JP2010249643A - Method and device for measuring mercury concentration - Google Patents

Method and device for measuring mercury concentration Download PDF

Info

Publication number
JP2010249643A
JP2010249643A JP2009098965A JP2009098965A JP2010249643A JP 2010249643 A JP2010249643 A JP 2010249643A JP 2009098965 A JP2009098965 A JP 2009098965A JP 2009098965 A JP2009098965 A JP 2009098965A JP 2010249643 A JP2010249643 A JP 2010249643A
Authority
JP
Japan
Prior art keywords
mercury
gas
solution
conduit
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009098965A
Other languages
Japanese (ja)
Other versions
JP5466870B2 (en
Inventor
Keiichiro Kai
啓一郎 甲斐
Yasuyoshi Kato
泰良 加藤
Kiyoshi Ikemoto
清司 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2009098965A priority Critical patent/JP5466870B2/en
Publication of JP2010249643A publication Critical patent/JP2010249643A/en
Application granted granted Critical
Publication of JP5466870B2 publication Critical patent/JP5466870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To highly precisely detect mercury in exhaust gas according to individual chemical form by suppressing production of hardly-soluble mercury and reduction of oxidized mercury during sampling the exhaust gas. <P>SOLUTION: This method includes a first step in which a gas 11 sampled by introducing into a conduit 2 is contacted with a first solution 3 for absorbing oxidized mercury to collect the oxidized mercury in the gas, a second step in which gas out of the collection into the first solution in the first step is contacted with a mercury collector 5 for capturing metal mercury or a second solution 21 for absorbing metal mercury to collect metal mercury in the gas, and a third step in which the concentration of the oxidized mercury collected into the first solution in the first step and the concentration of the metal mercury collected into the solid or the second solution in the second step are respectively measured. In the first step, the gas flowing in the conduit is gradually cooled along the gas flow direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ガス中の水銀濃度を測定する方法及びその測定装置に係り、特に、石炭焚き火力発電所等から排出される排ガス中に含まれる水銀を、酸化態水銀と金属水銀とに分けて測定する方法及びその測定装置に関する。   The present invention relates to a method for measuring the concentration of mercury in a gas and a measuring apparatus therefor, and in particular, mercury contained in exhaust gas discharged from a coal-fired thermal power plant is divided into oxidized mercury and metallic mercury. The present invention relates to a measurement method and a measurement apparatus thereof.

近年、欧米を中心として、火力発電所用ボイラの排ガス中に含まれる窒素酸化物(NOx)、硫黄酸化物(SOx)、さらには水銀(Hg)の排出規制を強化する動きが強まっている。特に、排ガス中に含まれる水銀は、酸化態水銀と金属水銀に大別され、排ガス温度や排ガス中の塩素(Cl)、臭素(Br)等のハロゲン化合物の濃度、SOx濃度、水分量等の変化によって、その化学形態が大きく変化する。さらに、排ガス中に含まれる水銀量は微量であるため、脱硝装置や集塵装置或いは脱硫装置等での水銀の挙動を正確に把握するためには、排ガス中の酸化態水銀と金属水銀とを化学形態別に精度よく測定できる方法が不可欠である。   In recent years, mainly in Europe and the United States, there is an increasing trend to tighten emission regulations on nitrogen oxides (NOx), sulfur oxides (SOx), and mercury (Hg) contained in exhaust gas from boilers for thermal power plants. In particular, mercury contained in exhaust gas is roughly classified into oxidized mercury and metallic mercury, and the exhaust gas temperature, the concentration of halogen compounds such as chlorine (Cl) and bromine (Br) in the exhaust gas, SOx concentration, moisture content, etc. Changes in the chemical form change greatly. Furthermore, since the amount of mercury contained in the exhaust gas is very small, in order to accurately grasp the behavior of mercury in a denitration device, dust collector, or desulfurization device, oxidized mercury and metallic mercury in the exhaust gas are used. A method that can accurately measure the chemical form is indispensable.

排ガス中の水銀の測定方法としては、日本工業規格(JIS K−0222)に規定される方法や、米国材料・試験協会(ASTM D6784−02)に規定されるオンタリオハイドロ法と称する方法が提案されている。   As a method for measuring mercury in exhaust gas, a method specified in Japanese Industrial Standard (JIS K-0222) and a method called Ontario Hydro Method specified in American Materials and Testing Association (ASTM D6784-02) have been proposed. ing.

JISに規定される測定方法では、排ガス中の全水銀濃度を測定する方法として、導管を用いて採取した排ガスを硫酸酸性の過マンガン酸カリウム溶液を入れた吸収瓶に導き、排ガス中の水銀を過マンガン酸カリウム溶液中に吸収させ、その吸収液を還元処理することにより吸収液から空気で水銀を気相中に追い出し、その気相中の水銀量を原子吸光分析法により測定する方法が示されている。また、排ガス中の金属水銀の濃度を測定する方法として、導管を用いて採取した排ガスを水やリン酸緩衝液中に通気した後、その通気した排ガスを金−アマルガム捕集管に導いて排ガス中の金属水銀を捕集させ、その後、捕集管を加熱しながら通気して、気相中に移行した水銀を原子吸光分析法により測定する方法が示されている。   In the measurement method stipulated in JIS, as a method of measuring the total mercury concentration in exhaust gas, the exhaust gas collected using a conduit is led to an absorption bottle containing a sulfuric acid potassium permanganate solution, and the mercury in the exhaust gas is removed. A method is shown in which absorption is carried out in a potassium permanganate solution, the absorption solution is reduced, and mercury is expelled from the absorption solution into the gas phase by air, and the amount of mercury in the gas phase is measured by atomic absorption spectrometry. Has been. As a method for measuring the concentration of metallic mercury in the exhaust gas, the exhaust gas collected using a conduit is passed through water or a phosphate buffer, and then the exhausted gas is introduced into a gold-amalgam collecting tube to exhaust the exhaust gas. There is shown a method of collecting metallic mercury therein, and then ventilating while heating the collecting tube, and measuring mercury transferred into the gas phase by atomic absorption spectrometry.

一方、オンタリオハイドロ法は、導管を用いて採取した煙道中の排ガスを、KCl溶液、過酸化水素水と硝酸の混合液及び硫酸酸性の過マンガン酸カリウム溶液を含んだ吸収瓶へ順番に通気させた後、KCl溶液に吸収された水銀を酸化態水銀、過酸化水素水と硝酸の混合液及び硫酸酸性の過マンガン酸カリウム溶液に吸収された水銀を金属水銀として、化学形態別に分けて測定するものである。   On the other hand, in the Ontario hydro method, flue gas collected using a conduit is passed through an absorption bottle containing a KCl solution, a mixture of hydrogen peroxide and nitric acid, and a sulfuric acid potassium permanganate solution in order. After that, the mercury absorbed in the KCl solution is oxidized mercury, the mixture of hydrogen peroxide and nitric acid, and the mercury absorbed in the sulfuric acid potassium permanganate solution as metallic mercury and measured separately for each chemical form. Is.

JIS K0222−1997JIS K0222-1997 ASTM D6784−02(Standard Test Method for Elemental, Oxidized, Particle-Bound, andTotal Mercury in Flue Gas Generated from Coal-Fired Stationary Sources)ASTM D6784-02 (Standard Test Method for Elemental, Oxidized, Particle-Bound, and Total Mercury in Flue Gas Generated from Coal-Fired Stationary Sources)

しかしながら、上記の方法では、排ガスの性状やガスのサンプリング条件の設定等によって、採取されたガスが導管内を流れて吸収瓶に至るまでの過程で、ガス中に難溶性の水銀が発生することが分かってきた。そのため、吸収液を用いて水銀を吸収させる方法では、水銀を完全に捕集できないことがある。   However, in the above method, insoluble gas is generated in the gas in the process from the collected gas flowing through the conduit to the absorption bottle, depending on the properties of the exhaust gas and the gas sampling conditions. I understand. For this reason, mercury may not be completely collected by the method of absorbing mercury using an absorbing solution.

また、採取されたガス中にSOが存在する場合、導管内で凝縮した水分にSOが吸収されて亜硫酸となり、この亜硫酸が酸化態水銀と反応することにより、酸化態水銀が金属水銀に還元される。このため、排ガス中の水銀を酸化態水銀と金属水銀の化学形態別に計測する場合、各形態の測定値に誤差が生じ易くなる。 In addition, when SO 2 is present in the collected gas, SO 2 is absorbed by the moisture condensed in the conduit to become sulfurous acid, and this sulfurous acid reacts with oxidized mercury, so that oxidized mercury becomes metal mercury. Reduced. For this reason, when measuring the mercury in exhaust gas according to the chemical form of oxidized mercury and metallic mercury, an error is likely to occur in the measured values of each form.

そこで、本発明は、排ガスのサンプリング中における難溶性水銀の生成及び酸化態水銀の還元を抑制することにより、排ガス中の水銀を化学形態別に高い精度で検出することを課題とする。   Then, this invention makes it a subject to detect the mercury in waste gas with high precision according to chemical form by suppressing the production | generation of the hardly soluble mercury in the sampling of waste gas, and the reduction | restoration of oxidized mercury.

本発明者らは、上記の問題点に対して鋭意検討を進めた結果、排ガス中から導管でサンプリングしたガスを計測する際、以下の現象が生じることを知見した。   As a result of intensive studies on the above problems, the present inventors have found that the following phenomenon occurs when measuring the gas sampled in the exhaust gas from the exhaust gas.

(1)排ガスのサンプリング中における難溶性の水銀の生成は、排ガスの採取導管から吸収瓶に至るまでの導管内のガスが、放熱によって急速に冷却される過程で生じる。
(2)導管内に導いた排ガス中にSOが存在すると、上記(1)の過程における難溶性のミスト状水銀の生成が加速される。
(3)ミスト状水銀の生成量は導管内に導いたガス中のSO濃度に依存性を持ち、SO濃度が高くなると、増加する傾向にある。
(4)導管内に導いた排ガスが吸収瓶に向かって流れる過程で、排ガスの温度が水の露点以下になると、導管内で水が凝縮し、さらにその凝縮水に吸収されたSOが亜硫酸となることにより、亜硫酸と酸化態水銀とが反応し、酸化態水銀が金属水銀に還元される(反応式(1)〜(3))。
SO+HO(l) → 2SO 2−+2H (1)
HgCl+SO 2−+HO → Hg+SO 2−+2H+2Cl (2)
HgBr+SO 2−+HO → Hg+SO 2−+2H+2Br (3)
(1) Production of sparingly soluble mercury during sampling of exhaust gas occurs in a process in which the gas in the conduit from the exhaust gas sampling conduit to the absorption bottle is rapidly cooled by heat dissipation.
(2) When SO 3 is present in the exhaust gas introduced into the conduit, the production of hardly soluble mist-like mercury in the process (1) is accelerated.
(3) The amount of mist-like mercury produced depends on the SO 3 concentration in the gas introduced into the conduit, and tends to increase as the SO 3 concentration increases.
(4) In the process in which the exhaust gas guided into the conduit flows toward the absorption bottle, when the temperature of the exhaust gas falls below the dew point of water, the water condenses in the conduit, and SO 2 absorbed in the condensed water becomes sulfurous acid. As a result, sulfurous acid and oxidized mercury react to reduce oxidized mercury to metallic mercury (reaction formulas (1) to (3)).
SO 2 + H 2 O (l) → 2SO 3 2− + 2H + (1)
HgCl 2 + SO 3 2− + H 2 O → Hg + SO 4 2− + 2H + + 2Cl (2)
HgBr 2 + SO 3 2− + H 2 O → Hg + SO 4 2− + 2H + + 2Br (3)

上記(1)〜(3)に記載したように、排ガスのサンプリング中に導管内でガスが急冷されると、固体微粒状と思われる形態の水銀が生成する。このような水銀は、難溶性の物質であると考えられ、溶液中に吸収させて捕集することが困難となる。また、ガス中にSOが存在すると、この難溶性水銀の生成が促進されるが、これは、導管内のガスの急冷に伴って、サブミクロンオーダーの難溶性のSOミストへ水銀が吸着或いは内包される形で取り込まれるためと考えられる。 As described in the above (1) to (3), when the gas is rapidly cooled in the conduit during sampling of the exhaust gas, mercury in a form that seems to be solid fine particles is generated. Such mercury is considered to be a hardly soluble substance and is difficult to be absorbed and collected in a solution. In addition, when SO 3 is present in the gas, the formation of this hardly soluble mercury is promoted. This is because mercury adsorbs to the slightly soluble SO 3 mist of submicron order as the gas in the conduit is rapidly cooled. Or it is thought that it is taken in in the form included.

以上のことから、導管を流れる排ガスが急速に冷却される条件でサンプリングを行った場合、排ガスを酸化態水銀の吸収液と金属水銀の吸収液の順に通過させたとしても、ガス中の水銀をすべて捕集することができず、精度の高い測定が困難となる。   From the above, when sampling was performed under the condition that the exhaust gas flowing through the conduit was cooled rapidly, the mercury in the gas was not detected even though the exhaust gas was passed through the oxidized mercury absorption liquid and the metal mercury absorption liquid in this order. All of them cannot be collected, making it difficult to measure with high accuracy.

そこで、本発明は、上記課題を解決するため、ガス中の水銀濃度を酸化態水銀と金属水銀とに分けて測定する水銀濃度の測定方法において、導管内に導いて採取したガスを酸化態水銀を吸収する第1の溶液と接触させてガス中の酸化態水銀を捕集する第1の工程と、この第1の工程で第1の溶液に捕集されなかったガスを金属水銀を捕捉する固体又は金属水銀を吸収する第2の溶液と接触させてガス中の金属水銀を捕集する第2の工程と、第1の工程で第1の溶液に捕集された酸化態水銀の濃度と、第2の工程で固体又は第2の溶液に捕集された金属水銀の濃度をそれぞれ測定する第3の工程とを含み、第1の工程は、導管内を流れるガスをガスの通流方向に沿って徐冷することを特徴とする。   Therefore, in order to solve the above-described problems, the present invention provides a mercury concentration measurement method in which the mercury concentration in a gas is measured separately from oxidized mercury and metallic mercury. A first step of collecting oxidized mercury in the gas by bringing it into contact with a first solution that absorbs metal, and trapping metallic mercury in the gas that has not been collected in the first solution in the first step A second step of contacting the second solution that absorbs solid or metallic mercury to collect metallic mercury in the gas; and a concentration of oxidized mercury collected in the first solution in the first step; A third step of measuring the concentration of metallic mercury collected in the solid or the second solution in the second step, respectively, and the first step converts the gas flowing in the conduit into the direction of gas flow. It is characterized by being gradually cooled along.

このようにすれば、導管内に導いたガスを、急冷させることなく、徐々に冷やしながら導管内を通流させることができるため、第1の溶液に至るまでの過程で難溶性水銀の生成及び酸化態水銀の還元を抑制することができる。このため、導管を通過して第1の溶液に導かれたガスは、酸化態水銀の全て或いはその大部分が第1の溶液に吸収され、金属水銀の全て或いはその大部分が第2の溶液に吸収されるため、各々捕捉された水銀量を検出することにより、ガス中の水銀を化学形態別に高い精度で検出することが可能となる。   In this way, since the gas introduced into the conduit can be allowed to flow through the conduit while being gradually cooled without being rapidly cooled, the production of hardly soluble mercury and the process up to the first solution can be achieved. Reduction of oxidized mercury can be suppressed. For this reason, in the gas guided to the first solution through the conduit, all or most of the oxidized mercury is absorbed by the first solution, and all or most of the metal mercury is absorbed in the second solution. Therefore, it is possible to detect mercury in the gas with high accuracy by chemical form by detecting the amount of trapped mercury.

この場合において、第3の工程には、導管内に付着した酸化態水銀の濃度の測定を含むものとする。このようにすれば、酸化態水銀の濃度の測定精度をさらに高めることができる。   In this case, the third step includes the measurement of the concentration of oxidized mercury deposited in the conduit. In this way, the measurement accuracy of the oxidized mercury concentration can be further enhanced.

より具体的には、導管内を流れるガスは、ガス温度が200℃以下の範囲で、通流方向に5℃/cm以下の温度勾配で徐冷すると共に、水の露点温度よりも高い温度で保持するようにする。このようにすれば、導管内を通流するガスの結露を防ぐことができるため、ガス中にSOが存在していても、酸化態水銀の還元を効率的に抑制することができ、化学形態別の測定精度をさらに高めることができる。 More specifically, the gas flowing in the conduit is gradually cooled with a temperature gradient of 5 ° C./cm or less in the flow direction in a gas temperature range of 200 ° C. or lower, and at a temperature higher than the dew point temperature of water. Try to keep. In this way, it is possible to prevent the dew condensation of the gas flowing through the conduit, so that even if SO 3 is present in the gas, the reduction of oxidized mercury can be efficiently suppressed, and the chemical The measurement accuracy for each form can be further increased.

また、本発明は、ガス中の水銀濃度を酸化態水銀と金属水銀とに分けて測定する水銀濃度の測定装置において、ガスを導入する導管と、この導管を通じて採取されたガスと酸化態水銀を吸収する第1の溶液とを接触させてガス中の酸化態水銀を捕集する第1の反応部と、この第1の反応部の第1の溶液に捕集されなかったガスと金属水銀を捕捉する固体又は金属水銀を吸収する第2の溶液とを接触させてガス中の金属水銀を捕集する第2の反応部と、第1の反応部で第1の溶液中に捕集された酸化態水銀を気相中に移行させ、気相中の水銀濃度を測定する第1の測定手段と、第2の反応部で前記固体又は第2の溶液中に捕集された金属水銀を気相中に移行させ、気相中の水銀濃度を測定する第2の測定手段とを備え、導管には長手方向に沿って複数のヒータが設けられ、ヒータの加熱温度はガス通流方向に向かって段階的又は連続的に低下するように設定されるものとする。   The present invention also relates to a mercury concentration measuring apparatus for measuring the mercury concentration in a gas by dividing it into oxidized mercury and metallic mercury, and a conduit for introducing the gas, and the gas and oxidized mercury collected through the conduit. A first reaction part that contacts the first solution to be absorbed and collects oxidized mercury in the gas, and a gas and metal mercury that are not collected in the first solution of the first reaction part. The second reaction part for collecting the solid metal to be captured or the second solution for absorbing the metal mercury to collect the metal mercury in the gas, and the first reaction part collected in the first solution. A first measuring means for transferring oxidized mercury to the gas phase and measuring the mercury concentration in the gas phase, and the metal mercury collected in the solid or the second solution in the second reaction section are gasified. And a second measuring means for measuring the mercury concentration in the gas phase, the conduit being provided along the longitudinal direction A plurality of heaters are provided, the heating temperature of the heater shall be set to decrease stepwise or continuously toward the gas passage direction.

また、導管は、該導管の内壁にガス中の成分が慣性衝突するように形成されていることが好ましい。このような導管であれば、ガス中のSOミストを導管の内壁面に衝突させて捕集することができるため、SOミストに同伴していた僅かな水銀も見逃すことなく回収することができるため、測定精度をさらに高めることができる。 Moreover, it is preferable that the conduit is formed so that components in the gas collide with the inner wall of the conduit. With such a conduit can be trapped by colliding the SO 3 mist in the gas on the inner wall surface of the conduit, be recovered without missing even a small mercury was accompanied to the SO 3 mist Therefore, the measurement accuracy can be further increased.

本発明によれば、排ガスのサンプリング中における難溶性水銀の生成及び酸化態水銀の還元を抑制することにより、排ガス中の水銀を化学形態別に高い精度で検出することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to detect the mercury in waste gas with high precision according to chemical form by suppressing the production | generation of the hardly soluble mercury during the sampling of waste gas, and the reduction | restoration of oxidized mercury.

本発明の一実施例を示す水銀濃度測定装置の基本的な構成を示す図である。It is a figure which shows the basic composition of the mercury concentration measuring apparatus which shows one Example of this invention. 本発明の水銀濃度測定装置に用いられる導管の構成を説明する図である。It is a figure explaining the structure of the conduit | pipe used for the mercury concentration measuring apparatus of this invention. 本発明の一実施例を示す水銀濃度測定装置の基本的な構成を示す図である。It is a figure which shows the basic composition of the mercury concentration measuring apparatus which shows one Example of this invention. 実施例1と比較例1、2において、導管内を通流するガスの温度変化の様子を説明する図である。In Example 1 and Comparative Examples 1 and 2, it is a figure explaining the mode of the temperature change of the gas which flows through the inside of a conduit | pipe. 本発明の一実地例を示す水銀濃度測定装置の構成を示す図である。It is a figure which shows the structure of the mercury concentration measuring apparatus which shows one practical example of this invention.

以下、本発明の水銀濃度の測定方法及び測定装置を用いた実施形態について説明する。   Hereinafter, embodiments using the method and apparatus for measuring mercury concentration of the present invention will be described.

図1は、本発明を適用してなる水銀濃度測定装置の基本的な構成を説明する図である。この水銀濃度測定装置は、被測定ガスが通流する円筒状の石英製の高温層1と、被測定ガスを採取するためのガラス製の導管2と、酸化態水銀と溶液3とを接触させて酸化態水銀を溶液3に吸収させる吸収瓶4と、吸収瓶4から抜き出された被測定ガスを導入して溶液3に吸収されなかった金属水銀を水銀捕集剤5と接触させて金属水銀を捕捉させる捕集管6と、吸引ポンプ7と、ガスメータ8を、図1に示すように順次接続してガスサンプリングラインを構成している。また、このようなガスサンプリングラインには、吸収瓶4で捕捉した酸化態水銀と捕集管6で捕捉した金属水銀の濃度とをそれぞれ検出する検出部(図示せず)が接続されている。   FIG. 1 is a diagram for explaining a basic configuration of a mercury concentration measuring apparatus to which the present invention is applied. This mercury concentration measuring apparatus is configured to contact a cylindrical quartz high-temperature layer 1 through which a gas to be measured flows, a glass conduit 2 for collecting the gas to be measured, oxidized mercury and a solution 3. An absorption bottle 4 for absorbing oxidized mercury in the solution 3 and a metal mercury not absorbed in the solution 3 by introducing the gas to be measured extracted from the absorption bottle 4 and contacting the mercury collector 5 with the metal A gas sampling line is configured by sequentially connecting a collecting pipe 6 for capturing mercury, a suction pump 7 and a gas meter 8 as shown in FIG. Further, such a gas sampling line is connected to a detection unit (not shown) for detecting the oxidized mercury captured by the absorption bottle 4 and the concentration of metallic mercury captured by the collection tube 6.

高温層1はその周囲が電気炉9で加熱されることにより炉内が所定の高温に保たれるようになっている。高温層1の炉内のガス流路には、水銀の酸化触媒の充填層10が形成され、この充填層10の上流側には、被測定ガス(以下、ガス11という)を炉内に導入する導入口(図示せず)が設けられ、充填層10の下流側には、導管2の一端側が挿入されている。   The periphery of the high temperature layer 1 is heated by an electric furnace 9 so that the inside of the furnace is maintained at a predetermined high temperature. The gas flow path in the furnace of the high temperature layer 1 is formed with a packed bed 10 of mercury oxidation catalyst, and a gas to be measured (hereinafter referred to as gas 11) is introduced into the furnace upstream of the packed bed 10. An inlet (not shown) is provided, and one end side of the conduit 2 is inserted downstream of the packed bed 10.

吸収瓶4は、溶液3とガス11とを接触させる密閉された反応管となっている。吸収瓶4には、導管2の他端側が挿入されており、その先端部分が溶液3の液中に位置するようになっている。ここで、溶液3とは、ガス11中の酸化態水銀を吸収可能な溶液として、例えば1N−KCl溶液(30cc)を用いることができる。   The absorption bottle 4 is a sealed reaction tube for bringing the solution 3 and the gas 11 into contact with each other. The other end side of the conduit 2 is inserted into the absorption bottle 4, and the tip portion thereof is positioned in the solution 3. Here, as the solution 3, for example, a 1N-KCl solution (30 cc) can be used as a solution capable of absorbing oxidized mercury in the gas 11.

捕集管6は、吸収瓶4から取り出されたガス11を導入して、溶液3に吸収されなかったガス11中の金属水銀と水銀捕集剤5とを接触させる密閉された反応管となっている。捕集管6のガス流路には、水銀捕集剤5が充填されている。ここで、水銀捕集剤5とは、金属水銀を捕捉可能な固体で、例えば、金−アマルガム(日本インスツルメンツ製、充填量:約30mg)の捕集剤を用いることができる。   The collection tube 6 is a sealed reaction tube that introduces the gas 11 taken out from the absorption bottle 4 and brings the mercury metal in the gas 11 not absorbed by the solution 3 into contact with the mercury collection agent 5. ing. The gas flow path of the collection tube 6 is filled with a mercury collection agent 5. Here, the mercury scavenger 5 is a solid capable of capturing metal mercury, and for example, a gold-amalgam (manufactured by Nippon Instruments, filling amount: about 30 mg) scavenger can be used.

導管2は、高温層1の出口から吸収瓶4の入口に至るまでの領域、つまり外周面が外部に露出する領域に、導管2の長手方向に沿って、複数のフレキシブルヒータ12が巻き付けられている。各々のフレキシブルヒータ12は、図示しない制御手段と接続され、加熱出力が制御されるようになっている。ここで、フレキシブルヒータ12は、導管2の長手方向に例えば5cm刻みで5つ設けられており、それぞれのフレキシブルヒータ12の加熱出力が調整できるようになっている。より具体的には、高温層1内から出たガス11が、所定の温度範囲において、所定の温度勾配で徐々に冷却されるように、それぞれのフレキシブルヒータ12の加熱出力が、ガスの通流方向に向かって段階的に低くなるように設定されている。   In the conduit 2, a plurality of flexible heaters 12 are wound along the longitudinal direction of the conduit 2 in a region from the outlet of the high temperature layer 1 to the inlet of the absorption bottle 4, that is, a region where the outer peripheral surface is exposed to the outside. Yes. Each flexible heater 12 is connected to a control means (not shown) so that the heating output is controlled. Here, five flexible heaters 12 are provided in the longitudinal direction of the conduit 2 in increments of 5 cm, for example, and the heating output of each flexible heater 12 can be adjusted. More specifically, the heating output of each flexible heater 12 is a gas flow so that the gas 11 emitted from the high temperature layer 1 is gradually cooled at a predetermined temperature gradient in a predetermined temperature range. It is set so as to decrease stepwise toward the direction.

このようにして構成される水銀濃度測定装置において、高温層1の導入口からガス11が導入される。高温層1に導入されたガス11は、高温層1内で約400℃に加熱され、さらに充填層10を通過する際にガス11中の水銀の一部が酸化される。充填層10を通過したガス11は、その一部が、吸引ポンプ7の吸引により高温層1内に導入された導管2によって採取される。導管2内に導かれた高温のガス11は、高温層1から出て導管2内を流れる際に、フレキシブルヒータ12の温度制御によって徐冷される。導管2内を流れて所定の温度まで徐冷されたガス11は、吸収瓶4に導かれ、ここで、ガス中の酸化態水銀が溶液3に吸収される。続いて、酸化態水銀が吸収されたガス11は、捕集管6に流入し、ここで、ガス中の金属水銀が水銀捕集剤5に捕捉される。このようにして化学形態別の水銀が捕捉されたガス11は、吸引ポンプ7を経由してガスメータ8に導かれ、採取した排ガス量等が測定される。   In the mercury concentration measuring apparatus configured as described above, the gas 11 is introduced from the inlet of the high temperature layer 1. The gas 11 introduced into the high temperature layer 1 is heated to about 400 ° C. in the high temperature layer 1, and further, a part of mercury in the gas 11 is oxidized when passing through the packed layer 10. Part of the gas 11 that has passed through the packed bed 10 is collected by the conduit 2 introduced into the high temperature bed 1 by suction of the suction pump 7. The hot gas 11 introduced into the conduit 2 is gradually cooled by temperature control of the flexible heater 12 when it flows out of the high temperature layer 1 and flows through the conduit 2. The gas 11 flowing in the conduit 2 and gradually cooled to a predetermined temperature is guided to the absorption bottle 4 where the oxidized mercury in the gas is absorbed by the solution 3. Subsequently, the gas 11 in which the oxidized mercury is absorbed flows into the collection tube 6, where the metallic mercury in the gas is captured by the mercury collection agent 5. In this way, the gas 11 in which the mercury by chemical form is captured is guided to the gas meter 8 via the suction pump 7 and the collected amount of exhaust gas is measured.

次に、採取したガス11中から捕捉された水銀の濃度を検出する。先ず、吸収瓶4の溶液3に吸収された水銀、つまり酸化態水銀の量は、例えば、溶液3に周知の還元剤を添加して還元処理を施すことにより、酸化態水銀をガス状の金属水銀に還元して気相中に追い出し、その気相中の水銀濃度を原子吸光法で測定することにより検出することができる。また、捕集管6の水銀捕集剤5に捕捉された水銀、つまり金属水銀の量は、例えば、捕集管6を加熱しながら通気して水銀捕集剤5に捕捉された水銀を気相中に追い出し、その気相中の水銀濃度を原子吸光法で測定することにより検出することができる。   Next, the concentration of mercury captured from the collected gas 11 is detected. First, the amount of mercury absorbed in the solution 3 of the absorption bottle 4, that is, oxidized mercury, is determined by adding a known reducing agent to the solution 3 and subjecting the oxidized mercury to gaseous metal. It can be detected by reducing to mercury and expelling it into the gas phase, and measuring the mercury concentration in the gas phase by atomic absorption spectrometry. The amount of mercury captured by the mercury collecting agent 5 in the collecting tube 6, that is, the amount of metallic mercury, is, for example, the amount of mercury trapped in the mercury collecting agent 5 by aeration while heating the collecting tube 6. It can be detected by driving out into the phase and measuring the mercury concentration in the gas phase by atomic absorption.

また、導管2の内壁面には、ガス11に含まれる水銀、具体的には酸化態水銀が付着していることが、発明者らの調査で確認されている。このため、上記の検出方法に加えて、導管2に付着した水銀を洗浄液で洗浄し、その洗浄液中の水銀を、例えば上記と同様の還元処理により気相中に追い出して原子吸光法で測定する。このようにして導管2の内壁面に付着した水銀の量を測定し、測定された水銀量を酸化態水銀の量とみなし、溶液3に吸収された酸化態水銀の量と合算することにより、ガス11中の酸化態水銀の濃度をより正確に検出することができる。ここで、導管2の内壁面の洗浄に用いる洗浄液としては、例えば、過マンガン酸カリウム溶液(1.5g/L)及び塩化ヒドロキシルアンモニウム溶液(20g/Lを用いることができる。   Further, it has been confirmed by the inventors' investigation that mercury contained in the gas 11, specifically, oxidized mercury, adheres to the inner wall surface of the conduit 2. Therefore, in addition to the above detection method, mercury adhering to the conduit 2 is washed with a washing solution, and the mercury in the washing solution is expelled into the gas phase by, for example, the same reduction treatment as described above and measured by atomic absorption spectrometry. . In this way, the amount of mercury adhering to the inner wall surface of the conduit 2 is measured, the measured amount of mercury is regarded as the amount of oxidized mercury, and the total amount of oxidized mercury absorbed in the solution 3 is added. The concentration of oxidized mercury in the gas 11 can be detected more accurately. Here, as a cleaning liquid used for cleaning the inner wall surface of the conduit 2, for example, a potassium permanganate solution (1.5 g / L) and a hydroxylammonium chloride solution (20 g / L) can be used.

本実施形態では、高温層1内で高温に加熱されたガス11を導管2により採取し、その採取したガス11を、所定の温度範囲において、所定の温度勾配で段階的或いは連続的に徐冷した後、吸収瓶4に導いて酸化態水銀を溶液3に吸収させ、さらに捕集管6に導いて金属水銀を水銀捕集剤5に捕捉させるようにしている。すなわち、採取した高温のガス11を急冷させることなく、徐々に冷却させながら導管2内を通流させているため、化学形態別に水銀を捕捉する前の段階で、難溶性水銀の生成や酸化態水銀の還元を抑えることができる。したがって、採取したガス11中に含まれる酸化態水銀の全て或いはその大部分が溶液3に吸収され、金属水銀の全て或いはその大部分が水銀捕集剤5に吸収されるため、各溶液に吸収された水銀の濃度を測定することにより、採取したガス11中の水銀を、化学形態別に高い精度で計測することができる。尚、導管2により採取したガス11の徐冷手段は、フレキシブルヒータ12に限られるものではない。   In the present embodiment, the gas 11 heated to a high temperature in the high temperature layer 1 is sampled by the conduit 2, and the sampled gas 11 is gradually cooled stepwise or continuously at a predetermined temperature gradient in a predetermined temperature range. After that, it is guided to the absorption bottle 4 to absorb the oxidized mercury in the solution 3 and further guided to the collecting tube 6 so that the mercury collecting agent 5 captures the metallic mercury. That is, since the collected high-temperature gas 11 is allowed to flow through the conduit 2 while being gradually cooled without being rapidly cooled, the formation of the hardly soluble mercury and the oxidation state before the mercury is captured for each chemical form. Reduction of mercury can be suppressed. Therefore, all or most of the oxidized mercury contained in the collected gas 11 is absorbed by the solution 3, and all or most of the metallic mercury is absorbed by the mercury scavenger 5, so that it is absorbed by each solution. By measuring the concentration of the collected mercury, the mercury in the collected gas 11 can be measured with high accuracy for each chemical form. The slow cooling means for the gas 11 collected by the conduit 2 is not limited to the flexible heater 12.

(実施例1)
次に、本発明の具体的な実施例を説明する。本実施例では、図1の水銀濃度測定装置を用いて、表1に示す成分のガス11をサンプリングし、ガス11中に含まれる水銀濃度を化学形態別に計測した。本実施例では、導管2より採取したガス11が高温層1を出て吸収瓶4に至るまでの温度がガスの通流方向に向かって5℃/cmの温度勾配で低下するように、フレキシブルヒータの制御温度(加熱温度)をガスの通流方向に向かって175℃、150℃、125℃、100℃、75℃、50℃の順に設定した。また、導管2は、図2の(a)に示すようにストレート形状で延出するガラス管を用いた。

Figure 2010249643
Example 1
Next, specific examples of the present invention will be described. In this example, the mercury concentration measuring device shown in FIG. 1 was used to sample the gas 11 having the components shown in Table 1, and the mercury concentration contained in the gas 11 was measured for each chemical form. In this embodiment, the gas 11 collected from the conduit 2 is flexible so that the temperature from the high temperature layer 1 to the absorption bottle 4 decreases with a temperature gradient of 5 ° C./cm toward the gas flow direction. The control temperature (heating temperature) of the heater was set in the order of 175 ° C., 150 ° C., 125 ° C., 100 ° C., 75 ° C., and 50 ° C. in the gas flow direction. Moreover, the conduit | pipe 2 used the glass tube extended in a straight shape as shown to (a) of FIG.
Figure 2010249643

(実施例2)
実施例1において、水銀捕集剤5が充填された捕集管6を、溶液21(硫酸酸性過マンガン酸カリウム溶液)を30cc入れた吸収瓶22に換え(図3)、以下同様にしてガス11を採取し、水銀濃度を化学形態別に計測した。
(Example 2)
In Example 1, the collecting tube 6 filled with the mercury collecting agent 5 is replaced with an absorption bottle 22 containing 30 cc of a solution 21 (sulfuric acid potassium permanganate solution) (FIG. 3). 11 were collected and the mercury concentration was measured according to chemical form.

(実施例3)
実施例1において、図2(a)の導管2を、図2(b)に示すように長手方向で波型に屈曲する形状で延出するガラス管に換え、以下同様にしてガス11を採取し、水銀濃度を化学形態別に計測した。
(Example 3)
In Example 1, the conduit 2 in FIG. 2 (a) is replaced with a glass tube extending in a wave shape in the longitudinal direction as shown in FIG. 2 (b), and the gas 11 is collected in the same manner. The mercury concentration was measured for each chemical form.

(実施例4)
実施例1において、図2(a)の導管2を、図2の(c)に示すように長手方向で渦巻状に形成する部分を有するガラス管に換え、以下同様にしてガス11を採取し、水銀濃度を化学形態別に計測した。
Example 4
In Example 1, the conduit 2 in FIG. 2 (a) is replaced with a glass tube having a portion that is spirally formed in the longitudinal direction as shown in FIG. 2 (c), and the gas 11 is collected in the same manner. Mercury concentration was measured by chemical form.

(比較例1)
実施例2において、導管2に巻き付けたフレキシブルヒータ12の加熱を停止させた状態とし、以下同様にしてガス11を採取し、水銀濃度を化学形態別に計測した。
(Comparative Example 1)
In Example 2, the heating of the flexible heater 12 wound around the conduit 2 was stopped, the gas 11 was collected in the same manner, and the mercury concentration was measured for each chemical form.

(比較例2)
実施例2において、導管2に巻き付けたフレキシブルヒータ12の制御温度をすべて120℃に設定して温度勾配をつけずに導管2が保温される状態とし、以下同様にしてガス11を採取し、水銀濃度を化学形態別に計測した。
(Comparative Example 2)
In Example 2, all the control temperatures of the flexible heater 12 wound around the conduit 2 are set to 120 ° C. so that the conduit 2 is kept warm without applying a temperature gradient. Concentration was measured by chemical form.

(リーク水銀の確認試験)
本発明における水銀濃度の測定方法は、ガス中の水銀を化学形態別に確実に捕集することを目的としている。そこで、本発明の効果を明確にするため、上記実施例1〜4及び比較例1、2のサンプリングラインの最後段(吸引ポンプ7の手前)に、ガラスフィルタ(ADVANTEC製、QR-100)を入れたホルダーを配置し、これによりリーク水銀を捕集できるようにした。サンプリング後のフィルタ中の水銀量の測定は、フィルタを50ccの硫酸酸性過マンガン酸カリウム(1.5g/L)に漬け、約70℃で4時間湯せん後、溶液中に溶け出した水銀を原子吸光法で測定した。
(Confirmation test for leaked mercury)
The method for measuring mercury concentration in the present invention aims to reliably collect mercury in a gas according to chemical form. Therefore, in order to clarify the effect of the present invention, a glass filter (manufactured by ADVANTEC, QR-100) is provided at the last stage of the sampling lines of Examples 1 to 4 and Comparative Examples 1 and 2 (before the suction pump 7). A holder was placed so that leaked mercury could be collected. The amount of mercury in the filter after sampling was measured by immersing the filter in 50 cc of potassium persulfate acidic acid (1.5 g / L). It was measured by absorption method.

実施例1〜4及び比較例1、2において、それぞれ得られた水銀のサンプリング分析結果並びにリーク水銀量の分析結果を表2にまとめて示す。表2の数値は1回のガス採取で計測された水銀量をそれぞれ示している。(A)は充填層10の入口側におけるガス11中の水銀量、(B)は吸収瓶4の溶液3に吸収された酸化態水銀量と導管2の内壁面に付着した酸化態水銀量の合計値、(C)は捕集管6の水銀捕集剤5に捕捉され或いは吸収瓶22の溶液21に吸収された金属水銀量、リーク水銀はホルダーに捕集された水銀量を示し、水銀回収率(5)は(B+C)/Aの計算値、水銀酸化率(%)はB/Aの計算値をそれぞれ示している。また、実施例1及び比較例1、2の方法でサンプリングを実施する際に高温層1から出て吸収瓶4に至るまでの導管2内のガス通流方向の温度推移を図4に示す。

Figure 2010249643
In Examples 1 to 4 and Comparative Examples 1 and 2, the obtained mercury sampling analysis results and the leakage mercury content analysis results are summarized in Table 2. The numerical values in Table 2 indicate the amount of mercury measured in one gas sampling. (A) is the amount of mercury in the gas 11 on the inlet side of the packed bed 10, (B) is the amount of oxidized mercury absorbed in the solution 3 of the absorption bottle 4 and the amount of oxidized mercury adhering to the inner wall surface of the conduit 2. The total value, (C) is the amount of metallic mercury captured by the mercury collecting agent 5 in the collecting tube 6 or absorbed in the solution 21 of the absorption bottle 22, and the leaked mercury indicates the amount of mercury collected in the holder. The recovery rate (5) indicates the calculated value of (B + C) / A, and the mercury oxidation rate (%) indicates the calculated value of B / A. FIG. 4 shows the temperature transition in the gas flow direction in the conduit 2 from the high temperature layer 1 to the absorption bottle 4 when sampling is performed by the methods of Example 1 and Comparative Examples 1 and 2.
Figure 2010249643

表2に示すように、比較例1及び2では、水銀回収率が約90%と低く、残りの約1割はサンプリングラインで捕集されずにリークしていることが分かる。これは、高温層1から採取されたガス11が導管2内を流れる過程で、ガス中に難溶性の水銀が生成したことによるものと考えられる。   As shown in Table 2, it can be seen that in Comparative Examples 1 and 2, the mercury recovery rate is as low as about 90%, and the remaining about 10% leaks without being collected by the sampling line. This is considered to be due to the fact that insoluble mercury is generated in the gas in the process in which the gas 11 collected from the high temperature layer 1 flows in the conduit 2.

また、水銀酸化率では、比較例1が約75%、比較例2が約64%と、充填層10の同じ酸化触媒を通過させたガス11を評価しているにも関わらず、約10%もの差が見られる。これは、比較例1の場合、高温層1を出たガス11が保温されないため、導管2内を通流する際にガス温度が急激に低下して、微粒のSOミストが大量に発生したことによるものと推測される。 The mercury oxidation rate is about 75% in Comparative Example 1 and about 64% in Comparative Example 2, which is about 10% despite evaluating the gas 11 that has passed through the same oxidation catalyst in the packed bed 10. There is a difference. This is because, in the case of Comparative Example 1, since the gas 11 exiting the high temperature layer 1 is not kept warm, the gas temperature rapidly dropped when flowing through the conduit 2, and a large amount of fine SO 3 mist was generated. This is presumed to be due to this.

一方、比較例2では、導管2内で水の凝縮を防止するため、高温層1を出たガス11を120℃で保温するようにしているが、この場合、120℃のガス11が常温の溶液3中に通気されるため、その温度差が大きく、ガス11が急冷される状態となる。その結果、ガス11中において微粒硫酸ミストが多く生成され、難溶性の水銀が容易に生成されたものと考えられる。そして、本来酸化態水銀として検出される水銀が、導管2内で難溶性の水銀に変化したことにより、溶液21でその一部が吸収され、金属水銀の検出量が多くなったものと推測される。   On the other hand, in Comparative Example 2, in order to prevent condensation of water in the conduit 2, the gas 11 exiting the high temperature layer 1 is kept at 120 ° C., but in this case, the gas 11 at 120 ° C. has a normal temperature. Since the solution 3 is aerated, the temperature difference is large and the gas 11 is rapidly cooled. As a result, it is considered that a large amount of fine sulfuric acid mist was generated in the gas 11, and hardly soluble mercury was easily generated. Then, it is presumed that the mercury that was originally detected as oxidized mercury changed to poorly soluble mercury in the conduit 2, so that a part of the mercury was absorbed by the solution 21 and the amount of metal mercury detected increased. The

以上のことから、導管2内の保温条件がサンプリングラインでのHg回収率やHg酸化率に大きく影響することは明らかである。   From the above, it is clear that the heat insulation condition in the conduit 2 greatly affects the Hg recovery rate and Hg oxidation rate in the sampling line.

上記比較例1、2に対し、本発明の実施例1及び実施例2の結果(表2)をみると、水銀回収率は98〜99%でリーク水銀も極僅かと良好な結果となっている。これは、導管2内を流れるガス11が所定の温度勾配で冷却されるようにフレキシブルヒータ12の加熱出力を制御したためである。すなわち、図4に示すように、導管2内を流れるガス11を、特に200℃以下において、徐々に冷却すると共に水の露点よりも高い温度に保つことにより、難溶性の水銀の生成を抑制し、高い水銀回収率と水銀酸化率を得ることができる。また、実施例3及び4では、図2(b)、(c)のように、導管2を波型或いは渦巻状(スパイラル型)に形成したものを用いているため、リーク水銀をほぼゼロにすることができる。これは、導管2内を流れるガス11の流れが乱れることにより、ガス11中のSOミストが内壁面に慣性衝突して捕集されるため、同伴するわずかな水銀も逃さず回収できるものと推測される。 When the results of Examples 1 and 2 of the present invention (Table 2) are compared with Comparative Examples 1 and 2 above, the mercury recovery rate is 98 to 99%, and the leaked mercury is also very good. Yes. This is because the heating output of the flexible heater 12 is controlled so that the gas 11 flowing in the conduit 2 is cooled with a predetermined temperature gradient. That is, as shown in FIG. 4, the gas 11 flowing in the conduit 2 is gradually cooled, particularly at 200 ° C. or lower, and kept at a temperature higher than the dew point of water, thereby suppressing the formation of hardly soluble mercury. High mercury recovery rate and mercury oxidation rate can be obtained. Further, in Examples 3 and 4, as shown in FIGS. 2 (b) and 2 (c), since the conduit 2 is formed in a wave shape or a spiral shape (spiral type), the leakage mercury is almost zero. can do. This is because, because the flow of the gas 11 flowing in the conduit 2 is disturbed, the SO 3 mist in the gas 11 is collected by inertial collision with the inner wall surface, so that the slight mercury accompanying can be recovered without missing. Guessed.

(実施例5)
次に、本発明を実施するための他の実施例について図5を用いて説明する。図5は、本発明を適用した実際のボイラ排ガス中の水銀分析を実施するための水銀濃度測定装置の一例を示したものである。この水銀濃度測定装置のサンプリングラインは、煙道111を流れる排ガスを採取する導管101、ダストフィルタユニット102、徐冷制御ユニット103、KCl溶液等を入れた酸化態水銀の吸収瓶107、硫酸酸性過マンガン酸カリウム溶液を入れた金属水銀の吸収瓶108、吸引ポンプ109及びガスメータ110で構成される。また、図示しないが、吸収瓶107、108に吸収された水銀量をそれぞれ計測する計測手段が設けられている。
(Example 5)
Next, another embodiment for carrying out the present invention will be described with reference to FIG. FIG. 5 shows an example of a mercury concentration measuring device for carrying out mercury analysis in an actual boiler exhaust gas to which the present invention is applied. The sampling line of this mercury concentration measuring apparatus includes a conduit 101 for collecting exhaust gas flowing through the flue 111, a dust filter unit 102, a slow cooling control unit 103, an oxidized mercury absorption bottle 107 containing a KCl solution, a sulfuric acid acidic solution. It is composed of a metal mercury absorption bottle 108 containing a potassium manganate solution, a suction pump 109 and a gas meter 110. Moreover, although not shown in figure, the measurement means which each measures the amount of mercury absorbed by the absorption bottles 107 and 108 is provided.

徐冷制御ユニット103の内部に収容される導管101には、その長手方向に複数のヒータが取り付けられている。徐冷制御ユニット103の内部には温度計104が設けられ、導管101の表面温度或いは導管101内を流れる排ガスの温度が検知できるようになっている。温度計104で検出された結果は、電気信号で温度モニタ105に表示されると共にその検出結果が演算器106で処理される。これにより、温度計104から出力された信号強度により演算された信号を徐冷制御ユニットの各ヒータに返し、ユニット内の導管101の温度を設定温度まで冷却制御するようになっている。   A plurality of heaters are attached in the longitudinal direction of the conduit 101 accommodated in the slow cooling control unit 103. A thermometer 104 is provided inside the slow cooling control unit 103 so that the surface temperature of the conduit 101 or the temperature of the exhaust gas flowing in the conduit 101 can be detected. The result detected by the thermometer 104 is displayed on the temperature monitor 105 as an electrical signal, and the detection result is processed by the computing unit 106. Thereby, the signal calculated from the signal intensity output from the thermometer 104 is returned to each heater of the slow cooling control unit, and the temperature of the conduit 101 in the unit is controlled to be cooled to the set temperature.

ここで、導管101内のガスが徐冷される温度勾配は、ガス温度が200℃以下において、徐冷制御ユニット103内の導管101の長さに対し、例えば5℃/cm以下となるように制御するのが良い。加えて、ガス温度は、導管101内において、水の露点温度よりも高い温度に保持するようにする。導管101を保温するヒータは、フレキシブルヒータや小型の電気炉を複数個並べ、それぞれ個別に温度を制御するか、或いは、熱電線を導管101に巻き付けてその熱電線に流す電流を制御するように設定する方法がある。サンプリングするガス量が多く、ガスの放熱によって導管101の温度が高くなりすぎる場合には、ペルチェ素子などの電子素子を併用して導管101を冷却するようにしてもよい。   Here, the temperature gradient at which the gas in the conduit 101 is gradually cooled is, for example, 5 ° C./cm or less with respect to the length of the conduit 101 in the slow cooling control unit 103 when the gas temperature is 200 ° C. or less. It is good to control. In addition, the gas temperature is maintained in the conduit 101 at a temperature higher than the dew point temperature of water. As the heater for keeping the conduit 101 warm, a plurality of flexible heaters and small electric furnaces are arranged, and the temperature is individually controlled, or the current flowing through the hot wire is controlled by winding the hot wire around the conduit 101. There is a way to set. If the amount of gas to be sampled is large and the temperature of the conduit 101 becomes too high due to heat dissipation of the gas, the conduit 101 may be cooled by using an electronic device such as a Peltier device.

このように、排ガスが流れる導管101の温度を制御することにより、排ガス条件や外気雰囲気が変動した場合でも、導管101内を適度に徐冷することができ、かつ、導管101内での水の結露を防止することができるため、排ガスのサンプリング中における難溶性の水銀の生成及び酸化態水銀の還元を防止することができる。したがって、常時、高い精度の水銀測定を化学形態別で行うことが可能となり、石炭焚きボイラ等における多様な排ガス条件に対応可能となる。   In this way, by controlling the temperature of the conduit 101 through which the exhaust gas flows, the inside of the conduit 101 can be moderately cooled even when the exhaust gas conditions and the outside air atmosphere fluctuate, and the water in the conduit 101 can be cooled. Since condensation can be prevented, it is possible to prevent the formation of hardly soluble mercury and the reduction of oxidized mercury during sampling of exhaust gas. Therefore, it is possible to always perform highly accurate mercury measurement by chemical form, and it is possible to cope with various exhaust gas conditions in a coal-fired boiler or the like.

1 高温層
2 導管
3 溶液
4 吸収瓶
5 水銀捕集剤
6 捕集管
7 吸引ポンプ
8 ガスメータ
9 電気炉
10 充填層
11 ガス
12 フレキシブルヒータ
21 溶液
22 吸収瓶
104 温度計
105 温度モニタ
106 演算器
DESCRIPTION OF SYMBOLS 1 High temperature layer 2 Conduit 3 Solution 4 Absorption bottle 5 Mercury collection agent 6 Collection pipe 7 Suction pump 8 Gas meter 9 Electric furnace 10 Packing layer 11 Gas 12 Flexible heater 21 Solution 22 Absorption bottle 104 Thermometer 105 Temperature monitor 106 Calculator

Claims (5)

ガス中の水銀濃度を酸化態水銀と金属水銀とに分けて測定する水銀濃度の測定方法において、
導管内に導いて採取した前記ガスを酸化態水銀を吸収する第1の溶液と接触させて前記ガス中の酸化態水銀を捕集する第1の工程と、該第1の工程で前記第1の溶液に捕集されなかった前記ガスを金属水銀を捕捉する固体又は金属水銀を吸収する第2の溶液と接触させて前記ガス中の金属水銀を捕集する第2の工程と、前記第1の工程で前記第1の溶液に捕集された前記酸化態水銀の濃度と、前記第2の工程で前記固体又は前記第2の溶液に捕集された前記金属水銀の濃度をそれぞれ測定する第3の工程とを含み、
前記第1の工程は、前記導管内を流れる前記ガスを該ガスの通流方向に沿って徐冷することを特徴とする水銀濃度の測定方法。
In the mercury concentration measurement method that measures the mercury concentration in gas separately from oxidized mercury and metallic mercury,
A first step of collecting the oxidized mercury in the gas by bringing the gas collected by being introduced into the conduit into contact with a first solution that absorbs the oxidized mercury; and the first step in the first step. A second step of collecting the metal mercury in the gas by bringing the gas not collected in the solution into contact with a solid that captures the metal mercury or a second solution that absorbs the metal mercury; Measuring the concentration of the oxidized mercury collected in the first solution in the step and the concentration of the metallic mercury collected in the solid or the second solution in the second step, respectively. 3 processes,
In the first step, the gas flowing in the conduit is gradually cooled along the flow direction of the gas.
前記第3の工程は、前記導管内に付着した前記酸化態水銀の濃度の測定を含むことを特徴とする請求項1に記載の水銀濃度の測定方法。   The method for measuring mercury concentration according to claim 1, wherein the third step includes measuring the concentration of the oxidized mercury adhering to the inside of the conduit. 前記導管内を流れる前記ガスは、ガス温度が200℃以下の範囲で、通流方向に5℃/cm以下の温度勾配で徐冷されると共に水の露点温度よりも高い温度に保持されることを特徴とする請求項1又は2に記載の水銀濃度の測定方法。   The gas flowing in the conduit is gradually cooled with a temperature gradient of 5 ° C./cm or less in the flow direction in a gas temperature range of 200 ° C. or lower and maintained at a temperature higher than the dew point temperature of water. The method for measuring mercury concentration according to claim 1 or 2. ガス中の水銀濃度を酸化態水銀と金属水銀とに分けて測定する水銀濃度の測定装置において、
前記ガスを導入する導管と、該導管を通じて採取された前記ガスと酸化態水銀を吸収する第1の溶液とを接触させて該ガス中の酸化態水銀を捕集する第1の反応部と、該第1の反応部の前記第1の溶液に捕集されなかったガスと金属水銀を捕捉する固体又は金属水銀を吸収する第2の溶液とを接触させて該ガス中の金属水銀を捕集する第2の反応部と、前記第1の反応部で前記第1の溶液中に捕集された酸化態水銀を気相中に移行させ、該気相中の水銀濃度を測定する第1の測定手段と、前記第2の反応部で前記固体又は前記第2の溶液中に捕集された金属水銀を気相中に移行させ、該気相中の水銀濃度を測定する第2の測定手段とを備え、
前記導管には長手方向に沿って複数のヒータが設けられ、該ヒータの加熱温度は前記ガスの通流方向に向かって段階的又は連続的に低下するように設定されることを特徴とする水銀濃度の測定装置。
In a mercury concentration measuring device that measures mercury concentration in gas separately from oxidized mercury and metallic mercury,
A conduit for introducing the gas; and a first reaction section for collecting the oxidized mercury in the gas by contacting the gas collected through the conduit with a first solution that absorbs the oxidized mercury; The gas not collected in the first solution of the first reaction section is brought into contact with a solid solution that captures metallic mercury or a second solution that absorbs metallic mercury to collect metallic mercury in the gas. A first reaction section that moves the oxidized mercury collected in the first solution in the first reaction section into the gas phase and measures the mercury concentration in the gas phase. Measuring means; and second measuring means for measuring the concentration of mercury in the gas phase by transferring the metal mercury collected in the solid or the second solution in the second reaction section into the gas phase. And
Mercury characterized in that the conduit is provided with a plurality of heaters along the longitudinal direction, and the heating temperature of the heater is set so as to decrease stepwise or continuously toward the gas flow direction. Concentration measuring device.
前記導管は、該導管の内壁に前記ガス中の成分が慣性衝突するように形成されていることを特徴とする請求項4に記載の水銀濃度の測定装置。   5. The mercury concentration measuring apparatus according to claim 4, wherein the conduit is formed so that components in the gas collide inertially with an inner wall of the conduit.
JP2009098965A 2009-04-15 2009-04-15 Method and apparatus for measuring mercury concentration Active JP5466870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098965A JP5466870B2 (en) 2009-04-15 2009-04-15 Method and apparatus for measuring mercury concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098965A JP5466870B2 (en) 2009-04-15 2009-04-15 Method and apparatus for measuring mercury concentration

Publications (2)

Publication Number Publication Date
JP2010249643A true JP2010249643A (en) 2010-11-04
JP5466870B2 JP5466870B2 (en) 2014-04-09

Family

ID=43312148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098965A Active JP5466870B2 (en) 2009-04-15 2009-04-15 Method and apparatus for measuring mercury concentration

Country Status (1)

Country Link
JP (1) JP5466870B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167492A (en) * 2012-02-14 2013-08-29 Horiba Ltd Exhaust gas sampling device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588870B (en) * 2016-01-04 2018-07-20 中国矿业大学 A kind of coal-field fire detection device and method based on sulfur isotope component ratio

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436673A (en) * 1977-08-27 1979-03-17 Yoshisuke Aoki Method of removing h2so4 mist
JPS56167245U (en) * 1980-04-24 1981-12-10
JPS61125751U (en) * 1985-01-25 1986-08-07
JPH0463063U (en) * 1990-10-08 1992-05-29
JP2001033434A (en) * 1999-07-21 2001-02-09 Nippon Instrument Kk Method and apparatus for analysis of mercury in gas
JP2002082110A (en) * 2000-09-08 2002-03-22 Central Res Inst Of Electric Power Ind Method and device for continuously fractionating and analyzing metallic mercury, and water-soluble mercury in gas
JP2003240687A (en) * 2002-02-21 2003-08-27 Chubu Electric Power Co Inc Method and device for measuring concentration of mercury in exhaust gas
JP2004301678A (en) * 2003-03-31 2004-10-28 Chubu Electric Power Co Inc Exhaust gas sampling apparatus for measuring mercury concentration
JP2007181757A (en) * 2006-01-05 2007-07-19 Babcock Hitachi Kk Method of removing mercury from exhaust gas

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436673A (en) * 1977-08-27 1979-03-17 Yoshisuke Aoki Method of removing h2so4 mist
JPS56167245U (en) * 1980-04-24 1981-12-10
JPS61125751U (en) * 1985-01-25 1986-08-07
JPH0463063U (en) * 1990-10-08 1992-05-29
JP2001033434A (en) * 1999-07-21 2001-02-09 Nippon Instrument Kk Method and apparatus for analysis of mercury in gas
JP2002082110A (en) * 2000-09-08 2002-03-22 Central Res Inst Of Electric Power Ind Method and device for continuously fractionating and analyzing metallic mercury, and water-soluble mercury in gas
JP2003240687A (en) * 2002-02-21 2003-08-27 Chubu Electric Power Co Inc Method and device for measuring concentration of mercury in exhaust gas
JP2004301678A (en) * 2003-03-31 2004-10-28 Chubu Electric Power Co Inc Exhaust gas sampling apparatus for measuring mercury concentration
JP2007181757A (en) * 2006-01-05 2007-07-19 Babcock Hitachi Kk Method of removing mercury from exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167492A (en) * 2012-02-14 2013-08-29 Horiba Ltd Exhaust gas sampling device
US9335235B2 (en) 2012-02-14 2016-05-10 Horiba, Ltd. Exhaust gas sampling device

Also Published As

Publication number Publication date
JP5466870B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5385114B2 (en) Combustion exhaust gas mercury removal method and combustion exhaust gas purification device.
Fleig et al. Evaluation of SO3 measurement techniques in air and oxy-fuel combustion
JP5208883B2 (en) Method and apparatus for detection, measurement and control of sulfur trioxide and other condensables in flue gas
CN105181614B (en) Sulfur trioxide analytical instrument and method
CN106596198A (en) Online SO3 measuring system and method
JP3540995B2 (en) Method and apparatus for continuous separation analysis of metallic mercury and water-soluble mercury in gas
CN103149271A (en) Method for simultaneously measuring heavy metals with different forms in coal-fired flue gas
WO2005100947A1 (en) Method for sampling flue gas for analysis containing gas component having high susceptibility to adsorption
JP2008200561A (en) Method for treating exhaust gas containing sulfur oxide
JP2008190950A (en) Removing method and removing device for selenium oxide in sample, and measuring method and measuring device for mercury in coal combustion exhaust gas using them
CN106353457A (en) Method and system for detecting flue gas SO3 based on salt absorption
CN101046481B (en) Sample treating device, and measuring instrument provided therewith
JP5466870B2 (en) Method and apparatus for measuring mercury concentration
JP3361994B2 (en) Ammonia analyzer
JP3892319B2 (en) Method and apparatus for measuring mercury concentration in exhaust gas
CN208206808U (en) A kind of measurement power plant&#39;s denitrating catalyst is to the device of oxidation rate of sulfur dioxide
JP2011149727A (en) Method and instrument for measuring metal mercury
JP5468483B2 (en) Mercury concentration measuring apparatus and mercury concentration measuring method
JP5876614B2 (en) ANALYSIS SAMPLING DEVICE AND METHOD OF USING THE SAME
CN207248580U (en) One kind is based on flue-gas temperature and thermostat water bath coolant controlled SO3Sampling system
KR101885651B1 (en) So₃detection apparatus
CN108414516A (en) It is a kind of to measure device and method of power plant&#39;s denitrating catalyst to oxidation rate of sulfur dioxide
JP6217290B2 (en) Sample gas measuring apparatus and sample gas measuring method
JP4188096B2 (en) measuring device
JP2020204553A (en) Device and method for collecting and detecting hydrophilic substance in gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5466870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350