JP2010249549A - X-ray diffraction method - Google Patents

X-ray diffraction method Download PDF

Info

Publication number
JP2010249549A
JP2010249549A JP2009096526A JP2009096526A JP2010249549A JP 2010249549 A JP2010249549 A JP 2010249549A JP 2009096526 A JP2009096526 A JP 2009096526A JP 2009096526 A JP2009096526 A JP 2009096526A JP 2010249549 A JP2010249549 A JP 2010249549A
Authority
JP
Japan
Prior art keywords
ray
interface
sample
diffraction method
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009096526A
Other languages
Japanese (ja)
Other versions
JP5288127B2 (en
Inventor
Junji Iihara
順次 飯原
Koji Yamaguchi
浩司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009096526A priority Critical patent/JP5288127B2/en
Publication of JP2010249549A publication Critical patent/JP2010249549A/en
Application granted granted Critical
Publication of JP5288127B2 publication Critical patent/JP5288127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray diffraction method to analyze crystalline materials at an interface of bonded different materials, without destroying the interface. <P>SOLUTION: The X-ray diffraction method of identifying the crystalline materials existing at the bonding interface of the different materials includes the processes: a process for arranging a sample S, using as an analysis object surface, a region whose cross section is presented by a curve among the bonding interfaces of the different materials between an X-ray irradiation source 10 and a diffraction line detector 30; a process for irradiating X-rays 52 to the analysis object surface, in a tangential direction of the curve from the radiation source 10; and a process for detecting the diffraction lines 54, generated by irradiation of the X-rays 52 by the diffraction detector 30. By having the X-rays irradiated in the tangent direction of the analysis object surface, the diffraction lines can be detected, without fail, from the analysis object surface in a nondestructive state. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、X線回折法に関するものである。特に、接合された異種材料の界面を破壊することなく、その界面における結晶性物質の同定を行うことができるX線回折法に関する。   The present invention relates to an X-ray diffraction method. In particular, the present invention relates to an X-ray diffraction method that can identify a crystalline substance at an interface of bonded dissimilar materials without destroying the interface.

半導体モジュールのリードをアイレットに封止する構成としてハーメチックシールが知られている。ハーメチックシールのより具体的な構造例は、図4に示す通りである。この半導体モジュール100は、コバールやCu-W合金からなる円盤状のアイレット110と、受光素子(PD)や発光素子(LD)といった半導体素子120と、半導体素子120につながるリード130と、半導体素子120を覆うキャップ140と、キャップ140の上部に設けられたレンズ150とを備える。ハーメチックシールを形成するには、アイレット110に形成された貫通孔110hに半導体素子120のリード130を通す。このリード130も代表的にはコバールから構成される。そして、この貫通孔110hの内周面とリード130の外周面との間にほう珪酸ガラスなどのガラス160を充填して封止する。   A hermetic seal is known as a configuration for sealing a lead of a semiconductor module to an eyelet. A more specific structural example of the hermetic seal is as shown in FIG. The semiconductor module 100 includes a disc-shaped eyelet 110 made of Kovar or Cu—W alloy, a semiconductor element 120 such as a light receiving element (PD) or a light emitting element (LD), a lead 130 connected to the semiconductor element 120, and a semiconductor element 120. And a lens 150 provided on the top of the cap 140. In order to form a hermetic seal, the lead 130 of the semiconductor element 120 is passed through the through hole 110 h formed in the eyelet 110. The lead 130 is also typically made of Kovar. A glass 160 such as borosilicate glass is filled between the inner peripheral surface of the through hole 110h and the outer peripheral surface of the lead 130 and sealed.

この際、リードとガラスとの界面には、酸化鉄などの酸化膜が形成されることがある。この酸化膜の種類、例えばFeO、Fe2O3、Fe3O4などを区別して各酸化物の存在が確認できれば、リードとガラスとの界面の評価、例えばリードとガラスの密着性を評価するための指標とすることが期待される。 At this time, an oxide film such as iron oxide may be formed at the interface between the lead and the glass. If the presence of each oxide can be confirmed by distinguishing this type of oxide film, such as FeO, Fe 2 O 3 , Fe 3 O 4, etc., the evaluation of the interface between the lead and the glass, for example, the adhesion between the lead and the glass is evaluated. It is expected to be an index for

この界面における酸化物の同定を行う手法の一つとしてX線回折法がある。従来、このような互いに密着された異種材料の界面をX線回折法で分析する場合、ハーメチックシールを破壊してリードとガラスとを剥離し、剥離面に対してX線を照射して回折線を分析することで行うことが考えられる。例えば、類似の技術として、特許文献1には、ボンディングパッドとボンディングワイヤの界面をX線回折法により分析するための試料の調整方法が開示されている。具体的には、ボンディングされた金属細線を物理的な力でボンディングパッドから剥離し、露出した剥離面に、表面から内部に向かって断続的にArイオンビームを照射してイオンエッチングし、順次新しい観察面を露出させることを行っている。   One method for identifying oxides at this interface is an X-ray diffraction method. Conventionally, when analyzing an interface between different materials closely adhered to each other by an X-ray diffraction method, the hermetic seal is broken, the lead and the glass are peeled off, and the peeled surface is irradiated with X-rays to diffract the diffraction line. This can be done by analyzing the above. For example, as a similar technique, Patent Document 1 discloses a sample adjustment method for analyzing an interface between a bonding pad and a bonding wire by an X-ray diffraction method. Specifically, the bonded fine metal wires are peeled off from the bonding pad by physical force, and the exposed peeled surface is intermittently irradiated with an Ar ion beam from the surface to the inside, and ion etching is performed sequentially. The observation surface is exposed.

特開2008-122328号公報JP 2008-122328 A

しかし、上記のように接合される異種材料同士を剥離して界面を露出させる手法には、次のような問題があった。   However, the method of peeling the dissimilar materials to be bonded and exposing the interface as described above has the following problems.

まず、異種材料同士の剥離作業自体が煩雑である。特に、ガラスといった脆性材料を、剥離面を損傷することなく正確にリードから剥離することは必ずしも容易ではない。その剥離作業に慎重性が求められる結果、一層剥離作業が煩雑になる。   First, the peeling operation itself between different materials is complicated. In particular, it is not always easy to exfoliate a brittle material such as glass from a lead accurately without damaging the exfoliation surface. As a result of the cautiousness required for the peeling operation, the peeling operation becomes more complicated.

また、安定した性状の剥離面を得ることが難しい。例えば、リードとガラスを剥離した場合、酸化膜の全てがリード又はガラスの一方に密着した状態で剥離するとは限らない。特に、リードとガラスの密着性の良い試料と悪い試料では、剥離箇所が異なることもあり得、分析したい界面で適切に剥離を行うことが困難な場合がある。その結果、分析したい界面に対して正確なX線回折を行うことが困難になる虞がある。   Moreover, it is difficult to obtain a release surface having a stable property. For example, when the lead and the glass are peeled off, the oxide film is not always peeled off in a state of being in close contact with either the lead or the glass. In particular, the peeled portion may be different between a sample having good adhesion between the lead and the glass and a sample having poor adhesion, and it may be difficult to perform appropriate peeling at the interface to be analyzed. As a result, it may be difficult to perform accurate X-ray diffraction on the interface to be analyzed.

本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、接合された異種材料の界面を破壊することなく、その界面における結晶性物質の分析を行うことができるX線回折法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is X-ray capable of analyzing a crystalline substance at the interface without destroying the interface of the bonded dissimilar materials. It is to provide a diffraction method.

本発明者らは、異種材料の接合界面を非破壊でX線回折法にて分析する方法を検討した結果、試料に照射するX線の照射方向を工夫し、さらには必要に応じて試料の形状を工夫することで上記の目的を達成できるとの知見を得て、本発明を完成するに至った。   As a result of studying a non-destructive X-ray diffraction method for analyzing the bonding interface of different materials, the present inventors devised the X-ray irradiation direction to irradiate the sample, and if necessary, the sample Obtaining knowledge that the above-mentioned object can be achieved by devising the shape, the present invention has been completed.

本発明のX線回折法は、異種材料の接合界面に存在する結晶性物質を同定するX線回折法に係り、次の過程を備えることを特徴とする。
前記接合界面のうち、その断面が曲線で表される領域を分析対象面とする試料をX線照射源と回折線検出器との間に配置する過程。
前記照射源から、前記分析対象面に対して、前記曲線の接線方向にX線を照射する過程。
このX線の照射に伴って発生する回折線を前記回折線検出器で検出する過程。
The X-ray diffraction method of the present invention relates to an X-ray diffraction method for identifying a crystalline substance existing at a bonding interface of different materials, and includes the following steps.
A process in which a sample whose analysis target surface is a region whose cross section is represented by a curve in the bonding interface is disposed between the X-ray irradiation source and the diffraction ray detector.
A process of irradiating the analysis target surface with X-rays in the tangential direction of the curve from the irradiation source.
A process of detecting diffraction lines generated by the X-ray irradiation with the diffraction line detector.

この構成によれば、X線を分析対象面が形成する曲線の接線方向に照射することで、非破壊状態の分析対象面から回折線を的確に検知することができる。そのため、試料を作製するのに際して接合された異種材料同士を剥離する必要もなく、分析結果が剥離面の性状に左右されることもない。   According to this configuration, by irradiating X-rays in the tangential direction of the curve formed by the analysis target surface, it is possible to accurately detect diffraction lines from the non-destructive analysis target surface. For this reason, it is not necessary to separate the dissimilar materials that are joined when the sample is manufactured, and the analysis result does not depend on the properties of the separation surface.

ここで、接合界面のうち、その断面が曲線で表される領域とは、接合界面に対して所定の断面をとった場合に、その断面に接合界面が曲線として表される接合界面の少なくとも一部のことである。例えば、接合界面が円筒面の一部の場合、接合界面に対して、その円筒の軸と交差する断面をとれば、界面は断面に円弧で表される。また、接合界面が球面の一部の場合、その接合界面に任意の断面をとれば、界面は断面に円弧で表される。もちろん、接合界面の断面に表される曲線は、真円の一部を構成する円弧に限定されるわけではなく、楕円の一部を構成する円弧など、他の曲線であってもよい。   Here, the region of the bonded interface whose cross section is represented by a curve is at least one of the bonded interfaces whose cross section is represented by a curve when the predetermined cross section is taken with respect to the bonded interface. It is a part. For example, when the joining interface is a part of a cylindrical surface, if the cross section intersecting the axis of the cylinder is taken with respect to the joining interface, the interface is represented by an arc in the cross section. In addition, when the bonding interface is a part of a spherical surface, the interface is represented by an arc in the cross section if an arbitrary cross section is taken at the bonding interface. Of course, the curve represented in the cross section of the joint interface is not limited to the arc that forms a part of a perfect circle, and may be another curve such as an arc that forms a part of an ellipse.

本発明のX線回折法において、前記試料は、前記接線方向を厚み方向とする薄板状とすることが好ましい。   In the X-ray diffraction method of the present invention, the sample is preferably a thin plate having the tangential direction as a thickness direction.

この構成によれば、試料に対するX線の透過性を上げることができ、より低エネルギーのX線の利用が可能になる。また、散乱X線の発生個所を小さくし、X線回折線チャートにおけるピークがバックグラウンドに埋もれることを抑制できる。   According to this configuration, it is possible to increase the X-ray permeability with respect to the sample, and it is possible to use lower energy X-rays. Moreover, the generation | occurrence | production location of a scattered X-ray can be made small and it can suppress that the peak in an X-ray diffraction line chart is buried in a background.

本発明のX線回折法において、前記回折線検出器を二次元検出器とすることが好ましい。   In the X-ray diffraction method of the present invention, the diffraction line detector is preferably a two-dimensional detector.

この構成によれば、結晶性物質が高配向であったり結晶粒の数が少ない等の事情で、X線回折パターン(Debye ring)が途切れた円弧となって完全な同心円状とはならない試料についても、回折線を効率的に検出することができる。   According to this configuration, for a sample that does not become a complete concentric circle due to a discontinuous X-ray diffraction pattern (Debye ring) due to circumstances such as high orientation of the crystalline material or a small number of crystal grains. Also, the diffraction lines can be detected efficiently.

本発明のX線回折法において、前記曲線が円弧であり、前記X線の厚みを前記円弧の直径未満とすることが好ましい。   In the X-ray diffraction method of the present invention, it is preferable that the curve is an arc and the thickness of the X-ray is less than the diameter of the arc.

この構成によれば、照射面積の絞り込まれたX線を用いることで、試料の界面部の厚みが小さい場合でも、正確に界面部の結晶情報を分析することができる。なお、X線の厚さとは、分析対象面が形成する円弧の径方向で、かつ試料に照射した状態のX線における前記円弧の接線と直交する方向の寸法をいう。   According to this configuration, by using X-rays with a narrow irradiation area, it is possible to accurately analyze the crystal information of the interface even when the thickness of the interface of the sample is small. The X-ray thickness refers to a dimension in the radial direction of the arc formed by the analysis target surface and in a direction perpendicular to the tangent line of the arc in the X-ray irradiated to the sample.

本発明のX線回折法は、前記異種材料の一方をX線の透過率が低い低透過性材料とし、他方を低透過性材料よりもX線の透過率が高い高透過性材料とする試料の分析に利用できる。   The X-ray diffraction method of the present invention is a sample in which one of the dissimilar materials is a low transmission material having a low X-ray transmittance and the other is a high transmission material having a higher X-ray transmission than the low transmission material. It can be used for analysis.

この構成によれば、異種材料の一方が高透過性材料であることで、界面部から発生した回折線を適切な強度にて検知することができる。また、両透過性材料のX線の透過率の相違から試料の界面位置を容易に認識することができる。   According to this configuration, since one of the different materials is a highly transmissive material, the diffraction lines generated from the interface can be detected with appropriate intensity. In addition, the interface position of the sample can be easily recognized from the difference in the X-ray transmittance between the two transparent materials.

本発明のX線回折法において、試料を前記低透過性材料と高透過性材料との接合部材とする場合、前記低透過性材料が電子部品のリードで、前記高透過性材料が前記リードを電子部品のリード貫通部に封止するガラスであることが挙げられる。   In the X-ray diffraction method of the present invention, when a sample is a joining member of the low-permeability material and the high-permeability material, the low-permeability material is an electronic component lead, and the high-permeability material is the lead. It is mentioned that it is glass sealed to the lead penetration part of an electronic component.

この構成によれば、各種電子部品のリードとガラスとの界面における結晶性物質の同定を行うことができ、その同定結果をリードとガラスの密着性の評価に利用することができる。   According to this configuration, it is possible to identify a crystalline substance at the interface between the leads of various electronic components and the glass, and use the identification result for evaluating the adhesion between the leads and the glass.

本発明のX線回折法において、低透過性材料を電子部品のリードとした場合、前記X線を前記リードの軸方向と交差する方向に照射することが挙げられる。   In the X-ray diffraction method of the present invention, when a low-transmission material is used as a lead of an electronic component, the X-ray is irradiated in a direction intersecting with the axial direction of the lead.

リードの軸方向に沿った方向にX線を照射する場合、リードの端面からの回折線を検出することがある。しかし、リードの軸方向と交差する方向にX線を照射すれば、リード端面からの回折線を除去して、界面からの回折線をより正確に検出することができる。さらには、リードの軸方向にほぼ直交する方向にX線を照射することで、リードの軸方向と非直交にX線を照射する場合に比べて試料を透過するX線の光路を短くでき、高い透過率にてX線回折を行うことができる。   When irradiating X-rays in a direction along the axial direction of the lead, a diffraction line from the end face of the lead may be detected. However, if X-rays are irradiated in a direction crossing the lead axial direction, the diffraction lines from the lead end face can be removed and the diffraction lines from the interface can be detected more accurately. Furthermore, by irradiating X-rays in a direction substantially orthogonal to the axial direction of the lead, the optical path of the X-rays passing through the sample can be shortened compared to irradiating X-rays non-orthogonally with the axial direction of the lead, X-ray diffraction can be performed with high transmittance.

本発明のX線回折法において、前記X線を放射光とすることが挙げられる。   In the X-ray diffraction method of the present invention, the X-ray may be radiated light.

この構成によれば、X線の厚さを絞っても高エネルギーのX線を試料に対して照射することができる。   According to this configuration, it is possible to irradiate the sample with high-energy X-rays even if the X-ray thickness is reduced.

本発明のX線回折法において、前記結晶性物質が酸化物であることが挙げられる。   In the X-ray diffraction method of the present invention, it is mentioned that the crystalline substance is an oxide.

この構成によれば、試料の界面を非破壊にて分析できるため、この界面に存在する酸化物をより感度よく同定することができる。接合される異種材料同士を剥離して剥離面を露出させる方法では、剥離前の界面に存在した被酸化元素が剥離面の露出によって酸化物となり、剥離前から界面に存在した酸化物と区別できなくなる虞があるが、本発明方法によれば、このような不具合は生じない。   According to this configuration, since the interface of the sample can be analyzed nondestructively, it is possible to identify the oxide present at this interface with higher sensitivity. In the method in which the dissimilar materials to be joined are peeled to expose the peeled surface, the oxidizable elements that existed at the interface before peeling become oxides by the exposure of the peeled surface, and can be distinguished from the oxides that existed at the interface before peeling However, according to the method of the present invention, such a problem does not occur.

本発明のX線回折法によれば、接合された異種材料の界面を破壊することなく、その界面に存在する物質の同定を行うことができる。   According to the X-ray diffraction method of the present invention, it is possible to identify a substance present at the interface without destroying the interface of the bonded dissimilar materials.

本発明の実施例に係るX線回折法を示す説明図である。It is explanatory drawing which shows the X-ray-diffraction method which concerns on the Example of this invention. 本発明の実施例における試料の形状と、試料に対するX線の照射条件を示す説明図である。It is explanatory drawing which shows the shape of the sample in the Example of this invention, and the irradiation conditions of the X-ray with respect to a sample. 実施例での分析結果を示すX線回折チャートである。It is an X-ray diffraction chart which shows the analysis result in an example. ハーメチックシールの概要を示す模式説明図である。It is a schematic explanatory drawing which shows the outline | summary of a hermetic seal.

以下、本発明の実施の形態を図1、図2に基づいて説明する。本発明方法は、「試料の配置」、「X線の照射」、及び「回折線の検知」の各過程を備える。この方法の実施には、図1に示すように、X線照射源10、試料設置部20、回折線検出器30を備えるX線回折装置を用いる。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2. The method of the present invention includes the steps of “sample arrangement”, “X-ray irradiation”, and “diffracted ray detection”. In implementing this method, as shown in FIG. 1, an X-ray diffraction apparatus including an X-ray irradiation source 10, a sample placement unit 20, and a diffraction line detector 30 is used.

[試料の配置]
本発明のX線回折法では、まず試料SをX線照射源10と回折線検出器30との間に位置する試料設置部20に配置する。この試料Sは、異種材料が接合された界面Sbを有する部材である。異種材料の接合体からなる部材であれば、試料Sの材質は限定されない。特に、異種材料の一方はX線の透過率が低い低透過性材料Siで、他方は低透過性材料SiよりもX線の透過率が高い高透過性材料Soであることが好ましい。透過率差の大きい材料同士の界面であれば、界面からの回折線を限定的に検出しやすい。これらの透過率は、照射するX線のエネルギー、試料の材質、試料の厚さなどにもよるが、例えば高透過性材料Soの場合80%以上、さらには90%以上となるようにし、低透過性材料Siの場合、30%以下、さらには20%以下となるようにすることが挙げられる。また、後述するように、接合界面が、その断面に円弧で表される場合、その円弧の外周側に高透過性材料が、円弧の内周側に低透過性材料が配される試料の分析に本発明方法は好適に利用できる。
[Sample arrangement]
In the X-ray diffraction method of the present invention, first, the sample S is placed in the sample setting unit 20 located between the X-ray irradiation source 10 and the diffraction ray detector 30. This sample S is a member having an interface Sb to which different materials are joined. The material of the sample S is not limited as long as it is a member made of a joined body of different materials. In particular, it is preferable that one of the dissimilar materials is a low transmission material Si having a low X-ray transmittance, and the other is a high transmission material So having a higher X-ray transmission than the low transmission material Si. If it is an interface between materials having a large difference in transmittance, it is easy to detect a diffraction line from the interface in a limited manner. These transmittances depend on the energy of the irradiated X-rays, the material of the sample, the thickness of the sample, etc., but for example, in the case of the highly transmissive material So, it should be 80% or more, and more than 90%. In the case of the permeable material Si, it may be 30% or less, further 20% or less. As will be described later, when the joint interface is represented by an arc in its cross section, analysis of a sample in which a highly permeable material is arranged on the outer peripheral side of the arc and a low permeable material is arranged on the inner peripheral side of the arc The method of the present invention can be preferably used.

低透過性材料Siの具体例としては電子部品のリード、高透過性材料Soの具体例としてはリードを電子部品のリード貫通部に封止する硬質ガラスが挙げられる。より特定的にはコバールからなるリードと、ほう珪酸ガラスからなる硬質ガラスが挙げられる。その他、低透過性材料Siとして金属材料が、高透過性材料Soとして樹脂が挙げられる。   A specific example of the low-permeability material Si is a lead of an electronic component, and a specific example of the high-permeability material So is a hard glass that seals the lead in the lead penetration portion of the electronic component. More specifically, a lead made of Kovar and a hard glass made of borosilicate glass can be mentioned. In addition, a metal material is used as the low-permeability material Si, and a resin is used as the high-permeability material So.

また、この試料の界面Sbは、その断面が曲線で表される領域を分析対象面とする。具体例としては、実質的に円筒面又は球面或いは、これらの一部からなる領域が分析対象面として挙げられる。分析対象面の横断面が実質的に円弧で構成されると、その円弧の接線方向から入射するX線52は、円弧の外側に位置する一方の異種材料(例えば硬質ガラスSo)を透過して界面に到達する。そのため、界面SbにおけるX線の照射箇所は、前記円弧の内側に位置する他方の異種材料(例えばリードSi)が前記一方の異種材料で覆われた箇所となり、非破壊状態での界面Sbに対してX線回折を行うことが可能になる。なお、一般に、前記円弧の径が大きければ、X線52が界面Sbに照射される領域が広くなり、この円弧の径が小さければ、X線52が界面に照射される領域が狭くなる。   In addition, the interface Sb of the sample has a region whose cross section is represented by a curve as an analysis target surface. As a specific example, a substantially cylindrical surface, a spherical surface, or a region composed of a part of these surfaces is used as the analysis target surface. When the cross section of the analysis target surface is substantially composed of a circular arc, the X-ray 52 incident from the tangential direction of the circular arc passes through one dissimilar material (eg, hard glass So) located outside the circular arc. Reach the interface. Therefore, the X-ray irradiation location at the interface Sb is a location where the other dissimilar material (for example, lead Si) located inside the arc is covered with the one dissimilar material, and is compared with the interface Sb in the non-destructive state. X-ray diffraction can be performed. In general, if the diameter of the arc is large, the region where the X-rays 52 are irradiated to the interface Sb is widened. If the diameter of the arc is small, the region where the X-rays 52 are irradiated to the interface is narrowed.

この試料Sは、図2に示すように、分析対象面の接線方向を厚み方向とする薄板状であることが好ましい。例えば、リードSiの外側を硬質ガラスSoで覆ったハーメチックシールを試料Sとする場合、リードSiと硬質ガラスSoとの界面が円筒面で構成される分析対象面となる。この場合、そのままの試料Sの外側から円筒面の接線方向にX線を照射してもよいが、そうすると、X線が界面に到達するまでに透過する硬質ガラスSoの光路が長くなる。そのため、分析対象面が円筒面の場合、その軸を含む薄板状に試料Sを加工し(図2参照)、分析対象面が球面の場合、その中心を含む薄板状に試料Sを加工すれば(図示略)、X線が界面Sbに到達するまでに透過する硬質ガラスSoの光路を短くすることができる。その結果、X線回折チャートにおけるバックグラウンドを低減し、分析対象物質のピークを顕在化することができる。薄板状とする試料Sの厚みは、試料Sに照射するX線52のサイズや分析対象面の横断面に現れる円弧の径などにもよるが、例えば、この円弧の直径の1/2以下程度とすることが挙げられる。薄膜状の試料を得る加工方法としては、切削、研削、研磨などの機械的加工の他、エッチングなどの化学的方法が挙げられる。   As shown in FIG. 2, the sample S is preferably in the form of a thin plate whose thickness direction is the tangential direction of the analysis target surface. For example, when the hermetic seal in which the outside of the lead Si is covered with the hard glass So is used as the sample S, the interface between the lead Si and the hard glass So is an analysis target surface constituted by a cylindrical surface. In this case, X-rays may be irradiated from the outside of the sample S as it is in the tangential direction of the cylindrical surface, but in this case, the optical path of the hard glass So that is transmitted before the X-rays reach the interface becomes long. Therefore, if the analysis target surface is a cylindrical surface, the sample S is processed into a thin plate shape including the axis (see FIG. 2). If the analysis target surface is a spherical surface, the sample S is processed into a thin plate shape including the center. (Not shown) It is possible to shorten the optical path of the hard glass So that is transmitted before the X-rays reach the interface Sb. As a result, the background in the X-ray diffraction chart can be reduced, and the peak of the substance to be analyzed can be revealed. The thickness of the thin sample S depends on the size of the X-ray 52 irradiated to the sample S and the diameter of the arc appearing in the cross section of the analysis target surface. And so on. As a processing method for obtaining a thin film-like sample, there are chemical methods such as etching in addition to mechanical processing such as cutting, grinding, and polishing.

[X線の照射]
試料に照射するX線52は、X線管球を用いて発生されるX線、例えばCuKα線などを利用することもできるが、高エネルギーX線が利用可能であり、高輝度であることからX線サイズを絞りやすい放射光が好適に利用できる。
[X-ray irradiation]
The X-rays 52 irradiated to the sample can be X-rays generated using an X-ray tube, such as CuKα rays, but high-energy X-rays can be used and the brightness is high. Synchrotron radiation that can easily reduce the X-ray size can be suitably used.

ここで、分析対象面の断面に接合界面が円弧で表される場合に、この円弧の径方向で、かつ試料Sに照射した状態のX線における分析対象面の接線と直交する方向の寸法をX線の厚さとし、X線の横断面において厚さと直交する方向の寸法を幅とする。   Here, when the joining interface is represented by an arc in the cross section of the analysis target surface, the dimension in the radial direction of the arc and the direction perpendicular to the tangent of the analysis target surface in the X-ray irradiated to the sample S The thickness is the thickness of the X-ray, and the width in the direction perpendicular to the thickness in the X-ray cross section is the width.

このX線52の厚さ(高さ)は、小さく絞り込むことが好ましい。X線の厚さを小さくすることで、界面部に可及的に限定してX線を照射できるため、界面からの回折線を特定的に検知することができる。例えば、X線の高さを分析対象面が形成する円弧の直径未満とすること、より具体的には、200μm未満、或いは100μm以下、さらには30μm以下とすることが挙げられる。もっとも、X線の厚さは、試料における界面部の厚さに応じて調整することが好ましい。   The thickness (height) of the X-ray 52 is preferably narrowed down. By reducing the thickness of the X-ray, it is possible to irradiate the X-ray as much as possible to the interface portion, so that the diffraction line from the interface can be specifically detected. For example, the height of the X-ray may be less than the diameter of the arc formed by the analysis target surface, more specifically, less than 200 μm, 100 μm or less, and further 30 μm or less. However, the thickness of the X-ray is preferably adjusted according to the thickness of the interface portion in the sample.

一方、X線52の幅は特に限定されないが、不必要に大きいと試料における限定した箇所の分析を行うことが困難となることがあるため、試料の形状やサイズに応じて適宜調整することが望ましい。   On the other hand, the width of the X-ray 52 is not particularly limited, but if it is unnecessarily large, it may be difficult to analyze a limited portion of the sample, so that it can be appropriately adjusted according to the shape and size of the sample. desirable.

このようにX線52のサイズを絞るには、試料Sの手前にX線52を特定の範囲しか透過させないスリット15を配置することで容易に実現できる。   In this way, the size of the X-ray 52 can be easily reduced by disposing the slit 15 that transmits the X-ray 52 only in a specific range before the sample S.

このようなX線52は、前記分析対象面の断面に現れる円弧の接線方向から試料Sに照射する。このような方向からX線52を試料Sに対して照射することで、試料Sの界面部を非破壊にてX線回折により分析することができる。分析対象面の断面を形成する切断方向は、界面が円弧状に現れる方向であれば特に限定されない。例えば、分析対象面が円筒面の一部で構成される場合、その円筒の横断面を採ることが挙げられる。また、分析対象面が球面の一部で構成される場合、その球の任意の断面、特に中心を通る断面を採ることが挙げられる。   Such X-rays 52 irradiate the sample S from the tangential direction of the arc appearing in the cross section of the analysis target surface. By irradiating the sample S with X-rays 52 from such a direction, the interface portion of the sample S can be analyzed by X-ray diffraction in a non-destructive manner. The cutting direction for forming the cross section of the analysis target surface is not particularly limited as long as the interface appears in an arc shape. For example, when the analysis target surface is constituted by a part of a cylindrical surface, taking a cross section of the cylinder may be mentioned. Further, when the analysis target surface is constituted by a part of a spherical surface, it is possible to take an arbitrary cross section of the sphere, particularly a cross section passing through the center.

また、この円弧の接線方向は、分析対象面が円筒面の一部で構成される場合、その円筒の軸方向と平行な接線以外の接線であればよく、分析対象面が球面の一部で構成される場合、任意の接線が選択できる。   The tangential direction of the arc may be a tangent other than a tangent parallel to the axial direction of the cylinder when the analysis target surface is a part of the cylindrical surface, and the analysis target surface is a part of the spherical surface. If configured, any tangent can be selected.

特に、分析対象面が円筒面の一部で構成される場合、その円筒の軸方向と直角に近い角度でX線52を照射することが好ましい。この軸方向と直角に近い角度の接線方向にX線52を照射することで、X線52が界面に達するまでに透過する異種材料の一方の光路を短縮でき、かつX線が照射される界面領域を絞り込むことができる。その上、試料における前記円筒の端面側にX線が照射されることで、その端面からの回折線を検知することも回避できる。もっとも、円筒面の軸方向と交差する接線方向であれば、必ずしも円筒面の軸方向と直交する方向からX線を照射しなくてもよい。例えば、円筒面の軸方向と直交する方向を基準として±15°程度傾いた接線方向からX線を照射してもよい。   In particular, when the analysis target surface is formed of a part of a cylindrical surface, it is preferable to irradiate the X-ray 52 at an angle close to a right angle with the axial direction of the cylinder. By irradiating X-rays 52 in a tangential direction at an angle close to a right angle with this axial direction, one optical path of a dissimilar material transmitted until the X-rays 52 reach the interface can be shortened, and the interface irradiated with X-rays The area can be narrowed down. In addition, by irradiating the end face side of the cylinder in the sample with X-rays, it is possible to avoid detecting diffraction lines from the end face. However, as long as the tangential direction intersects the axial direction of the cylindrical surface, X-rays do not necessarily have to be irradiated from the direction orthogonal to the axial direction of the cylindrical surface. For example, X-rays may be irradiated from a tangential direction inclined about ± 15 ° with respect to a direction orthogonal to the axial direction of the cylindrical surface.

その他、このX線52は、分析対象面の断面に現れる円弧に対して複数の接線を生じないように照射することが好ましい。例えば、界面が円筒面の場合、この円筒の直径よりも厚いサイズのX線を、X線の光軸が円筒の軸と直交する水平方向に照射すると、この円筒面の横断面を見たとき、円で表される界面の上端と下端の双方に対して接線を生じることになる。その場合、双方の接線が接する界面箇所からの回折線を検出することになるため、いずれか一方の接線に接する界面箇所のみからの回折線を特定的に分析することが難しい。そのため、上述したようにX線の厚さを限定したり、また、X線の光軸と試料の位置を相対的に移動して、分析対象面の円弧に対して単一の接線が生じるようにすることが好ましい。   In addition, it is preferable to irradiate the X-ray 52 so as not to generate a plurality of tangents to the arc appearing in the cross section of the analysis target surface. For example, when the interface is a cylindrical surface, when X-rays with a size larger than the diameter of the cylinder are irradiated in the horizontal direction in which the optical axis of the X-ray is perpendicular to the axis of the cylinder, the cross section of the cylindrical surface is viewed , A tangent line is generated with respect to both the upper end and the lower end of the interface represented by a circle. In that case, since the diffraction line from the interface part which both tangents touch will be detected, it is difficult to specifically analyze the diffraction line only from the interface part which touches any one of the tangent lines. Therefore, as described above, the thickness of the X-ray is limited, or the optical axis of the X-ray and the position of the sample are relatively moved so that a single tangent is generated with respect to the arc of the analysis target surface. It is preferable to make it.

また、上記X線52を試料Sに照射する場合、試料SとX線52の光軸を相対的に移動させることで、試料Sの一方の異種材料から界面を介して他方の異種材料に至る複数領域に対してX線を照射することが好ましい。例えば、試料設置部20に試料Sを昇降させる昇降テーブル(図示略)を設け、固定されたX線52の光軸に対して試料Sを昇降することで、試料Sに対するX線52の照射位置を調整できるようにすればよい。これにより、界面Sbの前後領域におけるX線回折チャートの変化を観測することができる。   When the sample S is irradiated with the X-ray 52, the optical axis of the sample S and the X-ray 52 is relatively moved to reach the other dissimilar material from one dissimilar material of the sample S through the interface. It is preferable to irradiate a plurality of regions with X-rays. For example, an elevating table (not shown) that raises and lowers the sample S is provided in the sample setting unit 20, and the sample S is moved up and down with respect to the optical axis of the fixed X-ray 52, thereby irradiating the sample S with the X-ray 52 irradiation position. Can be adjusted. Thereby, the change of the X-ray diffraction chart in the region before and after the interface Sb can be observed.

さらに、本発明方法により試料Sの分析を行う場合、X線52の光軸上で、試料SのX線照射側とは反対側に試料位置確認用のX線検出器40を設けることが好ましい。試料Sに照射されたX線52の一部は、透過X線56として試料Sを透過する。この透過X線56を試料位置確認用のX線検出器40で検出することで、X線52が試料Sに対してどの位置に照射されているかを容易に認識できる。例えば、図1のグラフに示すように、低透過性材料における透過X線56の平均強度と高透過性材料における透過X線56の平均強度との平均値となる試料Sの断面位置を界面Sbとすることが挙げられる。この界面位置を基準として、前記昇降テーブルの昇降動作を制御すれば、試料の界面Sbから上下方向にどの程度離れた領域に対してX線52を照射しているかを容易に認識できる。   Further, when analyzing the sample S by the method of the present invention, it is preferable to provide an X-ray detector 40 for confirming the position of the sample on the side opposite to the X-ray irradiation side of the sample S on the optical axis of the X-ray 52. . A part of the X-rays 52 irradiated to the sample S transmits the sample S as transmitted X-rays 56. By detecting the transmitted X-ray 56 with the X-ray detector 40 for confirming the position of the sample, it is possible to easily recognize which position the X-ray 52 is irradiated on the sample S. For example, as shown in the graph of FIG. 1, the cross-sectional position of the sample S, which is the average value of the average intensity of the transmitted X-rays 56 in the low-permeability material and the average intensity of the transmitted X-rays 56 in the high-permeability material, is expressed as the interface Sb. And so on. If the raising / lowering operation of the raising / lowering table is controlled on the basis of the interface position, it is possible to easily recognize how far the region away from the sample interface Sb is irradiated with the X-rays 52.

[回折線の検知]
試料にX線52が照射されると、照射箇所の構成原子から散乱X線が出される。この散乱X線は、ブラッグの条件を満たすと互いに干渉し合って回折現象を示し、回折線54として回折線検出器30で観測される。その際、試料Sに入射されるX線52、試料S及び回折線検出器30は、常にブラッグの条件が満たされるように、ゴニオメータで連動される。
[Detection of diffraction lines]
When the sample is irradiated with X-rays 52, scattered X-rays are emitted from the constituent atoms at the irradiated location. The scattered X-rays interfere with each other and exhibit a diffraction phenomenon when the Bragg condition is satisfied, and are observed as a diffraction line 54 by the diffraction line detector 30. At that time, the X-ray 52 incident on the sample S, the sample S, and the diffraction detector 30 are interlocked by a goniometer so that the Bragg condition is always satisfied.

回折線検出器30は、試料を回転中心として回転するいわゆる2θアーム上に搭載された0次元検出器もしくは一次元検出器でもよいが、二次元検出器を用いることが好ましい。二次元検出器を用いれば、同定対象の結晶性物質が高配向であったり結晶粒の数が少ない等の事情で、X線回折パターン(Debye ring)が途切れた円弧となって完全な同心円状とはならない試料についても、回折線を効率的に検出することができる。この回折線検出器30では、X線の回折方向と入射方向の角度差(2θ)と回折線強度を走査して測定する。得られた角度差(2θ)と回折線強度の関係は、X線回折チャートとして表示される。この角度差(2θ)と回折線強度は物質の構造に固有のため、得られたX線回折チャートから界面付近に存在する物質を同定できる。ここでの同定には、結晶性物質の化学組成、結晶状態、結晶の歪や結晶の大きさなど、結晶に関する情報を取得することを含む。   The diffraction line detector 30 may be a zero-dimensional detector or a one-dimensional detector mounted on a so-called 2θ arm that rotates about the sample as a rotation center, but a two-dimensional detector is preferably used. If a two-dimensional detector is used, the X-ray diffraction pattern (Debye ring) becomes a circular arc with a complete concentric circle because the crystalline substance to be identified is highly oriented or the number of crystal grains is small. The diffraction line can be efficiently detected even for a sample that does not satisfy the above condition. The diffraction line detector 30 scans and measures the angle difference (2θ) between the X-ray diffraction direction and the incident direction and the diffraction line intensity. The relationship between the obtained angle difference (2θ) and diffraction line intensity is displayed as an X-ray diffraction chart. Since this angle difference (2θ) and diffraction line intensity are specific to the structure of the substance, the substance present near the interface can be identified from the obtained X-ray diffraction chart. The identification here includes obtaining information on the crystal such as the chemical composition, crystal state, crystal distortion, and crystal size of the crystalline substance.

[その他の構成]
その他、試料設置部20には、試料Sの加熱手段(図示略)を設けてもよい。これにより、試料Sを所定の温度に加熱し、加熱温度の変化に伴って、試料の界面Sbで結晶性物質が変化するかどうかを観測することができる。従来のように、異種材料の接合界面を破壊して剥離面を露出させてX線回折を行う場合、試料の加熱を伴うと一層剥離面の酸化が進行する。そのため、剥離前の界面に存在した被酸化元素が剥離面の露出と加熱によって酸化物となり、剥離前から界面に存在した酸化物と区別できなくなることが予測される。これに対して本発明の方法では、非破壊の界面に対してX線回折法による分析を行うため、界面の露出ではなく加熱に伴って生じた酸化物などの結晶性物質を的確に分析することができる。
[Other configurations]
In addition, the sample placement unit 20 may be provided with a heating means (not shown) for the sample S. Thereby, the sample S is heated to a predetermined temperature, and it can be observed whether or not the crystalline substance changes at the interface Sb of the sample as the heating temperature changes. When the X-ray diffraction is performed by destroying the bonding interface of different materials and exposing the peeled surface as in the prior art, the oxidation of the peeled surface further proceeds when the sample is heated. Therefore, it is predicted that the oxidizable element present at the interface before peeling becomes an oxide due to the exposure and heating of the peeling surface, and cannot be distinguished from the oxide existing at the interface before peeling. On the other hand, in the method of the present invention, since the analysis by the X-ray diffraction method is performed on the non-destructive interface, the crystalline substance such as oxide generated by heating is accurately analyzed instead of the exposure of the interface. be able to.

〔実施例1〕
上述した方法に基づいて、半導体モジュールのリードをアイレットに硬質ガラスで封止するハーメチックシールを試料とし、リードと硬質ガラスの界面における酸化物の同定を行う。図1に示したように、リードSiは、硬質ガラスSoで覆う前に加熱して、界面Sbに酸化膜を形成したものを用いた。試料Sは、硬質ガラスSoで覆われたリードSiを、その軸を含むように切り出した薄板状のものを用いる(図2の左図参照)。この試料Sは、試料設置部20に設けられた図示しない昇降テーブル上に配置され、このテーブルを動作することで、リードSi・界面Sb・硬質ガラスSoの各部にX線52が照射されるように昇降される。また、本実施例では、X線52の光軸上に試料位置確認用のX線検出器40を配置し、透過X線56の強度を測定する。この透過X線56の強度が、図1のグラフに示すように、リードSiにおける透過X線56の平均強度と硬質ガラスSoにおける透過X線56の平均強度との平均値となる試料の断面位置を界面Sbとする。そして、その界面SbからX線の中心位置(光軸)までの距離を昇降テーブルの昇降量から求める。本例では、界面Sbからリード側に25μmの位置、界面Sb、及び界面Sbから硬質ガラス側に15μmの位置の計3か所にX線の中心が位置するように試料SにX線52を照射し、各位置における回折線54の分析を行った。分析条件は次の通りである。なお、硬質ガラスSoで覆われたリードSiの横断面を顕微鏡観察して界面Sbに形成された酸化膜(界面部)の厚みを求めたところ、約0.5μmであり、硬質ガラスのX線の透過率は95%、リードのX線の透過率は15%以下であった。
[Example 1]
Based on the method described above, a hermetic seal in which the lead of the semiconductor module is sealed to the eyelet with hard glass is used as a sample, and the oxide at the interface between the lead and the hard glass is identified. As shown in FIG. 1, the lead Si used was heated before being covered with the hard glass So, and an oxide film was formed on the interface Sb. As the sample S, a thin plate-shaped sample obtained by cutting out the lead Si covered with the hard glass So so as to include its axis is used (see the left diagram in FIG. 2). This sample S is placed on an elevating table (not shown) provided in the sample setting unit 20, and by operating this table, each part of the lead Si, the interface Sb, and the hard glass So is irradiated with X-rays 52. Is raised and lowered. In this embodiment, an X-ray detector 40 for confirming the sample position is disposed on the optical axis of the X-ray 52, and the intensity of the transmitted X-ray 56 is measured. As shown in the graph of FIG. 1, the cross-sectional position of the sample in which the intensity of the transmitted X-ray 56 is an average value of the average intensity of the transmitted X-ray 56 in the lead Si and the average intensity of the transmitted X-ray 56 in the hard glass So. Is the interface Sb. Then, the distance from the interface Sb to the center position (optical axis) of the X-ray is obtained from the lifting amount of the lifting table. In this example, the X-ray 52 is placed on the sample S so that the center of the X-ray is located at a total of three locations, a position of 25 μm from the interface Sb to the lead side and a position of 15 μm from the interface Sb and from the interface Sb to the hard glass side. Irradiation was performed, and the diffraction line 54 at each position was analyzed. The analysis conditions are as follows. The thickness of the oxide film (interface part) formed on the interface Sb was determined by microscopic observation of the cross section of the lead Si covered with the hard glass So. The transmittance was 95%, and the lead X-ray transmittance was 15% or less.

<試料>
リード(単線)
材質:コバール(Fe-29%Ni-17%Co-0.5%Mn-0.2%Si)数値は全て質量%
直径:0.5mm
硬質ガラス
材質:ほう珪酸ガラス(SiO2-B2O3-K2O)
外径:3.0mm
試料形状:薄板状
試料寸法:厚さ200μm
<X線>
線種:出力25eVの放射光
X線サイズ(スリット開口寸法)
厚さ:0.03mm(30μm)
幅:0.5mm
照射方向:界面の接線方向で、かつリードの軸方向に直交する方向
<Sample>
Lead (single wire)
Material: Kovar (Fe-29% Ni-17% Co-0.5% Mn-0.2% Si) All figures are mass%
Diameter: 0.5mm
Hard glass Material: Borosilicate glass (SiO 2 -B 2 O 3 -K 2 O)
Outer diameter: 3.0mm
Sample shape: Thin plate Sample size: Thickness 200μm
<X-ray>
Line type: Synchrotron radiation with an output of 25eV X-ray size (slit opening dimension)
Thickness: 0.03mm (30μm)
Width: 0.5mm
Irradiation direction: Direction tangential to the interface and perpendicular to the axial direction of the lead

分析結果を図3のチャートに示す。チャートの横軸はX線としてCuKα1を用いた際の回折角度に変換した値(2θ)で示してある。このチャートにおいて、(1)は界面から硬質ガラス側に15μmの位置、(2)は界面、(3)は界面からリード側に25μmの位置にX線を照射した場合の分析結果である。   The analysis results are shown in the chart of FIG. The horizontal axis of the chart is a value (2θ) converted into a diffraction angle when CuKα1 is used as the X-ray. In this chart, (1) is the analysis result when X-rays are irradiated at a position of 15 μm from the interface to the hard glass side, (2) is the interface, and (3) is at a position of 25 μm from the interface to the lead side.

まず、図3(A)のチャートに示すように、(1)のチャートでは、25°付近に硬質ガラスでの散乱によると思われる緩やかな起伏がみられ、45°付近にはCoのピークがごく小さく認められる程度にすぎない。このことは、(1)のチャートがほぼ硬質ガラスのみからなる領域を分析していることがわかる。   First, as shown in the chart of FIG. 3A, in the chart of (1), there is a gentle undulation that seems to be due to scattering by hard glass around 25 °, and a Co peak is around 45 °. It's only a very small size. This shows that the chart of (1) analyzes a region consisting almost only of hard glass.

次に、(2)のチャートでは、25°付近に硬質ガラスでの散乱によると思われる緩やかな起伏がみられる点は(1)のチャートと同様であるが、45°付近のCoのピークが(1)のチャートよりも大きく、さらに52°付近にもCoの小さなピークが認められる。このことは、(2)のチャートがほぼ界面の領域を分析していることがわかる。   Next, in the chart of (2), the point that there is a gentle undulation that seems to be due to scattering by hard glass around 25 ° is the same as the chart of (1), but the Co peak around 45 ° It is larger than the chart in (1), and a small Co peak is also observed near 52 °. This indicates that the chart in (2) almost analyzes the interface region.

次に、(3)のチャートでは、25°付近に硬質ガラスでの散乱によると思われる緩やかな起伏がみられる点は(1)や(2)のチャートと同様であるが、45°付近のCoのピークと52°付近のCoのピークのいずれも(2)のチャートよりもはるかに大きく認められる。このことは、(3)のチャートがほぼリードのみからなる領域を分析していることがわかる。   Next, in the chart of (3), the point where there is a gentle undulation that seems to be due to scattering by hard glass around 25 ° is the same as the chart of (1) and (2), but around 45 °. Both the Co peak and the Co peak near 52 ° are much larger than the chart in (2). This shows that the chart of (3) analyzes the region that consists almost of leads.

さらに、このチャートにおける30°〜40°の範囲を拡大して図3(B)に示す。この(1)のチャートにはFe2O3やFeOのピークは認められないが、(2)や(3)のチャートにはそれら酸化物のピークが明確に認められる。そのため、界面からリード側に向かって25μmの位置程度の領域では、Fe2O3やFeOの酸化鉄が生成されていることがわかる。 Further, the range of 30 ° to 40 ° in this chart is enlarged and shown in FIG. In the chart (1), no Fe 2 O 3 or FeO peak is observed, but in the charts (2) or (3), those oxide peaks are clearly recognized. Therefore, it can be seen that Fe 2 O 3 or FeO iron oxide is generated in the region of about 25 μm from the interface toward the lead side.

以上の評価に加えて、X線回折チャートから定量分析を行うことも可能である。   In addition to the above evaluation, it is also possible to perform a quantitative analysis from an X-ray diffraction chart.

なお、本発明は、上記の実施形態に限定されるものではなく、種々の変更が期待できる。例えば、試料が半導体モジュールのハーメチックシールに限定されるわけではなく、冷陰極管の端子部をはじめとする種々の電子部品のリードとその封止材料との界面や、それ以外の異種材料の接合界面における物質の同定にも利用することができる。   In addition, this invention is not limited to said embodiment, A various change can be anticipated. For example, the sample is not limited to the hermetic seal of the semiconductor module, but the interface between the lead of various electronic parts including the terminal part of the cold cathode tube and its sealing material, and the joining of other dissimilar materials It can also be used to identify substances at the interface.

本発明のX線回折法は、各種電子部品のリードとその封止材料など、異種材料の界面に存在する物質の同定に好適に利用することができる。   The X-ray diffraction method of the present invention can be suitably used for identification of substances existing at the interface of different materials such as leads of various electronic components and sealing materials thereof.

10 X線照射源
15 スリット
20 試料設置部
30 回折線検出器
40 試料位置確認用のX線検出器
52 X線 54 回折線 56 透過X線
S 試料
Si リード(低透過性材料) Sb 界面 So 硬質ガラス(高透過性材料)
100 半導体モジュール 110 アイレット 110h 貫通孔 120 半導体素子
130 リード 140 キャップ 150 レンズ 160 硬質ガラス
10 X-ray irradiation source
15 slit
20 Sample placement section
30 Diffraction line detector
40 X-ray detector for sample position confirmation
52 X-ray 54 Diffraction line 56 Transmission X-ray S Sample
Si lead (low permeability material) Sb interface So hard glass (high permeability material)
100 Semiconductor module 110 Eyelet 110h Through hole 120 Semiconductor element
130 Lead 140 Cap 150 Lens 160 Hard glass

Claims (9)

異種材料の接合界面に存在する結晶性物質を同定するX線回折法であって、
前記接合界面のうち、その断面が曲線で表される領域を分析対象面とする試料をX線照射源と回折線検出器との間に配置する過程と、
前記照射源から、前記分析対象面に対して、前記曲線の接線方向にX線を照射する過程と、
このX線の照射に伴って発生する回折線を前記回折線検出器で検出する過程とを備えることを特徴とするX線回折法。
An X-ray diffraction method for identifying a crystalline substance present at a bonding interface of different materials,
A process of arranging a sample whose analysis target surface is a region whose cross section is represented by a curve, of the bonding interface, between the X-ray irradiation source and the diffraction ray detector;
A process of irradiating the analysis target surface with X-rays in a tangential direction of the curve from the irradiation source;
And a step of detecting, with the diffraction line detector, a diffraction line generated along with the irradiation of the X-ray.
前記試料は、前記接線方向を厚み方向とする薄板状であることを特徴とする請求項1に記載のX線回折法。   The X-ray diffraction method according to claim 1, wherein the sample has a thin plate shape in which the tangential direction is a thickness direction. 前記回折線検出器を二次元検出器とすることを特徴とする請求項1又は2に記載のX線回折法。   The X-ray diffraction method according to claim 1, wherein the diffraction line detector is a two-dimensional detector. 前記曲線が円弧であり、
前記X線の厚みを前記円弧の直径未満とすることを特徴とする請求項1〜3のいずれか1項に記載のX線回折法。
The curve is an arc;
The X-ray diffraction method according to claim 1, wherein a thickness of the X-ray is less than a diameter of the arc.
前記異種材料の一方はX線の透過率が低い低透過性材料で、他方は低透過性材料よりもX線の透過率が高い高透過性材料であることを特徴とする請求項1〜4のいずれか1項に記載のX線回折法。   5. One of the dissimilar materials is a low transmission material having a low X-ray transmittance, and the other is a high transmission material having a higher X-ray transmission than the low transmission material. The X-ray diffraction method according to any one of the above. 前記低透過性材料が電子部品のリードで、前記高透過性材料が前記リードを電子部品のリード貫通部に封止するガラスであることを特徴とする請求項5に記載のX線回折法。   6. The X-ray diffraction method according to claim 5, wherein the low-permeability material is a lead of an electronic component, and the high-permeability material is glass that seals the lead in a lead penetration portion of the electronic component. 前記X線を前記リードの軸方向と交差する方向に照射することを特徴とする請求項6に記載のX線回折法。   The X-ray diffraction method according to claim 6, wherein the X-ray is irradiated in a direction intersecting with an axial direction of the lead. 前記X線が放射光であることを特徴とする請求項1〜7のいずれか1項に記載のX線回折法。   The X-ray diffraction method according to claim 1, wherein the X-ray is radiated light. 前記結晶性物質が酸化物であることを特徴とする請求項1〜8のいずれか1項に記載のX線回折法。   The X-ray diffraction method according to claim 1, wherein the crystalline substance is an oxide.
JP2009096526A 2009-04-10 2009-04-10 X-ray diffraction method Active JP5288127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009096526A JP5288127B2 (en) 2009-04-10 2009-04-10 X-ray diffraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009096526A JP5288127B2 (en) 2009-04-10 2009-04-10 X-ray diffraction method

Publications (2)

Publication Number Publication Date
JP2010249549A true JP2010249549A (en) 2010-11-04
JP5288127B2 JP5288127B2 (en) 2013-09-11

Family

ID=43312064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009096526A Active JP5288127B2 (en) 2009-04-10 2009-04-10 X-ray diffraction method

Country Status (1)

Country Link
JP (1) JP5288127B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5151385A (en) * 1974-10-31 1976-05-06 Rigaku Denki Co Ltd x senkaisetsushashinsatsueisochi
JPS61175554A (en) * 1985-01-25 1986-08-07 ウエスチングハウス エレクトリック コ−ポレ−ション Nondestructive inspection method of metallic pipe using x-ray diffraction
JPH08233755A (en) * 1995-02-24 1996-09-13 Nippon Steel Corp Method and apparatus of x-ray diffraction for tubular sample
JPH1187021A (en) * 1997-09-02 1999-03-30 Ngk Spark Plug Co Ltd Ceramic heater and oxygen sensor
JP2000002673A (en) * 1998-06-12 2000-01-07 Ricoh Co Ltd X-ray diffraction apparatus and diffraction method
JP2002200065A (en) * 2000-12-31 2002-07-16 Yasuto Takeuchi Method and apparatus for x-ray diffraction image contrast by microballoons

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5151385A (en) * 1974-10-31 1976-05-06 Rigaku Denki Co Ltd x senkaisetsushashinsatsueisochi
JPS61175554A (en) * 1985-01-25 1986-08-07 ウエスチングハウス エレクトリック コ−ポレ−ション Nondestructive inspection method of metallic pipe using x-ray diffraction
JPH08233755A (en) * 1995-02-24 1996-09-13 Nippon Steel Corp Method and apparatus of x-ray diffraction for tubular sample
JPH1187021A (en) * 1997-09-02 1999-03-30 Ngk Spark Plug Co Ltd Ceramic heater and oxygen sensor
JP2000002673A (en) * 1998-06-12 2000-01-07 Ricoh Co Ltd X-ray diffraction apparatus and diffraction method
JP2002200065A (en) * 2000-12-31 2002-07-16 Yasuto Takeuchi Method and apparatus for x-ray diffraction image contrast by microballoons

Also Published As

Publication number Publication date
JP5288127B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
US9343193B2 (en) XRF system having multiple excitation energy bands in highly aligned package
JP6253233B2 (en) Transmission X-ray target, radiation generating tube including the transmission X-ray target, radiation generating device including the radiation generating tube, and radiation imaging apparatus including the radiation generating device
JP5722861B2 (en) Inspection method and inspection apparatus
US10147511B2 (en) Radiolucent window, radiation detector and radiation detection apparatus
WO2006005246A1 (en) A measuring device for the shortwavelength x ray diffraction and a method thereof
JP2003297891A (en) X-ray fluorescence analyzer for semiconductors
CN104076053A (en) Foreign matter detector
JP5288127B2 (en) X-ray diffraction method
JP2015078950A (en) X-ray inspection device
CN103969276B (en) The XRF measuring device of the pollutant on inclined-plane for detecting chip
WO2022091749A1 (en) Radiation detection module and radiation detection device
US20190324160A1 (en) X-ray detector and x-ray measurement device using the same
JP5359165B2 (en) Nondestructive warpage measuring method and measuring apparatus for single crystal substrate
JP2010230481A (en) Sample analyzer and sample analysis method
JP2007078616A (en) Method and device for measuring thickness of each component layer of thin film comprising a plurality of layers
JP2000055842A (en) X-ray image pick-up analysis method and device
JP3663439B2 (en) X-ray imaging apparatus and method
JP6110209B2 (en) X-ray generation target and X-ray generation apparatus
CN110320225B (en) Fluorescence scanning nanowire and design and preparation method thereof
US9798018B2 (en) Luminescent beam stop
JP2009253174A (en) Impurity analysis method and impurity analysis device of semiconductor substrate
JPH0815184A (en) Method and apparatus for measuring x-ray diffraction
JP2016048751A (en) Semiconductor device and inspection method of the same
TW202346852A (en) Total reflection fluorescent X-ray analysis device having high analysis sensitivity and high analysis speed
JP2004226280A (en) Thin film analysis method and thin film analysis apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130521

R150 Certificate of patent or registration of utility model

Ref document number: 5288127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250