JP2010248842A - Predicting method, predicting system and predicting program for inflow sediment - Google Patents

Predicting method, predicting system and predicting program for inflow sediment Download PDF

Info

Publication number
JP2010248842A
JP2010248842A JP2009101459A JP2009101459A JP2010248842A JP 2010248842 A JP2010248842 A JP 2010248842A JP 2009101459 A JP2009101459 A JP 2009101459A JP 2009101459 A JP2009101459 A JP 2009101459A JP 2010248842 A JP2010248842 A JP 2010248842A
Authority
JP
Japan
Prior art keywords
sediment
intake
amount
water
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009101459A
Other languages
Japanese (ja)
Inventor
Kenji Okubo
賢治 大久保
Yuichi Kawachi
友一 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Okayama University NUC
Original Assignee
Chugoku Electric Power Co Inc
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Okayama University NUC filed Critical Chugoku Electric Power Co Inc
Priority to JP2009101459A priority Critical patent/JP2010248842A/en
Publication of JP2010248842A publication Critical patent/JP2010248842A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To determine a time point for water intake stop, and to restart in order to obtain maximum generated electric energy while restraining a large amount of a sediment inflow when water is discharged in a run-off river-type hydroelectric power station. <P>SOLUTION: The following three processes are executed: a first process where rainfall data in an upper river basin are inputted into a first model formula, and a river water volume and a conveyed sediment volume in the vicinity of an water intake gate after predetermined hours are calculated; a second process where values of the river water volume and conveyed sediment volume which are calculated by the first model formula, and an existing accumulated sediment volume are inputted into a second model formula, and an accumulated sediment volume in front of the water intake gate and a sediment inflow volume into the water intake gate after predetermined hours are calculated; and a third process where a comparison is made between the sediment inflow volume into the water intake gate and a predetermined limiting value, so that a time point at which the sediment inflow volume reaches the limiting value is specified as timing for stopping intake of the water. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、流入土砂予測方法、流入土砂予測システム、および流入土砂予測プログラムに関するものであり、具体的には、流込み式水力発電所において、出水時における大量の土砂流入を抑止しつつ最大の発電電力量を得る、取水停止・再開のタイミングを決定する技術に関する。   The present invention relates to an inflow sediment prediction method, an inflow sediment prediction system, and an inflow sediment prediction program. Specifically, in an inflow hydropower plant, the largest inflow of sediment during a flood is suppressed. The present invention relates to a technique for determining the timing of stopping / resuming water intake for obtaining generated power.

流込み式水力発電所では、取水口から河川の水流を導水路に導いて発電に供している。河川の水流には土砂が含まれているため、取水口や取水ダム、排砂門といった取水施設の周辺に土砂堆積が生じやすい。そこで、こうした流れ込み式水力発電所の導水路にて土砂検出を行う装置や排砂門の運用方法に関する技術等が提案されている。   In the flow-type hydroelectric power plant, the river water flow is led from the intake to the water conduit for power generation. Since the river flow contains earth and sand, sediment accumulation tends to occur around water intake facilities such as water intakes, water intake dams, and drainage gates. In view of this, there have been proposed a device for detecting earth and sand in a waterway of such a flow-type hydroelectric power plant, a technique relating to a method for operating a sand discharge gate, and the like.

例えば、水力発電所の導水路に流入する土砂を検出するための流入土砂検出装置であって、前記導水路に設置されている構造物に土砂が衝突したときに前記構造物に発生する加速度信号を検出する加速度検出手段、および前記加速度検出手段によって検出された加速度信号を処理して少なくとも流入土砂の有無および単位時間当たりに流入した土砂粒子数から土砂流入頻度、流入量を演算する演算手段を備えた、流入土砂検出装置(特許文献1参照)などが提案されている。   For example, an inflow sediment detection device for detecting sediment flowing into a water conduit of a hydroelectric power plant, and an acceleration signal generated in the structure when the sand collides with a structure installed in the water conduit And an acceleration detecting means for detecting the calculation of the sediment inflow frequency and the amount of inflow from at least the presence / absence of inflow sediment and the number of sediment particles flowing in per unit time by processing the acceleration signal detected by the acceleration detection means. An inflow sediment detection device (see Patent Document 1) and the like provided are proposed.

また、各出水パターンの下流側水位変動に対する排砂門運用パターン毎の堆積土砂量のデータを取得する履歴解析工程と、下流側水位変動が所定基準以下で堆積土砂量が最小となる排砂門最適運用パターンを各出水パターン毎に特定し出水パターンと排砂門最適運用パターンとの対応テーブルを作成する対応テーブル作成工程と、実際の出水時における出水情報を対応テーブルに照合し出水パターンに応じた排砂門最適運用パターンを特定しこの排砂門最適運用パターンに基づいた排砂門の運用処理を実行する最適パターン特定工程とを実行する排砂門運用方法(特許文献2参照)なども提案されている。   In addition, a historical analysis process to acquire sediment sediment volume data for each drainage gate operation pattern with respect to downstream water level fluctuations in each water discharge pattern, and a drainage gate where the sediment level is minimized when the downstream water level fluctuation is below a predetermined standard. Corresponding table creation process for creating the correspondence table between the flooding pattern and the drainage gate optimum operation pattern by specifying the optimum operation pattern for each flooding pattern, and matching the flooding information at the time of actual flooding with the corresponding table according to the flooding pattern A drainage gate operation method (refer to Patent Document 2) for performing an optimum pattern specifying step of identifying a drainage gate optimum operation pattern and executing a drainage gate operation process based on the drainage gate optimum operation pattern Proposed.

特開平10−68118号公報Japanese Patent Laid-Open No. 10-68118 特開2008−174969号公報JP 2008-174969 A

ところで、流込み式水力発電所では、大出水時に取水を継続すると大量の土砂が取水口から導水路に向けて流入することがある。こうした土砂流入を防ぐため、出水時に取水を停止することがあるが、その際の判断基準が定まっておらず、運転停止が早すぎて発電量が低下する場合や、運転停止が遅すぎて土砂が大量に流入する場合がある。
そこで本発明は上記課題を鑑みてなされたものであり、流込み式水力発電所において、出水時における大量の土砂流入を抑止しつつ最大の発電電力量を得る、取水停止・再開のタイミングを決定する技術の提供を主たる目的とする。
By the way, in an inflow type hydroelectric power station, if water intake is continued at the time of large water discharge, a large amount of earth and sand may flow from the water intake toward the water conduit. In order to prevent such inflow of sediment, water intake may be stopped at the time of water discharge, but the judgment criteria at that time are not established, and if the operation stop is too early and the power generation amount decreases, or the operation stop is too late, May flow in large quantities.
Accordingly, the present invention has been made in view of the above-mentioned problems, and determines the timing of stopping / resuming intake, which obtains the maximum amount of generated electric power while suppressing a large amount of sediment inflow at the time of flooding in the inflow type hydroelectric power plant. The main purpose is to provide technology.

上記課題を解決する本発明の流入土砂予測方法は、流れ込み式の水力発電所における流入土砂量の予測方法であって、以下の工程からなる。すなわち、取水河川の上流域における降雨に対し、所定時間後の取水口付近での河川水量および上流からの運搬土砂量を算定する第1モデル式に、所定時刻の上流域における雨量観測所の雨量データを入力し、前記所定時刻から所定時間後の取水口付近での河川水量および運搬土砂量を算定する第1工程と、所定時刻の取水口付近での河川水量、運搬土砂量、および取水口前の既存土砂堆積量の値に対し、所定時間後の取水口前の土砂堆積量および取水口への土砂流入量を算定する第2モデル式に、前記第1モデル式により算定した河川水量、運搬土砂量、および既存土砂堆積量の値を入力し、前記所定時間後における取水口前の土砂堆積量および取水口への土砂流入量を算定する第2工程と、前記取水口への土砂流入量と所定の限界値とを比較して、前記土砂流入量が前記限界値に達する時点を取水停止タイミングとして特定する第3工程とである。   The inflow sediment prediction method of the present invention that solves the above problems is a prediction method for the amount of inflow sediment in a flow-in hydroelectric power plant, and includes the following steps. That is, for rainfall in the upstream area of the intake river, the first model formula that calculates the river water volume near the intake and the transported sediment from the upstream after a predetermined time is used to calculate the rainfall at the rainfall station in the upstream area at the predetermined time. First step of inputting data and calculating the amount of river water and transported sediment near the intake after a predetermined time from the predetermined time, and the amount of river water, transported sediment and intake near the intake at the predetermined time The amount of river water calculated by the above-mentioned first model equation to the second model equation for calculating the amount of sediment deposited before the intake after a predetermined time and the amount of sediment flowing into the intake after the predetermined time, The second step of calculating the amount of sediment transported and the amount of existing sediment, calculating the amount of sediment deposited before the intake and the amount of sediment flowing into the intake after the predetermined time, and the inflow of sediment into the intake The quantity and the predetermined limit And compare the time when the sediment inflow reaches the limit value is a third step of specifying the intake stop timing.

前記第1〜第3の各工程共に、これを実現するコンピュータプログラムは一般のパーソナルコンピュータ等で軽快に動作する規模のものであり、従来のように数値解析モデルを数十時間もかけて実行するといった手間や経費は不要となる。従って、上流域での降雨量データを取得してこれを第1工程に適用し、この第1工程の結果を第2工程に適用し、更に第3工程を実行するといった処理を、前記上流域での降雨量データが得られてすぐに実行でき、出水時において大量の土砂流入が生じる事態を事前に検知して、これを抑止することができる。このことは、取水口への大量の土砂流入が生じるまで出来るだけ取水を継続させることにつながり、ひいては流れ込み式水力発電所での発電電力量の最大化を図ることにつながる。   In each of the first to third steps, a computer program for realizing this is a scale that can be easily operated on a general personal computer or the like, and executes a numerical analysis model over several tens of hours as in the past. Such trouble and expense are not required. Therefore, the process of acquiring the rainfall data in the upstream area and applying it to the first process, applying the result of the first process to the second process, and further executing the third process is performed in the upstream area. Can be executed as soon as the rainfall data is obtained, and it is possible to detect in advance a situation in which a large amount of sediment inflow occurs at the time of flooding and to suppress this. This leads to continuing the water intake as much as possible until a large amount of sediment flows into the water intake, which in turn leads to the maximization of the amount of power generated at the flow-in hydroelectric power plant.

なお、第3工程において、前記取水停止タイミングに合わせて、流れ込み式水力発電所の取水停止処理を行うとすれば好適である。この取水停止処理は、係員が取水口開閉装置に対して、取水口を閉じる指示を与えることで実行できる。或いは、流入土砂予測システム(コンピュータ)が、取水口開閉装置(流入土砂予測システムと通信可能に接続)に対して、取水口を閉じる指示を与えることで実行できる。   In the third step, it is preferable to perform a water intake stop process of the flow-in hydropower station in accordance with the water intake stop timing. This water intake stop process can be executed by giving an instruction to the water intake opening / closing device to close the water intake opening. Alternatively, the inflow sediment prediction system (computer) can be executed by giving an instruction to close the intake port to the intake port opening / closing device (connected to the inflow sediment prediction system).

また、前記取水停止処理の後、前記第1工程および第2工程を継続して実行し、ある時点の前記取水口への土砂流入量と所定の基準値とを比較し、前記土砂流入量が前記基準値を下回る時点を取水再開タイミングとして特定する第4工程を実行するとしても好適である。これによれば、単純に取水停止だけを行うのではなく、取水再開のタイミングも特定することができ、ひいては流れ込み式水力発電所での発電電力量の最大化を図ることにつながる。なお、前記第4工程において、前記取水再開タイミングに合わせて、流れ込み式水力発電所の取水再開処理を行うとすれば好適である。この取水再開処理は、係員が取水口開閉装置に対して、取水口を開く指示を与えることで実行できる。或いは、流入土砂予測システム(コンピュータ)が、取水口開閉装置(流入土砂予測システムと通信可能に接続)に対して、取水口を開く指示を与えることで実行できる。   In addition, after the intake stop process, the first step and the second step are continuously executed, and the amount of earth and sand flowing into the water intake at a certain point is compared with a predetermined reference value. It is also preferable to execute the fourth step of specifying the time point below the reference value as the water resumption timing. According to this, it is possible not only to simply stop the water intake but also to specify the timing of resuming the water intake, which leads to the maximization of the amount of power generated at the flow-in hydroelectric power station. In addition, in the said 4th process, it is suitable if the intake resumption process of a flow-in type hydropower station is performed according to the said intake resumption timing. This water intake resumption process can be executed by giving an instruction to the water intake opening and closing device to open the water intake. Alternatively, the inflow sediment prediction system (computer) can be executed by giving an instruction to open the intake port to the intake opening and closing device (connected to the inflow sediment prediction system).

また、本発明の流入土砂予測システムは、流れ込み式の水力発電所における流入土砂量の予測を行うコンピュータシステムであり、例えば、流れ込み式水力発電所の管理を行うサーバ装置等が想定できる。この流入土砂予測システムは、コンピュータとして当然であるが、記憶装置と演算装置を備えている。   Moreover, the inflow sediment prediction system of the present invention is a computer system that predicts the amount of inflow sediment in a flow-in hydroelectric power plant, and for example, a server device that manages the flow-in hydropower plant can be assumed. This inflow sediment prediction system is naturally a computer, but includes a storage device and a computing device.

こうした流入土砂予測システムは、取水河川の上流域における降雨に対し、所定時間後の取水口付近での河川水量および上流からの運搬土砂量を算定する第1モデル式と、所定時刻の取水口付近での河川水量、運搬土砂量、および取水口前の既存土砂堆積量の値に対し、所定時間後の取水口前の土砂堆積量および取水口への土砂流入量を算定する第2モデル式とを記憶する記憶装置を備える。   This inflow sediment prediction system is based on the first model formula that calculates the amount of river water in the vicinity of the intake after a specified time and the amount of transported sediment from the upstream, and the vicinity of the intake at the specified time for rainfall in the upstream area of the intake river. The second model formula to calculate the sediment accumulation amount before the intake and the sediment inflow to the intake after a predetermined time with respect to the river water volume, the transported sediment volume, and the existing sediment accumulation amount before the intake Is provided.

また、前記流入土砂予測システムは、所定時刻の上流域における雨量観測所の雨量データを入力インターフェイスで取得し、この雨量データを、前記記憶装置から読み出した第1モデル式に適用し、前記所定時刻から所定時間後の取水口付近での河川水量および運搬土砂量を算定する第1工程と、前記第1工程で算定した河川水量、運搬土砂量、および既存土砂堆積量の値を、前記記憶装置から読み出した第2モデル式に適用し、前記所定時間後における取水口前の土砂堆積量および取水口への土砂流入量を算定する第2工程と、前記取水口への土砂流入量と所定の限界値とを比較して、前記土砂流入量が前記限界値に達する時点を取水停止タイミングとして特定する第3工程とを実行する演算装置とを備える。   In addition, the inflow sediment prediction system obtains the rainfall data of the rainfall observation station in the upstream area at a predetermined time with an input interface, applies the rainfall data to the first model equation read from the storage device, and the predetermined time The first step of calculating the river water amount and the transported sediment amount in the vicinity of the water intake after a predetermined time from the first time, and the values of the river water amount, the transported sediment amount and the existing sediment accumulation amount calculated in the first step are stored in the storage device. Applied to the second model equation read out from the second model equation, a second step of calculating the amount of sediment deposited before the intake and the amount of sediment flowing into the intake after the predetermined time, and the amount of sediment flowing into the intake and a predetermined amount And a third unit that compares a limit value and specifies a time point at which the sediment inflow amount reaches the limit value as a water stop timing.

また、本発明の流入土砂予測プログラムは、取水河川の上流域における降雨に対し、所定時間後の取水口付近での河川水量および上流からの運搬土砂量を算定する第1モデル式と、所定時刻の取水口付近での河川水量、運搬土砂量、および取水口前の既存土砂堆積量の値に対し、所定時間後の取水口前の土砂堆積量および取水口への土砂流入量を算定する第2モデル式とを記憶する記憶装置と、演算装置とを備えて、流れ込み式の水力発電所における流入土砂量の予測を行うコンピュータに、以下のステップを実行させるプログラムである。   In addition, the inflow sediment prediction program of the present invention includes a first model formula for calculating the amount of river water in the vicinity of the intake after a predetermined time and the amount of transport sediment from the upstream for rainfall in the upstream area of the intake river, and a predetermined time. Calculate the amount of sediment deposited before the intake and the amount of sediment flowing into the intake after a specified time against the values of river water, transported sediment, and existing sediment accumulation before the intake. This is a program that includes a storage device that stores two model equations and a calculation device, and causes a computer that predicts the amount of inflow sediment in a flow-in hydroelectric power plant to execute the following steps.

すなわち、前記ステップとは、前記第1モデル式に、所定時刻の上流域における雨量観測所の雨量データを入力し、前記所定時刻から所定時間後の取水口付近での河川水量および運搬土砂量を算定する第1ステップと、前記第2モデル式に、前記第1モデル式により算定した河川水量、運搬土砂量、および既存土砂堆積量の値を入力し、前記所定時間後における取水口前の土砂堆積量および取水口への土砂流入量を算定する第2ステップと、前記取水口への土砂流入量と所定の限界値とを比較して、前記土砂流入量が前記限界値に達する時点を取水停止タイミングとして特定する第3ステップとである。   That is, the step is to input the rainfall data of the rainfall observation station in the upstream area at a predetermined time into the first model formula, and calculate the river water amount and the transported sediment amount near the intake after a predetermined time from the predetermined time. In the first step of calculation, and the second model formula, the values of the river water volume, the transported sediment volume and the existing sediment accumulation volume calculated by the first model formula are input, and the sediment before the intake after the predetermined time. The second step of calculating the amount of sediment and the amount of sediment flowing into the intake port is compared with the amount of sediment flowing into the intake port and a predetermined limit value, and water is taken when the sediment flow rate reaches the limit value. A third step is specified as the stop timing.

本発明によれば、流込み式水力発電所において、出水時における大量の土砂流入を抑止しつつ最大の発電電力量を得る、取水停止・再開のタイミングを決定できる。   ADVANTAGE OF THE INVENTION According to this invention, in a flow-in type hydroelectric power station, the timing of a water intake stop and restart which can obtain the largest electric power generation amount can be determined, suppressing the large inflow of earth and sand at the time of a flood.

本実施形態の流入土砂予測システムのネットワーク構成を示す図である。It is a figure which shows the network structure of the inflow sediment prediction system of this embodiment. 本実施形態における流入土砂予測方法の処理手順例を示す図である。It is a figure which shows the example of a process sequence of the inflow sediment prediction method in this embodiment. 本実施形態における上流域モデルの水の流出予測方法(タンクモデル) を示す図である。It is a figure which shows the outflow prediction method (tank model) of the water of the upstream area model in this embodiment. 本実施形態におけるタンクモデルの係数決定例を示す図である。It is a figure which shows the coefficient determination example of the tank model in this embodiment. 本実施形態における数値解析による発電所付近の流量と全流砂量の関係を示す図である。It is a figure which shows the relationship between the flow volume near the power plant by the numerical analysis in this embodiment, and the total amount of sand flow. 本実施形態における上流域モデルによる水と土砂の流出予測計算例を示す図である。It is a figure which shows the runoff prediction calculation example of the water and earth and sand by the upstream area model in this embodiment. 本実施形態における取水口周辺モデルの概要図(上流流入土砂の分配について)を示す図である。It is a figure which shows the schematic diagram (about distribution of upstream inflow sediment) of the water intake periphery model in this embodiment. 本実施形態における取水口周辺を対象とした平面2次元数値解析結果(河床高の時間変化)を示す図である。It is a figure which shows the planar two-dimensional numerical-analysis result (time change of a riverbed height) targeting the periphery of the water intake in this embodiment. 本実施形態におけるφin、φout、φdpの時間変化(数値解析結果)を示す図である。It is a figure which shows the time change (numerical analysis result) of (phi) in, (phi) out, and (phi) dp in this embodiment. 本実施形態におけるφin、φout、φdpと取水口前面総堆積土砂量の関係を示す図である。It is a figure which shows the relationship between (phi) in, (phi) out, (phi) dp in this embodiment, and the amount of sediment accumulation sediment in front of a water intake. 本実施形態におけるφin、φdpと取水口前面総堆積土砂量の関係を示す図である。It is a figure which shows the relationship between (phi) in and (phi) dp in this embodiment, and the amount of total sedimentation sediment in front of a water intake. 取水再開後の土砂流入量と前面総堆積土砂量の関係を示す図である。It is a figure which shows the relationship between the sediment inflow amount after intake resumption, and the front total sedimentation sediment amount. 本実施形態における上流域モデルと取水口付近モデルを組み合わせた予測シートの例を示す図である。It is a figure which shows the example of the prediction sheet | seat which combined the upstream area model and the water intake vicinity model in this embodiment. 本実施形態における数値解析モデルに用いる数式群1を示す図である。It is a figure which shows the numerical formula group 1 used for the numerical analysis model in this embodiment. 本実施形態における数値解析モデルに用いる数式群2を示す図である。It is a figure which shows the numerical formula group 2 used for the numerical analysis model in this embodiment. 本実施形態における数値解析モデル(上流域)の計算結果例を示す図である。It is a figure which shows the example of a calculation result of the numerical analysis model (upstream area) in this embodiment. 本実施形態における数値解析モデルに用いる数式群3を示す図である。It is a figure which shows the numerical formula group 3 used for the numerical analysis model in this embodiment. 本実施形態における数値解析モデルに用いる数式群4を示す図である。It is a figure which shows the numerical formula group 4 used for the numerical analysis model in this embodiment. 本実施形態における水力発電所取水口周辺の流れ・河床変動と流入土砂の計算結果を示す図である。It is a figure which shows the calculation result of the flow and river bed fluctuation | variation around the hydroelectric power plant intake in this embodiment, and inflow sediment.

−−−流入土砂予測システム−−−
以下に本発明の実施形態について図面を用いて詳細に説明する。図1は、本実施形態の流入土砂予測システム100を含むネットワーク構成図である。なお、ここでの流入土砂予測システム100の説明においては、本発明の流入土砂予測方法を流入土砂予測システム100が実行するものとして記述を行う。ただし、工法としての流入土砂予測方法(請求項1らに対応)も概念として当然に包含するものとする。
--- Inflow sediment prediction system ---
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a network configuration diagram including the inflow sediment prediction system 100 of the present embodiment. In the description of the inflow sediment prediction system 100 here, it is described that the inflow sediment prediction system 100 executes the inflow sediment prediction method of the present invention. However, the inflow sediment prediction method (corresponding to claim 1 and the like) as a construction method is naturally included as a concept.

本実施形態においては、図に示すように、実際の流れ込み式水力発電所5には発電用の取水を行う取水口6と、河川の水流を一部貯留して前記取水口6に取り込むための取水ダム7とが設置される。また前記取水ダム7の近くには、水流に乗って流下し、前記取水口6や取水ダム7の前に堆積する土砂8を適宜排出するための排砂門9が設置される。また、前記取水ダム7の上流側には、上流域の雨量を測定する雨量計200が設置される。なお、前記雨量計200は、ネットワーク160または流入土砂予測システム100の通信装置(後述のNIC107)を介して、流入土砂予測システム100に接続され、取水ダム上流側の雨量測定値をシステム側に提供する。   In the present embodiment, as shown in the figure, the actual flow-in hydroelectric power plant 5 has a water intake 6 for taking water for power generation and a part for storing a part of the river flow and taking it into the water intake 6. A water intake dam 7 is installed. Further, near the intake dam 7, a sand discharge gate 9 is installed for appropriately discharging the sediment 8 that flows down on the water flow and accumulates in front of the intake 6 and the intake dam 7. Further, a rain gauge 200 for measuring the rainfall in the upstream area is installed on the upstream side of the intake dam 7. The rain gauge 200 is connected to the inflow sediment prediction system 100 via the network 160 or a communication device of the inflow sediment prediction system 100 (NIC 107 described later), and provides the rainfall measurement value upstream of the intake dam to the system side. To do.

一方、前記流入土砂予測システム100(以下、システム100)は、前記流れ込み式水力発電所5における流入土砂量の予測を行うコンピュータシステムであって、本発明の流入土砂予測方法を実行すべくハードディスクドライブ101などの記憶装置に格納されたプログラム102をRAM103(メモリ)に読み出し、演算装置たるCPU104により実行する。   On the other hand, the inflow sediment prediction system 100 (hereinafter, system 100) is a computer system for predicting the amount of inflow sediment in the flow-in hydroelectric power plant 5, and is a hard disk drive for executing the inflow sediment prediction method of the present invention. A program 102 stored in a storage device such as 101 is read into a RAM 103 (memory) and executed by a CPU 104 which is an arithmetic device.

また、前記システム100は、コンピュータ装置が一般に備えている各種キーボードやボタン類などの入力インターフェイス105、ディスプレイなどの出力インターフェイス106、ならびに、雨量計200などとの間のデータ授受を担うNIC(Network Interface Card)などの通信装置107などを有している。   In addition, the system 100 includes a network interface (NIC) (Network Interface) that handles data exchange with an input interface 105 such as various keyboards and buttons generally provided in a computer device, an output interface 106 such as a display, and a rain gauge 200. Card) or the like.

前記システム100は、前記NIC107により、前記雨量計200と例えばインターネットやLANなどの各種ネットワーク160を介して接続し、データ授受を実行する。また、システム100は、フラッシュROM108と、各部を接続するバスを中継するブリッジ109と電源121を有する。なお、前記フラッシュROM108には、BIOS120が記憶されている。CPU104は、電源121の投入後、先ずフラッシュROM108にアクセスしてBIOS120を実行することにより、システム100のシステム構成を認識する。また、ハードディスクドライブ101には、各機能部やデータベース類の他に、OS118が記憶されている。このOS118は、CPU104がシステム100の各部101〜108を統括的に制御して、後述する各機能部を実行するためのプログラムである。CPU104は、BIOS120に従い、ハードディスクドライブ101からOS118をRAM103にロードして実行する。これにより、CPU104は、システム100の各部を統括的に制御する。   The system 100 is connected to the rain gauge 200 via the various networks 160 such as the Internet and a LAN by the NIC 107, and executes data exchange. The system 100 also includes a flash ROM 108, a bridge 109 that relays a bus connecting each unit, and a power source 121. The flash ROM 108 stores a BIOS 120. After the power supply 121 is turned on, the CPU 104 first accesses the flash ROM 108 and executes the BIOS 120 to recognize the system configuration of the system 100. The hard disk drive 101 stores an OS 118 in addition to the functional units and databases. The OS 118 is a program for the CPU 104 to control each unit 101 to 108 of the system 100 and execute each function unit to be described later. In accordance with the BIOS 120, the CPU 104 loads the OS 118 from the hard disk drive 101 to the RAM 103 and executes it. Thereby, the CPU 104 controls each part of the system 100 in an integrated manner.

続いて、前記システム100が、例えばプログラム102に基づき構成・保持する機能部(手段)につき説明を行う。なお、前記システム100は、第1モデル式および第2モデル式を記憶したモデルデータベース125をハードディスクドライブ101などの適宜な記憶装置に有しているものとする。このモデルデータベース125は、前記第1モデル式および第2モデル式を記憶したデータベースであり、例えば、式IDにモデル名、式データを関連づけたレコードの集合体となっている。   Subsequently, functional units (means) configured and held by the system 100 based on the program 102 will be described. It is assumed that the system 100 has a model database 125 that stores the first model formula and the second model formula in an appropriate storage device such as the hard disk drive 101. The model database 125 is a database that stores the first model formula and the second model formula. For example, the model database 125 is a collection of records in which a model name and formula data are associated with a formula ID.

前記システム100は、所定時刻の上流域における雨量観測所の雨量データを入力インターフェイス105で取得(ないし前記通信装置107を介して雨量計200から取得)し、この雨量データを、前記記憶装置101から読み出した第1モデル式に適用し、前記所定時刻から所定時間後の取水口付近での河川水量および運搬土砂量を算定する第1手段110を備える(第1工程に対応)。   The system 100 acquires the rainfall data of the rainfall observation station in the upstream area at a predetermined time by the input interface 105 (or acquires from the rain gauge 200 via the communication device 107), and the rain data is stored from the storage device 101. Applying to the read first model formula, the first means 110 for calculating the amount of river water and the amount of transported sediment in the vicinity of the intake after a predetermined time from the predetermined time is provided (corresponding to the first step).

また、前記システム100は、前記第1手段110で算定した河川水量、運搬土砂量、および既存土砂堆積量の値を、前記記憶装置101から読み出した第2モデル式に適用し、前記所定時間後における取水口前の土砂堆積量および取水口への土砂流入量を算定する第2手段111を備える(第2工程に対応)。   Further, the system 100 applies the values of the river water amount, the transported sediment amount, and the existing sediment accumulation amount calculated by the first means 110 to the second model formula read from the storage device 101, and after the predetermined time. Is provided with a second means 111 for calculating the amount of sediment deposited before the intake and the amount of sediment flowing into the intake (corresponding to the second step).

また、前記システム100は、前記取水口への土砂流入量と所定の限界値(記憶手段101に予め記憶)とを比較して、前記土砂流入量が前記限界値に達する時点を取水停止タイミングとして特定する第3手段112を備える(第3工程に対応)。   Further, the system 100 compares the amount of sediment flowing into the intake with a predetermined limit value (stored in the storage means 101 in advance), and takes the time when the amount of sediment flowing in reaches the limit value as the water stop timing. The third means 112 for specifying is provided (corresponding to the third step).

なお、前記第3手段112が、前記取水停止タイミングに合わせて、流れ込み式水力発電所5の取水停止処理を行うとすれば好適である。この取水停止処理は、係員による取水口開閉装置に対しての取水口閉指示を入力インターフェース105で受けて、前記取水口開閉装置(当該システム100と通信可能に接続)に対して、取水口を閉じる指示を与えることで実行できる。   In addition, it is suitable if the said 3rd means 112 performs the water intake stop process of the inflow type hydroelectric power station 5 according to the said water intake stop timing. In this water intake stop process, the input interface 105 receives a water intake closing instruction for the water intake opening / closing device by an attendant, and the water intake opening / closing device (communicatively connected to the system 100) is connected to the water intake opening / closing device. This can be done by giving a close instruction.

また、前記システム100は、前記取水停止処理の後、前記第1手段110および第2手段111による処理を継続して実行し、ある時点の前記取水口への土砂流入量と所定の基準値(記憶手段101に予め記憶)とを比較し、前記土砂流入量が前記基準値を下回る時点を取水再開タイミングとして特定する第4手段113を備えるとすれば好適である(第4工程に対応)。なお、前記第4手段113は、前記取水再開タイミングに合わせて、流れ込み式水力発電所5の取水再開処理を行うとすれば好適である。この取水再開処理は、係員による取水口開閉装置に対しての取水口開指示を入力インターフェース105で受けて、前記取水口開閉装置(当該システム100と通信可能に接続)に対して、取水口を開く指示を与えることで実行できる。   In addition, the system 100 continuously executes the processing by the first means 110 and the second means 111 after the water intake stop processing, and the amount of sediment flowing into the water intake at a certain point in time and a predetermined reference value ( It is preferable to include a fourth means 113 for comparing the time when the sediment inflow amount falls below the reference value as the water resumption timing (corresponding to the fourth step). In addition, it is suitable if the said 4th means 113 performs the water intake restart process of the inflow type hydroelectric power station 5 according to the said water intake restart timing. In this intake resumption process, an intake opening instruction to the intake opening / closing device by the staff is received by the input interface 105, and the intake opening is connected to the intake opening / closing device (communicatively connected to the system 100). This can be done by giving an opening instruction.

なお、これまで示したシステム100における各機能部110〜113は、RAMなどのメモリやHDD(Hard Disk Drive)などの適宜な記憶装置に格納したプログラムとして実現してもよいし、ハードウェアとして実現するとしてもよい。各機能部がプログラムとして実現されている場合、前記CPU104がプログラム実行に合わせて記憶装置101より該当プログラムをRAM103に読み出して、これを実行することとなる。   Each of the functional units 110 to 113 in the system 100 shown so far may be realized as a program stored in an appropriate storage device such as a memory such as a RAM or an HDD (Hard Disk Drive), or may be realized as hardware. You may do that. When each functional unit is realized as a program, the CPU 104 reads the corresponding program from the storage device 101 to the RAM 103 and executes it in accordance with the program execution.

或いは、雨量計200での測定データをシステム100に提供するために、雨量計200で出力した測定データに基づいて、作業員がシステム100の入力インターフェイス105を介して前記測定データの入力を行い、これによりシステム100が前記測定データを取得するとしてもよい。   Alternatively, in order to provide measurement data from the rain gauge 200 to the system 100, an operator inputs the measurement data through the input interface 105 of the system 100 based on the measurement data output from the rain gauge 200. Thereby, the system 100 may acquire the measurement data.

−−−流入土砂予測方法のメインフロー−−−
以下、本実施形態における流入土砂予測方法の実際手順について、図に基づき説明する。図2は本実施形態における流入土砂予測方法の処理手順例を示す図である。この例の場合、流入土砂予測方法に対応する各種工程を、前記システム100が前記RAM103に読み出して実行するプログラムにより前記第1〜第4の各手段を実現して実行する。なお、前記のプログラムは、以下に説明される各種の動作を行うためのコードから構成されている。
--- Main flow of inflow sediment prediction method ---
Hereinafter, the actual procedure of the inflow sediment prediction method in the present embodiment will be described with reference to the drawings. FIG. 2 is a diagram illustrating an example of a processing procedure of the inflow sediment prediction method in the present embodiment. In the case of this example, the various steps corresponding to the inflow sediment prediction method are executed by realizing the first to fourth means by a program that the system 100 reads into the RAM 103 and executes. The program is composed of codes for performing various operations described below.

まず、前記システム100の第1手段110は、所定時刻の上流域における雨量観測所の雨量データを入力インターフェイス105で取得(ないし前記通信装置107を介して前記雨量計200から取得)する(s100)。また、前記第1手段110は、この雨量データを、前記記憶装置101から読み出した第1モデル式に適用し、前記所定時刻から所定時間(Δt)後の取水口付近での河川水量および運搬土砂量を算定する。この第1手段110による算定処理のうち河川流量の算定については、例えば、タンクモデル(詳細は後述)によるΔt時間後の河川流量予測を実行する(s101)。また、前記第1手段110による算定処理のうち運搬土砂量の算定については、例えば、後述する式3によるΔt時間後の取水口地点全流砂量予測を実行する(s102)。   First, the first means 110 of the system 100 acquires the rainfall data of the rainfall observation station in the upstream area at a predetermined time with the input interface 105 (or acquired from the rain gauge 200 via the communication device 107) (s100). . Further, the first means 110 applies the rainfall data to the first model equation read from the storage device 101, and the river water amount and the transport sediment in the vicinity of the intake after a predetermined time (Δt) from the predetermined time. Calculate the quantity. Regarding the calculation of the river flow rate in the calculation process by the first means 110, for example, a river flow rate prediction after Δt time is executed by a tank model (details will be described later) (s101). In addition, regarding the calculation of the amount of transported sediment in the calculation process by the first means 110, for example, prediction of the total amount of sand at the intake point after Δt time by Expression 3 described later is executed (s102).

また、前記システム100の第2手段111は、前記第1手段110で算定した河川水量および運搬土砂量と、既存土砂堆積量の値(取水口周辺に設置した土砂堆積量の監視装置からネットワーク160を介して取得、或いは取水口周辺に所在する係員からのデータ入力で取得)とを、前記記憶装置101から読み出した第2モデル式に適用し、前記所定時間(Δt)後における取水口前の土砂堆積量および取水口への土砂流入量を算定する。この第2手段111による算定処理では、例えば、現在の取水口前面の累積堆積土砂量から、後述する式5を用いてφinを計算し(s103)、現在の累積土砂流入量にΔt時間後までの土砂流入量値を加え、Δt時間後の取水口への土砂流入量を算定する(s104)。なお、取水口前面河道に流入した土砂(掃流砂と浮遊砂をあわせた全流砂量)は、取水口内に流入する土砂、取水口前面に堆積する土砂、およびダム下流へ流下する土砂に分かれるものと考え、流入土砂がこれらの3つに分配される割合を式4中のφin、φdp、φout、としている。従って、前記φinは、取水口前面河道に流入した土砂(掃流砂と浮遊砂をあわせた全流砂量)のうち取水口内に流入する土砂の割合を示している。   Further, the second means 111 of the system 100 includes a network 160 from a river water amount and a transported sediment amount calculated by the first means 110 and a value of an existing sediment accumulation amount (a sediment accumulation amount monitoring device installed around a water intake. Or acquired by data input from a staff member located around the intake port) is applied to the second model equation read from the storage device 101, and before the intake port after the predetermined time (Δt). Calculate the amount of sediment and the amount of sediment flowing into the intake. In the calculation processing by the second means 111, for example, φin is calculated from the accumulated sediment volume in front of the current intake port using Equation 5 described later (s103), and the current accumulated sediment inflow volume until Δt time later. The amount of sediment inflow into the water intake after Δt time is calculated (s104). In addition, the sediment that flows into the river channel in front of the intake (total amount of sand that includes the drifting sand and floating sand) is divided into sediment that flows into the intake, sediment that accumulates in front of the intake, and sediment that flows downstream of the dam. Therefore, the ratio of the inflow sediment distributed to these three is defined as φin, φdp, and φout in Equation 4. Therefore, φin indicates the ratio of the sediment flowing into the intake port out of the sediment flowing into the river channel in front of the intake port (the total amount of sediment flowing from the combined sediment and floating sand).

また、前記システム100の第3手段112は、前記ステップs104までで算定した取水口6への土砂流入量と、取水停止基準流入量(記憶手段101に予め記憶した所定の限界値)とを比較する(s105)。この比較処理により、前記土砂流入量が前記取水停止基準流入量に達していれば(s105:YES)、前記第3手段112は、この時点を取水停止タイミングとして特定する。そして、前記第3手段112は、前記取水停止タイミングに合わせて、取水口6の開閉装置(当該システム100と前記ネットワーク160を介して通信可能に接続)に対し、取水口を閉じる指示を与え、流れ込み式水力発電所5の取水停止処理を行う(s106)。   The third means 112 of the system 100 compares the amount of sediment flowing into the intake 6 calculated up to step s104 with the intake stop reference inflow amount (a predetermined limit value stored in advance in the storage means 101). (S105). If the sediment inflow amount reaches the intake stop reference inflow amount by this comparison processing (s105: YES), the third means 112 identifies this point as the water stop timing. And the said 3rd means 112 gives the instruction | indication which closes a water intake to the opening-and-closing apparatus of the water intake 6 (it connects so that communication is possible via the said system 100 and the said network 160) according to the said water intake stop timing, Water intake stop processing for the flow-in hydroelectric power plant 5 is performed (s106).

また、前記システム100の第4手段113は、前記ステップs106の取水停止処理の後、前記第1手段110および第2手段111による処理を継続して実行する。この場合、前記第4手段113は、現在の取水口前面累積堆積土砂量から式6を用いてφdpを計算する(s107)。前記φdpは、取水口前面河道に流入した土砂(掃流砂と浮遊砂をあわせた全流砂量)のうち取水口前面に堆積する土砂の割合である。また、φdpを計算した前記第4手段113は、現在の取水口前面累積堆積土砂量にΔt時間後までの堆積土砂量を加え、Δt時間後の取水口前面累積堆積土砂量を算定する(s108)。その後、前記第4手段113は、出水終了まで(s109:NO)、このステップs107、s108を繰り返し実行する。出水終了のタイミングについては、例えば、管理者が入力インターフェース105で出水終了指示を入力し、これを前記システム100が受信したタイミングであったり、或いは前記通信装置107を介して前記雨量計200などの適宜な監視装置から出水終了指示を取得したタイミングであったりする。   Moreover, the 4th means 113 of the said system 100 continues and performs the process by the said 1st means 110 and the 2nd means 111 after the water intake stop process of the said step s106. In this case, the fourth means 113 calculates φdp by using Equation 6 from the current accumulated sediment amount in front of the intake port (s107). The φdp is the ratio of sediment deposited on the front of the water intake in the sediment flowing into the river channel in front of the water intake (the total amount of sand that flows from the drifting sand and floating sand). Further, the fourth means 113 having calculated φdp adds the accumulated sediment amount up to Δt time to the current accumulated sediment amount in front of the intake port, and calculates the accumulated sediment amount in front of the intake port after Δt time (s108). ). Thereafter, the fourth means 113 repeatedly executes steps s107 and s108 until the end of the water discharge (s109: NO). With regard to the timing of the end of water discharge, for example, the time when the administrator inputs a water discharge end instruction through the input interface 105 and the system 100 receives the instruction, or the rain gauge 200 or the like via the communication device 107 is used. It may be the timing when the water discharge end instruction is acquired from an appropriate monitoring device.

その後、前記第4手段113は、出水終了を検知したら(s109:YES)、現在の取水口前面累積堆積土砂量(ステップs108までで算定済み)から、後述する式8を用いて取水再開後の土砂流入量を予測する(s110)。前記第4手段113は、ある時点(=取水再開後の所定時点)の前記取水口への土砂流入量と、土砂取除基準流入量(記憶手段101に予め記憶した所定基準値)とを比較する(s111)。   Thereafter, when the fourth means 113 detects the end of the water discharge (s109: YES), the current intake front accumulated sediment volume (calculated up to step s108) is used, and after resuming the water intake using Equation 8 described later. The amount of earth and sand inflow is predicted (s110). The fourth means 113 compares the amount of earth and sand flowing into the water intake at a certain time point (= a predetermined time after resumption of water intake) with the amount of sediment removal reference inflow (a predetermined reference value stored in advance in the storage means 101). (S111).

ここで、前記土砂流入量が前記土砂取除基準流入量を下回れば(s111:NO)、前記第4手段113は、この時点を取水再開タイミングとして特定する。そして、前記第4手段113は、前記取水再開タイミングに合わせて、取水口6の開閉装置(当該システム100と前記ネットワーク160を介して通信可能に接続)に対し、取水口を開く指示を与え、流れ込み式水力発電所5の取水再開処理を行う。つまり、前記流れ込み式水力発電所5は取水停止状態から復帰し、通常の発電を再開する。また、前記第4手段113は、現在の土砂流入量,取水口前面累積堆積土砂量を次回出水のために記憶手段101に保存し(s116)、処理を終了する。   Here, if the sediment inflow amount falls below the sediment removal reference inflow amount (s111: NO), the fourth means 113 identifies this time as the water resumption timing. And the said 4th means 113 gives the instruction | indication which opens an intake port with respect to the opening / closing apparatus of the intake port 6 (it connects so that communication is possible with the said system 100 and the said network 160) according to the said intake resumption timing, The water intake resumption process of the flow-type hydroelectric power plant 5 is performed. That is, the flow-in hydroelectric power plant 5 returns from the intake stop state and resumes normal power generation. Further, the fourth means 113 stores the current sediment inflow amount and the accumulated sediment amount in front of the intake port in the storage means 101 for the next water discharge (s116), and ends the processing.

他方、前記ステップs111での比較処理で、前記土砂流入量が前記土砂取除基準流入量を上回っていれば(s111:YES)、前記第4手段113は、例えば、取水口前の堆積土砂の除去指示を出力インターフェイス106に表示させるか、或いは前記NIC107を介して管理者等の端末に堆積土砂の除去指示を送信する(s112)。そして、現在の土砂流入量,取水口前面累積堆積土砂量を次回出水のために記憶手段101に保存し(s116)、処理を終了する。   On the other hand, in the comparison process in step s111, if the sediment inflow exceeds the sediment removal reference inflow (s111: YES), the fourth means 113, for example, The removal instruction is displayed on the output interface 106, or the sediment removal instruction is transmitted to a terminal such as an administrator via the NIC 107 (s112). Then, the current amount of sediment inflow and the amount of accumulated sediment in front of the intake port are stored in the storage means 101 for the next water discharge (s116), and the process ends.

一方、前記ステップs105での比較処理で、前記土砂流入量が前記取水停止基準流入量に達していなければ(s105:NO)、前記第4手段113は、現在の取水口前面累積堆積土砂量から式6を用いてφdpを計算する(s113)。φdp、つまり取水口前面河道に流入した土砂(掃流砂と浮遊砂をあわせた全流砂量)のうち取水口前面に堆積する土砂の割合を算定するのである。また、前記第4手段113は、現在の取水口前面累積堆積土砂量にΔt時間後までの堆積土砂量を加え、Δt時間後の取水口前面累積堆積土砂量を算定する(s114)。その後、前記第4手段113は、出水終了時までは(s115:NO)、処理を前記s100に戻す。その後、前記第4手段113は、出水終了を検知したら(s115:YES)、現在の土砂流入量,取水口前面累積堆積土砂量を次回出水のために記憶手段101に保存し(s116)、処理を終了する。   On the other hand, if the sediment inflow amount does not reach the intake stop reference inflow amount in the comparison process in step s105 (s105: NO), the fourth means 113 calculates the current accumulated sediment amount in front of the intake port. Φdp is calculated using Equation 6 (s113). φdp, that is, the proportion of sediment deposited in front of the intake of the sediment flowing into the river channel in front of the intake (total amount of sand flow including the drifting sand and floating sand) is calculated. Further, the fourth means 113 adds the accumulated sediment amount until Δt time to the current accumulated sediment amount in front of the intake port, and calculates the accumulated sediment amount in front of the intake port after Δt time (s114). Thereafter, the fourth means 113 returns the process to s100 until the end of the water discharge (s115: NO). Thereafter, when the fourth means 113 detects the end of the water discharge (s115: YES), the current sediment inflow amount and the accumulated sediment amount in front of the intake port are stored in the storage means 101 for the next water discharge (s116) and processed. Exit.

−−−第1モデル(上流域モデル)について−−−
続いて、前記第1手段110らが利用する第1モデル式について詳述する。この第1モデル式は、上流域モデルと称するモデルを河川上流域に想定して導いた数式群となる。この上流域モデルは、図3に示すようなタンクモデルであり、流域を縦に数段ならべたタンクで再現するものである(図3に示す例では3段タンクモデルであるが、4段タンクモデルでもよい)。通常、この3段のタンクモデルは上段タンクが表面流出、中段が中間流出、下段が地下水流出に対応付けされており、各タンク側面の流出孔からの流出が、河川への流出を表す(タンク底面の浸透孔からの流出は、下方帯水層への浸透を示す)。つまり、側面の流出孔から流出する水の合計Qが流出量(=河川水量)の値となる。
--- About the first model (upstream model) ---
Next, the first model formula used by the first means 110 will be described in detail. The first model formula is a formula group derived by assuming a model called an upstream region model in the upstream region of the river. This upstream model is a tank model as shown in FIG. 3 and reproduces the basin by a tank arranged in several stages vertically (in the example shown in FIG. 3, it is a three-stage tank model, but a four-stage tank). Model). Normally, in this three-stage tank model, the upper tank is associated with surface outflow, the middle stage is associated with intermediate outflow, and the lower stage is associated with groundwater outflow, and outflow from the outflow holes on the side of each tank represents outflow to the river (tank Outflow from the bottom permeation hole indicates penetration into the lower aquifer). That is, the total water Q flowing out from the side outflow holes is the value of the outflow amount (= river water amount).

このタンクモデルを前記上流域モデルとして採用した場合、河川上流域からの水の流出量は、上流域の雨量を入力条件として、図3中で示す各式(第1モデル式としてモデルデータベース125に格納)で推定できる。またここで、ある時刻tのタンク高さHa(t)、Hb(t)、Hc(t)が得られた場合、Δt時間後(例えば1時間後)のタンク高さHa(t+Δt)、Hb(t+Δt)、Hc(t+Δt)は以下の3式(これらをまとめて式1:第1モデル式としてモデルデータベース125に格納)で求められる。
Ha(t+Δt)=Ha(t)+r(t)−(Q1+Q2+qa)
Hb(t+Δt)=Hb(t)−(Q3+qb)
Hc(t+Δt)=Hc(t)−Q4
When this tank model is adopted as the upstream area model, the amount of water outflow from the upstream area of the river is calculated based on the equations shown in FIG. Storage). Here, when the tank heights Ha (t), Hb (t), and Hc (t) at a certain time t are obtained, the tank height Ha (t + Δt) after Δt time (for example, 1 hour later) , Hb (t + Δt) and Hc (t + Δt) are obtained by the following three formulas (collectively, these are stored in the model database 125 as the first model formula).
Ha (t + Δt) = Ha (t) + r (t) − (Q1 + Q2 + qa)
Hb (t + Δt) = Hb (t) − (Q3 + qb)
Hc (t + Δt) = Hc (t) −Q4

また上記式1で得られたHa(t+Δt)、Hb(t+Δt)、Hc(t+Δt)から、以下の5式(これらをまとめて式2:第1モデル式としてモデルデータベース125に格納)で、Δt時間後の流出量を予測する。
Q1(t+Δt)=α1×(Ha(t+Δt)−Z1)
Q2(t+Δt)=α2×(Ha(t+Δt)−Z2)
Q3(t+Δt)=α3×(Hb(t+Δt)−Z3)
Q4(t+Δt)=α4× Hc(t+Δt)
Q(t+Δt)=(Q1(t+Δt)+Q2(t+Δt)+Q3(t+Δt+Q4(t+Δt))×Ab /3.6
Further, from the Ha (t + Δt), Hb (t + Δt), and Hc (t + Δt) obtained by the above formula 1, the following five formulas (collectively, formula 2: the model database 125 as the first model formula: To store the amount of outflow after Δt time.
Q1 (t + Δt) = α1 × (Ha (t + Δt) −Z1)
Q2 (t + Δt) = α2 × (Ha (t + Δt) −Z2)
Q3 (t + Δt) = α3 × (Hb (t + Δt) −Z3)
Q4 (t + Δt) = α4 × Hc (t + Δt)
Q (t + Δt) = (Q1 (t + Δt) + Q2 (t + Δt) + Q3 (t + Δt + Q4 (t + Δt)) × Ab /3.6

以上の計算により、現在時刻の雨量を入力することで、Δt時間後の流出量が計算できる。この計算を例えば毎正時事に繰り返すことで、洪水期間中に変化する雨量からΔt時間後の発電所取水口付近の流量Qが予測できる。   By the above calculation, the amount of runoff after Δt time can be calculated by inputting the rainfall at the current time. By repeating this calculation every time, for example, the flow rate Q in the vicinity of the power plant intake after Δt time can be predicted from the rainfall that changes during the flood period.

なお、各式中のα1、α2、α3、α4、β1、β2は係数であり、流域毎に異なる値であるので、対象とする発電所流域ごとに設定する必要がある。ここでは、既知の雨量と出水量(=河川水量)の実測記録とから同定すればよい。例えば、ある出水で雨量の時系列データと河川水量の記録があるとき、上記の変数α1、α2、α3、α4、β1、β2を仮に与えた場合の計算結果の河川流量と実測の河川水量記録とを比較する。様々なα1、α2、α3、α4、β1、β2で計算を繰り返し、最も計算結果と実測結果との差異が少ない係数の値を採用する。   In addition, α1, α2, α3, α4, β1, and β2 in each equation are coefficients and have different values for each basin, and therefore need to be set for each target power plant basin. Here, the identification may be made from the known rainfall and the measured record of the amount of water discharge (= river water amount). For example, when there is rainfall time series data and river water volume record for a certain flood, the river flow of the calculation result and the actual river water volume record when the above variables α1, α2, α3, α4, β1, β2 are given temporarily And compare. The calculation is repeated for various α1, α2, α3, α4, β1, and β2, and the coefficient value with the smallest difference between the calculation result and the actual measurement result is adopted.

例えば、ある発電所の雨量記録と出水記録を基に、図4に示す表1の係数の組合せ(パターンA〜C)で計算結果と実測結果とを比較すると図4下段のグラフg4のようになった。このグラフg4から、実測値と最も適合性が良い係数パターンは「係数パターンB」であると判定できる。実際には数多くの出水データから膨大な係数パターンで計算機による数値計算を実施し、誤差(実測値と計算値との差)の平均値が最も小さい係数パターンを採用する。   For example, on the basis of the rainfall record and water discharge record of a certain power plant, when the calculation result and the actual measurement result are compared with the combination of the coefficients shown in Table 1 shown in FIG. 4 (patterns A to C), the graph g4 in the lower part of FIG. became. From this graph g4, it can be determined that the coefficient pattern having the best compatibility with the actually measured value is “coefficient pattern B”. In practice, numerical calculation is performed by a computer using a large number of coefficient patterns from a large amount of flood data, and a coefficient pattern having the smallest average error (difference between measured value and calculated value) is adopted.

以上のタンクモデルによる計算で、現在時刻の雨量を入力することで、Δt(例えば前記現在時刻から1時間後)における取水口付近での河川水量を予測することができる。なお、この部分の説明では、通常の3段タンクモデルの例を用いて説明したが、永井ら(長短期流出両用モデルの標準的定数について,農業土木学会論文集,No.180,pp.59-64, 1995.)による長短期併用のタンクモデルを用いても良い。この長短期併用のタンクモデルを用いた場合は、通常時は日雨量を入力し、出水時には時間雨量を入力することでより精度の高い取水口付近の河川水量の予測が可能となる。   By inputting the rainfall amount at the current time in the above-described calculation using the tank model, it is possible to predict the river water amount in the vicinity of the water intake at Δt (for example, one hour after the current time). In the explanation of this part, the explanation was made using an example of a normal three-stage tank model. However, Nagai et al. -64, 1995.) A tank model with long and short term combination may be used. When this long and short-term tank model is used, it is possible to predict the amount of river water near the intake with higher accuracy by inputting daily rainfall during normal times and inputting hourly rainfall during flooding.

続いて、上記上流域モデルによる運搬土砂量(掃流砂量・浮遊砂量)の流出量予測について説明する。上述したタンクモデルで予測した河川水量をもとに、上流域から取水口付近に運ばれてくる浮遊砂と掃流砂の量を予測する。このモデルでは掃流砂量と浮遊砂量をあわせた全流砂量の以下の式3で推定する。
VTL=α×(Q)2 ・・・・・式3
ここに、VTL:発電所取水口付近に運ばれてくる全流砂量(m/s)である。ここでαは係数で、流域毎に異なる値であり、対象とする発電所流域ごとに設定する必要がある。しかし、掃流砂量に浮遊砂量を加えた全流砂量は実測が非常に難しいことから、水の流出と異なり実測データが無いことが多い。その場合は、上述のタンクモデルのように係数を実測値により同定することができない。
Next, a description will be given of the prediction of the amount of transported sediment (amount of swept sand and the amount of suspended sand) by the upstream model. Based on the amount of river water predicted by the tank model described above, the amount of suspended and swept sand transported from the upstream area to the vicinity of the intake is predicted. In this model, the total amount of sand flow, which is the sum of the amount of suspended sand and the amount of suspended sand, is estimated by the following equation (3).
VTL = α × (Q) 2 Equation 3
Here, VTL: Total sand flow (m 3 / s) carried near the power plant intake. Here, α is a coefficient that is different for each basin and needs to be set for each target power plant basin. However, it is very difficult to actually measure the total amount of sand, which is the sum of the suspended sand and the amount of suspended sand. In that case, the coefficient cannot be identified by an actual measurement value as in the tank model described above.

そこで、上流域の河道網および土砂流出を再現できる数値解析モデル(1次元解析)を別途実施し、この結果を用いて前記係数αを決定する。この数値解析モデルは10分雨量を入力条件として、上流域の山地斜面からの水と土砂の流出、および流出した水と土砂が発電所取水口付近まで河川を流れていく過程を再現するものである。このモデルの精度は過去の出水と発電所流入土砂量との比較から確認されている。   Therefore, a numerical analysis model (one-dimensional analysis) that can reproduce the river network and sediment runoff in the upstream area is separately performed, and the coefficient α is determined using the result. This numerical analysis model reproduces the flow of water and sediment from the mountain slope in the upstream area and the process of flowing water and sediment flowing through the river to the vicinity of the power plant intake, with 10-minute rainfall as an input condition. is there. The accuracy of this model has been confirmed by comparing the past water discharge and the amount of sediment flowing into the power plant.

ただし、この数値解析モデルは計算時間が標準的な流域でも数時間〜数十時間と非常に長いため、実際の出水時において予測に用いることができない(この数値解析モデルで用いる式、解析手法については後述)。ある発電所流域を対象とした数値解析モデルの結果から、発電所付近の流量と全流砂量の関係を図5に示すグラフg5として得た。   However, this numerical analysis model cannot be used for prediction at the time of actual flooding because the calculation time is as long as several hours to several tens of hours even in a standard watershed (about the formulas and analysis methods used in this numerical analysis model). Will be described later). From the result of the numerical analysis model for a certain power plant basin, the relationship between the flow rate near the power plant and the total sand flow was obtained as a graph g5 shown in FIG.

このグラフg5から、この発電所では前記係数が、α=1.0×10−6となり、流量から全流砂量が精度よく予測できることがわかる。以上で求めた係数αを前記式3に適用して用いることで、タンクモデルで求めた流量QからΔt時間後(例えば1時間後)に発電所取水口付近に運搬される全流砂量を予測できる。なお、このαは、この数値解析で求めた値を参考として、過去の発電所流入土砂量の実績を最も良く再現する値を試行錯誤的に修正することでさらに精度が向上する。 From this graph g5, it can be seen that the coefficient is α = 1.0 × 10 −6 in this power plant, and the total sand flow can be accurately predicted from the flow rate. By applying the coefficient α obtained above to Equation 3 above and using it, the total amount of sand transported to the vicinity of the power plant intake is predicted after Δt time (for example, 1 hour later) from the flow rate Q obtained by the tank model. it can. In addition, with reference to the value obtained by this numerical analysis, the accuracy of α is further improved by correcting the value that best reproduces the past record of the amount of sediment flowing into the power plant by trial and error.

上記の式1〜式3に基づく計算は、比較的簡単な式を用いた計算でもあり、コンピュータによれば計算時間を必要としない。このため、一般的な表計算ソフトウェアなどで迅速な計算が十分に可能である。従って、1時間ごとに発表される気象庁の時間雨量の値を、前記上流域の雨量データとしてこの上流域モデルに適用することで、瞬時にΔt時間後(例えば1時間後)の発電所取水口前面の河道に運搬される河川水量、全流砂量を計算することができる。図6に計算結果g6を例示する。   The calculation based on the above formulas 1 to 3 is also a calculation using a relatively simple formula and does not require calculation time according to a computer. For this reason, a quick calculation is sufficiently possible with general spreadsheet software. Therefore, by applying the hourly rainfall value of the Japan Meteorological Agency announced every hour to the upstream model as the upstream rainfall data, the power plant intake immediately after Δt time (for example, one hour later) It is possible to calculate the amount of river water transported to the river channel in front and the total amount of sand flow. FIG. 6 illustrates the calculation result g6.

−−−第2モデル(取水口モデル)について−−−
続いて、前記第2モデルとしての取水口周辺モデルについて説明する。上述した通り、上流域モデルを用いることで、現時点の雨量に基づいてΔt時間後において、上流域から取水口前面の河道へ運搬される流量(水)、全流砂量を予測できる。そこで、この取水口モデルでは、図7に示すように、取水口前面河道に流入した土砂(掃流砂と浮遊砂をあわせた全流砂量)は、取水口内に流入する土砂、取水口前面に堆積する土砂、およびダム下流へ流下する土砂に分かれるものと考える。これを式で示すと下記の4式(これらをまとめて式4:第2モデル式としてモデルデータベース125に格納)のとおりである。発電所の流入土砂量を予測して取水停止や再開の判断を行うためには、流入土砂がこれらの3つに分配される割合(式4中のφin、φout、φdp)をあらかじめ設定しておく必要がある。
Vin=φinVup
Vout=φoutVup
Vdp=φdpVup
φin+φout+φdp=1
・・・・・式4
--- About the second model (intake model) ---
Next, the intake port peripheral model as the second model will be described. As described above, by using the upstream area model, it is possible to predict the flow rate (water) transported from the upstream area to the river channel in front of the intake port and the total sand flow amount after Δt time based on the current rainfall. Therefore, in this intake model, as shown in Fig. 7, the sediment flowing into the river channel in front of the intake (the total amount of sand flowing together with the stream sand and floating sand) is deposited on the front of the intake and the sediment flowing into the intake. It is considered that it is divided into sediment and sand that flows down the dam. This is represented by the following four formulas (collectively, these are stored in the model database 125 as Formula 4: the second model formula). In order to predict the amount of inflow sediment at the power plant and determine whether to stop or resume intake, set the proportion of inflow sediment distributed to these three (φin, φout, φdp in Equation 4) in advance. It is necessary to keep.
Vin = φinVup
Vout = φoutVup
Vdp = φdpVup
φin + φout + φdp = 1
・ ・ ・ ・ ・ Formula 4

そこで、上記式4中のφin、φout、φdpについては、平面2次元数値解析の結果から決定する。平面2次元数値解析の数式、解析手法等の詳細については後述する。例えば、ある水力発電所の取水口前面河道を対象とし、上流からの流量を200m/s一定、掃流砂量、浮遊砂量を一定(式3、4よりQ=200m/sで計算)の条件で平面2次元数値解析を実施すると図8に示す解析結果g8のとおりである。数値解析により、時間の経過(初期状態→5時間後→10時間後→15時間後)にともない上流域からの土砂供給で取水口前面に土砂が堆積し、取水口内に流入している状況が再現されている。 Therefore, φin, φout, and φdp in the above equation 4 are determined from the result of planar two-dimensional numerical analysis. Details of formulas and analysis methods for the planar two-dimensional numerical analysis will be described later. For example, for a river channel in front of an intake of a certain hydroelectric power plant, the flow rate from the upstream is constant at 200m 3 / s, the amount of sand flow and the amount of suspended sand are constant (calculated from Equations 3 and 4 at Q = 200m 3 / s) When the planar two-dimensional numerical analysis is performed under the conditions, the analysis result g8 shown in FIG. 8 is obtained. According to numerical analysis, with the passage of time (initial state → after 5 hours → after 10 hours → after 15 hours), there is a situation where sediment has accumulated in the front of the intake due to the supply of sediment from the upstream area and is flowing into the intake. It has been reproduced.

この解析結果から、時系列で取水口流入土砂量、下流流下土砂量、取水口前面堆積量が計算できるので、これらの結果からφin、φout、φdpを求めると図9に示すグラフg9のとおりであり、時間によって変動していることがわかる。φinは初めほとんど「0」であるが、2時間後から増加しはじめ6時間後は概ね一定の値である。φoutは初め「0.3」程度の値であるが、5時間後から急激に増加し、9時間後以降は概ね一定の値である。φdpは初め「0.6」程度の値であり、5時間後から急激に減少し、9時間後以降は概ね一定の値である。これらの値の変動は、時間とともに取水口前面に土砂が堆積していくことによるものである。初期状態では取水口前面に土砂が無いため、上流からの土砂は多くの割合が取水口前面に堆積する。時間の経過とともに取水口前面に多くの土砂が堆積すると、取水口に土砂が入りやすくなるとともに、取水ダムを越えて下流へ流下する土砂も増加し、結果的に堆積する土砂量は低下する。以上のようにφin、φout、φdpは取水口前面堆積土砂量によって大きく変動する。   From this analysis result, the amount of sediment flowing into the intake, the amount of sediment flowing downstream, and the amount of sediment deposited in the front of the intake can be calculated in time series. From these results, φin, φout, and φdp are calculated as shown in graph g9 in FIG. Yes, you can see that it fluctuates with time. φin is almost “0” at first, but increases after 2 hours and is generally constant after 6 hours. φout initially has a value of about “0.3”, but increases rapidly after 5 hours and is generally constant after 9 hours. φdp is a value of about “0.6” in the beginning, decreases rapidly after 5 hours, and is generally constant after 9 hours. The fluctuations in these values are due to the accumulation of sediment in front of the water intake over time. In the initial state, there is no earth and sand in front of the intake, so a large percentage of the sediment from the upstream accumulates in front of the intake. When a lot of sediment accumulates in front of the water intake over time, it becomes easy for soil to enter the water intake, and the amount of sediment flowing downstream after the intake dam increases, resulting in a decrease in the amount of sediment deposited. As described above, φin, φout, and φdp vary greatly depending on the amount of sediment deposited in front of the intake.

そこで、取水口前面堆積土砂量とφin、φdpの関係を示すと図10に示すグラフg10のとおりである。なお,この図での横軸は前面総堆積土砂量(Vdpsum)を取水口前面が満杯になったときの総堆積土砂量(Vdpsummax)で除したものとしている。この図10のグラフg10から、例えば流量が200m/sの場合、その時点の前面総堆積土砂量がわかればφin、φout、φdpを設定できる。なお、実際の出水では流量は一定ではなく、雨量によって変動する。そこで、流量について例えば6パターン(50,100,150,200,250,300m/s)の条件で数値解析を実施し、取水口前面堆積土砂量とφin、φout、φdp の関係を示すと図11に例示したグラフg11a、g11bのとおりである。以上の関係から、計算しやすいようにφinの式(式5)、φoutの式(式6)、φdpの式(式7)を以下のとおり定式化する。これらの式5〜式7は、第2モデル式としてモデルデータベース125に格納されている。
φin=ain・tanh(din×(Vdpsum/Vdpsummax−bin))+cin
ain=MAX(27×Q−1.2,0.047)
bin=MIN(0.0035×Q+0.0745,0.775)
cin=MAX(70×Q−1.4,0.047)
din=15
・・・・・・・・・式5

φdp=MIN(0.6,1.983×(Vdpsum/Vdpsummax−0.3)+0.6)
・・・・・・・・・式6

φout=1−(φin+φdp) ・・・・式7
Therefore, the relationship between the amount of sediment deposited in front of the intake port and φin and φdp is shown in a graph g10 shown in FIG. In this figure, the horizontal axis represents the total sediment volume (Vdpsum) in front and divided by the total sediment volume (Vdpsummax) when the front of the water inlet is full. From the graph g10 in FIG. 10, for example, when the flow rate is 200 m 3 / s, φin, φout, and φdp can be set if the total amount of accumulated sediment on the front surface is known. In actual flooding, the flow rate is not constant and varies depending on the rainfall. Therefore, numerical analysis is performed under conditions of, for example, six patterns (50, 100, 150, 200, 250, 300 m 3 / s) for the flow rate, and the relationship between the sediment volume in front of the intake and φin, φout, φdp is shown in the graphs g11a and g11b illustrated in FIG. It is as follows. From the above relationship, the φin equation (Equation 5), the φout equation (Equation 6), and the φdp equation (Equation 7) are formulated as follows for easy calculation. These formulas 5 to 7 are stored in the model database 125 as the second model formula.
φin = ain · tanh (din × (Vdpsum / Vdpsummax−bin)) + cin
ain = MAX (27 × Q−1.2, 0.047)
bin = MIN (0.0035 × Q + 0.0745, 0.775)
cin = MAX (70 × Q−1.4, 0.047)
din = 15
・ ・ ・ ・ ・ ・ ・ ・ ・ Formula 5

φdp = MIN (0.6, 1.983 × (Vdpsum / Vdpsummax−0.3) +0.6)
・ ・ ・ ・ ・ ・ ・ ・ ・ Formula 6

φout = 1− (φin + φdp) Equation 7

これらの式5、6は発電所のレイアウトや河床材料の条件によって異なるため、検討する発電所ごとに平面2次元解析を実施する必要がある。前記式5、6のグラフを、前記図11中のグラフにてあわせて示す。前記式5、6によるグラフは概ね数値解析結果と一致している。   Since these formulas 5 and 6 differ depending on the power plant layout and riverbed material conditions, it is necessary to perform a two-dimensional planar analysis for each power plant to be studied. The graphs of the formulas 5 and 6 are also shown in the graph in FIG. The graphs according to the above formulas 5 and 6 generally agree with the numerical analysis results.

例えば実際の流量が75m/sであった場合には、式5、6、7で求めた50m/sと100m/sのφin、φout、φdpの平均値をとればよい。その他の流量の値でも同様に内挿・外挿することでその流量に対するφin、φout、φdpを求めることができる。精度を高めるためには、検討する流量パターンの数を増やせばよい。 For example, when the actual flow rate was 75 m 3 / s is, .phi.in of 50 m 3 / s and 100 m 3 / s was determined by the formula 5, 6, 7, .phi.out, may take the average of Faidp. By interpolating / extrapolating other flow rate values in the same manner, φin, φout, and φdp for the flow rate can be obtained. In order to increase the accuracy, the number of flow patterns to be studied may be increased.

以上の式4,5、6、7を、上記で説明した上流域モデルと組み合わせることで、Δt時間後の流量と現時点での取水口前面堆積土砂量(Vdpsum)がわかれば、現在からΔt時間後までに取水口に流入してくる土砂を予測できる。取水口前面堆積土砂量(Vdpsum)はこれまでのVdp(=φdp×Vup)の累積で求めればよい。また、Δt時間後までの取水口流入土砂量が予測できれば、現時点の取水口総流入土砂量(Vinsum)にVinを加えることで、Δt時間後の取水口内の総流入土砂量が予測できる。上流域モデルでの数式と同様に簡単な数式を用いているので、市販の表計算ソフトなどで一般的なパーソナルコンピュータでも瞬時に計算処理でき、発電所のΔt時間後の取水停止や再開の判断に用いることができる。例えば発電所の運転に支障がでる総流入量としてVinsumを「500m」などと設定しておけば、Δt時間後のVinsumが前記「500m」越えると予測された時点で、取水停止処理を実行する。 By combining the above equations 4, 5, 6, and 7 with the upstream model described above, if the flow rate after Δt time and the current sediment volume (Vdpsum) at the intake front are known, Δt time from the present time The sediment that flows into the water intake can be predicted by the time later. The amount of sediment in front of the intake (Vdpsum) may be obtained by accumulating Vdp (= φdp × Vup) so far. Further, if the amount of sediment flowing into the intake port after the time Δt can be predicted, the total amount of sediment flowing in the intake port after the time Δt can be predicted by adding Vin to the total amount of sediment flowing into the intake port (Vinsum). Since simple mathematical formulas are used in the same way as the formulas for the upstream model, commercial calculation software can be used to calculate instantaneously even with a general personal computer, and the decision to stop or resume intake after Δt time at the power plant Can be used. For example, if Vinsum is set to “500 m 3 ” as the total inflow that will interfere with the operation of the power plant, intake stop processing will be performed when Vinsum after Δt time is predicted to exceed “500 m 3 ”. Execute.

また、一方、出水期間中に取水を停止しても、取水口前面に大量の土砂が堆積していると、取水再開後にその堆積土砂が取水口内に流入することがある。停止後に取水を再開するときにはこの点を考慮する必要がある。そこで、取水を停止した状態で100m/sの河川流量・土砂量を連続して与え、累積堆積土砂量が200、400、600、800、1000および1150mになった河床を初期条件として、出水後の取水再開時を模擬した河川流量20m/s、最大取水の条件で平面2次元解析を実施した。この累積土砂流入量と初期の前面累積堆積土砂量との関係を示すと図12のとおりであり、累積堆積土砂量の増加に伴い出水再開後の土砂流入量が増加することがわかる。取水停止した後の取水再開時にはそのときの前面累積堆積土砂量から図12から求めた式8を用いた量Vafterがさらに取水口に流入すると予測する。すなわちVinsumにVafterを加えるものとする。
Vafter=αaft×(Vdpsum/Vdpsummax)2+βaft×(Vdpsum/Vdpsummax)
・・・式8
この場合で、Vinsumに取水再開した場合のVafterを加えた値がある基準値を越えない場合には取水を再開し、超える場合には取水を再開する前に堆積土砂を重機などで取り除き、土砂流入するおそれがなくなってから取水を再開すればよい。なお、ここでは、αaft=406、βaft=19としたが、実測値を参考にαaft、βaft補正することでさらに精度は向上できる。
On the other hand, even if the water intake is stopped during the water discharge period, if a large amount of earth and sand is accumulated in front of the water intake, the accumulated sediment may flow into the water intake after the water intake is resumed. This point needs to be taken into account when resuming water intake after stopping. Therefore, with the river flow and sediment volume of 100m 3 / s continuously given with the water intake stopped, the accumulated sediment volume is 200, 400, 600, 800, 1000 and 1150m 3 as the initial condition. A two-dimensional planar analysis was carried out under the conditions of a river flow rate of 20m 3 / s and maximum water intake simulating the time when water intake was resumed after flooding. FIG. 12 shows the relationship between the accumulated sediment inflow amount and the initial accumulated sediment amount in the front, and it can be seen that the sediment inflow amount after resuming water discharge increases as the accumulated sediment amount increases. When the water intake is resumed after the water intake is stopped, it is predicted that the amount Vafter using the equation 8 obtained from FIG. 12 from the front accumulated sediment amount at that time will further flow into the water intake. That is, Vafter is added to Vinsum.
Vafter = αaft × (Vdpsum / Vdpsummax) 2 + βaft × (Vdpsum / Vdpsummax)
... Formula 8
In this case, if the value obtained by adding Vafter when water intake is resumed to Vinsum does not exceed a certain reference value, water intake is resumed, and if it exceeds, sedimentary sediment is removed with heavy equipment before resuming water intake. Water intake may be resumed after there is no risk of inflow. Here, αaft = 406 and βaft = 19, but the accuracy can be further improved by correcting αaft and βaft with reference to the actually measured values.

続いて、上流域モデルと取水口付近モデルとを組み合わせた具体的な計算方法について説明する。ここで、上流域モデルと取水口付近モデルとを組み合わせた予測シート(取水口流入土砂量の予測値を算定するための表計算ソフトのシートであり、上記各式が当該予測シートの所定セルに関数として設定されている)の例を図13に示す。この予測シートg13において、入力時刻と共に現時点での雨量値を雨量欄に入力すると、前記上流域モデルにより、Δt時間後(このシートでは1時間後)の上流域からの流量Qと全流砂量VTLが予測される。この全遊砂量の値から、1時間あたりに取水口周辺に運搬されてくる総流入土砂量Vup(=VTL×3600)が予測される。また、1時間後の流量Q、現時点での取水口前面総堆積土砂量Vdpsumから、前記式5,6、7を用いてφin、φout、φdpが計算できる。このφin、φout、φdpと総流入土砂量Vupから、1時間後までに取水口6へ流入してくる土砂量Vin、下流流下土砂量Voutおよび取水口前面堆積土砂量Vdpが予測できる。このVinと現時点での取水口総流入土砂量Vinsumを加えて、1時間後のVinsumが予測できる。この1時間後のVinsumがあらかじめ設定しておいた限界値を越えることがわかれば取水停止する。前記限界値を越えなければ取水を続けて発電継続となる。その場合、次の時刻(1時間後)のφin、φout、φdpの計算時に必要となるため、現時点のVdpsumに1時間後までのVdpを加えて、1時間後のVdpsumを計算しておく。この過程を出水中に繰り返すことで、現時点の雨量を入力データとして、出水中の取水口流入土砂量、前面堆積量を時系列で予測できる。出水を途中で停止したあとに取水再開をする場合には式8で土砂流入量Vafterを予測し、Vinsumに加える。   Next, a specific calculation method combining the upstream area model and the intake vicinity model will be described. Here, a prediction sheet (sheet of spreadsheet software for calculating the predicted value of intake inflow sediment volume) that combines the upstream area model and the intake vicinity model, and the above formulas are assigned to the predetermined cells of the prediction sheet. An example of (set as a function) is shown in FIG. In this prediction sheet g13, when the rainfall value at the present time is entered in the rainfall column together with the input time, the flow rate Q and the total sand flow VTL from the upstream area after Δt time (1 hour in this sheet) by the upstream area model. Is predicted. From the value of the total amount of sand drift, the total inflow soil volume Vup (= VTL × 3600) transported around the intake port per hour is predicted. In addition, φin, φout, and φdp can be calculated from the flow rate Q after one hour and the total amount of sediment in front of the intake port Vdpsum at the present time using the above formulas 5, 6, and 7. From this φin, φout, φdp and the total inflow sediment volume Vup, the sediment volume Vin, the downstream sediment volume Vout and the sediment sediment volume Vdp in the downstream of the intake port can be predicted by 1 hour later. By adding this Vin and the current intake total inflow sediment volume Vinsum, the Vinsum after 1 hour can be predicted. If it is found that Vinsum after 1 hour exceeds the preset limit value, water intake is stopped. If the limit value is not exceeded, water intake continues and power generation continues. In this case, since it is necessary when calculating φin, φout, and φdp at the next time (one hour later), Vdpsum after one hour is calculated by adding Vdp up to one hour later to the current Vdpsum. By repeating this process in the water, the amount of sediment flowing into the intake and the amount of frontal sediment in the water can be predicted in time series using the current rainfall as input data. When resuming the water intake after stopping the water discharge halfway, the sediment inflow amount Vafter is predicted by Equation 8 and added to Vinsum.

−−−数値解析について−−−
(1)数値解析モデル(上流域)の概要
上流域の水の流出量については、数ヶ月単位の流出を評価するために出水時と通常時の状態を同時に評価できる永井ら(長短期流出両用モデルの標準的定数について、農業土木学会論文集、No.180,pp.59-64, 1995.)による長短期流出両用のタンクモデルを用いた。ただし、ここでは、流域に所在する各支川からの流入量を評価する必要があるため、全流域を60分割した各斜面ごとにタンクモデルを設定した。上流域の河道内の流れは開水路1次元非定常流として取り扱う。流れの基礎式は図14に示す式(1)、(2)を用いた。
---- About numerical analysis ---
(1) Outline of numerical analysis model (upstream area) Nagai et al. (Both long and short-term spills) can be used to evaluate the outflow in the upstream area at the same time during flooding and normal conditions in order to evaluate the outflow in units of several months. For the standard constants of the model, we used a tank model for both long-term and short-term spills according to the Agricultural Civil Society Proceedings, No. 180, pp. 59-64, 1995. However, since it is necessary to evaluate the inflow from each tributary located in the basin here, a tank model was set for each slope divided into 60 basins. The flow in the upstream river channel is treated as an open channel one-dimensional unsteady flow. Formulas (1) and (2) shown in FIG. 14 were used as the basic flow equations.

また、底面せん断応力はManning則で評価する。なお、運動量方程式の移流項の差分化には、常射流混在流れの計算が可能なFDS法(ダム破壊流れの1次元解析,水工学における計算機利用の講習会講義集, 土木学会,1999.)を用いた。掃流砂量については式(3)の粒径別の芦田・道上式を用い、移動限界には式(4)のEgiazaroff・浅田(山地河川の流砂量と貯水池の堆砂過程に関する研究,電力中央研究所報告,総合報告No2,1976.)の式を用いた。また、浮遊砂については式(5)の粒径別浮遊砂の連続式を用いた。ここで、Cbiは式(6)で評価した。   The bottom shear stress is evaluated by the Manning law. In order to differentiate the advection term of the momentum equation, the FDS method allows calculation of normal flow mixed flows (one-dimensional analysis of dam rupture flow, lectures on workshops using computers in water engineering, Japan Society of Civil Engineers, 1999.) Was used. For the amount of sand flow, we used the Kamata and Michigami formulas for each particle size in Eq. (3), and Egiazaroff and Asada in Eq. (4) as the movement limit. The formula of the laboratory report, general report No.2, 1976.) was used. For suspended sand, the continuous formula of suspended sand according to particle size of formula (5) was used. Here, Cbi was evaluated by equation (6).

例えば、処理対象とする流域の河川として粒度分布幅が広い礫床河川を想定し、河床からの浮遊砂浮上量は関根ら(平衡および非平衡浮遊砂量算定の確率モデル,土木学会論文集,第375号/II-6,pp.107-116,1986.)と同様に、図15に示す式(7)の芦田・藤田式を用いた。ここで、c、k、は芦田・藤田によると礫の頂部から礫の間隙に充填されている細砂までの距離Δsの関数で求められる。また、河床の連続式は(8)式(図15)を、交換層内の粒径階 の含有率の変動は式(9)(図15)の平野の式を用いた。以上の基礎式を離散化し、数値解析することで、雨量を入力条件として上流域河川からの水と土砂の流入量を計算できる。計算結果の一例は図16に示すとおりである。   For example, a gravel bed river with a wide particle size distribution is assumed as a river in the river basin to be treated, and the floating sand floating amount from the river bed is Sekine et al. (Probability model for calculating equilibrium and non-equilibrium floating sand, As in No. 375 / II-6, pp. 107-116, 1986), the Hirota and Fujita formulas of formula (7) shown in FIG. 15 were used. Here, c, k are obtained by a function of the distance Δs from the top of the gravel to the fine sand filled in the gap of the gravel according to Tomita and Fujita. The continuous equation for the river bed was the equation (8) (Fig. 15), and the plain equation of the equation (9) (Fig. 15) was used for the change in the content of the particle size in the exchange layer. By discretizing the above basic equations and performing numerical analysis, it is possible to calculate the inflow of water and sediment from upstream rivers using rainfall as an input condition. An example of the calculation result is as shown in FIG.

(2)数値解析モデル(取水口周辺)の概要
水力発電所取水口周辺については平面2次元解析により土砂流入現象を再現する。基本的なモデルは長田ら(一般曲線座標系を用いた平面2次元非定常流れの数値計算,水工学における計算機利用の講演会講義集,土木学会,pp.45-72,1999.)による平面2次元解析モデルを用いることとした。流れの基礎式は図17に示す式(10)、(11)のとおりとした。また、浮遊砂の連続式は図18に示す式(12)を用いる。河床からの浮遊砂浮上量は上流域と同様に芦田・藤田式を用いて評価する。更に、河床の連続式は図18に示す式(13)を用い、交換層内の粒径階 の含有率の変動は上流域と同様に平野の式を用いた。流れ方向の掃流砂量の評価には上流のモデルと同様に芦田・道上式を用い、流れ方向と直角方向の流砂量は長谷川式を用いた。
(2) Outline of numerical analysis model (around intake) The sediment inflow phenomenon is reproduced by two-dimensional planar analysis around the intake of hydroelectric power plants. The basic model is a plane by Nagata et al. (Numerical calculation of planar two-dimensional unsteady flow using general curve coordinate system, Lectures on computer utilization in water engineering, Japan Society of Civil Engineers, pp. 45-72, 1999.) A two-dimensional analysis model was used. The basic flow equations were as shown in equations (10) and (11) shown in FIG. Moreover, the continuous formula of floating sand uses formula (12) shown in FIG. The floating sand floating amount from the riverbed is evaluated using the Kamata and Fujita formulas as in the upstream area. Furthermore, the equation (13) shown in Fig. 18 was used as the continuous equation for the riverbed, and the plain equation was used for the variation in the content of the particle size floor in the exchange layer as in the upstream region. As with the upstream model, the Kamata-Michigami equation was used for the evaluation of the amount of scavenging sand in the flow direction, and the Hasegawa equation was used for the amount of sand flow perpendicular to the flow direction.

こうした河床変動計算過程においては、取水口前面の砂州前縁部で局所的な地形勾配が安息角以上となることがある。こういった場合には計算1ステップ毎にすべての格子ごとにその格子と隣接する4つの計算格子との地形勾配を計算し、局所的な地形勾配が安息角以上となった場合には、その隣接格子との勾配が安息角となるように最急勾配の隣接格子へと土砂を瞬間的に移動させた。なお、河床が崩壊した場合にはその崩壊した深さ範囲の含有率が崩壊した側の河床に移動するものとした。以上の計算により、水力発電所取水口周辺の流れと河床変動および土砂流入現象が再現できる。図19にその例をしめす。   In such river bed fluctuation calculation process, the local topographic gradient at the front edge of the sand bar in front of the intake may be more than the angle of repose. In such a case, the terrain gradient between the grid and the four adjacent calculation grids is calculated for every grid in each calculation step, and if the local terrain gradient exceeds the repose angle, Sediment was instantaneously moved to the steepest adjacent grid so that the angle of repose with the adjacent grid became the angle of repose. When the riverbed collapses, the content of the collapsed depth range moves to the collapsed riverbed. By the above calculation, the flow around the intake of the hydroelectric power plant, river bed fluctuation and sediment inflow phenomenon can be reproduced. An example is shown in FIG.

以上のように本実施形態によれば、流込み式水力発電所において、出水時における大量の土砂流入を抑止しつつ最大の発電電力量を得る、取水停止・再開のタイミングを決定できる。   As described above, according to the present embodiment, it is possible to determine the timing of stopping / resuming intake, which obtains the maximum amount of generated power while suppressing the inflow of a large amount of earth and sand at the time of flooding in the inflow type hydroelectric power plant.

以上、本発明の実施の形態について、その実施の形態に基づき具体的に説明したが、これに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   As mentioned above, although embodiment of this invention was described concretely based on the embodiment, it is not limited to this and can be variously changed in the range which does not deviate from the summary.

5 流れ込み式水力発電所
6 取水口
7 取水ダム
8 堆積土砂
9 排砂門
100 流入土砂予測システム
101 HDD(Hard Disk Drive)
102 プログラム
103 RAM(メモリ)
104 CPU(演算装置)
105 入力インターフェイス
106 出力インターフェイス
107 NIC(Network Interface Card)
108 フラッシュROM
109 ブリッジ
110 第1手段
111 第2手段
112 第3手段
113 第4手段
118 OS
120 BIOS
125 モデルデータベース
160 ネットワーク
200 雨量計
5 Inflow Hydroelectric Power Station 6 Intake 7 Intake Dam 8 Sedimentation Sediment 9 Drainage Gate 100 Inflow Sediment Prediction System 101 HDD (Hard Disk Drive)
102 program 103 RAM (memory)
104 CPU (arithmetic unit)
105 Input Interface 106 Output Interface 107 NIC (Network Interface Card)
108 Flash ROM
109 Bridge 110 First means 111 Second means 112 Third means 113 Fourth means 118 OS
120 BIOS
125 Model database 160 Network 200 Rain gauge

Claims (6)

流れ込み式の水力発電所における流入土砂量の予測方法であって、
取水河川の上流域における降雨に対し、所定時間後の取水口付近での河川水量および上流からの運搬土砂量を算定する第1モデル式に、所定時刻の上流域における雨量観測所の雨量データを入力し、前記所定時刻から所定時間後の取水口付近での河川水量および運搬土砂量を算定する第1工程と、
所定時刻の取水口付近での河川水量、運搬土砂量、および取水口前の既存土砂堆積量の値に対し、所定時間後の取水口前の土砂堆積量および取水口への土砂流入量を算定する第2モデル式に、前記第1モデル式により算定した河川水量、運搬土砂量、および既存土砂堆積量の値を入力し、前記所定時間後における取水口前の土砂堆積量および取水口への土砂流入量を算定する第2工程と、
前記取水口への土砂流入量と所定の限界値とを比較して、前記土砂流入量が前記限界値に達する時点を取水停止タイミングとして特定する第3工程と、
からなることを特徴とする流入土砂予測方法。
A method for predicting the amount of inflow sediment in a flow-through hydroelectric power plant,
For the rainfall in the upstream area of the intake river, the rainfall data of the rainfall observation station in the upstream area at the predetermined time is added to the first model formula that calculates the river water volume near the intake after the predetermined time and the sediment volume from the upstream. A first step of calculating the amount of river water and the amount of transported sediment in the vicinity of the intake after a predetermined time from the predetermined time;
Calculates the amount of sediment deposited before the intake and the amount of sediment flowing into the intake after a specified time, based on the values of river water, transported sediment, and existing sediment accumulated before the intake at the specified time. In the second model equation, the values of the river water amount, the transported sediment amount, and the existing sediment accumulation amount calculated by the first model equation are input, and the sediment accumulation amount before the intake and the intake to the intake after the predetermined time are input. A second step of calculating sediment inflow,
A third step of comparing the amount of sediment flowing into the water intake with a predetermined limit value, and specifying the time when the amount of sediment flow reaches the limit value as the water stop timing;
An inflow sediment prediction method characterized by comprising:
第3工程において、前記取水停止タイミングに合わせて、流れ込み式水力発電所の取水停止処理を行うことを特徴とする請求項1に記載の流入土砂予測方法。   The inflow sediment prediction method according to claim 1, wherein in the third step, intake stop processing of the flow-in hydropower station is performed in accordance with the intake stop timing. 前記取水停止処理の後、前記第1工程および第2工程を継続して実行し、ある時点の前記取水口への土砂流入量と所定の基準値とを比較し、前記土砂流入量が前記基準値を下回る時点を取水再開タイミングとして特定する第4工程を含むことを特徴とする請求項2に記載の流入土砂予測方法。   After the water intake stop process, the first step and the second step are continuously executed, and the amount of earth and sand flowing into the water intake at a certain point is compared with a predetermined reference value. The inflow sediment prediction method according to claim 2, further comprising a fourth step of specifying a time point lower than the value as a water resumption timing. 第4工程において、前記取水再開タイミングに合わせて、流れ込み式水力発電所の取水再開処理を行うことを特徴とする請求項3に記載の流入土砂予測方法。   The inflow sediment prediction method according to claim 3, wherein in the fourth step, intake resumption processing of the flow-in hydroelectric power plant is performed in accordance with the intake resumption timing. 流れ込み式の水力発電所における流入土砂量の予測を行うコンピュータシステムであって、
取水河川の上流域における降雨に対し、所定時間後の取水口付近での河川水量および上流からの運搬土砂量を算定する第1モデル式と、所定時刻の取水口付近での河川水量、運搬土砂量、および取水口前の既存土砂堆積量の値に対し、所定時間後の取水口前の土砂堆積量および取水口への土砂流入量を算定する第2モデル式とを記憶する記憶装置と、
所定時刻の上流域における雨量観測所の雨量データを入力インターフェイスで取得し、この雨量データを、前記記憶装置から読み出した第1モデル式に適用し、前記所定時刻から所定時間後の取水口付近での河川水量および運搬土砂量を算定する第1工程と、
前記第1工程で算定した河川水量、運搬土砂量、および既存土砂堆積量の値を、前記記憶装置から読み出した第2モデル式に適用し、前記所定時間後における取水口前の土砂堆積量および取水口への土砂流入量を算定する第2工程と、
前記取水口への土砂流入量と所定の限界値とを比較して、前記土砂流入量が前記限界値に達する時点を取水停止タイミングとして特定する第3工程とを実行する演算装置と、
を備えることを特徴とする流入土砂予測システム。
A computer system for predicting the amount of inflow sediment in a flow-through hydroelectric power plant,
The first model formula for calculating the amount of river water near the intake after a specified time and the amount of transported sediment from the upstream for rainfall in the upstream area of the intake river, and the amount of river water and transported sediment near the intake at the specified time A storage device for storing a second model formula for calculating the amount of sediment deposited before the intake after a predetermined time and the amount of sediment flowing into the intake with respect to the amount and the value of the existing sediment accumulation before the intake;
The rainfall data of the rainfall observation station in the upstream area at a predetermined time is acquired by the input interface, and this rainfall data is applied to the first model equation read from the storage device, and near the intake port after the predetermined time from the predetermined time. The first step of calculating the amount of river water and the amount of transported sediment;
Applying the river water volume, transported sediment volume, and existing sediment volume calculated in the first step to the second model equation read from the storage device, the sediment volume before the intake after the predetermined time and A second step of calculating the amount of sediment flowing into the intake;
An arithmetic unit that compares the amount of sediment flowing into the water intake with a predetermined limit value, and performs a third step of identifying the time point when the amount of sediment flow reaches the limit value as the water stop timing;
An inflow sediment prediction system characterized by comprising:
取水河川の上流域における降雨に対し、所定時間後の取水口付近での河川水量および上流からの運搬土砂量を算定する第1モデル式と、所定時刻の取水口付近での河川水量、運搬土砂量、および取水口前の既存土砂堆積量の値に対し、所定時間後の取水口前の土砂堆積量および取水口への土砂流入量を算定する第2モデル式とを記憶する記憶装置と、演算装置とを備えて、流れ込み式の水力発電所における流入土砂量の予測を行うコンピュータに、
前記第1モデル式に、所定時刻の上流域における雨量観測所の雨量データを入力し、前記所定時刻から所定時間後の取水口付近での河川水量および運搬土砂量を算定する第1ステップと、
前記第2モデル式に、前記第1モデル式により算定した河川水量、運搬土砂量、および既存土砂堆積量の値を入力し、前記所定時間後における取水口前の土砂堆積量および取水口への土砂流入量を算定する第2ステップと、
前記取水口への土砂流入量と所定の限界値とを比較して、前記土砂流入量が前記限界値に達する時点を取水停止タイミングとして特定する第3ステップと、
を実行させる流入土砂予測プログラム。
The first model formula for calculating the amount of river water near the intake after a specified time and the amount of transported sediment from the upstream for rainfall in the upstream area of the intake river, and the amount of river water and transported sediment near the intake at the specified time A storage device for storing a second model formula for calculating the amount of sediment deposited before the intake after a predetermined time and the amount of sediment flowing into the intake with respect to the amount and the value of the existing sediment accumulation before the intake; A computer equipped with a computing device for predicting the amount of inflow sediment in a flow-in hydropower plant,
A first step of inputting rainfall data at a rainfall observation station in an upstream area at a predetermined time into the first model formula, and calculating a river water amount and a transported sediment amount near the intake after a predetermined time from the predetermined time;
Into the second model formula, the values of the river water volume, the transported sediment volume, and the existing sediment volume calculated by the first model formula are input, and the sediment volume before the intake and the intake to the intake after the predetermined time are input. A second step of calculating sediment inflow,
A third step of comparing the amount of sediment flowing into the water intake with a predetermined limit value, and specifying the time when the amount of sediment flow reaches the limit value as the water stop timing;
An inflow sediment prediction program.
JP2009101459A 2009-04-17 2009-04-17 Predicting method, predicting system and predicting program for inflow sediment Pending JP2010248842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009101459A JP2010248842A (en) 2009-04-17 2009-04-17 Predicting method, predicting system and predicting program for inflow sediment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009101459A JP2010248842A (en) 2009-04-17 2009-04-17 Predicting method, predicting system and predicting program for inflow sediment

Publications (1)

Publication Number Publication Date
JP2010248842A true JP2010248842A (en) 2010-11-04

Family

ID=43311472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101459A Pending JP2010248842A (en) 2009-04-17 2009-04-17 Predicting method, predicting system and predicting program for inflow sediment

Country Status (1)

Country Link
JP (1) JP2010248842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120157631A1 (en) * 2010-12-17 2012-06-21 Exxonmobil Research And Engineering Company Fiber-Reinforced Polypropylene/Elastomer Composite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336937A (en) * 2004-05-31 2005-12-08 Hitachi Ltd Operation management method for hydraulic power station and its operation management system
JP2006037354A (en) * 2004-07-22 2006-02-09 Hokuriku Electric Power Co Inc:The Method and equipment for controlling water intake of run-of-river type hydro-electric power plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336937A (en) * 2004-05-31 2005-12-08 Hitachi Ltd Operation management method for hydraulic power station and its operation management system
JP2006037354A (en) * 2004-07-22 2006-02-09 Hokuriku Electric Power Co Inc:The Method and equipment for controlling water intake of run-of-river type hydro-electric power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120157631A1 (en) * 2010-12-17 2012-06-21 Exxonmobil Research And Engineering Company Fiber-Reinforced Polypropylene/Elastomer Composite
US8618214B2 (en) * 2010-12-17 2013-12-31 Exxonmobil Research And Engineering Company Fiber-reinforced polypropylene/elastomer composite

Similar Documents

Publication Publication Date Title
JP6716328B2 (en) Inundation risk diagnostic device, inundation risk diagnostic method, control device, and computer program
CN110219277B (en) Dam break flood analysis system and method for dam system
Jahangirzadeh et al. Experimental and numerical investigation of the effect of different shapes of collars on the reduction of scour around a single bridge pier
Lei et al. Correction of pumping station parameters in a one-dimensional hydrodynamic model using the Ensemble Kalman filter
CN105464040A (en) Numerical computation method for alluvial river bank collapse process
CN104933268A (en) Flood analyzing method based on one-dimensional unsteady flow numerical model
Zeng et al. Applications of computational fluid dynamics to flow rating development at complex prototype hydraulic structures: Case study
Donald et al. Hydraulic method to evaluate the performance of ditch check practices and products
JP4146053B2 (en) Flow prediction method in dam or river
JP2010248842A (en) Predicting method, predicting system and predicting program for inflow sediment
CN112926786B (en) Shallow lake target water level reverse prediction method and system based on association rule model and numerical simulation
JP3279703B2 (en) Inflow water prediction method and inflow water prediction device
Lee Evaluation of methodologies for continuous discharge monitoring in unsteady open-channel flows
Olyaie et al. A laboratory investigation on the potential of computational intelligence approaches to estimate the discharge coefficient of piano key weir
Zayed Velocity Distributions around Blocked Trash Racks
Daneshvari et al. Numerical simulation of a new sand trap flushing system
Kim Assesment of Riverbed Change Due to the Operation of a Series of Gates in a Natural River
Basri et al. Hydrological Modelling of Surface Runoff for Temengor Reservoir Using GR4H Model.
CN117689216B (en) Hydraulic engineering operation and maintenance management system based on digital twinning
Behera et al. Scour at the downstream of Ghatakeswar spillway using non-cohesive hydraulic model
Hong et al. Muskingum and Lag method river routing parameters for Klang River at Kuala Lumpur city centre derived using recorded hydrographs
Papanicolaou et al. Investigation of flow and local scour characteristics around a partially submerged permeable WSDOT barb
Yusoff Scour below submerged skewed pipeline
Azmeri et al. Evaluation of the Settling Basin of Keumala Weir, Krueng Baro River, Aceh, Indonesia
Šikšnys et al. Numerical and field investigations of local bridge abutment scour and unsteady downstream river flow from a nearby hydropower plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029