the test piece Xm comes into contact with the ice plate 2 in a state of being fitted in the recess of the bag formed by the contrast test piece Xs. It is more desirable because both the test piece Xm and the contrast test piece Xs can be brought into contact with the bottom surface of the recess more reliably. By doing in this way, it becomes possible to reduce the influence which this test piece Xm receives by the wrinkles which the contrast test piece Xs forms, contacting with the same ice board 2.

なお、本試験片Xmの氷盤2との接触面Cmの面積Smが1〜50cm2、対比試験片Xsの氷盤2との接触面Csの面積Ssが1〜25cm2である場合、接触面Cmでの上記最大差し渡し長さAmは通常1〜7cm、好ましくは1〜5cmであり、接触面Csでの上記最大差し渡し長さAsは通常1〜7cm、好ましくは1〜5cmである。 In addition, when the area Sm of the contact surface Cm with the ice plate 2 of the test piece Xm is 1 to 50 cm 2 and the area Ss of the contact surface Cs with the ice plate 2 of the contrast test piece Xs is 1 to 25 cm 2 , The maximum extension length Am at the surface Cm is usually 1 to 7 cm, preferably 1 to 5 cm, and the maximum extension length As at the contact surface Cs is usually 1 to 7 cm, preferably 1 to 5 cm.

特に、本試験片Xmおよび対比試験片Xsが共に図3(b)に示すような略立方体である場合、さらに対比試験片Xsが形成する轍によって本試験片Xmが受ける影響を低減するには、上記接触面Cmでの氷盤2の回転方向Yに対する最大差し渡し長さをBm、上記接触面Csでの氷盤2の回転方向Yに対する最大差し渡し長さをBsとすると、上記式(III−1)または(III−2)に加えて下記式(IV−1)を満たすのが望ましく、
Bs≦Bm・・・(IV−1)
下記式(IV−2)を満たすのがより望ましい。
Bs<Bm・・・(IV−2)
なお、上記最大差し渡し長さとは、上記接触面における回転方向Yに対する差し渡し長さのうち、最も長い差し渡し長さを意味する。
In particular, in the case where both the test specimen Xm and the contrast test specimen Xs are substantially cubic as shown in FIG. 3B, to further reduce the influence of the test specimen Xm by the wrinkles formed by the contrast test specimen Xs. When the maximum passing length with respect to the rotation direction Y of the ice plate 2 on the contact surface Cm is Bm, and the maximum passing length with respect to the rotation direction Y of the ice plate 2 on the contact surface Cs is Bs, the above formula (III− It is desirable to satisfy the following formula (IV-1) in addition to 1) or (III-2)
Bs ≦ Bm (IV-1)
It is more desirable to satisfy the following formula (IV-2).
Bs <Bm (IV-2)
In addition, the said maximum delivery length means the longest delivery length among the delivery lengths with respect to the rotation direction Y in the said contact surface.

試験片が図3(b)に示す略立方体である場合、かかる略立方体の角部が試験片と氷盤2との摩擦により形成される轍の壁面に接触してゴム摩耗粉が発生し、氷盤2の性状が大きく変動するおそれがある。また、かかる接触により轍の壁面が損傷を受けて轍の凹部形状が湾曲した形状に変動し、平滑な凹部底面が曲面を呈することとなり、試験片を凹部底面に充分に接触させることができなくなるおそれもある。しかしながら、本試験片Xmにおける接触面Cmでの最大差し渡し長さBmと対比試験片Xsの接触面Csでの最大差し渡し長さBsとが上記式(IV−1)を満たせば、同一の氷盤2に対して接触しつつも最大差し渡し長さBsを抑えて対比試験片Xsの角部が轍の壁面に接触するのを回避することができ、氷盤2の損傷やゴム摩耗粉の発生等を抑制することができるとともに、試験片を轍の凹部底面に確実に接触させることが可能となる。また対比試験片Xsの接触面Csの面積Ssをも縮小することもできるので、上記式(I−1)〜(I−2)に示すように対比試験片Xsの接触によって発生する水分量をも低減することができる。さらに上記式(IV−2)を満たせば、これらの効果をより確実なものとすることができる。   When the test piece is a substantially cube shown in FIG. 3 (b), the corner of the substantially cube comes into contact with the wall surface of the ridge formed by the friction between the test piece and the ice plate 2, and rubber wear powder is generated. There is a possibility that the properties of the ice plate 2 may fluctuate greatly. In addition, the wall surface of the heel is damaged by such contact, and the shape of the concave portion of the heel changes to a curved shape, and the bottom surface of the smooth concave portion exhibits a curved surface, so that the test piece cannot be sufficiently brought into contact with the bottom surface of the concave portion. There is also a fear. However, if the maximum length Bm at the contact surface Cm of the test piece Xm and the maximum length Bs at the contact surface Cs of the contrast test piece Xs satisfy the above formula (IV-1), the same ice plate 2 is able to prevent the corner portion of the contrast test piece Xs from contacting the wall surface of the bowl while suppressing the maximum passing length Bs while being in contact with the ice 2. And the test piece can be reliably brought into contact with the bottom surface of the concave portion of the ridge. Further, since the area Ss of the contact surface Cs of the comparison test piece Xs can be reduced, the amount of water generated by the contact of the comparison test piece Xs as shown in the above formulas (I-1) to (I-2) can be reduced. Can also be reduced. Furthermore, if the above formula (IV-2) is satisfied, these effects can be further ensured.

なお、本試験片Xmの氷盤2との接触面Cmでの上記最大差し渡し長さAmが1〜7cm、対比試験片Xsの氷盤2との接触面Csでの上記最大差し渡し長さAsが1〜7cmである場合、接触面Cmでの上記最大差し渡し長さBmは通常1〜7cm、好ましくは1〜5cmであり、接触面Csでの上記最大差し渡し長さBsは通常1〜5cm、好ましくは1〜3cmである。   In addition, the maximum extension length Am at the contact surface Cm of the test piece Xm with the ice plate 2 is 1 to 7 cm, and the maximum extension length As at the contact surface Cs of the test piece Xs with the ice plate 2 is In the case of 1 to 7 cm, the maximum delivery length Bm at the contact surface Cm is usually 1 to 7 cm, preferably 1 to 5 cm, and the maximum delivery length Bs at the contact surface Cs is usually 1 to 5 cm, preferably Is 1 to 3 cm.

上記対比試験片Xsを用いた測定としては、対比試験片Xsと氷盤2との間の摩擦係数μsの測定が好適なものとして挙げられる。かかる摩擦係数μsを測定することで、対比試験片Xsと氷盤2とが接触することによって、上記式(I−2)で表される摩擦力Fに比例して増減する水分量を把握することができ、本試験時の氷盤2の性状を正確に把握することが可能となる。また対比試験片Xsに負荷する押圧力Psを加減することで、発生する水分量を適宜調整することも可能となる。同様に、本試験片Xmを用いた測定としても、本試験片Xmと氷盤2との間の摩擦係数μmの測定が好適であり、摩擦係数μmの測定結果に応じて、本試験片Xmと氷盤2とが接触することによって発生する水分量を適宜調製することが可能となる。上記摩擦係数μsまたは摩擦係数μmの測定を行うために配置される装置としては、特に制限されるものではなく、例えば垂直荷重計測器と接線力計測器とを有する摩擦係数計測システムが好適なものとして挙げられる。   As a measurement using the above-mentioned contrast test piece Xs, the measurement of the friction coefficient μs between the contrast test piece Xs and the ice plate 2 is preferable. By measuring the friction coefficient μs, the amount of water that increases or decreases in proportion to the frictional force F expressed by the above formula (I-2) is grasped when the comparison specimen Xs and the ice plate 2 are in contact with each other. It is possible to accurately grasp the properties of the ice plate 2 at the time of this test. Further, by adjusting the pressing force Ps applied to the comparison test piece Xs, it is possible to appropriately adjust the amount of water generated. Similarly, as the measurement using the test piece Xm, the measurement of the friction coefficient μm between the test piece Xm and the ice plate 2 is preferable, and the test piece Xm is selected according to the measurement result of the friction coefficient μm. It is possible to appropriately adjust the amount of water generated by the contact between the ice plate 2 and the ice plate 2. The device arranged for measuring the friction coefficient μs or the friction coefficient μm is not particularly limited. For example, a friction coefficient measurement system having a vertical load measuring instrument and a tangential force measuring instrument is preferable. As mentioned.

また、氷盤2の回転軸2a周りの回転方向Zに対して上記対比試験片Xsの前方または後方であって、本試験片Xmよりも対比試験片Xsに近接した位置に水膜測定装置を配置するのが望ましい。このようにすることで、対比試験片Xsと氷盤2との摩擦により対比試験片Xsの前方または後方に生じた水分によって氷盤2上に形成される水膜を瞬時に把握することができ、かかる水膜に影響され得る本試験片Xmの試験データの変動をも正確に把握することが可能となる。ここで、対比試験片Xsの形状が図3(b)に示すような略立方体状である場合、この形状に起因して、回転方向Zに対して対比試験片Xsの後方に発生する水分が対比試験片Xsの前方にまで回り込みにくく、後方に発生した水分によって形成される水膜が測定結果に及ぼす影響は少ないので、専ら対比試験片Xsの前方に発生する水分によって形成される水膜が測定結果に影響を及ぼすため、回転方向Zに対して対比試験片Xsの前方の位置、例えば図5に示す位置Qに、水膜測定装置を配置するのがより効果的である。   In addition, the water film measuring device is placed in front of or behind the above-mentioned comparison specimen Xs with respect to the rotation direction Z around the rotation axis 2a of the ice plate 2 and closer to the comparison specimen Xs than the main specimen Xm. It is desirable to arrange. By doing so, it is possible to instantly grasp the water film formed on the ice plate 2 by the moisture generated in front of or behind the comparison test piece Xs due to the friction between the comparison test piece Xs and the ice plate 2. Therefore, it is possible to accurately grasp the fluctuation of the test data of the test piece Xm that can be influenced by the water film. Here, when the shape of the contrast test piece Xs is a substantially cubic shape as shown in FIG. 3B, moisture generated behind the contrast test piece Xs with respect to the rotation direction Z due to this shape. The water film formed by the moisture generated in the front of the contrast test piece Xs has little influence on the measurement result because the water film formed by the water generated in the rear has little influence on the measurement result. In order to influence the measurement result, it is more effective to dispose the water film measuring device at a position in front of the contrast test piece Xs with respect to the rotation direction Z, for example, at a position Q shown in FIG.

さらに、氷盤2の回転軸2a周りの回転方向Zに対して上記対比試験片Xsの前方または後方であって、本試験片Xmよりも対比試験片Xsに近接した位置に水膜除去装置を具えるのが望ましい。水膜除去装置は、通常、ブラシやスポンジ等の水膜除去機能を備えており、かかる装置を配置することで対比試験片Xsの前方または後方の氷盤2上に形成された余分な水膜を除去して、より正確な試験データを得ることが可能となる。ここで、対比試験片Xsの形状が図3(b)に示すような略立方体状である場合、この形状に起因して、回転方向Zに対して対比試験片Xsの後方に発生する水分が対比試験片Xsの前方にまで回り込みにくく、後方に発生した水分によって形成される水膜が測定結果に及ぼす影響は少ないので、専ら対比試験片Xsの前方に発生する水分によって形成される水膜が測定結果に影響を及ぼすため、回転方向Zに対して対比試験片Xsの前方の位置、例えば図5に示す位置Qに水膜除去装置を配置するのがより効果的である。このようにすることで、回転方向Zに対して本試験片Xmの前方における氷盤2の表面を常に乾燥した状態に保持しやすくなり、より安定した試験データを得ることが可能となる。   Furthermore, a water film removing device is provided at a position in front of or behind the above-mentioned comparative test piece Xs with respect to the rotation direction Z around the rotation axis 2a of the ice plate 2 and closer to the comparative test piece Xs than the main test piece Xm. It is desirable to have it. The water film removing device usually has a water film removing function such as a brush or a sponge, and an extra water film formed on the ice plate 2 in front of or behind the contrast test piece Xs by arranging such a device. It is possible to obtain more accurate test data. Here, when the shape of the contrast test piece Xs is a substantially cubic shape as shown in FIG. 3B, moisture generated behind the contrast test piece Xs with respect to the rotation direction Z due to this shape. The water film formed by the moisture generated in the front of the contrast test piece Xs has little influence on the measurement result because the water film formed by the moisture generated in the rear has little influence on the measurement result. In order to affect the measurement result, it is more effective to dispose the water film removing device at a position in front of the contrast test piece Xs with respect to the rotation direction Z, for example, at the position Q shown in FIG. By doing in this way, it becomes easy to always keep the surface of the ice board 2 in front of the test piece Xm in the rotation direction Z in a dry state, and more stable test data can be obtained.

なお、上記水膜測定装置と水膜除去装置との双方を配置する場合、対比試験片Xsの形状がいずれの形状であっても、回転方向Zに対して水膜測定装置の後方の位置に上記水膜除去装置を配置するのが望ましい。これによって、水膜除去装置で余分な水膜が除去された氷盤2の性状を本試験片Xmを用いた測定の直前に、水膜測定装置で把握することができる。   When both the water film measuring device and the water film removing device are arranged, the contrast test piece Xs is located at a position behind the water film measuring device with respect to the rotation direction Z regardless of the shape of the contrast test piece Xs. It is desirable to arrange the water film removing device. Thus, the properties of the ice plate 2 from which the excess water film has been removed by the water film removing device can be grasped by the water film measuring device immediately before the measurement using the test piece Xm.

1 : 恒温室
2 : 氷盤
2a: 回転軸
2b: 氷盤枠
3 : 氷盤駆動モータ
4 : 減速機
5 : 冷気発生装置
6 : 冷水機
7m、7s: 試料軸
10m、10s: 試料軸駆動モータ
11m、11s: トルクメータ
12m、12s: 昇降プレート
13m、13s: 固定フレーム
14m、14s: 試験部昇降シリンダ
19m、19s: 圧下シリンダ
20m、20s: 中間プレート
21m、21s: 試料軸昇降ガイドシャフト
R : 氷盤2の回転軸2aに直交する直線
Xm : 本試験片
Xs : 対比試験片
Y : 試験片の氷盤2に対して近接する方向
Z : 氷盤2の回転軸2a周りの回転方向
Q : 水膜測定装置または水膜除去装置の好適な配置位置
1: constant temperature chamber 2: ice plate 2a: rotating shaft 2b: ice frame 3: ice plate drive motor 4: speed reducer 5: cold air generator 6: cold water machine 7m, 7s: sample shaft 10m, 10s: sample shaft drive motor 11m, 11s: Torque meter 12m, 12s: Elevating plate 13m, 13s: Fixed frame 14m, 14s: Test unit elevating cylinder 19m, 19s: Reduction cylinder 20m, 20s: Intermediate plate 21m, 21s: Sample shaft elevating guide shaft R: Ice Straight line orthogonal to the rotation axis 2a of the board 2 Xm: Main test piece Xs: Comparison test piece Y: Direction of the test piece close to the ice plate 2 Z: Direction of rotation of the ice plate 2 around the rotation axis 2a Q: Water Suitable placement position for membrane measuring device or water membrane removing device

Claims (16)

本試験片および対比試験片を用いた測定を行う氷上摩擦試験機であって、
回転軸を有し、該回転軸周りに回転可能な氷盤と、
前記氷盤の表面に対向して本試験片を保持する保持手段および少なくとも1つの対比試験片を保持する少なくとも1つの保持手段とを具え、
前記保持手段は、前記回転軸に沿って、前記氷盤に対して近接および離間する方向に変位して、前記本試験片および前記対比試験片を同一の氷盤に対して接触および離間させることを特徴とする氷上摩擦試験機。
An on-ice friction tester that performs measurement using this test piece and a contrast test piece,
An ice plate having a rotation axis and rotatable about the rotation axis;
Holding means for holding the test piece facing the surface of the ice plate and at least one holding means for holding at least one contrast test piece;
The holding means is displaced in a direction of approaching and separating from the ice plate along the rotation axis to bring the main test piece and the contrast test piece into contact with and separated from the same ice plate. A friction tester on ice.
前記氷盤が、略円環形状を呈する氷盤であることを特徴とする請求項1に記載の氷上摩擦試験機。   The on-ice friction tester according to claim 1, wherein the ice plate is an ice plate having a substantially annular shape. 前記本試験片および前記対比試験片を前記氷盤に対して接触させた際に、これら本試験片および対比試験片が、本試験片における氷盤との接触面の中心から氷盤の回転軸までの距離と、対比試験片における氷盤との接触面の中心から氷盤の回転軸までの距離とが等しくなるよう配置されてなることを特徴とする請求項1または2に記載の氷上摩擦試験機。   When the main test piece and the comparison test piece are brought into contact with the ice plate, the main test piece and the comparison test piece are rotated from the center of the contact surface of the main test piece with the ice plate. 3. The friction on ice according to claim 1, wherein the distance from the center of the contact surface of the comparison specimen to the ice disk and the distance from the rotation axis of the ice disk are equal to each other. testing machine. 前記対比試験片を用いた測定が、前記対比試験片と前記氷盤との間の摩擦係数μsの測定であることを特徴とする請求項1〜3のいずれかに記載の氷上摩擦試験機。   The on-ice friction tester according to any one of claims 1 to 3, wherein the measurement using the comparison test piece is a measurement of a friction coefficient μs between the comparison test piece and the ice plate. 前記本試験片を用いた測定が、前記本試験片と前記氷盤との間の摩擦係数μmの測定であることを特徴とする請求項1〜4のいずれかに記載の氷上摩擦試験機。   The on-ice friction tester according to claim 1, wherein the measurement using the main test piece is a measurement of a friction coefficient μm between the main test piece and the ice disk. 前記本試験片および前記対比試験片を前記氷盤に対して接触させた際に、これら本試験片および対比試験片が、氷盤の回転軸に直交する直線上で対向するよう配置されてなることを特徴とする請求項1〜5のいずれかに記載の氷上摩擦試験機。   When the main test piece and the comparison test piece are brought into contact with the ice plate, the main test piece and the comparison test piece are arranged to face each other on a straight line perpendicular to the rotation axis of the ice plate. The on-ice friction tester according to any one of claims 1 to 5. 前記本試験片および前記対比試験片を前記氷盤に対して接触させた際に、本試験片における氷盤との接触面の面積Sm、本試験片に掛かる押圧力Pm、対比試験片における氷盤との接触面の面積Ss、および対比試験片に掛かる押圧力Psが、下記式(II−1)を満たすことを特徴とする請求項1〜6のいずれかに記載の氷上摩擦試験機。
Ps×Ss<Pm×Sm・・・(II−1)
When the main test piece and the comparison test piece are brought into contact with the ice plate, the area Sm of the contact surface of the main test piece with the ice plate, the pressing force Pm applied to the main test piece, the ice in the comparison test piece The on-ice friction tester according to any one of claims 1 to 6, wherein the area Ss of the contact surface with the board and the pressing force Ps applied to the comparison test piece satisfy the following formula (II-1).
Ps × Ss <Pm × Sm (II-1)
前記面積Sm、前記押圧力Pm、前記面積Ss、および前記押圧力Psが、下記式(II−2)を満たすことを特徴とする請求項7に記載の氷上摩擦試験機。
1/10×Pm×Sm≦Ps×Ss≦2/3×Pm×Sm・・・(II−2)
The on-ice friction tester according to claim 7, wherein the area Sm, the pressing force Pm, the area Ss, and the pressing force Ps satisfy the following formula (II-2).
1/10 × Pm × Sm ≦ Ps × Ss ≦ 2/3 × Pm × Sm (II-2)
前記本試験片における氷盤との接触面での氷盤の回転方向に直交する方向に対する最大差し渡し長さAm、および前記対比試験片における氷盤との接触面での氷盤の回転方向に直交する方向に対する最大差し渡し長さAsが、下記式(III−1)を満たすことを特徴とする請求項7または8に記載の氷上摩擦試験機。
As≦Am・・・(III−1)
The maximum span length Am with respect to the direction orthogonal to the ice disk rotation direction at the contact surface with the ice plate in the test piece, and the rotation direction of the ice disk at the contact surface with the ice plate in the comparison test piece. The on-ice friction tester according to claim 7 or 8, wherein a maximum passing length As with respect to a direction to satisfy the following formula (III-1):
As ≦ Am (III-1)
前記最大差し渡し長さAmおよび前記最大差し渡し長さAsが、下記式(III−2)を満たすことを特徴とする請求項9に記載の氷上摩擦試験機。
As=Am・・・(III−2)
The friction tester on ice according to claim 9, wherein the maximum delivery length Am and the maximum delivery length As satisfy the following formula (III-2).
As = Am (III-2)
前記本試験片における氷盤との接触面での氷盤の回転方向に対する最大差し渡し長さBm、および前記対比試験片における氷盤との接触面での氷盤の回転方向に対する最大差し渡し長さBsが、下記式(IV−1)を満たすことを特徴とする請求項7〜10のいずれかに記載の氷上摩擦試験機。
Bs≦Bm・・・(IV−1)
The maximum passing length Bm with respect to the ice disk rotation direction at the contact surface with the ice plate in the test piece, and the maximum transfer length Bs with respect to the ice disk rotation direction at the contact surface with the ice plate in the contrast test piece. Satisfy | fills following formula (IV-1), The friction tester on ice in any one of Claims 7-10 characterized by the above-mentioned.
Bs ≦ Bm (IV-1)
前記最大差し渡し長さBmおよび前記最大差し渡し長さBsが、下記式(IV−2)を満たすことを特徴とする請求項11に記載の氷上摩擦試験機。
Bs<Bm・・・(IV−2)
The on-ice friction tester according to claim 11, wherein the maximum delivery length Bm and the maximum delivery length Bs satisfy the following formula (IV-2).
Bs <Bm (IV-2)
前記氷盤の回転方向に対して前記対比試験片の前方または後方であって、前記本試験片よりも前記対比試験片に近接した位置に水膜測定装置が配置されてなることを特徴とする請求項1〜12のいずれかに記載の氷上摩擦試験機。   A water film measuring device is disposed in front of or behind the contrast test piece with respect to the rotation direction of the ice plate and closer to the contrast test piece than the main test piece. The on-ice friction tester according to any one of claims 1 to 12. 前記氷盤の回転方向に対して前記対比試験片の前方または後方であって、前記本試験片よりも前記対比試験片に近接した位置に水膜除去装置が配置されてなることを特徴とする請求項1〜13のいずれかに記載の氷上摩擦試験機。   A water film removing device is disposed in front of or behind the contrast test piece with respect to the rotation direction of the ice disk and closer to the comparison test piece than the main test piece. The on-ice friction tester according to any one of claims 1 to 13. 前記摩擦係数μsおよびμmを測定するための、垂直荷重計測器と接線力計測器とを有する摩擦係数計測システムを具えることを特徴とする請求項4〜14のいずれかに記載の氷上摩擦試験機。   The friction test on ice according to any one of claims 4 to 14, further comprising a friction coefficient measurement system having a vertical load measuring instrument and a tangential force measuring instrument for measuring the friction coefficients µs and µm. Machine. ゴムの氷上性能を評価するにあたり、請求項1〜15のいずれかに記載の氷上摩擦試験機を用いて、前記本試験片を用いた測定を行う間に前記対比試験片を用いた測定を行うことを特徴とする氷上摩擦試験方法。   In evaluating the on-ice performance of rubber, using the on-ice friction tester according to any one of claims 1 to 15, the measurement using the comparison test piece is performed while the measurement using the main test piece is performed. A friction test method on ice characterized by the above.
JP2009100144A 2009-04-16 2009-04-16 Friction tester on ice and friction test method on ice using the same Expired - Fee Related JP5425513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009100144A JP5425513B2 (en) 2009-04-16 2009-04-16 Friction tester on ice and friction test method on ice using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009100144A JP5425513B2 (en) 2009-04-16 2009-04-16 Friction tester on ice and friction test method on ice using the same

Publications (2)

Publication Number Publication Date
JP2010249693A true JP2010249693A (en) 2010-11-04
JP5425513B2 JP5425513B2 (en) 2014-02-26

Family

ID=43312192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009100144A Expired - Fee Related JP5425513B2 (en) 2009-04-16 2009-04-16 Friction tester on ice and friction test method on ice using the same

Country Status (1)

Country Link
JP (1) JP5425513B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149870A (en) * 2010-01-22 2011-08-04 Yokohama Rubber Co Ltd:The Friction test device and friction test method
WO2018139413A1 (en) * 2017-01-27 2018-08-02 株式会社ブリヂストン Method for measuring the thickness of water on ice
CN109540784A (en) * 2019-01-11 2019-03-29 吉林大学 A kind of aqualite Surface active component measuring friction coefficient device
CN114112896A (en) * 2021-11-30 2022-03-01 华侨大学 Skis high-speed friction performance testing device and testing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3003469U (en) * 1994-04-25 1994-10-18 川崎製鉄株式会社 Abrasion tester
JPH10123022A (en) * 1996-10-23 1998-05-15 Bridgestone Corp Method and apparatus for testing characteristics of tread rubber
JPH11211652A (en) * 1998-01-29 1999-08-06 Yokohama Rubber Co Ltd:The Friction coefficient measuring device
JP2001356088A (en) * 2000-06-13 2001-12-26 Bridgestone Corp Method and apparatus for testing friction characteristics of elastic material on ice
JP2005315594A (en) * 2004-04-27 2005-11-10 Yokohama Rubber Co Ltd:The Measuring method of coefficient of friction and measuring instrument therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3003469U (en) * 1994-04-25 1994-10-18 川崎製鉄株式会社 Abrasion tester
JPH10123022A (en) * 1996-10-23 1998-05-15 Bridgestone Corp Method and apparatus for testing characteristics of tread rubber
JPH11211652A (en) * 1998-01-29 1999-08-06 Yokohama Rubber Co Ltd:The Friction coefficient measuring device
JP2001356088A (en) * 2000-06-13 2001-12-26 Bridgestone Corp Method and apparatus for testing friction characteristics of elastic material on ice
JP2005315594A (en) * 2004-04-27 2005-11-10 Yokohama Rubber Co Ltd:The Measuring method of coefficient of friction and measuring instrument therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149870A (en) * 2010-01-22 2011-08-04 Yokohama Rubber Co Ltd:The Friction test device and friction test method
WO2018139413A1 (en) * 2017-01-27 2018-08-02 株式会社ブリヂストン Method for measuring the thickness of water on ice
JP2018119929A (en) * 2017-01-27 2018-08-02 株式会社ブリヂストン Method for measuring thickness of water on ice
CN110226077A (en) * 2017-01-27 2019-09-10 株式会社普利司通 The measurement method of the thickness of water on ice
EP3575743A4 (en) * 2017-01-27 2020-11-04 Bridgestone Corporation Method for measuring the thickness of water on ice
US10900893B2 (en) 2017-01-27 2021-01-26 Bridgestone Corporation Method of measuring height of water on ice
CN109540784A (en) * 2019-01-11 2019-03-29 吉林大学 A kind of aqualite Surface active component measuring friction coefficient device
CN109540784B (en) * 2019-01-11 2024-03-08 吉林大学 Rock interface sliding friction coefficient measuring device
CN114112896A (en) * 2021-11-30 2022-03-01 华侨大学 Skis high-speed friction performance testing device and testing method thereof
CN114112896B (en) * 2021-11-30 2023-10-20 华侨大学 High-speed friction performance testing device and testing method for snowboard

Also Published As

Publication number Publication date
JP5425513B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
TWI586486B (en) Polishing apparatus
JP5425513B2 (en) Friction tester on ice and friction test method on ice using the same
CN109690282B (en) Device for measuring rubber wear
EP1136807B1 (en) Tire wear forecasting method and apparatus
JP5542104B2 (en) Method for evaluating the wear resistance of tires
US6269690B1 (en) Method for estimating a tire wear life
US7614275B2 (en) Method and apparatus for determining coefficient of friction
CN102756623B (en) For installing or removing the method and apparatus of the tire of wheel
JP5532957B2 (en) Friction test apparatus and friction test method
JP2008241598A (en) Tire testing device and tire testing method
JP5837952B2 (en) Tire tread radius measuring method and tread radius measuring apparatus used therefor
JP2011180096A (en) Rubber friction testing machine
JP4890930B2 (en) Tire testing device and road surface for testing
JP2007017423A (en) Friction test method and friction tester
JP4079703B2 (en) Indoor tire durability test method
JP4428821B2 (en) Method and apparatus for testing friction characteristics of elastic material on ice
JP5869307B2 (en) Tire testing method
JP4260342B2 (en) Method and apparatus for testing friction characteristics of elastic material
CN105259064A (en) Sliding abrasion testing device and calculation method with sample surface crystalline grains having preferred orientation
JP2011153865A (en) Rubber testing machine, and rubber test method using the same
JP7138025B2 (en) Rubber adhesion test method and rubber adhesion test system
JP2006343173A (en) Friction tester
JPH09193003A (en) Polishing device
JP4600142B2 (en) Hardness measurement device on snow
CN211318040U (en) Router element aging testing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees