JP2010246893A - 歩行動作評価システム及び歩行動作評価方法 - Google Patents

歩行動作評価システム及び歩行動作評価方法 Download PDF

Info

Publication number
JP2010246893A
JP2010246893A JP2010012245A JP2010012245A JP2010246893A JP 2010246893 A JP2010246893 A JP 2010246893A JP 2010012245 A JP2010012245 A JP 2010012245A JP 2010012245 A JP2010012245 A JP 2010012245A JP 2010246893 A JP2010246893 A JP 2010246893A
Authority
JP
Japan
Prior art keywords
walking motion
principal component
data
subject
walking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010012245A
Other languages
English (en)
Other versions
JP5315504B2 (ja
Inventor
Masahiro Doi
正裕 土井
Kensaku Sakai
健作 酒井
Masaaki Mochimaru
正明 持丸
Kei Aoki
慶 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Feel Fine KK
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Feel Fine KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Feel Fine KK filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010012245A priority Critical patent/JP5315504B2/ja
Publication of JP2010246893A publication Critical patent/JP2010246893A/ja
Application granted granted Critical
Publication of JP5315504B2 publication Critical patent/JP5315504B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】本発明の目的は、被験者の歩行動作をより簡易かつ正確に評価することである。
【解決手段】歩行動作評価システム100は、被験者の歩行動作に伴う床反力の変化を示
す床反力データを取得するデータ取得部112と、床反力データに基づいて、少なくとも
1つの関節についての歩行動作に伴う角度の変化を示す関節角度データ、及び、当該関節
についての歩行動作に伴うモーメントの変化を示す関節モーメントデータの少なくとも一
方を含む歩行動作データの主成分得点を推定する、主成分得点推定部114と、推定され
た主成分得点である推定主成分得点CP1〜CPnに基づいて、被験者の歩行動作を評価す
る、歩行動作評価部116とを含む。
【選択図】図1

Description

本発明は歩行動作評価システム及び歩行動作評価方法に関する。特に、被験者の歩行動
作をより簡易かつ正確に評価することができるシステム及び方法に関する。
近年の生活習慣病の問題や健康へ関心の高まりにより、ウォーキング人口が増加してい
る。すなわち、人々の「歩行」に関する関心が高まってきている。従来においては、歩行
動作の評価を行うために歩行動作の様子を計測することが知られているが、例えば特開2
008−173250号公報に代表されるように、被験者の歩行動作の評価を行うたびに
、歩行動作をモーションキャプチャ等の高価かつ複雑な装置を使用して計測せざるを得ず
、人々の「歩行」に関する関心の高まりに反して、歩行動作を評価するための簡易かつ正
確なシステムについては普及してはいない。
特開2008−173250号公報
したがって、被験者の歩行動作を簡易かつ正確に評価することができるシステム及び方
法を提供することが求められている。
よって、本発明の目的は、上記の課題を解決することができる歩行動作評価システム及
び歩行動作評価方法を提供することを目的とする。この目的は特許請求の範囲における独
立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具
体例を規定する。
本発明の一態様に係るシステムは、被験者の歩行動作を評価する歩行動作評価システム
であって、被験者の歩行動作に伴う床反力の変化を示す床反力データを取得するデータ取
得部と、前記床反力データに基づいて、少なくとも1つの関節についての歩行動作に伴う
角度の変化を示す関節角度データ、及び、当該関節についての歩行動作に伴うモーメント
の変化を示す関節モーメントデータの少なくとも一方を含む歩行動作データの主成分得点
を推定する、主成分得点推定部と、推定された前記主成分得点である推定主成分得点に基
づいて、前記被験者の歩行動作を評価する、歩行動作評価部とを含む。
かかる構成によれば、床反力データに基づいて歩行動作データの主成分得点を推定し、
かかる推定主成分得点に基づいて被験者の歩行動作を評価するので、非常に簡易な構成で
被験者の歩行動作を評価することができる。これにより、例えば、被験者の歩行動作を計
測するたびに、モーションキャプチャのような高価で取り扱いが煩雑なカメラを使用しな
ければならないという不都合を解消することができる。また、主成分得点という総合的指
標の値を推定するため、歩行動作の評価のための処理を簡易かつ正確に行うことができる
。よって、被験者の歩行動作を簡易かつ正確に評価することができる。
上記システムにおいて、前記床反力データに基づいて前記主成分得点を推定する推定式
を予め格納する記憶部をさらに含み、前記主成分得点推定部は、前記記憶部から前記推定
式を読み出して、前記床反力データに基づいて前記主成分得点を推定してもよい。
これにより、簡易な構成ながらも、様々な要因を加味した正確な評価を行うことができ
る。
上記システムにおいて、前記主成分得点推定部は、前記被験者の歩行動作に伴って当該
被験者の足にかかる床反力の変化を示すデータを前記床反力データとして、前記主成分得
点を推定してもよい。
上記システムにおいて、前記主成分得点推定部は、前記床反力データの主成分得点に基
づいて、前記歩行動作データの主成分得点を推定してもよい。
上記システムにおいて、前記主成分得点推定部は、前記被験者の体重、並びに、歩行の
速度、歩幅及び周期の少なくとも1つのデータにさらに基づいて、前記主成分得点を推定
してもよい。
上記システムにおいて、前記歩行動作データの主成分得点の標本値と、歩行動作の特徴
とを対応付けて予め格納した第1のデータベースをさらに含み、前記歩行動作評価部は、
前記第1のデータベースにおいて前記推定主成分得点に対応する前記標本値を参照して、
前記被験者の歩行動作を評価してもよい。
上記システムにおいて、前記主成分得点推定部は、前記歩行動作データについての第1
から第n(nは2以上の整数)の主成分のそれぞれについて、主成分得点を推定し、前記
歩行動作評価部は、推定されたn個の前記主成分得点であるn個の推定主成分得点に基づ
いて、前記被験者の歩行動作を評価してもよい。
上記システムにおいて、前記第1から第nの主成分のそれぞれについて、主成分得点の
複数の標本値と、当該複数の標本値を正規化した複数の正規化データとを対応付けて予め
格納した第2のデータベースをさらに含み、前記歩行動作評価部は、前記第2のデータベ
ースにおいて前記n個の推定主成分得点に対応するn個の前記標本値を参照して、前記被
験者の歩行動作を評価してもよい。
上記システムにおいて、前記歩行動作データは、前記関節角度データ及び前記関節モー
メントデータの両方を含んでもよい。
上記システムにおいて、前記歩行動作データは、前記被験者の複数の異なる関節につい
てのデータであってもよい。
上記システムにおいて、前記歩行動作データは、前記被験者の股関節、膝関節及び足首
関節についてのデータであってもよい。
これらの関節は、歩行動作の特徴を支配する重要な要因であるため、かかる関節につい
てのデータを適用することで、歩行動作について重要な総合的指標を示すことができる。
上記システムにおいて、前記床反力データは、前記被験者が歩行動作を行う歩行誘導装
置に設けられたセンサにより検出されてもよい。
上記システムにおいて、前記データ取得部は、前記床反力データを通信ネットワークを
介して取得してもよい。
本発明の一態様に係る方法は、被験者の歩行動作を評価する歩行動作評価方法であって
、被験者の歩行動作に伴う床反力の変化を示す床反力データを取得するステップと、前記
床反力データに基づいて、少なくとも1つの関節についての歩行動作に伴う角度の変化を
示す関節角度データ、及び、当該関節についての歩行動作に伴うモーメントの変化を示す
関節モーメントデータの少なくとも一方を含む歩行動作データの主成分得点を推定する、
ステップと、推定された前記主成分得点である推定主成分得点に基づいて、前記被験者の
歩行動作を評価するステップとを含む。
かかる構成によれば、床反力データに基づいて歩行動作データの主成分得点を推定し、
かかる推定主成分得点に基づいて被験者の歩行動作を評価するので、非常に簡易な構成で
被験者の歩行動作を評価することができる。これにより、例えば、被験者の歩行動作を計
測するたびに、モーションキャプチャのような高価で取り扱いが煩雑なカメラを使用しな
ければならないという不都合を解消することができる。また、主成分得点という総合的指
標の値を推定するため、歩行動作の評価のための処理を簡易かつ正確に行うことができる
。よって、被験者の歩行動作を簡易かつ正確に評価することができる。
上記方法において、前記推定するステップは、前記床反力データに基づいて前記主成分
得点を推定する推定式を予め格納する記憶部から、前記推定式を読み出して、前記床反力
データに基づいて前記主成分得点を推定してもよい。
上記方法において、前記推定するステップは、前記被験者の歩行動作に伴って当該被験
者の足にかかる床反力の変化を示すデータを前記床反力データとして、前記主成分得点を
推定してもよい。
上記方法において、前記評価するステップは、前記歩行動作データの主成分得点の標本
値と、歩行動作の特徴とを対応付けて予め格納した第1のデータベースにおいて、前記推
定主成分得点に対応する前記標本値を参照して、前記被験者の歩行動作を評価してもよい
上記方法において、前記推定するステップは、前記歩行動作データについての第1から
第n(nは2以上の整数)の主成分のそれぞれについて、主成分得点を推定し、
前記評価するステップは、推定されたn個の前記主成分得点であるn個の推定主成分得
点に基づいて、前記被験者の歩行動作を評価してもよい。
上記方法において、前記評価するステップは、前記第1から第nの主成分のそれぞれに
ついて、主成分得点の複数の標本値と、当該複数の標本値を正規化した複数の正規化デー
タとを対応付けて予め格納した第2のデータベースにおいて、前記n個の推定主成分得点
に対応するn個の前記標本値を参照して、前記被験者の歩行動作を評価してもよい。
本発明の一実施形態に係る歩行動作評価システムを含む図である。 本発明の一実施形態に係る歩行動作評価システムのハードウェア構成を示すブロック図である。 図1の端末及び計測装置の一例を示す図である。 本発明の一実施形態に係る歩行動作評価方法のフローチャートを示す図である。 本発明の一実施形態に係る歩行動作評価方法のフローチャートを示す図である。 本発明の一実施形態に係る足にかかる床反力の変化を示すデータの一例を示す図である。 図7は本発明の一実施形態に係る標本1人分の歩行動作データを示す図である。 図8(A)は本発明の一実施形態に係る標本N人分の主成分得点の標本値を示し、図8(B)は図8(A)の第1の主成分得点に応じて分類されたG1〜G3のそれぞれに該当する標本値の歩行動作データを示す図である。また、図8(C)は、第4の主成分得点に応じて分類されたG1´〜G3´のそれぞれに該当する標本値の歩行動作データを示す図である。
以下、図面を参照しつつ、発明の実施形態を通じて本発明を説明するが、以下の実施形
態は特許請求の範囲に係る発明を限定するものではなく、また、実施形態の中で説明され
ている特徴の組み合わせのすべてが発明の解決手段に必須であるとは限らない。
1.歩行動作評価システムについて
図1〜図3を参照して、本発明の一実施形態に係る歩行動作評価システムの構成につい
て説明する。ここで、図1は本実施形態に係る歩行動作評価システムを含む図であり、図
2は歩行動作評価システムのハードウェア構成を示す図であり、図3は図1の端末及び計
測装置の一例を示す図である。
本実施形態に係るシステム100は、被験者の歩行動作を評価するシステムであり、具
体的には、被験者の歩行動作に伴う床反力の変化を示す床反力データに基づいて、当該被
験者の歩行動作がどのような特徴をもつのか、どのようなアドバイスを与えるべきか、又
は、第三者と比較してどのような点がどのくらい異なるのか等を、より簡易かつ正確に示
すことができるシステムである。なお、本出願において「歩行動作」とは、歩く動作のみ
ならず、走る動作をも含むものとする。
システム100には、本実施形態に係る歩行動作を評価するための所定のプログラムが
予めインストールされている。このシステム100は、図1に示すように、本実施形態に
係る歩行動作を評価するために必要な処理を行う処理部110、及び、かかる処理に必要
な情報を記憶するための記憶部120を含む。
システム100には、例えば図2に示すようなCPU101、ROM102、RAM1
03、外部記憶装置104、ユーザインタフェース105、ディスプレイ106、プリン
タ107、及び通信インタフェース108を備える汎用又は専用のコンピュータを適用す
ることができる。システム100は、単一のコンピュータより構成されるものであっても
、ネットワーク上に分散した複数のコンピュータより構成されるものであってもよい。
システム100は、例えばCPUが、上記したROM、RAM、外部記憶装置などに記
憶された又は通信ネットワーク130を介してダウンロードされた所定のプログラム(本
実施形態に係る歩行動作を評価する方法を規定したプログラム)を実行することにより、
システム100を後述の各種機能ブロック又は各種ステップとして機能させることができ
る。
図1においては、システム100(例えば処理部110)は、データ送受信可能なよう
に、通信ネットワーク130を介して端末140に接続されている。通信ネットワーク1
30は、インターネットのような通信網のみならず、ローカルエリアネットワーク(LA
N)やその他通信回線などを介した通信網を含むことができる。
端末140は、入力されたデータを通信ネットワーク130上に送信可能であり、かつ
、通信ネットワーク130からデータを受信可能な装置である。図1に示すように、複数
の端末140−1〜nが通信ネットワーク130に接続され、システム100が複数の端
末140−1〜nとデータ送受信可能なように接続されていてもよい。
端末140には表示部142が設けられている。表示部142は、通信ネットワーク1
30から受信したデータを被験者に提供するためのものである。さらに、表示部142に
よって、被験者にデータの入力を促してもよい。
端末140−1〜nは、データ送受信可能なように計測装置150−1〜nに接続され
ている。計測装置150−1〜nは、少なくとも歩行動作に伴う各種データ(例えば歩行
の速度、歩幅及び周期)等を計測するものである。計測装置150−1〜nは例えば被験
者が歩行動作を行うための歩行誘導装置(例えばトレッドミル)152と、被験者の歩行
動作に伴う床反力の変化を示す床反力データを検出するセンサ(例えばロードセル)15
4とを含む。センサ154は、歩行誘導装置152の歩行面(床面に水平な面)153に
垂直方向にかかる床反力データを検出し、当該床反力データを電気信号に変換する。図3
に示すように、複数のセンサ154a〜fが、歩行誘導装置152の歩行面153に分散
して設けられてもよい。ただし、センサの構成、種類、個数及び配置等は図3に示す例に
限定されるものではなく、被験者の歩行動作に伴う床反力データが検出できれば限定され
るものではない。センサ154は、歩行誘導装置152に内蔵されていてもよいし、歩行
誘導装置152がセンサの働きを兼ねていてもよい。
図3に示すように、端末140は計測装置150に備え付けられていてもよく、この場
合、端末140の表示部142が、被験者が歩行動作を行いながら視認できる位置に設け
られる。
なお、端末140は、計測装置150によって検出されたデータをシステム100に送
信するのみならず、端末140の入力部(例えばキーボードやタッチパネルセンサ等)を
介して、被験者から入力されたデータ(例えば被験者の年齢、性別等)をシステム100
に送信してもよい。
次に、システム100の構成について具体的に説明する。
図1に示すように、システム100の処理部110は、主な構成として、被験者の歩行
動作に伴う床反力の変化を示す床反力データを取得するデータ取得部112と、床反力デ
ータに基づいて歩行動作データの主成分得点を推定する主成分得点推定部114と、かか
る推定主成分得点に基づいて被験者の歩行動作を評価する歩行動作評価部116と、歩行
動作評価部116の評価結果を被験者に提供する結果提供部118とを含む。また、シス
テム100の記憶部120は、主成分得点推定部114が主成分得点を推定するときに用
いられる推定式を予め格納する推定式記憶部122と、歩行動作評価部116が評価する
ときに用いられる第1及び第2のデータベース124,126とを含む。なお、処理部1
10内の上記各構成は、記憶部120内の上記各構成にデータ送受信可能なように接続さ
れており、これにより処理部110によって処理される必要なデータを上記記憶部に格納
及び読み出し可能としている。
データ取得部112は、通信ネットワーク130を介してセンサ154が検出した床反
力データを取得する。この場合、データ取得部112は、センサ154が検出した床反力
データをそのまま取得してもよいし、あるいは当該検出した床反力データから抽出したデ
ータを取得してもよい。例えば後者の場合、データ取得部112は、図3に示す6個のセ
ンサ154a〜fの各々が検出した床反力データから、歩行動作に伴う被験者の少なくと
も一方の足にかかる床反力の変化を示すデータを抽出して当該データを取得してもよい。
また、データ取得部112は、被験者の体重等の身体データ、年齢、性別及び特性など
の属性データ、並びに、歩行動作誘導装置152によって検出される歩行動作に伴う各種
データ(例えば歩行の速度、歩幅及び周期)等を取得してもよい。
主成分得点推定部114は、データ取得部112が取得した床反力データに基づいて、
歩行動作データの主成分得点を推定する。ここで、歩行動作データとは、少なくとも1つ
の関節についての歩行動作に伴う角度の変化を示す関節角度データ、及び、当該関節につ
いての歩行動作に伴うモーメントの変化を示す関節モーメントデータの少なくとも一方を
含む。また、歩行動作データの主成分得点とは、歩行動作データの相関関係のある複数の
要因を合成(圧縮)して得られる総合的指標を示すものである。
歩行動作データは、関節角度データ及び関節モーメントデータの両方を含むことが好ま
しい。これにより、被験者の関節角度及び関節モーメントの2つの異なる観点から総合的
指標を示すことができる。
また、歩行動作データは、被験者の1つの関節についてのデータであってもよいが、複
数の異なる関節についてのデータであることが好ましい。これにより、被験者についての
複数の異なる関節という複数の異なる観点からの総合的指標を示すことができる。
この場合、歩行動作データは、例えば、被験者の股関節、膝関節及び足首関節について
のデータであることが好ましい。これらの関節は、歩行動作の特徴を支配する重要な要因
であるため、かかる関節についてのデータを適用することで、歩行動作について重要な総
合的指標を示すことができる。
主成分得点は、元データである歩行動作データが有する要因の個数に応じて、第1〜第
n(nは2以上の整数)の主成分についてそれぞれ求めることができる。例えば、
3つの各関節についてそれぞれ、関節角度データ及び関節モーメントデータをそれぞれ時
間軸で101に分割した場合には、全体で606の要因となるので、理論上は最大で60
6個の主成分を求めることができる。
主成分得点推定部114は、歩行動作データについての第1から第nの主成分のそれぞ
れについて、主成分得点(すなわち、第1〜第nの主成分得点)を推定してもよい。この
ように複数の主成分のそれぞれについて主成分得点を推定することにより、異なる観点か
らのn個の総合的指標を示すことができる。
主成分得点推定部114は、予め記憶部120に格納しておいた推定式を用いて、主成
分得点を推定してもよい。第1〜第nの主成分得点を推定する場合には、第1〜第nの推
定式を用いる。このような推定式は、記憶部120の推定式記憶部122に予め格納され
ており、主成分得点推定部114が処理を行うときに、推定式記憶部122から推定式を
読み出すことができる。
ここで、推定式記憶部122は、床反力データに基づいて主成分得点を推定する推定式
を予め格納する。第1〜第nの主成分得点を推定するために、第1〜第nの推定式を格納
してもよい。このように推定式記憶部122が第1〜第nの推定式を予め格納しておくこ
とにより、より簡易な構成により第1〜第nの主成分得点を推定することができる。
また、推定式記憶部122は、標本(基準となる人)の性別や特性などの属性データご
とにそれぞれ異なる推定式を格納してもよい。これによれば、被験者の属性データに応じ
てより適切な推定式を用いることができる。したがって、より正確な主成分得点を推定す
ることができる。
歩行動作評価部116は、推定された主成分得点に基づいて、被験者の歩行動作を評価
する。推定された主成分得点が第1〜第nの主成分得点である場合には、当該n個の推定
された主成分得点に基づいて、被験者の歩行動作を評価する。これによれば、異なった観
点からの複数の総合的指標を基準とすることができるので、より正確かつ細部にわたって
被験者の歩行動作を評価することができる。
具体的には、歩行動作評価部116は、予め記憶部120に格納しておいた第1のデー
タベース124及び第2のデータベース126の少なくとも一方を参照して、被験者の歩
行動作を評価する。ここで、第1のデータベース124においては、歩行動作データの主
成分得点の標本値と、歩行動作の特徴とが対応付けて予め格納されており、他方、第2の
データベース126においては、第1から第nの主成分得点のそれぞれについての複数の
標本値と、当該複数の標本値を正規化した複数の正規化データとが対応付けて予め格納さ
れている。いずれのデータベース124,126においても、主成分得点推定部114が
推定した主成分得点に対応する標本値を参照することにより、当該標本値に対応付けられ
たデータ、すなわち第1のデータベース124の場合には歩行動作の特徴についてのデー
タ、第2のデータベース126の場合には正規化データを取得することができる。
そして、第1のデータベース124においては、主成分得点推定部114が推定した主
成分得点に基づいて、歩行動作の特徴についての情報を取得することができ、被験者の歩
行動作がどのような特徴をもつのか、どのようなアドバイスを与えるべきか等について評
価することができる。
また、第2のデータベース126においては、主成分得点推定部114が推定した第1
〜第nの主成分得点に基づいて、第1〜第nの正規化データを取得することができる。し
たがって、被験者の主成分得点が平均値からどのくらい離れているかを、第1〜第nの主
成分ごとに、各主成分間で比較可能なように示すことができ、これにより、第1〜第nの
主成分のすべての主成分得点を加味した総合的指標を求めることができる。
第1のデータベース124は、標本(基準となる人)の性別や特性などの属性データご
とにそれぞれ異なるデータベースを格納してもよい。これは、第2のデータベース126
についても同様である。これによれば、被験者の属性データに応じてより適切なデータベ
ースを参照することができる。したがって、より正確に被験者の歩行動作を評価すること
ができる。
また、第1のデータベース124においては、歩行動作データの主成分得点のすべての
標本値が、いずれかの歩行動作の特徴と直接的に対応付けられている必要は必ずしもなく
、少なくとも主成分得点が、第1のグループ(平均+2σの付近)、第2のグループ(平
均付近)、及び、第3のグループ(平均−2σの付近)に該当する標本値と、歩行動作の
特徴とが対応付けられていればよい。これにより、推定された主成分得点が、標本値の第
1〜第3のいずれのグループに属するか又は近いかを判定することで、当該推定された主
成分得点に対応する歩行動作の特徴を取得することができる。これにより、より簡易な構
成で被験者の歩行動作を評価することができる。
なお、推定式記憶部122、第1のデータベース124及び第2のデータベース126
は、処理部110としてのサーバの外部に設けられた記憶媒体であっても構わない。
結果提供部118は、歩行動作評価部116の評価結果を被験者に提供する。例えば、
結果提供部118が、当該評価結果を通信ネットワーク130を介して被験者が操作する
端末140の表示部142に提供してもよい。この場合、被験者が歩行動作を行っている
間に、被験者に評価結果を提供してもよい。これにより、例えば被験者は、歩行動作を続
けながらリアルタイムで評価結果を知ることができるので、歩行動作の矯正をリアルタイ
ムで行うことができる。
以上のとおり、本実施形態に係る歩行動作評価システムによれば、床反力データに基づ
いて歩行動作データの主成分得点を推定し、かかる推定主成分得点に基づいて被験者の歩
行動作を評価することができる。したがって、非常に簡易な構成で被験者の歩行動作を評
価することができる。これにより、例えば、被験者の歩行動作を計測するたびに、モーシ
ョンキャプチャのような高価で取り扱いが煩雑なカメラを使用しなければならないという
不都合を解消することができる。また、主成分得点という総合的指標の値を推定するため
、歩行動作の評価のための処理を簡易かつ正確に行うことができる。よって、被験者の歩
行動作を簡易かつ正確に評価することができる。また、予め格納しておいた推定式や評価
に関するデータベースを用いて評価するので、簡易な構成ながらも、様々な要因を加味し
た正確な評価を行うことができる。
なお、上記実施形態においては、システム100が通信ネットワーク130を介して端
末140及び計測装置150と接続される構成を説明したが、他の例として通信ネットワ
ーク130を使用することなく、システム100と、端末140及び計測装置150との
間でデータ送受信させることもできる。
2.歩行動作評価方法について
次に、図4〜図8を参照して、本発明の一実施形態に係る歩行動作の評価方法について
説明する。ここで、図4及び図5は、本実施形態に係る歩行動作評価方法に関するフロー
チャートであり、図6〜図8は図4のフローチャートを説明するためのデータの一例であ
る。
本実施形態に係る歩行動作評価方法は、上記システム100を用いて行うことができる
。なお、以下に説明する各ステップ(図4及び図5に示される符号が付されたステップの
みならず、当該ステップの部分的なステップを含む)は処理内容に矛盾を生じない範囲で
任意に順番を変更して又は並列に実行することができる。
最初に、図4を参照して、本実施形態に係る歩行動作評価方法を行うための準備段階に
ついて説明する。かかる準備段階は、主成分得点を推定するための推定式と、歩行動作を
評価するための第1及び第2のデータベースとを作成することを含む。
まず、標本(基準となる人)に計測装置上を歩行するよう促し、当該標本について各種
データを取得する(S101)。計測装置の一例としては、図3に示すような歩行誘導装
置152及びセンサ154に加えて、モーションキャプチャMC(図示しない)を含む計
測装置を適用することができる。
こうして、センサによって検出した床反力データを取得し(S102)、当該床反力デ
ータに基づいて、歩行動作に伴う標本の少なくとも一方の足にかかる床反力の変化を示す
データを取得する(S103)。例えば図6に示すように、標本の一方の足にかかる床反
力の変化を示すデータを少なくとも1歩分について取得する。
また、MCによって標本の関節位置データ及び関節角度データを取得し(S104,1
05)、さらに、関節位置データ及び上記S103で取得した床反力の変化を示すデータ
に基づいて関節モーメントデータを取得する(S106)。これらの関節位置データ、関
節角度データ及び関節モーメントデータについては、上記したとおり、標本の股関節、膝
関節及び足首関節について取得することが好ましい。
こうして、関節角度データ及び関節モーメントデータの少なくとも一方を含む歩行動作
データを取得することができる(S107)。例えば図7に示すように、標本の股関節、
膝関節及び足首関節について、関節角度データ及び関節モーメントデータの両方を含む歩
行動作データを取得する。
また、上記各ステップにおいて取得したデータに加えて、標本の体重等の身体データ、
年齢、性別及び特性などの属性データ、並びに、歩行動作誘導装置によって検出される歩
行動作に伴う各種データ(例えば歩行の速度、歩幅及び周期)等を取得してもよい。
このように、各ステップを複数の標本に対して行い、複数の標本について各種データを
取得して、図1の記憶部120に格納する。この場合、標本の性別や特性などの属性デー
タに対応付けて、複数の標本についてのデータを分類してもよい。これにより、図5のフ
ローチャートにおいて評価される被験者に最適のデータを用いて、被験者の歩行動作を評
価することができるので、より正確に評価することができる。
次に、歩行動作データについて第1〜第nの主成分得点の標本値を取得する(S108
)。すなわち、標本1人分について第1〜第nの主成分得点であるn個の主成分得点を算
出し、当該n個の主成分得点を記憶部120に格納する。具体的には、図7に示す標本1
人分の歩行動作データに基づいて、標本1人分の主成分を算出し、これにより第1〜第n
の主成分得点を算出する。例えば、N人分の標本がある場合には、第1〜第nの主成分得
点のそれぞれについてN個のデータを算出する。
こうして主成分得点の標本値を取得したら、主成分得点を推定するための推定式と、歩
行動作を評価するための第1及び第2のデータベースとを作成する(S109〜111)
まず、主成分得点を推定するための推定式について説明する。
第1〜第nの主成分得点の標本値と、上記各ステップS102〜106等で取得した各
種データに基づいて、第1〜第nの推定式を取得する(S109)。取得した第1〜第n
の推定式については記憶部120(推定式記憶部122)に格納する。
第1〜第nの推定式は、被験者の床反力データから得られる値、被験者の体重「W(k
g)」、歩行の速度「Sp(m/s)」、歩幅「St(m)」及び周期「T(sec)」
等のパラメータから作成することができる。ここで、床反力データから得られる値として
は、例えば、被験者の歩行動作に伴って当該被験者の足にかかる床反力の変化を示すデー
タの変化点「(x1,y1),(x2,y2),(x3,y3)」(図6参照)、及び、当該デ
ータについての第1〜第m(mは2以上の整数)の主成分のそれぞれについての主成分得
点である「αCP1〜CPm」を用いることができる。
ここで、上記したデータの変化点(図6参照)については、例えば、足を床面に着地し
た後に床反力が最大となる第1の変化点(x1,y1)付近、足が床面に着地している間に
床反力が最小となる第2の変化点(x2,y2)付近、及び、足を床面が蹴るときに床反力
が最大となる第3の変化点(x2,y2)付近の少なくとも1つを適用することができる。
なお、上記した床反力の主成分得点については、足にかかる床反力の変化を示すデータを
時間軸でk個に分割して、当該k個の主成分において、第1〜第mの主成分得点を求めれ
ばよい。
第1〜第nの推定式の具体例としては、例えば第1〜第6の推定式は下記のように表す
ことができる(例えば第1〜第6の推定式を示す)。なお、下記式において、a10〜a63
については、項目における実測値と推定値との間の相関関係や、複数の項目の相関関係を
鑑みて重み付けした重回帰係数である。
CP1=a10+a11・y3+a12・x1+a13・x2+a14・W+a15・T
CP2=a20+a21・αCP6+a22・x2+a23・St
CP3=a30+a31・αCP4+a32・αCP6+a33・αCP8+a34・y3
CP4=a40+a41・αCP1+a42・αCP2+a43・αCP3+a44・αCP6
+a45・y1+a46・y2+a47・y3+a48・x3+a49・W+a49・St
+a4A・Sp
CP5=a50+a51・αCP3+a52・y3+a53・W+a54・T+a55・Sp
CP6=a60+a61・αCP3+a62・x3+a63・T
なお、上記推定式は一例であり、これらの例に限定されるものではない。
次に、第1のデータベースについて説明する。
第1〜第nの主成分得点の標本値と歩行動作データとに基づいて、第1〜第nの主成分
得点の標本値と歩行動作データの特徴とを対応付ける(S110)。例えば図8(A)に
示すように、第1の主成分についての主成分得点について、第1のグループG1(平均+
2σの付近)に該当する標本値と、第2のグループG2(平均付近)に該当する標本値と
、第3のグループG3(平均−2σの付近)に該当する標本値とを選択し、選択された各
標本値に対応する歩行動作データ同士を比較する。
第1の主成分得点については、例えば図8(B)に示すように膝関節モーメントデータ
に着目すると、歩行動作の1歩分において足を床面に着地した後のt1において膝関節モ
ーメントに大きな差が生じていることがわかる。すなわち、G1においては足の着地後に
おいて膝関節モーメントが小さく、他方、G3においては足の着地後において膝関節モー
メントが大きいことがわかる。したがって、G1においては足の着地後の衝撃を膝で吸収
していないため膝の負担が大きく、他方、G3においては足の着地後の衝撃を膝で吸収し
ているため膝の負担が小さいことがわかる。こうして、主成分得点の評価値と歩行動作の
特徴とを対応付けることができる。
上記は関節モーメントデータに着目した例を説明したが、関節角度データに着目して歩
行動作の特徴を求めることもできる。例えば第4の主成分得点について、第1のグループ
G1´(平均+2σの付近)に該当する標本値と、第2のグループG2´(平均付近)に
該当する標本値と、第3のグループG3´(平均−2σの付近)に該当する標本値とを選
択し、選択された各標本値に対応する歩行動作データ同士を比較する例を考える。
第4の主成分得点については、例えば図8(C)に示すように足首関節角度データに着
目すると、歩行動作の1歩分において足を床面に着地してから床面を蹴るときのt2にお
いて、足首関節角度に大きな差が生じていることがわかる。すなわち、G1´においては
足が床面を蹴るとき足首関節角度が大きく、他方、G3´においては足が床面を蹴るとき
足首関節角度が小さいことがわかる。したがって、G1´においては足が床面を蹴るとき
に足首をよく曲げているため床面を蹴る力(例えば下腿の筋力)をあまり使っておらず、
他方、G3´においては足が床面を蹴るときに足首を伸ばしているため床面を蹴る力(例
えば下腿の筋力)をよく使っていることがわかる。こうして、主成分得点の評価値と歩行
動作の特徴とを対応付けることができる。
このようにして、第1〜第nの主成分得点について、それぞれ主成分得点の評価値と、
歩行動作データの特徴とを対応付ける。この場合、1つの主成分得点の評価値を、歩行動
作データの複数の特徴と対応付けてもよい。また、歩行動作の特徴は、複数の異なる関節
についてのデータから求めてもよいし、また、角度とモーメントとの異なる種類のデータ
から求めてもよい。
こうして得られた歩行動作データの主成分得点の標本値と、歩行動作の特徴とが対応付
けられたデータベースは、第1のデータベース124として記憶部120に格納する。
次に、第2のデータベースについて説明する。
第1〜第nの主成分得点のそれぞれについての複数の標本値と、当該複数の標本値を正
規化した複数の正規化データとを対応付ける(S111)。すなわち、当該複数の標本値
を標準偏差を用いて正規化して複数の正規化データを取得する。こうして、標本値が平均
値からどのくらい離れているかを、第1〜第nの主成分ごとに、各主成分間で比較可能な
ように示すことができる。したがって、第1〜第nの主成分のすべての主成分得点を加味
した総合的指標を求めることができる。
こうして得られた当該複数の標本値と当該複数の正規化データとが対応付けられたデー
タベースは、第2のデータベース126として記憶部120に格納する。
以上で準備段階を終了し、被験者に対して実際に歩行動作の評価を行うことができる。
図5を参照して、本実施形態に係る歩行動作評価方法について説明する。
まず、被験者に計測装置150上を歩行するよう促し、被験者について各種データを取
得する(S201)。すなわち、まず、センサ154によって検出した床反力データを取
得し(S202)、当該床反力データに基づいて、歩行動作に伴う被験者の少なくとも一
方の足にかかる床反力の変化を示すデータを取得する(S203)。また、センサ154
によって検出した床反力データに基づいて、床反力データの第1〜第mの主成分得点を取
得する(S204)。他方、歩行動作誘導装置152及び端末140からのデータ、すな
わち、被験者の体重等の身体データ、被験者の年齢、性別及び特性などの属性データ、並
びに、歩行動作に伴う各種データ(例えば歩行の速度、歩幅及び周期)等を取得する。こ
れらの各ステップは、例えばデータ取得部112により行うことができる。
次に、被験者の歩行動作に伴う床反力の変化を示す床反力データに基づいて、歩行動作
データの主成分得点を推定する。具体的には、S203〜205で取得した各種データに
基づいて、記憶部120(推定式記憶部122)から第1〜第nの推定式を読み出して、
第1〜第nの主成分得点を推定して、第1〜第nの推定主成分得点CP1〜CPnを取得す
る(S206)。かかるステップは、例えば主成分得点推定部114により行うことがで
きる。
この場合、S205で取得した被験者の属性データに基づいて、被験者の属性データに
合致する第1〜第nの推定式を読み出してもよい。なお、主成分得点の推定方法及び推定
式の詳細については上記したとおりである。
次に、推定された主成分得点に基づいて、被験者の歩行動作を評価する(S207〜S
211参照)。この場合、第1のデータベース124に基づいて評価してもよいし、第2
のデータベース126に基づいて評価してもよいし、それら両方に基づいて評価してもよ
い。
具体的には、第1のデータベース124を参照して(S207)、被験者の第1〜第n
の推定主成分得点CP1〜CPnに対応する歩行動作の特徴を取得する(S208)。他方
、第2のデータベース126を参照して(S210)、被験者の第1〜第nの推定主成分
得点CP1〜CPnに対応する正規化データを取得する(S210)。そして、第1のデー
タベース124及び第2のデータベース126の少なくとも一方の結果に基づいて、被験
者の歩行動作を評価する(S211)。これらの各ステップは、例えば歩行動作評価部1
16により行うことができる。なお、具体的な評価の詳細については上記したとおりであ
る。
その後、必要に応じて、評価結果を被験者に提供する(S212)。具体的には、第1
のデータベース124及び第2のデータベース126を参照することにより取得した、歩
行動作の特徴や正規化データ自体に基づく情報を評価結果として被験者に提供する。かか
るステップは、結果提供部118により行うことができる。
以上のとおり、本実施形態に係る歩行動作評価方法によれば、上記システムの構成につ
いて説明したように、被験者の歩行動作を非常に簡易かつ正確に評価することができる。
上記発明の実施形態を通じて説明された実施例や応用例は、用途に応じて適宜に組み合
わせて、又は変更若しくは改良を加えて用いることができ、本発明は上述した実施形態の
記載に限定されるものではない。そのような組み合わせ又は変更若しくは改良を加えた形
態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
100・・・システム
110・・・処理部
112・・・データ取得部
114・・・主成分得点推定部
116・・・歩行動作評価部
118・・・結果提供部
120・・・記憶部
122・・・推定式記憶部
124・・・第1のデータベース
126・・・第2のデータベース
130・・・通信ネットワーク
140・・・端末
142・・・表示部
150・・・計測装置
152・・・歩行動作誘導装置
154・・・センサ

Claims (19)

  1. 被験者の歩行動作を評価する歩行動作評価システムであって、
    被験者の歩行動作に伴う床反力の変化を示す床反力データを取得するデータ取得部と、
    前記床反力データに基づいて、少なくとも1つの関節についての歩行動作に伴う角度の
    変化を示す関節角度データ、及び、当該関節についての歩行動作に伴うモーメントの変化
    を示す関節モーメントデータの少なくとも一方を含む歩行動作データの主成分得点を推定
    する、主成分得点推定部と、
    推定された前記主成分得点である推定主成分得点に基づいて、前記被験者の歩行動作を
    評価する、歩行動作評価部と
    を含む、歩行動作評価システム。
  2. 前記床反力データに基づいて前記主成分得点を推定する推定式を予め格納する記憶部を
    さらに含み、
    前記主成分得点推定部は、前記記憶部から前記推定式を読み出して、前記床反力データ
    に基づいて前記主成分得点を推定する、請求項1記載の歩行動作評価システム。
  3. 前記主成分得点推定部は、前記被験者の歩行動作に伴って当該被験者の足にかかる床反
    力の変化を示すデータを前記床反力データとして、前記主成分得点を推定する、請求項1
    又は2に記載の歩行動作評価システム。
  4. 前記主成分得点推定部は、前記床反力データの主成分得点に基づいて、前記歩行動作デ
    ータの主成分得点を推定する、請求項3に記載の歩行動作評価システム。
  5. 前記主成分得点推定部は、前記被験者の体重、並びに、歩行の速度、歩幅及び周期の少
    なくとも1つのデータにさらに基づいて、前記主成分得点を推定する、請求項1から4の
    いずれかに記載の歩行動作評価システム。
  6. 前記歩行動作データの主成分得点の標本値と、歩行動作の特徴とを対応付けて予め格納
    した第1のデータベースをさらに含み、
    前記歩行動作評価部は、前記第1のデータベースにおいて前記推定主成分得点に対応す
    る前記標本値を参照して、前記被験者の歩行動作を評価する、請求項1から5のいずれか
    に記載の歩行動作評価システム。
  7. 前記主成分得点推定部は、前記歩行動作データについての第1から第n(nは2以上の
    整数)の主成分のそれぞれについて、主成分得点を推定し、
    前記歩行動作評価部は、推定されたn個の前記主成分得点であるn個の推定主成分得点
    に基づいて、前記被験者の歩行動作を評価する、請求項1から6のいずれかに記載の歩行
    動作評価システム。
  8. 前記第1から第nの主成分のそれぞれについて、主成分得点の複数の標本値と、当該複
    数の標本値を正規化した複数の正規化データとを対応付けて予め格納した第2のデータベ
    ースをさらに含み、
    前記歩行動作評価部は、前記第2のデータベースにおいて前記n個の推定主成分得点に
    対応するn個の前記標本値を参照して、前記被験者の歩行動作を評価する、請求項7記載
    の歩行動作評価システム。
  9. 前記歩行動作データは、前記関節角度データ及び前記関節モーメントデータの両方を含
    む、請求項1から8のいずれかに記載の歩行動作評価システム。
  10. 前記歩行動作データは、前記被験者の複数の異なる関節についてのデータである、請求
    項1から9のいずれかに記載の歩行動作評価システム。
  11. 前記歩行動作データは、前記被験者の股関節、膝関節及び足首関節についてのデータで
    ある、請求項1から10のいずれかに記載の歩行動作評価システム。
  12. 前記床反力データは、前記被験者が歩行動作を行う歩行誘導装置に設けられたセンサに
    より検出される、請求項1から11のいずれかに記載の歩行動作評価システム。
  13. 前記データ取得部は、前記床反力データを通信ネットワークを介して取得する、請求項
    1から12のいずれかに記載の歩行動作評価システム。
  14. 被験者の歩行動作を評価する歩行動作評価方法であって、
    被験者の歩行動作に伴う床反力の変化を示す床反力データを取得するステップと、
    前記床反力データに基づいて、少なくとも1つの関節についての歩行動作に伴う角度の
    変化を示す関節角度データ、及び、当該関節についての歩行動作に伴うモーメントの変化
    を示す関節モーメントデータの少なくとも一方を含む歩行動作データの主成分得点を推定
    する、ステップと、
    推定された前記主成分得点である推定主成分得点に基づいて、前記被験者の歩行動作を
    評価するステップと
    を含む、歩行動作評価方法。
  15. 前記推定するステップは、前記床反力データに基づいて前記主成分得点を推定する推定
    式を予め格納する記憶部から、前記推定式を読み出して、前記床反力データに基づいて前
    記主成分得点を推定する、請求項14記載の歩行動作評価方法。
  16. 前記推定するステップは、前記被験者の歩行動作に伴って当該被験者の足にかかる床反
    力の変化を示すデータを前記床反力データとして、前記主成分得点を推定する、請求項1
    4又は15に記載の歩行動作評価方法。
  17. 前記評価するステップは、前記歩行動作データの主成分得点の標本値と、歩行動作の特
    徴とを対応付けて予め格納した第1のデータベースにおいて、前記推定主成分得点に対応
    する前記標本値を参照して、前記被験者の歩行動作を評価する、請求項14から16のい
    ずれかに記載の歩行動作評価方法。
  18. 前記推定するステップは、前記歩行動作データについての第1から第n(nは2以上の
    整数)の主成分のそれぞれについて、主成分得点を推定し、
    前記評価するステップは、推定されたn個の前記主成分得点であるn個の推定主成分得
    点に基づいて、前記被験者の歩行動作を評価する、請求項14から17のいずれかに記載
    の歩行動作評価方法。
  19. 前記評価するステップは、前記第1から第nの主成分のそれぞれについて、主成分得点
    の複数の標本値と、当該複数の標本値を正規化した複数の正規化データとを対応付けて予
    め格納した第2のデータベースにおいて、前記n個の推定主成分得点に対応するn個の前
    記標本値を参照して、前記被験者の歩行動作を評価する、請求項18記載の歩行動作評価
    方法。
JP2010012245A 2010-01-22 2010-01-22 歩行動作評価システム及び歩行動作評価方法 Active JP5315504B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012245A JP5315504B2 (ja) 2010-01-22 2010-01-22 歩行動作評価システム及び歩行動作評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012245A JP5315504B2 (ja) 2010-01-22 2010-01-22 歩行動作評価システム及び歩行動作評価方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009096333A Division JP4450431B1 (ja) 2009-04-10 2009-04-10 歩行動作評価システム及び歩行動作評価方法

Publications (2)

Publication Number Publication Date
JP2010246893A true JP2010246893A (ja) 2010-11-04
JP5315504B2 JP5315504B2 (ja) 2013-10-16

Family

ID=43309924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012245A Active JP5315504B2 (ja) 2010-01-22 2010-01-22 歩行動作評価システム及び歩行動作評価方法

Country Status (1)

Country Link
JP (1) JP5315504B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041752A (ja) * 2009-08-24 2011-03-03 Feel Fine Kk 支援システム及び支援方法
JP2015029543A (ja) * 2013-07-31 2015-02-16 国立大学法人 宮崎大学 ロコモティブシンドロームの評価値算出方法、および評価装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102161310B1 (ko) 2014-11-26 2020-09-29 삼성전자주식회사 보조력 설정 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516717A (ja) * 2004-10-20 2008-05-22 アッシュ・ウー・エフ 両脚によってもたらされる力を測定及び分析する装置
JP2008173250A (ja) * 2007-01-17 2008-07-31 Matsushita Electric Works Ltd 歩行動作分析装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516717A (ja) * 2004-10-20 2008-05-22 アッシュ・ウー・エフ 両脚によってもたらされる力を測定及び分析する装置
JP2008173250A (ja) * 2007-01-17 2008-07-31 Matsushita Electric Works Ltd 歩行動作分析装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6009052197; Schutte L et al: 'An index for quantifying deviations from normal gait' Gait and Posture Vol.11,No.1, 2000, 25-31 *
JPN7009004495; Loslever P et al: 'Combined statistical study of joint angles and ground reaction forces using component and multiple c' IEEE Transactions on Biomedical Engineering Vol.41,No.12, 1994, 1160-1167 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041752A (ja) * 2009-08-24 2011-03-03 Feel Fine Kk 支援システム及び支援方法
JP2015029543A (ja) * 2013-07-31 2015-02-16 国立大学法人 宮崎大学 ロコモティブシンドロームの評価値算出方法、および評価装置

Also Published As

Publication number Publication date
JP5315504B2 (ja) 2013-10-16

Similar Documents

Publication Publication Date Title
Auvinet et al. Detection of gait cycles in treadmill walking using a Kinect
RU2628648C2 (ru) Устройство и способ получения и обработки показаний измерений живых существ
KR101386649B1 (ko) 사용자의 상태 적용 게임 장치 및 그 게임 제공 방법
CN105210067B (zh) 计算用户的与体育锻炼有关的生理状态
JP6881451B2 (ja) 歩行状態判定装置、歩行状態判定システム、歩行状態判定方法及びプログラム
US11826140B2 (en) System and method for human motion detection and tracking
JP6127873B2 (ja) 歩行特徴の解析方法
WO2018126271A1 (en) Integrated goniometry system and method for use of same
Fagert et al. Characterizing left-right gait balance using footstep-induced structural vibrations
JP5459636B2 (ja) 支援システム及び支援方法
JP2006198073A (ja) 体動検出機および体動検出機を備える携帯端末装置
Baldewijns et al. Validation of the kinect for gait analysis using the GAITRite walkway
Magnúsdóttir et al. Comparing three devices for jump height measurement in a heterogeneous group of subjects
JP5315504B2 (ja) 歩行動作評価システム及び歩行動作評価方法
JP5915990B2 (ja) つまずきリスク評価装置、つまずきリスク評価システム
KR102030131B1 (ko) 적외선 영상을 이용한 연속적인 피부 상태 측정 방법
JP4450431B1 (ja) 歩行動作評価システム及び歩行動作評価方法
JP2019010435A (ja) ヘルスケアサービスシステム
JP2023119533A (ja) 歩行分析装置、歩行分析方法及びプログラム
JP6079585B2 (ja) 歩容のバランス評価装置
JP2003111752A (ja) 消費エネルギー算出装置
JP2016220779A (ja) 移動運動解析装置、方法及びプログラム
JP6486200B2 (ja) 移動運動解析装置及びシステム並びにプログラム
JP6917047B2 (ja) 複数のウェアラブルなセンサによる運動機能評価システム
KR101988847B1 (ko) 훈련비율 결정방법 및 프로그램

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130605

R150 Certificate of patent or registration of utility model

Ref document number: 5315504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250