JP2005336937A - Operation management method for hydraulic power station and its operation management system - Google Patents

Operation management method for hydraulic power station and its operation management system Download PDF

Info

Publication number
JP2005336937A
JP2005336937A JP2004160436A JP2004160436A JP2005336937A JP 2005336937 A JP2005336937 A JP 2005336937A JP 2004160436 A JP2004160436 A JP 2004160436A JP 2004160436 A JP2004160436 A JP 2004160436A JP 2005336937 A JP2005336937 A JP 2005336937A
Authority
JP
Japan
Prior art keywords
information
hydropower
plant
hydropower plant
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004160436A
Other languages
Japanese (ja)
Other versions
JP4649876B2 (en
Inventor
Satoru Nomoto
悟 野本
Shiyunsuke Mizumi
俊介 水見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004160436A priority Critical patent/JP4649876B2/en
Publication of JP2005336937A publication Critical patent/JP2005336937A/en
Application granted granted Critical
Publication of JP4649876B2 publication Critical patent/JP4649876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation management method for a hydraulic power station for improving maintenance property of hydraulic equipment in the hydraulic power station and to provide its operation management system. <P>SOLUTION: In this hydraulic power station operation method for performing operation management of the hydraulic power station, operation management of the hydraulic power station is performed according to topographical data in a basin of water flowing into the hydraulic power station and weather information including at least rainfall information. Alternatively, operation and stop of the hydraulic power station are managed according to topographical data in a basin of water flowing into a dam of the hydraulic power station, weather information including at least rainfall information, and correlation data of amount of water flowing into the hydraulic power station and sediment information. Further alternatively, operation and stop of the hydraulic power station are managed according to weather information including at least rainfall information and correlation data of amount of water flowing into the hydraulic power station and sediment information. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水力発電所の運転管理方法及びその運転管理システムに関するものである。   The present invention relates to an operation management method for a hydroelectric power plant and an operation management system thereof.

水力発電所の水車及びポンプ水車の水車運転では、雨量が多く発電所流入水量が多い場合に、流水中の土砂による水車などの摩耗を抑制するために、水車を運転停止することがある。従来、水車運転停止に関して、発電所入口で河川水の濁度や土砂を計測する装置を配置して直接測定し、所員が発電の取水や運転停止や再開を判断していた。   In the water turbine operation of a hydroelectric power plant and a pump turbine, when there is a lot of rain and the amount of water flowing into the power plant is large, the water turbine may be stopped in order to suppress abrasion of the water turbine due to earth and sand in running water. Conventionally, regarding water turbine operation stop, a device that measures the turbidity and sediment of river water is installed at the power plant entrance and directly measured, and the staff has judged whether to take water in, stop or restart the power generation.

特許文献1(特開2003−213659号公報)や特許文献2(特開平10−68118号公報)に開示の方法は、土砂を測定する装置が必要であり、また、これらの方法では河川水中の土砂条件の変動を実測して初めて対応可能となる技術である。   The methods disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2003-213659) and Patent Document 2 (Japanese Patent Laid-Open No. 10-68118) require a device for measuring earth and sand, and in these methods, This is a technology that can only be dealt with by measuring changes in sediment conditions.

特開2003−213659号公報JP 2003-213659 A 特開平10−68118号公報Japanese Patent Laid-Open No. 10-68118

特許文献1や特許文献2に開示の方法では、土砂を測定する装置が必要となり、その精度を維持するためのメンテナンスも必要である。また、これらの方法では河川水中の土砂条件の変動を実測して初めて対応する方法であり、電力の需要と供給を考慮した発電所の運用という点で、対応が遅くなる場合も考えられる。しかしながら、水中の土砂や流石などによる損傷の激しい水力発電所では、気象条件による増水や濁水によって水力機器への取水口を閉鎖し、水力機器の損傷を防ぐ必要と、電力の需要による発電の必要があり、水中の土砂や流石の濃度や粒径の予測を行い、取水の停止や再開を適切に判断することが望まれる。つまり、水力機器の保全性と電力需要の観点から、水力機器に入る水の土砂や流石の濃度や粒径の予測を行い、取水の停止や再開を適切に判断支援することが望まれる。   In the methods disclosed in Patent Document 1 and Patent Document 2, a device for measuring earth and sand is required, and maintenance for maintaining the accuracy is also required. In addition, these methods are the first methods to deal with the change in the sediment conditions in the river water, and the response may be slow in terms of the operation of the power plant in consideration of the power demand and supply. However, in hydroelectric power stations that are severely damaged by underwater sediments and rocks, it is necessary to close the intakes to hydropower equipment due to increased water or turbid water due to weather conditions, to prevent damage to hydropower equipment, and to generate power due to power demand Therefore, it is desirable to predict the concentration and particle size of sediments and rocks in water, and to appropriately determine whether to stop or restart water intake. In other words, from the viewpoint of the maintenance of hydropower equipment and the demand for electric power, it is desired to predict the concentration and particle size of the sediment and fledstone of water entering the hydropower equipment, and to appropriately determine and support the suspension and resumption of water intake.

本発明の目的は、水力発電所の水力機器の保全性を向上する水力発電所の運転管理方法及びその運転管理システムを提供することにある。   An object of the present invention is to provide an operation management method and an operation management system for a hydroelectric power plant that improve the maintainability of hydroelectric equipment of the hydroelectric power plant.

本発明の水力発電所運転方法は、該水力発電所に流れ込む水の流域の地形データ及び少なくとも降水情報を含む気象情報に基づき、水力発電所の運転管理をする。   The operation method of the hydroelectric power plant according to the present invention manages the operation of the hydroelectric power plant based on the terrain data of the basin of water flowing into the hydroelectric power plant and weather information including at least precipitation information.

或いは、本発明の水力発電所運転方法は、該水力発電所のダムに流れ込む水の流域の地形データ、少なくとも降水情報を含む気象情報、及び該水力発電所に流れ込む水の流量と土砂情報との相関データに基づき、水力発電所の運転及び停止の管理をする。   Alternatively, the operation method of the hydroelectric power plant according to the present invention includes the terrain data of the water basin flowing into the dam of the hydroelectric power plant, meteorological information including at least precipitation information, and the flow rate of water flowing into the hydroelectric power plant and sediment information. Based on the correlation data, the operation and shutdown of the hydroelectric power plant will be managed.

或いは、本発明の水力発電所運転方法は、少なくとも降水情報を含む気象情報及び該水力発電所に流れ込む水の流量と土砂情報との相関データに基づき、水力発電所の運転及び停止の管理をする。   Alternatively, the hydropower plant operation method of the present invention manages the operation and stoppage of the hydropower plant based on weather information including at least precipitation information and correlation data between the flow rate of water flowing into the hydropower plant and sediment information. .

或いは、本発明の水力発電所運転方法は、水力発電所に流れ込む水の流域の地形データと、リアルタイムで入手可能な降水情報に基づき、該水力発電所に流れ込む水の流量変動予測値を求める第一の工程と、該水力発電所に流れ込む水の流量変動の情報と水中の土砂濃度及び粒径情報との相関関係を予め定められたデータベース及び前記第一の工程で求められた流量変動予測値に基づき、水中の土砂濃度及び粒径情報を予測する第二の工程とを有する。   Alternatively, the operation method of the hydroelectric power plant according to the present invention is to obtain a flow rate fluctuation prediction value of water flowing into the hydropower plant based on topographic data of the water basin flowing into the hydropower plant and precipitation information available in real time. A flow rate fluctuation prediction value obtained in the first step and a database in which the correlation between the flow rate fluctuation information flowing into the hydroelectric power plant and the sediment concentration and particle size information in water is determined in advance. And a second step of predicting sediment concentration and particle size information in water.

或いは、本発明の水力発電所の運転管理システムは、該水力発電所に流れ込む水の流域の地形データ及び少なくとも降水情報を含む気象情報に基づき水力発電所の運転管理をする手段を備える。   Alternatively, the operation management system for a hydroelectric power plant according to the present invention comprises means for managing the operation of the hydroelectric power plant based on topographic data of the basin of water flowing into the hydropower plant and weather information including at least precipitation information.

或いは、本発明の水力発電所の運転管理システムは、該水力発電所のダムに流れ込む水の流域の地形データ、少なくとも降水情報を含む気象情報、及び該水力発電所に流れ込む水の流量と土砂情報との相関データに基づき、水力発電所の運転及び停止の管理をする手段を備える。   Alternatively, the operation management system of the hydroelectric power plant according to the present invention is characterized in that the terrain data of the water basin flowing into the dam of the hydroelectric power plant, meteorological information including at least precipitation information, and the flow rate and sediment information of the water flowing into the hydroelectric power plant. And means for managing the operation and stoppage of the hydroelectric power plant based on the correlation data.

或いは、本発明の水力発電所の運転管理システムは、少なくとも降水情報を含む気象情報及び該水力発電所に流れ込む水の流量と土砂情報との相関データに基づき、水力発電所の運転及び停止の管理をする手段を備える。   Alternatively, the hydropower plant operation management system according to the present invention is based on meteorological information including at least precipitation information and correlation data between the flow rate of water flowing into the hydropower plant and sediment information, and manages the operation and stoppage of the hydropower plant. Means for carrying out the operation.

或いは、本発明の水力発電所の運転管理システムは、水力発電所に流れ込む水の流域の地形データと、リアルタイムで入手可能な降水情報に基づき、該水力発電所に流れ込む水の流量変動予測値を求める第一の手段と、該水力発電所に流れ込む水の流量変動の情報と水中の土砂濃度及び粒径情報との相関関係を予め定められたデータベース及び前記第一の手段で求められた流量変動予測値に基づき、水中の土砂濃度及び粒径情報を予測する第二の手段とを有する。   Alternatively, the operation management system of the hydroelectric power plant according to the present invention provides a flow rate fluctuation prediction value of the water flowing into the hydropower plant based on topographical data of the water basin flowing into the hydropower plant and precipitation information available in real time. The first means to be obtained, a database in which the correlation between the information on the flow fluctuation of the water flowing into the hydroelectric power plant and the sediment concentration and particle size information in the water is determined in advance, and the flow fluctuation obtained by the first means And a second means for predicting sediment concentration and particle size information in water based on the predicted value.

本発明によると、水力発電所の水力機器の保全性を向上する水力発電所の運転管理方法及びその運転管理システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the operation management method of the hydropower station which improves the maintainability of the hydraulic equipment of a hydropower station, and its operation management system can be provided.

本発明の実施形態では、適切に、水力発電所の水力機器の保全性に係わる状況を予測し、適切な運転管理方法及びその運転管理システムを提供する。   In the embodiment of the present invention, a situation related to the maintainability of hydraulic equipment of a hydropower station is appropriately predicted, and an appropriate operation management method and an operation management system thereof are provided.

以下、本発明の実施形態を図面を用い具体的に説明する。図1は、本発明の一実施例である水力発電所の発電運転の停止・再開の判断を支援するシステムの概略構成とその動作を示す図である。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration and operation of a system that supports determination of stop / restart of power generation operation of a hydroelectric power plant according to an embodiment of the present invention.

気象観測装置1は、発電所に流入する河川の源流流域を気象情報観測できるように、1箇所以上、即ち、少なくとも1箇所設置される。気象観測装置1で観測した気象情報は、通信手段2を介して気象情報を管理及び蓄積するサーバー3に送信される。ここで、気象観測装置1は、少なくとも雨量を測定する機能を有するものであって、直接測定方式あるいはレーダー等を用いた間接測定方式を適用することができる。そして、この気象情報には少なくとも降水情報が含まれる。また、気象観測装置1で測定される気象情報は、常時観測されたデータであっても、一定時間間隔の観測データであっても良い。なお、気象観測装置1により観測した気象情報を通信する通信手段2は有線方式であっても無線方式であっても良い。   The meteorological observation apparatus 1 is installed at one or more places, that is, at least one place so that meteorological information can be observed in the source basin of the river flowing into the power plant. The meteorological information observed by the meteorological observation device 1 is transmitted via the communication means 2 to the server 3 that manages and stores the meteorological information. Here, the meteorological observation apparatus 1 has at least a function of measuring rainfall, and a direct measurement method or an indirect measurement method using a radar or the like can be applied. This weather information includes at least precipitation information. Moreover, the weather information measured by the weather observation apparatus 1 may be constantly observed data or observation data at regular time intervals. Note that the communication means 2 for communicating the weather information observed by the weather observation apparatus 1 may be a wired system or a wireless system.

収集された気象情報は、サーバー3から通信手段4を介して、演算機5に送信される。この通信手段4は有線方式であっても無線方式であっても構わない。また、気象観測装置1とその観測したデータを通信する通信手段2と気象情報を管理及び蓄積するサーバー3は、例えば気象庁や(財)気象業務支援センターや民間の気象情報サービス会社の設備であっても構わない。   The collected weather information is transmitted from the server 3 to the calculator 5 via the communication means 4. This communication means 4 may be a wired system or a wireless system. Further, the communication means 2 for communicating the observed data with the meteorological observation device 1 and the server 3 for managing and accumulating weather information are, for example, facilities of the Japan Meteorological Agency, the Japan Meteorological Business Support Center, and private weather information service companies. It doesn't matter.

演算機5は、水力発電所のダム6に流れ込む水の源流を含む地形データや地質データのデータベースを有している。演算機5では、サーバー3から通信手段4を介して送信される気象情報を受信し、この気象情報と前述の地形データ及び地質データのうち少なくとも地形データとに基づき、ダム6に流れ込む水量と土砂濃度や土砂粒径を演算し、ダム6に流れ込む水量と土砂濃度や土砂粒径を予測し、運転管理する。   The calculator 5 has a database of topographic data and geological data including the source flow of water flowing into the dam 6 of the hydroelectric power plant. The computing unit 5 receives weather information transmitted from the server 3 via the communication means 4, and based on this weather information and at least the topographic data of the topographic data and geological data, the amount of water flowing into the dam 6 and the earth and sand The concentration and sediment particle size are calculated, and the amount of water flowing into the dam 6 and the sediment concentration and sediment particle size are predicted and managed.

次に、図2,図3を用い、具体的な手順を説明する。図2は、ダム6に流れ込む河川水量と河川水中の土砂や流石の濃度や粒径との応答関数の基データとなるデータの一例である。ダム6に流れ込む河川水量とある粒径範囲の土砂濃度との関係は、河川水量の単位時間当りの変化量に関係する応答関数を作成することで予測する。図3は、気象情報入力により本実施例の水力発電所の発電運転の停止・再開の判断までの流れの例を示したフロー図である。   Next, a specific procedure will be described with reference to FIGS. FIG. 2 is an example of data serving as basic data of a response function between the amount of river water flowing into the dam 6 and the concentration and particle size of earth and sand and rocks in the river water. The relationship between the amount of river water flowing into the dam 6 and the sediment concentration within a certain particle size range is predicted by creating a response function related to the amount of change in river water volume per unit time. FIG. 3 is a flowchart showing an example of the flow from the input of weather information to the determination of stop / restart of the power generation operation of the hydroelectric power plant of the present embodiment.

本実施例のシステムでは、水力発電所に流れ込む水の流域の地形データを予め記憶する記憶手段を備えている。この地形データに加えて、地質データを記憶していても良い。また、気象情報としては、気象観測装置1からのリアルタイムで入手可能な降水情報を用いることが望ましい。   The system of the present embodiment is provided with storage means for storing in advance the terrain data of the water basin flowing into the hydroelectric power plant. In addition to the terrain data, geological data may be stored. Further, as the weather information, it is desirable to use precipitation information available in real time from the weather observation apparatus 1.

そして、本実施例のシステムでは、水力発電所に流れ込む水の流域の地形データと、リアルタイムで入手可能な降水情報に基づき、水力発電所に流れ込む水の流量変動予測値を求める手段(第一の手段)によって、流出解析を行い、流量変動や発電所流入量を予測する。よって、精度の良い情報を速く入手でき、水力発電所の水力機器の保全性を向上する水力発電所の運転管理方法及びその運転管理システムを提供することができる。   In the system of the present embodiment, a means for obtaining a predicted flow rate fluctuation value of water flowing into the hydropower station based on topographic data of the water basin flowing into the hydropower station and precipitation information available in real time (first Runoff analysis to predict flow rate fluctuations and power plant inflows. Accordingly, it is possible to provide a hydropower plant operation management method and an operation management system that can obtain accurate information quickly and improve the maintainability of the hydropower equipment of the hydropower plant.

また、本実施例のシステムでは、水力発電所に流れ込む水の流量変動の情報と水中の土砂濃度及び粒径情報との相関関係を予め定められたデータベースを備えている。このデータベースの情報と、求められた流量変動や発電所流入量の予測値に基づき、水中の土砂濃度及び粒径情報を予測する手段(第二の手段)によって、水中の土砂濃度及び粒径情報を予測する。よって、精度の良い情報を速く入手でき、水力発電所の水力機器の保全性を向上する水力発電所の運転管理方法及びその運転管理システムを提供することができる。   In addition, the system according to the present embodiment includes a database in which the correlation between the flow rate fluctuation information flowing into the hydroelectric power plant and the sediment concentration and particle size information in the water is determined in advance. Based on the information in this database and the estimated flow rate fluctuations and predicted values of power plant inflow, the means for predicting the sediment concentration and particle size information in the water (second measure), the sediment concentration and particle size information in the water Predict. Accordingly, it is possible to provide a hydropower plant operation management method and an operation management system that can obtain accurate information quickly and improve the maintainability of the hydropower equipment of the hydropower plant.

図2は、ダム6に流れ込む河川水量と河川水中の土砂や流石の濃度や粒径との応答関数の基データとなるデータの一例である。つまり、水力発電所に流れ込む水の流量変動の情報と水中の土砂濃度及び粒径情報との相関関係を予め定められたデータベースの基準となるものの一例である。図2は、横軸を経過する時間(h)、縦軸を河川流量,土砂濃度とし、関係を示したものである。黒丸印で太実線は河川流量を示し、四角印で細実線は粒径0〜50μmの土砂濃度を示し、三角印で短破線は粒径50〜100μmの土砂濃度を示し、バツ印で長破線は粒径100〜200μmの土砂濃度を示している。このような、流量,土砂濃度,土砂粒径のデータを取得し、蓄積し、夫々の対応関係をデータベース化しておく。種々の条件で補正も可能である。ダム6に流れ込む河川水量と任意の粒径範囲の土砂濃度との関係は、河川水量の単位時間当りの変化量に関係する応答関数を作成することで予測することができる。   FIG. 2 is an example of data serving as basic data of a response function between the amount of river water flowing into the dam 6 and the concentration and particle size of earth and sand and rocks in the river water. In other words, this is an example of a database reference in which the correlation between the flow rate fluctuation information flowing into the hydroelectric power plant and the underwater sediment concentration and particle size information is predetermined. FIG. 2 shows the relationship with the elapsed time (h) on the horizontal axis and the river flow rate and sediment concentration on the vertical axis. Thick solid line with black circles indicates river flow, thin solid line with square marks indicates sediment concentration with a particle size of 0-50 μm, short dashed line with triangles indicates sediment concentration with a particle size of 50-100 μm, long broken line with crosses Indicates a soil concentration with a particle size of 100 to 200 μm. Such data on the flow rate, sediment concentration, and sediment particle size are acquired and stored, and the corresponding relationships are stored in a database. Correction is also possible under various conditions. The relationship between the amount of river water flowing into the dam 6 and the sediment concentration in an arbitrary particle size range can be predicted by creating a response function related to the amount of change in river water volume per unit time.

本実施例のように、水力発電所に流れ込む水の流域の地形データ及び少なくとも降水情報を含む気象情報に基づき水力発電所の運転管理をするので、土砂情報が予測でき、土砂流入による水力機器の損傷の抑制に対応が可能となる。よって、精度の良い情報を速く入手でき、水力発電所の水力機器の保全性を向上する水力発電所の運転管理方法及びその運転管理システムを提供することができる。   As in this example, the hydropower plant operation is managed based on the topographic data of the water basin flowing into the hydropower plant and the weather information including at least precipitation information. It becomes possible to cope with suppression of damage. Accordingly, it is possible to provide a hydropower plant operation management method and an operation management system that can obtain accurate information quickly and improve the maintainability of the hydropower equipment of the hydropower plant.

また、水力発電所のダムに流れ込む水の流域の地形データ、少なくとも降水情報を含む気象情報、及び該水力発電所に流れ込む水の流量と土砂情報との相関データに基づき、水力発電所の運転及び停止の管理をするので、精度良く土砂情報が予測でき、適切に土砂流入による水力機器の損傷の抑制に対応が可能となる。よって、精度の良い情報を速く入手でき、水力発電所の水力機器の保全性を向上する水力発電所の運転管理方法及びその運転管理システムを提供することができる。   Also, based on the topographic data of the water basin flowing into the dam of the hydroelectric power plant, meteorological information including at least precipitation information, and the correlation data between the flow rate of water flowing into the hydroelectric power plant and sediment information, Since the outage is managed, the sediment information can be predicted with high accuracy, and it becomes possible to appropriately cope with the suppression of damage to the hydraulic equipment due to the inflow of sediment. Accordingly, it is possible to provide a hydropower plant operation management method and an operation management system that can obtain accurate information quickly and improve the maintainability of the hydropower equipment of the hydropower plant.

また、少なくとも降水情報を含む気象情報及び水力発電所に流れ込む水の流量と土砂情報との相関データに基づき、水力発電所の運転及び停止の管理をするので、容易に精度良く土砂情報が予測でき、適切に水力機器損傷の抑制を考慮した水力発電所の運転及び停止の管理が可能となる。よって、精度の良い情報を速く入手でき、水力発電所の水力機器の保全性を向上する水力発電所の運転管理方法及びその運転管理システムを提供することができる。   In addition, since the operation and stoppage of the hydropower plant are managed based on the correlation information between the weather information including precipitation information and the flow rate of water flowing into the hydropower plant and the sediment information, the sediment information can be predicted easily and accurately. Therefore, it becomes possible to manage the operation and stoppage of hydropower plants in consideration of the suppression of damage to hydraulic equipment. Accordingly, it is possible to provide a hydropower plant operation management method and an operation management system that can obtain accurate information quickly and improve the maintainability of the hydropower equipment of the hydropower plant.

更に、水力発電所に流れ込む水の流域の地形データと、リアルタイムで入手可能な降水情報に基づき、水力発電所に流れ込む水の流量変動予測値を求め、水力発電所に流れ込む水の流量変動の情報と水中の土砂濃度及び粒径情報との相関関係を予め定められたデータベース及び第一の手段で求められた流量変動予測値に基づき、水中の土砂濃度及び粒径情報を予測するので、容易に精度良く土砂情報である土砂濃度及び粒径が予測でき、適切に水力機器損傷の抑制を考慮し、精度の良い情報を速く入手でき、水力発電所の水力機器の保全性を向上する水力発電所の運転管理方法及びその運転管理システムを提供することができる。   Furthermore, based on the topographic data of the water basin flowing into the hydroelectric power plant and the precipitation information available in real time, the flow rate fluctuation prediction value of the water flowing into the hydroelectric power plant is obtained, and information on the flow rate fluctuation of the water flowing into the hydroelectric power plant is obtained. Easily predicts the sediment concentration and particle size information in the water based on the flow rate fluctuation prediction value obtained by the database and the first means determined in advance. Hydroelectric power plants that can predict the sediment concentration and particle size, which are accurate sediment information, can appropriately obtain accurate information in consideration of the suppression of damage to hydropower equipment, and improve the hydropower equipment maintainability. The operation management method and the operation management system can be provided.

そして、具体的には、演算機5で種々の計算がなされる。演算機5には、ダム周辺の地形データの記憶手段が備えられ、少なくとも気象情報が入力される。そして、演算機5では、気象観測装置1で得られた気象情報やその位置データと、予め入手してあるダムに流れ込む水の源流を含む地形データや地質データとを用いて、水と土砂輸送の数値シミュレーションを行い、ダム6に流れ込む水量と土砂濃度や土砂粒径を演算し、予測する。   Specifically, the calculator 5 performs various calculations. The computing unit 5 is provided with storage means for terrain data around the dam, and at least weather information is input. The computing unit 5 uses the meteorological information obtained by the meteorological observation device 1 and its position data, and the terrain data and geological data including the source flow of water flowing into the dam obtained in advance, to transport water and sediment. Numerical calculation is performed, and the amount of water flowing into the dam 6 and the sediment concentration and sediment particle size are calculated and predicted.

気象観測装置1で得られた気象情報とその位置データは、演算機5で、そのまま利用しても良いし、演算機5で、欠測点補間や3点重み補間等を行い、水と土砂輸送の数値シミュレーションの入力データとしても良い。   The weather information and its position data obtained by the meteorological observation device 1 may be used as they are by the calculator 5, or the calculator 5 performs missing point interpolation, three-point weight interpolation, etc. It may be input data for numerical simulation of transportation.

次に、具体的な計算手段及び計算方法について説明する。   Next, specific calculation means and calculation methods will be described.

ここで、水輸送の数値シミュレーションとしては、例えば、流出モデルとして
Kinematic Waveモデル(等価粗度法),貯留関数法などの物理モデルを用いた降雨流出計算を用いてダム6に流れ込む水量およびその単位当りの時間変化量を予測する。
Here, as a numerical simulation of water transportation, for example, as an outflow model
Predict the amount of water flowing into the dam 6 and its time variation per unit using rainfall and runoff calculations using physical models such as the Kinematic Wave model (equivalent roughness method) and the storage function method.

Kinematic Waveモデルは、一定勾配の急斜面上の流れを表現するため、次の数1,数2を用いて表現される。   The Kinematic Wave model is expressed using the following equations 1 and 2 in order to express the flow on a steep slope with a constant gradient.

Figure 2005336937
Figure 2005336937

Figure 2005336937
ここで、t:時間,x:斜面上流からの距離,h:水深,q:斜面単位幅流量,re :有効雨量,L:斜面長,α,m:流れの形態で決まる定数である。
Figure 2005336937
Here, t: Time, x: distance from the inclined surface upstream, h: depth, q: the slope unit width flow, r e: effective rainfall, L: slope length, alpha, m: a constant determined by the flow of the form.

貯留関数法は、次の数3,数4を用いて表現される。   The storage function method is expressed using the following equations (3) and (4).

Figure 2005336937
Figure 2005336937

Figure 2005336937
ここで、t:時間,s:貯留高,re:有効雨量強度,q:直接流出高,f(q):関数である。
Figure 2005336937
Here, t: Time, s: reservoir height, r e: effective rainfall intensity, q: direct outflow height, f (q): a function.

土砂輸送の数値シミュレーションとしては、掃流砂の流砂量式と浮遊砂の流砂量式を用いる。掃流砂の流砂量式としては、例えば、芦田・道上の式,Bagnold の式などがある。芦田・道上の式は、次の数5を用いて表現される。   For the numerical simulation of sediment transport, we use the flow rate formula of the swept sand and the flow rate formula of the floating sand. Examples of the sediment flow rate of the sweeping sand include the Kamata and Michigami formulas and the Bagnold formula. Iwata / Michigami's formula is expressed using the following equation (5).

Figure 2005336937
ここで、qB*:掃流砂量,τ* :無次元掃流力,τ*c:無次元限界掃流力である。
Figure 2005336937
Here, q B * is the amount of scavenging sand, τ * is a dimensionless scavenging force, and τ * c is a dimensionless limit scavenging force.

Bagnold の式は、次の数6を用いて表現される。   Bagnold's formula is expressed using the following equation (6).

Figure 2005336937
ここで、eb :エネルギー・仕事の効率,φd :定数,μR :砂流の動摩擦係数、τ* :無次元掃流力,τ*c:無次元限界掃流力である。
Figure 2005336937
Here, e b : energy / work efficiency, φ d : constant, μ R : dynamic friction coefficient of sand flow, τ * : dimensionless scavenging force, τ * c : dimensionless limit scavenging force.

浮遊砂の流砂量式としては、例えば、Lane・Kalinskeの式などがあり、この流砂量式の基準面における浮遊砂濃度を補足するために、芦田・岡部・藤田の式などがある。   Examples of the suspended sand flow rate formula include the Lane / Kalinske formula, and the Kamata / Okabe / Fujita formula is used to supplement the suspended sand concentration on the reference plane of the flow rate formula.

Lane・Kalinskeの式は、次の数7,数8を用いて表現される。   The Lane-Kalinske equation is expressed using the following equations 7 and 8.

Figure 2005336937
Figure 2005336937

Figure 2005336937
ここで、qs :単位幅・単位時間当りの浮遊砂量,q:単位幅流量,Ca:基準面(z=a)における浮遊砂濃度,a:流路床から浮遊砂濃度の基準面までの高さ、κ:Karman定数,w0:沈降速度,h:水深,u*:摩擦速度、φ=v/u*(v:断面平均流速) ,η=z/h(z:流路床からの距離)である。
Figure 2005336937
Here, q s : the amount of suspended sand per unit width and unit time, q: unit width flow rate, Ca: suspended sand concentration on the reference plane (z = a), a: from the channel floor to the reference plane of suspended sand concentration , Κ: Karman constant, w 0 : sedimentation velocity, h: water depth, u * : friction velocity, φ = v / u * (v: cross-sectional average flow velocity), η = z / h (z: channel bed) Distance).

芦田・岡部・藤田の浮遊砂の基準面濃度式は、次の数9を用いて表現される。   The reference surface concentration formula of suspended sand of Iwata, Okabe, and Fujita is expressed using the following equation (9).

Figure 2005336937
なお、w0 :沈降速度,u* :摩擦速度,y:横断方向の距離,ν:動粘性係数である。
Figure 2005336937
Here, w 0 is the sedimentation speed, u * is the friction speed, y is the distance in the transverse direction, and ν is the kinematic viscosity coefficient.

掃流砂,浮遊砂のそれぞれの輸送計算は、これらいずれかの式を用いるか、地形条件,地質条件,降水条件などによって最適な評価式を使い分けたり、または組み合わせることによって求めることができ、掃流砂と浮遊砂の和から全流砂量を求めることができる。   The transport calculation of each of the flowing sand and suspended sand can be obtained by using either of these formulas, or by selecting or combining optimal evaluation formulas according to topographic conditions, geological conditions, precipitation conditions, etc. And the total amount of sand flow can be calculated from the sum of floating sand.

水輸送の数値シミュレーション結果と土砂輸送の数値シミュレーションとをあわせることにより、河川水中の土砂や流石の濃度や粒径を予測し、発電所における水車運転の停止や再開、あるいは発電所取水の停止や再開を適切に判断することが可能となる。   By combining the numerical simulation results of water transport with the numerical simulation of sediment transport, the concentration and particle size of sediment and rocks in river water are predicted, and water turbine operation at the power plant is stopped or restarted, or It is possible to appropriately determine resumption.

また、他の実施例として、河川水中の土砂や流石の濃度や粒径を予測するために、気象観測装置1で得られ、通信手段2により気象情報を管理及び蓄積するサーバー3に集約され、通信手段4により、演算機5に送られた気象データと、ダムに流れ込む水の源流を含む地形データとから、演算機5で、前述の水輸送の数値シミュレーションを用いてダム6に流れ込む水量の変化量を予想する。演算機5では、予め用意されたダム6に流れ込む水量の単位時間あたりの変化量と河川水中の土砂や流石の濃度や粒径との応答関数を用いることにより、河川水中の土砂や流石の濃度や粒径を予測し、発電所取水の停止や再開を適切に判断することが可能となる。   As another example, in order to predict the concentration and particle size of sediment and rocks in river water, it is obtained by the weather observation device 1 and collected by the communication means 2 in the server 3 that manages and stores weather information, From the meteorological data sent to the calculator 5 by the communication means 4 and the topographic data including the source flow of water flowing into the dam, the calculator 5 calculates the amount of water flowing into the dam 6 using the above-described numerical simulation of water transport. Predict the amount of change. The computing unit 5 uses the response function of the amount of change per unit time of the amount of water flowing into the dam 6 prepared in advance and the concentration and particle size of the sediment and sediment in the river water to obtain the concentration of sediment and sediment in the river water. It is possible to predict the suspension and resumption of water intake from the power plant by predicting the particle size and particle size.

以上のように、本実施例では、水力発電所の水力機器に入る流水中の土砂情報である土砂濃度・粒径を直接測定することなく、土砂濃度・粒径を直接測定する装置及びそのメンテナンスが無くとも、河川上流における気象情報から流水中の土砂濃度・粒径を事前予測することが可能となり、経済性に優れ、応答性良く、雨天増水時の水力発電所の取水停止や再開を早い段階で適切に判断することが可能となる効果がある。つまり、速く正確に土砂情報を予測し、メンテナンス性の悪い設備を必要とすることなく、簡易なシステムで容易に、保全性に優れた水力発電所の管理を達成できる。なお、速く正確に土砂情報を予測できるので、電力需要を加味し、運転計画を立案できる。   As described above, in this embodiment, the apparatus for directly measuring the sediment concentration / particle size without directly measuring the sediment concentration / particle size, which is the sediment information in the running water entering the hydropower equipment of the hydroelectric power plant, and its maintenance. Even if there is no water, it is possible to predict the sediment concentration and particle size in the running water from the weather information in the upstream of the river, and it is excellent in economic efficiency and responsiveness. There is an effect that it is possible to make an appropriate judgment at each stage. In other words, it is possible to predict sediment information quickly and accurately, and easily manage a hydroelectric power plant with excellent maintainability with a simple system without requiring facilities with poor maintainability. In addition, since sediment information can be predicted quickly and accurately, an operation plan can be made in consideration of electric power demand.

また、本実施例によれば、河川上流における気象情報から流水中の土砂濃度・粒径を事前予測することにより、雨天増水時の発電所取水の停止や再開を電力需要との関係から計画的に判断することが可能となる効果がある。   In addition, according to the present example, by predicting the sediment concentration and particle size in the running water from the weather information in the upstream of the river, the stoppage and resumption of power plant intake during a rainy season increase is planned based on the relationship with the power demand. There is an effect that can be judged.

また、本実施例によれば、河川上流における気象情報から流水中の土砂濃度・粒径を事前予測することにより、発電量と土砂による摩耗量の最適な運転を実施することが可能となる効果がある。   In addition, according to this embodiment, it is possible to perform the optimum operation of the power generation amount and the abrasion amount due to the sediment by predicting the sediment concentration and particle size in the running water from the weather information in the upstream of the river. There is.

水力発電所の水力機器の保全性を向上する水力発電所の運転管理方法及びその運転管理システムに関するものである。   The present invention relates to an operation management method and an operation management system of a hydroelectric power plant that improve the maintainability of hydroelectric equipment of the hydroelectric power plant.

本発明の実施形態にかかる水力発電所の発電運転の停止・再開の判断を支援するシステムの概略図である。It is the schematic of the system which assists judgment of stop and restart of the power generation operation of the hydroelectric power plant concerning the embodiment of the present invention. 本発明の実施形態にかかるダム6に流れ込む河川水量と河川水中の土砂や流石の濃度や粒径の時間変化を示す図である。It is a figure which shows the time change of the amount of river water which flows into the dam 6 concerning embodiment of this invention, and the density | concentration and particle size of the earth and sand in the river water, or a stone. 本発明の実施形態にかかる水力発電所の発電運転の停止・再開の判断を支援するシステムのフロー図である。It is a flow figure of a system which supports judgment of stop and restart of power generation operation of a hydroelectric power station concerning an embodiment of the present invention.

符号の説明Explanation of symbols

1…気象観測装置、2,4…通信手段、3…気象情報を管理及び蓄積するサーバー、5…演算機、6…ダム、7…取水口、8…発電所。   DESCRIPTION OF SYMBOLS 1 ... Weather observation apparatus, 2, 4 ... Communication means, 3 ... Server which manages and accumulate | stores weather information, 5 ... Calculator, 6 ... Dam, 7 ... Water intake, 8 ... Power plant.

Claims (8)

水力発電所の運転管理をする水力発電所運転方法において、
該水力発電所に流れ込む水の流域の地形データ及び少なくとも降水情報を含む気象情報に基づき、水力発電所の運転管理をする水力発電所運転方法。
In the hydropower plant operation method that manages the operation of hydropower plants,
A hydropower plant operation method for managing the operation of a hydropower plant based on terrain data of a water basin flowing into the hydropower plant and weather information including at least precipitation information.
水力発電所の運転管理をする水力発電所運転方法において、
該水力発電所のダムに流れ込む水の流域の地形データ、少なくとも降水情報を含む気象情報、及び該水力発電所に流れ込む水の流量と土砂情報との相関データに基づき、水力発電所の運転及び停止の管理をする水力発電所運転方法。
In the hydropower plant operation method that manages the operation of hydropower plants,
Based on the topographic data of the water basin flowing into the dam of the hydroelectric power plant, meteorological information including at least precipitation information, and the correlation data between the flow rate of water flowing into the hydroelectric power plant and the sediment information, the hydropower plant is operated and stopped. To operate a hydroelectric power station.
水力発電所の運転管理をする水力発電所運転方法において、
少なくとも降水情報を含む気象情報及び該水力発電所に流れ込む水の流量と土砂情報との相関データに基づき、水力発電所の運転及び停止の管理をする水力発電所運転方法。
In the hydropower plant operation method that manages the operation of hydropower plants,
A hydropower plant operation method for managing the operation and stoppage of a hydropower plant based on at least weather information including precipitation information and correlation data between the flow rate of water flowing into the hydropower plant and sediment information.
水力発電所に流れ込む水の流域の地形データと、リアルタイムで入手可能な降水情報に基づき、該水力発電所に流れ込む水の流量変動予測値を求める第一の工程と、
該水力発電所に流れ込む水の流量変動の情報と水中の土砂濃度及び粒径情報との相関関係を予め定められたデータベース及び前記第一の工程で求められた流量変動予測値に基づき、水中の土砂濃度及び粒径情報を予測する第二の工程とを有する水力発電所運転方法。
A first step for determining a flow fluctuation prediction value of water flowing into the hydropower plant based on topographic data of the water basin flowing into the hydropower plant and precipitation information available in real time;
Based on a predetermined database and the flow rate fluctuation prediction value obtained in the first step, the correlation between the flow rate fluctuation information flowing into the hydroelectric power plant and the sediment concentration and particle size information in the water is determined. A hydroelectric power plant operating method comprising a second step of predicting sediment concentration and particle size information.
水力発電所の運転管理をする水力発電所の運転管理システムにおいて、
該水力発電所に流れ込む水の流域の地形データ及び少なくとも降水情報を含む気象情報に基づき水力発電所の運転管理をする手段を備えた水力発電所運転管理システム。
In the hydropower plant operation management system that manages the operation of hydropower plants,
A hydropower plant operation management system comprising means for managing the operation of the hydropower plant based on terrain data of the water basin flowing into the hydropower plant and weather information including at least precipitation information.
水力発電所の運転管理をする水力発電所運転管理システムにおいて、
該水力発電所のダムに流れ込む水の流域の地形データ、少なくとも降水情報を含む気象情報、及び該水力発電所に流れ込む水の流量と土砂情報との相関データに基づき、水力発電所の運転及び停止の管理をする手段を備えた水力発電所運転管理システム。
In the hydropower plant operation management system that manages the operation of hydropower plants,
Based on the topographical data of the water basin flowing into the dam of the hydroelectric power plant, meteorological information including at least precipitation information, and correlation data between the flow rate of water flowing into the hydroelectric power plant and sediment information, the hydropower plant is operated and stopped. Hydropower plant operation management system with means to manage
水力発電所の運転管理をする水力発電所運転管理システムにおいて、
少なくとも降水情報を含む気象情報及び該水力発電所に流れ込む水の流量と土砂情報との相関データに基づき、水力発電所の運転及び停止の管理をする手段を備えた水力発電所運転管理システム。
In the hydropower plant operation management system that manages the operation of hydropower plants,
A hydropower plant operation management system comprising means for managing the operation and stoppage of a hydropower plant based on at least weather information including precipitation information and correlation data between the flow rate of water flowing into the hydropower plant and sediment information.
水力発電所に流れ込む水の流域の地形データと、リアルタイムで入手可能な降水情報に基づき、該水力発電所に流れ込む水の流量変動予測値を求める第一の手段と、
該水力発電所に流れ込む水の流量変動の情報と水中の土砂濃度及び粒径情報との相関関係を予め定められたデータベース及び前記第一の手段で求められた流量変動予測値に基づき、水中の土砂濃度及び粒径情報を予測する第二の手段とを有する水力発電所運転管理システム。
A first means for obtaining a predicted flow rate fluctuation value of water flowing into the hydropower plant based on topographic data of the water basin flowing into the hydropower plant and precipitation information available in real time;
The correlation between the flow rate fluctuation information flowing into the hydroelectric power plant and the sediment concentration and particle size information in the water is determined based on the flow rate fluctuation prediction value obtained by the predetermined database and the first means. A hydropower plant operation management system having a second means for predicting sediment concentration and particle size information.
JP2004160436A 2004-05-31 2004-05-31 Support method for hydropower plant operation management Expired - Lifetime JP4649876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004160436A JP4649876B2 (en) 2004-05-31 2004-05-31 Support method for hydropower plant operation management

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004160436A JP4649876B2 (en) 2004-05-31 2004-05-31 Support method for hydropower plant operation management

Publications (2)

Publication Number Publication Date
JP2005336937A true JP2005336937A (en) 2005-12-08
JP4649876B2 JP4649876B2 (en) 2011-03-16

Family

ID=35490801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004160436A Expired - Lifetime JP4649876B2 (en) 2004-05-31 2004-05-31 Support method for hydropower plant operation management

Country Status (1)

Country Link
JP (1) JP4649876B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281087A (en) * 2008-05-23 2009-12-03 Hitachi Ltd Abrasion diagnosis method and abrasion diagnosis system for water turbine part in hydraulic power plant
JP2010097276A (en) * 2008-10-14 2010-04-30 Chugoku Electric Power Co Inc:The Laid sand quantity determination support method and laid sand quantity determination support device
JP2010134618A (en) * 2008-12-03 2010-06-17 Okayama Univ Sand bypassing selection support method and sand bypassing selection support apparatus
JP2010248842A (en) * 2009-04-17 2010-11-04 Okayama Univ Predicting method, predicting system and predicting program for inflow sediment
JP2011117355A (en) * 2009-12-03 2011-06-16 Kyowa Engineering Consultants Co Ltd Small hydraulic power generation system
CN111144629A (en) * 2019-12-17 2020-05-12 国网辽宁省电力有限公司 Method and system for predicting water inflow of hydroelectric power station

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108252276B (en) * 2018-02-09 2019-10-29 河南创辉水利水电工程有限公司 A kind of plant without storage's automatic optimization method adjusted based on power output

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068118A (en) * 1996-08-27 1998-03-10 Kansai Electric Power Co Inc:The Inflow earth and sand detector
JP2003213659A (en) * 2002-01-18 2003-07-30 Chubu Electric Power Co Inc Underwater floating matter measuring device and water power generation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068118A (en) * 1996-08-27 1998-03-10 Kansai Electric Power Co Inc:The Inflow earth and sand detector
JP2003213659A (en) * 2002-01-18 2003-07-30 Chubu Electric Power Co Inc Underwater floating matter measuring device and water power generation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281087A (en) * 2008-05-23 2009-12-03 Hitachi Ltd Abrasion diagnosis method and abrasion diagnosis system for water turbine part in hydraulic power plant
JP2010097276A (en) * 2008-10-14 2010-04-30 Chugoku Electric Power Co Inc:The Laid sand quantity determination support method and laid sand quantity determination support device
JP2010134618A (en) * 2008-12-03 2010-06-17 Okayama Univ Sand bypassing selection support method and sand bypassing selection support apparatus
JP2010248842A (en) * 2009-04-17 2010-11-04 Okayama Univ Predicting method, predicting system and predicting program for inflow sediment
JP2011117355A (en) * 2009-12-03 2011-06-16 Kyowa Engineering Consultants Co Ltd Small hydraulic power generation system
CN111144629A (en) * 2019-12-17 2020-05-12 国网辽宁省电力有限公司 Method and system for predicting water inflow of hydroelectric power station

Also Published As

Publication number Publication date
JP4649876B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP2008050903A (en) Flood prediction method and flood prediction system
Msadala et al. Sediment yield prediction for South Africa: 2010 edition
Goodbrand et al. Hydrological functions of a peatland in a Boreal Plains catchment
Filipova Urban flooding in Gothenburg-A MIKE 21 study
JP4649876B2 (en) Support method for hydropower plant operation management
Gunawan et al. Assessing and Testing Hydrokinetic Turbine Performance and Effects on Open Channel Hydrodynamics: An Irrigation Canal Case Study.
Beltaos Mackenzie Delta flow during spring breakup: uncertainties and potential improvements
Kim et al. Verification of rip current simulation using a two-dimensional predictive model, HAECUM
Shiferaw et al. Reservoir sedimentation and estimating dam storage capacity using bathymetry survey: a case study of Abrajit Dam, Upper Blue Nile basin, Ethiopia
Bhavsar et al. Review on study of reservoir sedimentation by remote sensing technique
Kim et al. Rip current prediction system combined with a morphological change model
Anwar The rainfall-runoff model using of the watershed physical characteristics approach
Kowalewski An operational hydrodynamic model of the Gulf of Gdańsk
Otuagoma et al. Comparative measurement of stream flow in the ethiope River for small hydropower development
Mushi et al. Site Selection, Design, and Implementation of a Sediment Sampling Program on the Kasai River, a Major Tributary of the Congo River
Cieśla et al. A new concept to forecast the process of suspended sediment accumulation in the bottom sediment of small reservoirs
Antonenkov Modern Methods and Technical Instruments of Ecological Monitoring of the Estuaries of Small Rivers
Rendon et al. Simulation of the effects of different inflows on hydrologic conditions in Lake Houston with a three-dimensional hydrodynamic model, Houston, Texas, 2009–10
Azrulhisham et al. Operational impact of suspended sediment on the run-of-river small hydro power plants
V PRADEEP RISK ASSESSMENT OF RAINSTORM WATERLOGGING IN KOLLAM CITY BASED ON MIKE+ 1D DRAINAGE MODELLING
Msadala Sediment yield prediction based on analytical methods and mathematical modelling
Rahman et al. Storm Water Management for Urban Areas of Bangladesh by Analytical & Modelling Approach: A Case Study of Chalna Municipality
Kokas et al. Water Resources Research Report
Basnayaka et al. Numerical modeling of flood vulnerability in urban catchments for flood forecasting
Lampe et al. Stormwater reduction and water budget for a rain garden on sandy soil, Gary, Indiana, 2016–18

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R151 Written notification of patent or utility model registration

Ref document number: 4649876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250