JP2010245496A - Heat conduction composite material and method of manufacturing the same - Google Patents

Heat conduction composite material and method of manufacturing the same Download PDF

Info

Publication number
JP2010245496A
JP2010245496A JP2009168177A JP2009168177A JP2010245496A JP 2010245496 A JP2010245496 A JP 2010245496A JP 2009168177 A JP2009168177 A JP 2009168177A JP 2009168177 A JP2009168177 A JP 2009168177A JP 2010245496 A JP2010245496 A JP 2010245496A
Authority
JP
Japan
Prior art keywords
plate
heat transfer
heat
pair
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009168177A
Other languages
Japanese (ja)
Other versions
JP5292556B2 (en
Inventor
Takuya Osaka
卓也 大坂
Yutaka Suzuki
裕 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Welcon
Welcon Inc Japan
Original Assignee
Welcon
Welcon Inc Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Welcon, Welcon Inc Japan filed Critical Welcon
Priority to JP2009168177A priority Critical patent/JP5292556B2/en
Publication of JP2010245496A publication Critical patent/JP2010245496A/en
Application granted granted Critical
Publication of JP5292556B2 publication Critical patent/JP5292556B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To reduce thermal expansion in a surface direction while securing high thermal conductivity in a thickness direction of a board. <P>SOLUTION: A heat conduction composite material includes: a core material 11 formed by a material with a comparatively small coefficient of thermal expansion and having a plurality of through holes 11a penetrating along a thickness direction of a board; a pair of surface layer materials 13, 14 formed by a material with a larger thermal conductivity as compared with the core material 11 and laminated on the two surfaces of the core material 11; and heat transfer materials 12 formed by a material with a larger thermal conductivity as compared with the core material 11 and arranged in each of the plurality of through holes 11a in contact with the pair of surface layer materials 13, 14, while securing a gap in at least a portion between an inner wall surface of each of the through holes 11a and each of the heat transfer materials. Between the core material 11 and the pair of surface layer materials 13, 14 and between the heat transfer materials 12 and the pair of surface layer materials 13, 14 are unified by diffusion joining. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体素子等に搭載されるヒートスプレッダやヒートシンク等の放熱部材を構成する熱伝導複合材及びその製造方法に関するものである。   The present invention relates to a heat conductive composite material constituting a heat dissipating member such as a heat spreader or a heat sink mounted on a semiconductor element or the like, and a method for manufacturing the same.

半導体パッケージの集積回路チップ(以下「チップ」という)、とりわけ、大型コンピューター用のLSlやULSIは、高集積度化、演算速度の高速化の方向に進んでおり、作動中における消費電力の増加に伴う発熱量が非常に大きくなっている。チップは、大容量化して、発熱量が大きくなっており、伝熱基板の熱膨張率がチップ材料であるケイ素(Si)やガリウムヒ素(GaAs)等の熱膨張率と大きな差があると、チップが剥離あるいは割れを生ずることになる。これに伴い、半導体パッケージの設計も熱放散性を考慮したものとなり、チップに搭載する伝熱基板にも放熱性が要求され、伝熱基板の熱伝導率を大きくすることが求められる。すなわち、伝熱基板には、チップと熱膨張率が近く、かつ、熱伝導率が大きいことが要求されている。   Integrated circuit chips (hereinafter referred to as “chips”) for semiconductor packages, especially LSl and ULSI for large computers, are progressing toward higher integration and higher calculation speed, which increases power consumption during operation. The accompanying calorific value is very large. The chip has a large capacity and a large calorific value, and the thermal expansion coefficient of the heat transfer substrate is greatly different from the thermal expansion coefficient of silicon (Si) or gallium arsenide (GaAs) which are chip materials, The chip will be peeled off or cracked. Along with this, the design of the semiconductor package also takes heat dissipation into consideration, and the heat transfer board mounted on the chip is required to have heat dissipation, and the heat conductivity of the heat transfer board is required to be increased. That is, the heat transfer substrate is required to have a thermal expansion coefficient close to that of the chip and to have a high thermal conductivity.

一方、パワーエレクトロニクスの分野においては、種々のpn接合の組合せ構造により、サイリスタ、バイポーラトランジスタ、MOSFET等が実用化されている。さらに、絶縁ゲート型バイポーラトランジスタ(IGBT)やゲート信号によりターンオフ機能を併せ持つゲートターンオフサイリスタ(GTO)が開発され、電力制御やモーター制御のインバーター機器として広範囲な普及が進んでいる。また、昨今の環境負荷への低減策として、自動車動力源のエンジンとモーターのハイブリッド化においても、これら電力用半導体素子は大きな役割を果している。   On the other hand, in the field of power electronics, thyristors, bipolar transistors, MOSFETs, and the like have been put into practical use by various pn junction combination structures. Furthermore, an insulated gate bipolar transistor (IGBT) and a gate turn-off thyristor (GTO) having a turn-off function by a gate signal have been developed, and are widely spread as inverter devices for power control and motor control. In addition, as a measure for reducing the environmental load in recent years, these power semiconductor elements also play a major role in the hybridization of the engine and motor of an automobile power source.

しかしながら、これら電力用半導体素子は、通電により発熱し、その高容量化、高速化に伴い、発熱量も増大する傾向にある。発熱に起因する半導体素子の特性劣化、短寿命化を防止するためには、放熱部材を設け、半導体素子及びその近傍での温度上昇を抑制する必要がある。銅は、熱伝導率が400W/mKと大きく、かつ低価格であるため、放熱部材として一般に用いられている。しかし、電力用半導体素子を備えた半導体装置の放熱部材としては、熱膨張率が3.5〜4.2ppm/Kのケイ素(Si)や5.9ppm/Kのガリウムヒ素(GaAs)と接合されるため、熱膨張率がこれらに近い必要がある。銅は、熱膨張率が17ppm/Kと大きく、半導体素子との半田接合性は好ましくない。このため、従来では、モリブデン(Mo)やタングステン(W)といった熱膨張率がケイ素(Si)に近い材料を、放熱部材として用いたり、半導体素子と放熱部材との間に設けたりしている。   However, these power semiconductor elements generate heat when energized, and the amount of generated heat tends to increase with increasing capacity and speed. In order to prevent deterioration in characteristics and shortening of the life of the semiconductor element due to heat generation, it is necessary to provide a heat radiating member to suppress the temperature rise in the semiconductor element and its vicinity. Copper has a large thermal conductivity of 400 W / mK and is inexpensive, so it is generally used as a heat dissipation member. However, as a heat radiating member of a semiconductor device provided with a power semiconductor element, it is bonded to silicon (Si) having a thermal expansion coefficient of 3.5 to 4.2 ppm / K or gallium arsenide (GaAs) having 5.9 ppm / K. Therefore, the coefficient of thermal expansion needs to be close to these. Copper has a large coefficient of thermal expansion of 17 ppm / K and is not preferable for solder bonding with a semiconductor element. For this reason, conventionally, a material such as molybdenum (Mo) or tungsten (W) having a thermal expansion coefficient close to that of silicon (Si) is used as the heat radiating member or provided between the semiconductor element and the heat radiating member.

図14は、公知となっている熱伝導複合材を示す側面図である。この熱伝導複合材100は、熱膨張率が半導体素子に近いモリブデン(Mo)材101と熱伝導率の大きな銅(Cu)材102とを積層した後、ホットプレス等の設備により相互に拡散接合することによって一体化し、これらの材料の中間的な性質を実現したものである(例えば、特許文献1参照)。尚、拡散接合に代えてロウづけにより一体化させた熱伝導複合材や、異なる素材を連続的に積層圧延処理することにより接合した熱伝導複合材(クラッド材)も基本的な技術思想は共通する。   FIG. 14 is a side view showing a known heat conducting composite material. This thermal conductive composite material 100 is formed by laminating a molybdenum (Mo) material 101 having a thermal expansion coefficient close to that of a semiconductor element and a copper (Cu) material 102 having a high thermal conductivity, and then diffusion-bonding to each other by equipment such as hot pressing. In this way, they are integrated to realize intermediate properties of these materials (see, for example, Patent Document 1). The basic technical concept is common to heat conductive composites that are integrated by brazing instead of diffusion bonding, and heat conductive composites (clad materials) that are joined by successively laminating and rolling different materials. To do.

図15は、図14に示した熱伝導複合材100の材厚比と熱伝導率及び熱膨張率との関係を示したものである。図15においては、横軸に熱伝導複合材100に占めるモリブデン(Mo)材と銅(Cu)材の材厚比、左縦軸に見掛けの熱伝導率、右縦軸に見掛けの熱膨張率を示している。この熱伝導複合材100においては、半導体素子と同等の熱膨張率(5〜6ppm/K)を得ようとすると、モリブデン(Mo)材と銅(Cu)材の材厚比は一義的に決り、Mo:Cu=9:1前後の範囲となる。尚、図15によれば、この熱伝導複合材100では、ケイ素(Si)と同じ熱膨張率(4ppm/K前後)を実現することはできない。モリブデン(Mo)やタングステン(W)に替えてインバー(Fe−Ni合金)を用いた、銅(Cu)/インバー(Fe−Ni合金)/銅(Cu)構成のクラッド材等も市販されているが、材厚構成により面方向の熱膨張率を5ppm/Kに設定した場合、板厚方向の熱伝導率は15W/mKと非常に低い特性しか得ることができない。   FIG. 15 shows the relationship between the thickness ratio, the thermal conductivity, and the thermal expansion coefficient of the heat conducting composite material 100 shown in FIG. In FIG. 15, the horizontal axis represents the thickness ratio of the molybdenum (Mo) material and the copper (Cu) material in the heat conductive composite material 100, the left thermal axis represents the apparent thermal conductivity, and the right vertical axis represents the apparent thermal expansion coefficient. Is shown. In this heat conducting composite material 100, the material thickness ratio of the molybdenum (Mo) material and the copper (Cu) material is uniquely determined in order to obtain a thermal expansion coefficient (5 to 6 ppm / K) equivalent to that of the semiconductor element. , Mo: Cu = 9: 1 or so. In addition, according to FIG. 15, in this heat conductive composite material 100, the same thermal expansion coefficient (around 4 ppm / K) as silicon (Si) cannot be implement | achieved. Clad materials having a copper (Cu) / invar (Fe—Ni alloy) / copper (Cu) structure using invar (Fe—Ni alloy) instead of molybdenum (Mo) or tungsten (W) are also commercially available. However, when the thermal expansion coefficient in the plane direction is set to 5 ppm / K depending on the material thickness configuration, only a very low characteristic of 15 W / mK in the plate thickness direction can be obtained.

図16は、公知となっている熱伝導複合材を示す斜視図である。この熱伝導複合材110は、ケイ素(Si)と同等の熱膨張率を有する鉄−ニッケル−コバルト合金(Fe−Ni−Co)、あるいは鉄−ニッケル合金(Fe−Ni)であって、複数の貫通孔111aを設けた一対の板状体111の間に、銅(Cu)あるいはアルミニウム(Al)の板状体112を挟み圧延することにより、貫通孔111aに銅あるいはアルミニウムを充填したものである(例えば、特許文献2、特許文献3、特許文献4参照)。   FIG. 16 is a perspective view showing a known heat conducting composite material. This heat conducting composite 110 is an iron-nickel-cobalt alloy (Fe-Ni-Co) or iron-nickel alloy (Fe-Ni) having a thermal expansion coefficient equivalent to that of silicon (Si), A through-hole 111a is filled with copper or aluminum by sandwiching and rolling a plate-like body 112 of copper (Cu) or aluminum (Al) between a pair of plate-like bodies 111 provided with a through-hole 111a. (For example, refer to Patent Document 2, Patent Document 3, and Patent Document 4).

この熱伝導複合材110は、熱伝導率の大きな板状体112の一部を熱の主要な伝達方向である板状体111の板厚方向に露出させることから、上述した熱伝導複合材100の積層構造を熱抵抗の直列配置とすると、この熱伝導複合材110の積層構造を熱抵抗の並列配置とすることができる。   Since the heat conductive composite material 110 exposes a part of the plate-like body 112 having a large thermal conductivity in the plate thickness direction of the plate-like body 111 which is the main heat transfer direction, the heat conductive composite material 100 described above. If the stacked structure is a serial arrangement of thermal resistances, the stacked structure of the heat conducting composite material 110 can be a parallel arrangement of thermal resistances.

また、その伝熱特性は、上述した熱伝導複合材100が図15に示すような二次関数的な変化であるのに対して、板状体111の面積割合に応じて直線的な変化を示すものと予想される。このことから、板状体111に鉄−ニッケル(Fe−Ni)系合金など低価格の材料を利用可能である。しかしながら、貫通孔111a内に銅あるいはアルミニウムを充填する手法は、圧延や熱間静水圧プレスなどの強加工による塑性流動を応用した方法であり、その流動範囲にはおのずから限界がある。また、圧延で充填させた場合、得られた成型品は素材の構成が圧延作用により引き延され、圧延前に円形であった板状体111の貫通孔111aが圧延後には楕円形状に変形する。結果的に完成した材料の平面方向の熱膨張率、熱伝導率の特性は異方性をもつ結果となり、放熱部材として使用する場合には好ましいものでない。   In addition, the heat transfer characteristics of the above-described heat conductive composite material 100 change in a quadratic function as shown in FIG. Expected to show. For this reason, a low-cost material such as an iron-nickel (Fe—Ni) alloy can be used for the plate-like body 111. However, the method of filling copper or aluminum into the through-hole 111a is a method that applies plastic flow by strong processing such as rolling or hot isostatic pressing, and its flow range is naturally limited. Moreover, when filled by rolling, the structure of the obtained molded product is stretched by the rolling action, and the through-hole 111a of the plate-like body 111, which was circular before rolling, is deformed into an elliptical shape after rolling. . As a result, the characteristics of the thermal expansion coefficient and thermal conductivity in the planar direction of the finished material have anisotropy, which is not preferable when used as a heat radiating member.

一方、これらの熱伝導複合材と構造を異にする、銅−モリブデン(Cu−Mo)合金、銅−タングステン(Cu−W)合金の熱伝導複合材は、半導体素子の熱膨張率とほぼ等しいモリブデン(Mo)の粉末、あるいはタングステン(W)の粉末を焼結することによって、気孔率の大きい焼結体を作製し、その後、溶融した銅を含浸させて製造するか(例えば、特許文献5参照)、あるいはモリブデン(Mo)の粉末、あるいはタングステン(W)の粉末と銅(Cu)の粉末を焼結することによって得られたモリブデン(Mo)あるいはタングステン(W)と銅(Cu)の複合体である(例えば、特許文献6参照)。これら熱伝導複合材は、骨格構造であるモリブデン(Mo)、タングステン(W)と、熱伝導材である銅(Cu)との構成割合により、その特性は一義的に決まる。市販品の一例を上げれば、質量比89%W−11%Cuの材料においては、熱膨張率が6.5ppm/K、熱伝導率が180〜210W/mKである。銅(Cu)の構成比率を上げれば熱伝導率も大きくなるが、同時に熱膨張率も上昇し、80%W−20%Cuにおいては、熱膨張率が8.3ppm/K、熱伝導率が200〜230W/mKと特に熱膨張率の上昇が著しく、半導体素子との熱膨張率の整合性を重視する場合、構成割合の選択範囲に自由度はない。また、モリブデン(Mo)、タングステン(W)は、高密度であるため重く、所定の寸法を得るには機械的成形加工が必要となり、加工コストを要する。さらに、モリブデン(Mo)やタングステン(W)は、レアメタルとして資源の枯渇が懸念され、結果的に材料価格も高価であることから昨今の電子機器の低コスト化要求に対応することは本質的に難しい。   On the other hand, the heat conductive composites of copper-molybdenum (Cu-Mo) alloy and copper-tungsten (Cu-W) alloy, which have different structures from those of these heat conductive composites, are almost equal to the thermal expansion coefficient of the semiconductor element. Sintered molybdenum (Mo) powder or tungsten (W) powder to produce a sintered body having a large porosity, and then impregnated with molten copper (for example, Patent Document 5) See also), or molybdenum (Mo) powder, or a composite of molybdenum (Mo) or tungsten (W) and copper (Cu) obtained by sintering a powder of tungsten (W) and copper (Cu). Body (see, for example, Patent Document 6). The characteristics of these heat conductive composites are uniquely determined by the composition ratio of molybdenum (Mo) and tungsten (W), which are skeleton structures, and copper (Cu), which is a heat conductive material. If an example of a commercial item is raised, in the material of mass ratio 89% W-11% Cu, a coefficient of thermal expansion is 6.5 ppm / K, and thermal conductivity is 180-210 W / mK. Increasing the composition ratio of copper (Cu) increases the thermal conductivity, but also increases the thermal expansion coefficient. At 80% W-20% Cu, the thermal expansion coefficient is 8.3 ppm / K, and the thermal conductivity is In particular, when the thermal expansion coefficient is remarkably increased from 200 to 230 W / mK, and the importance of matching the thermal expansion coefficient with the semiconductor element is emphasized, there is no flexibility in the selection range of the constituent ratio. Molybdenum (Mo) and tungsten (W) are heavy because of their high density, and mechanical molding is required to obtain a predetermined dimension, which requires processing costs. Furthermore, molybdenum (Mo) and tungsten (W) are a rare metal, and there is concern about the depletion of resources. As a result, the material price is also expensive, so it is essential to meet the recent demands for reducing the cost of electronic devices. difficult.

特許第2860037号公報Japanese Patent No. 2860037 特公昭63−3741号公報Japanese Patent Publication No. 63-3741 特公平7−80272号公報Japanese Patent Publication No. 7-80272 特開平9−312364号公報JP-A-9-312364 特開昭59−141247号公報JP 59-141247 A 特開昭62−294147号公報JP 62-294147 A

以上のように半導体素子を搭載した半導体装置は、いずれもその動作において熱を発生し、蓄熱されると半導体素子の機能を損ねる虞れがある。このため、発生する熱を外部に放散するための熱伝導性に優れた放熱部材が必要となる。放熱部材は、直接あるいは絶縁層を介して半導体素子と接合されるため、熱伝導性だけでなく、熱膨張率の点でも半導体素子との整合性が要求される。そして、上述した熱伝導複合材は、物性の異なる2つの金属材料を複合化させることにより、半導体素子に近い熱膨張率と200W/mK前後の熱伝導率を達成している。   As described above, any semiconductor device on which a semiconductor element is mounted generates heat in its operation, and there is a risk of impairing the function of the semiconductor element when the heat is stored. For this reason, the heat radiating member excellent in thermal conductivity for dissipating generated heat to the outside is required. Since the heat dissipating member is joined to the semiconductor element directly or via an insulating layer, consistency with the semiconductor element is required not only in terms of thermal conductivity but also in terms of coefficient of thermal expansion. The above-described heat conductive composite material achieves a thermal expansion coefficient close to that of a semiconductor element and a heat conductivity of around 200 W / mK by combining two metal materials having different physical properties.

しかしながら、より高い熱伝導率を得ようとすれば、構成材料中の銅(Cu)の構成比率を増やさざるを得ないが、これが放熱部材全体の熱膨張率を上昇させる要因となり、低熱膨張で高熱伝導の放熱基板を実現することができなかった。   However, if higher thermal conductivity is to be obtained, the component ratio of copper (Cu) in the constituent material must be increased, but this increases the thermal expansion coefficient of the entire heat dissipating member, resulting in low thermal expansion. A heat dissipation board with high thermal conductivity could not be realized.

この問題の本質的原因を考えれば、上述した熱伝導複合材は、熱伝導を主体とする材料と、熱膨張率を抑えることを主体とした材料とが相互に結合した構造であることにある。ここで、半導体素子の放熱部材に要求される特性を整理すれば、まず放熱部材に必要とされる熱膨張率の整合性は、半導体素子が放熱部材と接する面方向に必要であり、放熱部材の板厚方向には必要ない。熱伝導率は、その主たる熱伝達方向は放熱部材の板厚方向に要求される。従って、高い熱伝導率の要求される板厚方向に高熱伝導材を配置し、同時にその高熱伝導材の熱膨張の影響を面方向に伝達しない分離構造であり、かつ、放熱部材としては一体の構造であることが要求される。   Considering the essential cause of this problem, the above-mentioned heat conduction composite material has a structure in which a material mainly composed of heat conduction and a material mainly composed of suppressing the coefficient of thermal expansion are coupled to each other. . Here, if the characteristics required for the heat radiating member of the semiconductor element are arranged, first, the consistency of the thermal expansion coefficient required for the heat radiating member is necessary in the surface direction in which the semiconductor element is in contact with the heat radiating member. It is not necessary in the thickness direction. The main heat transfer direction of the thermal conductivity is required in the plate thickness direction of the heat radiating member. Therefore, a high thermal conductivity material is arranged in the plate thickness direction where high thermal conductivity is required, and at the same time, it is a separation structure that does not transmit the effect of thermal expansion of the high thermal conductivity material in the plane direction, and the heat radiating member is integrated It is required to be a structure.

本発明は、上記に鑑みてなされたものであって、搭載する半導体素子と整合するように、面方向には熱膨張を小さく抑え、しかも板厚方向には高い熱伝導性を確保することのできる熱伝導複合材及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above, and suppresses thermal expansion in the plane direction and ensures high thermal conductivity in the plate thickness direction so as to match the semiconductor element to be mounted. An object of the present invention is to provide a heat conductive composite material and a method for producing the same.

上記目的を達成するため、本発明に係る熱伝導複合材は、互いに熱膨張率及び熱伝導率が異なる複数の板状体を積層することにより構成した熱伝導複合材であって、比較的熱膨張率の小さい材料によって成形し、かつ板厚方向に沿って貫通した複数の貫通孔を有する第1板状体と、前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記第1板状体の2つの表面にそれぞれ接合させた一対の第2板状体と、前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記貫通孔の内壁面との間の少なくとも一部に間隙を確保する一方、前記一対の第2板状体に対してそれぞれ接合する態様で前記複数の貫通孔のそれぞれに配設した伝熱体とを備えたことを特徴とする。   In order to achieve the above object, a heat conductive composite material according to the present invention is a heat conductive composite material formed by laminating a plurality of plate-like bodies having different thermal expansion coefficients and heat conductivity, and is relatively A first plate-like body formed by a material having a small expansion coefficient and having a plurality of through holes penetrating along the plate thickness direction, and a material having a larger thermal conductivity than the first plate-like body A pair of second plates that are molded and bonded to two surfaces of the first plate, respectively, and a material having a larger thermal conductivity than the first plate, A heat transfer body disposed in each of the plurality of through-holes in such a manner that a gap is secured in at least a part between the inner wall surfaces of the through-holes and is bonded to the pair of second plate-like bodies, respectively. It is provided with.

また、本発明に係る熱伝導複合材は、互いに熱膨張率及び熱伝導率が異なる複数の板状体を積層することにより構成した熱伝導複合材であって、比較的熱膨張率の小さい材料によって成形し、かつ板厚方向に沿って貫通した複数の貫通孔を有する第1板状体と、前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記第1板状体の2つの表面にそれぞれ積層させた一対の第2板状体と、前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記貫通孔の内壁面との間の少なくとも一部に間隙を確保する一方、前記一対の第2板状体に対してそれぞれ接触する態様で前記複数の貫通孔のそれぞれに配設した伝熱体とを備え、かつこれら第1板状体と一対の第2板状体との間及び伝熱体と一対の第2板状体との間をそれぞれ拡散接合により一体化したことを特徴とする。   The heat conductive composite material according to the present invention is a heat conductive composite material formed by laminating a plurality of plate-like bodies having different thermal expansion coefficients and thermal conductivity, and a material having a relatively low thermal expansion coefficient. And a first plate-like body having a plurality of through holes penetrating along the plate thickness direction, and a material having a larger thermal conductivity than the first plate-like body, A pair of second plate-like bodies laminated on the two surfaces of one plate-like body, and a material having a larger thermal conductivity than the first plate-like body, and the inner wall surface of the through hole A heat transfer body disposed in each of the plurality of through-holes in a manner of contacting each of the pair of second plate-shaped bodies, while ensuring a gap in at least a portion between Between the first plate and the pair of second plates, and the heat transfer body and the pair of second plates Characterized in that the integrated by diffusion bonding respectively between.

また、本発明は、上述した熱伝導複合材において、前記伝熱体は、前記第1板状体に形成した貫通孔の内部横断面形状に対して相似形となる横断面形状を有した柱状部材であることを特徴とする。   Further, the present invention is the above-described heat conductive composite material, wherein the heat transfer body is a columnar shape having a cross-sectional shape that is similar to the internal cross-sectional shape of the through hole formed in the first plate-like body. It is a member.

また、本発明は、上述した熱伝導複合材において、前記第1板状体は、横断面が円形の貫通孔を有したものであり、前記伝熱体は、横断面が円形の柱状部材であることを特徴とする。   Further, the present invention is the above-described heat conductive composite material, wherein the first plate-like body has a through hole having a circular cross section, and the heat transfer body is a columnar member having a circular cross section. It is characterized by being.

また、本発明に係る熱伝導複合材の製造方法は、互いに熱膨張率及び熱伝導率が異なる複数の板状体を積層することにより構成され、比較的熱膨張率の小さい材料によって成形し、かつ板厚方向に沿って貫通した複数の貫通孔を有する第1板状体と、前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記第1板状体の2つの表面にそれぞれ接合させた一対の第2板状体と、前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記貫通孔の内壁面との間の少なくとも一部に間隙を確保する一方、前記一対の第2板状体に対してそれぞれ接合する態様で前記複数の貫通孔のそれぞれに配設した伝熱体とを備えた熱伝導複合材を製造する方法であって、前記第1板状体の下方に位置する表面に前記第2板状体を積層する工程と、前記第1板状体の貫通孔にそれぞれ前記伝熱体を配置する工程と、前記第1板状体の上方に位置する表面に前記第2板状体を積層する工程と、これら積層した第1板状体及び一対の第2板状体の板厚方向に沿って圧力を加えることにより、前記第1板状体と前記一対の第2板状体との間及び前記伝熱体と前記一対の第2板状体との間をそれぞれ拡散接合させる工程とを含むことを特徴とする。   In addition, the method for manufacturing a heat conductive composite material according to the present invention is configured by laminating a plurality of plate-like bodies having different thermal expansion coefficients and thermal conductivities, and is formed using a material having a relatively small thermal expansion coefficient. The first plate-shaped body is formed by a first plate-shaped body having a plurality of through holes penetrating along the plate thickness direction, and a material having a larger thermal conductivity than the first plate-shaped body. Between a pair of second plate-like bodies joined to the two surfaces, and a material having a larger thermal conductivity than the first plate-like body, and between the inner wall surfaces of the through holes A heat conductive composite material comprising a heat transfer body disposed in each of the plurality of through-holes in a mode in which a gap is secured at least in part and is bonded to the pair of second plate-like bodies, respectively. The second plate on a surface located below the first plate-like body. Laminating the sheet-like body, placing the heat transfer body in the through holes of the first plate-like body, and laminating the second plate-like body on the surface located above the first plate-like body. And applying the pressure along the thickness direction of the laminated first plate and the pair of second plates to form the first plate and the pair of second plates. And a step of performing diffusion bonding between the heat transfer body and the pair of second plate-like bodies.

また、本発明に係る熱伝導複合材の製造方法は、互いに熱膨張率及び熱伝導率が異なる複数の板状体を積層することにより構成され、比較的熱膨張率の小さい材料によって成形し、かつ板厚方向に沿って貫通した複数の貫通孔を有する第1板状体と、前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記第1板状体の2つの表面にそれぞれ接合させた一対の第2板状体と、前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記貫通孔の内壁面との間の少なくとも一部に間隙を確保する一方、前記一対の第2板状体に対してそれぞれ接合する態様で前記複数の貫通孔のそれぞれに配設した伝熱体とを備えた熱伝導複合材を製造する方法であって、一方の第2板状体において前記第1板状体の貫通孔に対応する部位にそれぞれ前記伝熱体を予め拡散接合させる工程と、貫通孔のそれぞれに伝熱体を配置する態様で前記一方の第2板状体に前記第1板状体を積層する工程と、伝熱体が拡散接合された一方の第2板状体との間に前記第1板状体を挟む態様で第1板状体に他方の第2板状体を積層する工程と、これら積層した第1板状体及び一対の第2板状体の板厚方向に沿って圧力を加えることにより、前記第1板状体と前記一対の第2板状体との間及び前記伝熱体と前記他方の第2板状体との間をそれぞれ拡散接合させる工程とを含むことを特徴とする。   In addition, the method for manufacturing a heat conductive composite material according to the present invention is configured by laminating a plurality of plate-like bodies having different thermal expansion coefficients and thermal conductivities, and is formed using a material having a relatively small thermal expansion coefficient. The first plate-shaped body is formed by a first plate-shaped body having a plurality of through holes penetrating along the plate thickness direction, and a material having a larger thermal conductivity than the first plate-shaped body. Between a pair of second plate-like bodies joined to the two surfaces, and a material having a larger thermal conductivity than the first plate-like body, and between the inner wall surfaces of the through holes A heat conductive composite material comprising a heat transfer body disposed in each of the plurality of through-holes in a mode in which a gap is secured at least in part and bonded to the pair of second plate-like bodies, respectively. A first plate-like body penetrating in one second plate-like body The step of preliminarily diffusing and bonding the heat transfer body to each of the parts corresponding to the above, and the step of laminating the first plate-like body on the one second plate-like body in a mode of disposing the heat transfer body in each of the through holes And a step of laminating the other second plate-like body on the first plate-like body in such a manner that the first plate-like body is sandwiched between the second plate-like body to which the heat transfer body is diffusion-bonded, By applying pressure along the thickness direction of the laminated first plate and the pair of second plates, between the first plate and the pair of second plates and the transmission. And a step of performing diffusion bonding between the thermal body and the other second plate-like body.

また、本発明に係る熱伝導複合材の製造方法は、互いに熱膨張率及び熱伝導率が異なる複数の板状体を積層することにより構成され、比較的熱膨張率の小さい材料によって成形し、かつ板厚方向に沿って貫通した複数の貫通孔を有する第1板状体と、前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記第1板状体の2つの表面にそれぞれ接合させた一対の第2板状体と、前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記貫通孔の内壁面との間の少なくとも一部に間隙を確保する一方、前記一対の第2板状体に対してそれぞれ接合する態様で前記複数の貫通孔のそれぞれに配設した伝熱体とを備えた熱伝導複合材を製造する方法であって、一方の第2板状体において前記第1板状体の貫通孔に対応する部位に予め前記伝熱体を一体に成形する工程と、貫通孔のそれぞれに伝熱体を配置する態様で前記一方の第2板状体に前記第1板状体を積層する工程と、伝熱体が拡散接合された一方の第2板状体との間に前記第1板状体を挟む態様で第1板状体に他方の第2板状体を積層する工程と、これら積層した第1板状体及び一対の第2板状体の板厚方向に沿って圧力を加えることにより、前記第1板状体と前記一対の第2板状体との間及び前記伝熱体と前記他方の第2板状体との間をそれぞれ拡散接合させる工程とを含むことを特徴とする。   In addition, the method for manufacturing a heat conductive composite material according to the present invention is configured by laminating a plurality of plate-like bodies having different thermal expansion coefficients and thermal conductivities, and is formed using a material having a relatively small thermal expansion coefficient. The first plate-shaped body is formed by a first plate-shaped body having a plurality of through holes penetrating along the plate thickness direction, and a material having a larger thermal conductivity than the first plate-shaped body. Between a pair of second plate-like bodies joined to the two surfaces, and a material having a larger thermal conductivity than the first plate-like body, and between the inner wall surfaces of the through holes A heat conductive composite material comprising a heat transfer body disposed in each of the plurality of through-holes in a mode in which a gap is secured at least in part and is bonded to the pair of second plate-like bodies, respectively. A first plate-like body penetrating in one second plate-like body A step of integrally forming the heat transfer body in a portion corresponding to the above, and a step of laminating the first plate-like body on the one second plate-like body in such a manner that the heat transfer body is disposed in each of the through holes. And a step of laminating the other second plate-like body on the first plate-like body in such a manner that the first plate-like body is sandwiched between the second plate-like body to which the heat transfer body is diffusion-bonded, By applying pressure along the thickness direction of the laminated first plate and the pair of second plates, between the first plate and the pair of second plates and the transmission. And a step of performing diffusion bonding between the thermal body and the other second plate-like body.

また、本発明は、上述した熱伝導複合材の製造方法において、前記伝熱体として、前記第1板状体の板厚よりも大きな外径を有した球状に成形したものを適用することを特徴とする。   Further, the present invention applies to the method for manufacturing a heat conductive composite described above, the heat transfer body is formed into a spherical shape having an outer diameter larger than the plate thickness of the first plate-like body. Features.

また、本発明は、上述した熱伝導複合材の製造方法において、前記第2板状体において前記第1板状体の貫通孔に対応する部位のそれぞれに予め球面状の凹部を形成したことを特徴とする。   In the method for manufacturing a heat conductive composite material described above, the present invention is such that a spherical concave portion is formed in advance in each of the portions corresponding to the through holes of the first plate-like body in the second plate-like body. Features.

また、本発明は、上述した熱伝導複合材の製造方法において、前記第1板状体として、横断面が円形の貫通孔を有したものを適用し、前記伝熱体として、横断面が円形の柱状を成すものを適用したことを特徴とする。   Further, the present invention is the above-described method for manufacturing a heat conducting composite material, wherein the first plate-like body has a through hole having a circular cross section, and the heat transfer body has a circular cross section. It is characterized by applying a columnar shape.

本発明に係る熱伝導複合材によれば、第1板状体の2つの表面にそれぞれ第2板状体を接合し、かつ第1板状体の貫通孔に配設した伝熱体によって一対の第2板状体の間が連結されるため、熱伝導複合材の板厚方向に高い熱伝導性を確保することができる。しかも、第1板状体の貫通孔と伝熱体との間には少なくとも一部に間隙が確保されているため、伝熱体の熱膨張が第1板状体に与える影響を可及的に小さくし、熱伝導複合材の面方向に沿った熱膨張率を小さく抑えることが可能となる。   According to the heat conductive composite material according to the present invention, a pair of heat transfer members is provided by joining the second plate member to the two surfaces of the first plate member and disposing the first plate member in the through holes. Since the second plate-like bodies are connected to each other, high thermal conductivity can be ensured in the thickness direction of the heat conductive composite material. In addition, since a gap is secured at least partially between the through hole of the first plate-like body and the heat transfer body, the influence of the thermal expansion of the heat transfer body on the first plate-like body is as much as possible. It is possible to reduce the coefficient of thermal expansion along the surface direction of the heat conducting composite material.

また、本発明に係る熱伝導複合材の製造方法によれば、拡散接合によって第1板状体と一対の第2板状体との間及び伝熱体と一対の第2板状体との間をそれぞれ一体化しているため、ロウ付けや溶接等、その他の接合方法に比べて貫通孔の内壁面と伝熱体との間の間隙を正確に管理することができる。すなわち、ロウ付けの際に流出したロウや溶接の際の高熱が上述の間隙に影響を与える虞れがないため、伝熱体の熱膨張よる第1板状体への影響をより小さく抑え、きわめて性能の高い熱伝導複合材を具現化することが可能となる。   Moreover, according to the manufacturing method of the heat conductive composite material which concerns on this invention, it is between a 1st plate-shaped body and a pair of 2nd plate-shaped body by diffusion bonding, and between a heat exchanger and a pair of 2nd plate-shaped body. Since the spaces are integrated, the gap between the inner wall surface of the through hole and the heat transfer body can be accurately managed as compared with other joining methods such as brazing and welding. That is, since there is no possibility that high heat at the time of brazing or welding that has flowed out during brazing will affect the above-mentioned gap, the influence on the first plate-like body due to the thermal expansion of the heat transfer body is further suppressed, It becomes possible to realize a heat conducting composite material with extremely high performance.

図1は、本発明の実施の形態1である熱伝導複合材の断面側面図である。FIG. 1 is a cross-sectional side view of a heat conducting composite material according to Embodiment 1 of the present invention. 図2は、図1に示した熱伝導複合材の平面図である。FIG. 2 is a plan view of the heat conducting composite shown in FIG. 図3−1は、図1に示した熱伝導複合材を製造する過程において第2板状体に治具を搭載した状態を示す断面図である。FIG. 3A is a cross-sectional view illustrating a state where a jig is mounted on the second plate-like body in the process of manufacturing the heat conducting composite material illustrated in FIG. 1. 図3−2は、図1に示した熱伝導複合材を製造する過程において治具の収容孔に伝熱体を配設した状態を示す断面図である。FIG. 3-2 is a cross-sectional view illustrating a state in which a heat transfer member is disposed in the jig accommodation hole in the process of manufacturing the heat conductive composite material illustrated in FIG. 1. 図3−3は、図1に示した熱伝導複合材を製造する過程において第2板状体に伝熱体を仮接合させる状態を示す断面図である。FIG. 3C is a cross-sectional view illustrating a state where the heat transfer body is temporarily joined to the second plate-like body in the process of manufacturing the heat conductive composite material illustrated in FIG. 1. 図3−4は、図1に示した熱伝導複合材を製造する過程において第2板状体に第1板状体を積層した状態を示す断面図である。3-4 is a cross-sectional view illustrating a state in which the first plate-like body is stacked on the second plate-like body in the process of manufacturing the heat conductive composite material illustrated in FIG. 1. 図3−5は、図1に示した熱伝導複合材を製造する過程において第1板状体に第2板状体を積層して接合する状態を示す断面図である。3-5 is a cross-sectional view illustrating a state in which the second plate-like body is laminated and joined to the first plate-like body in the process of manufacturing the heat conductive composite material illustrated in FIG. 1. 図4は、図1に示した熱伝導複合材において第2板状体の板厚と面方向に沿った熱膨張率との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the plate thickness of the second plate-like body and the coefficient of thermal expansion along the surface direction in the heat conducting composite shown in FIG. 図5は、図4で用いた熱伝導複合材の詳細形状を示す分解斜視図である。FIG. 5 is an exploded perspective view showing a detailed shape of the heat conducting composite material used in FIG. 図6は、本発明の実施の形態2である熱伝導複合材の断面側面図である。FIG. 6 is a cross-sectional side view of the heat conducting composite material according to the second embodiment of the present invention. 図7は、図6に示した熱伝導複合材の平面図である。FIG. 7 is a plan view of the heat conducting composite shown in FIG. 図8−1は、図6に示した熱伝導複合材を製造する過程において伝熱体に治具を搭載した状態を示す断面図である。8A is a cross-sectional view illustrating a state where a jig is mounted on the heat transfer body in the process of manufacturing the heat conductive composite material illustrated in FIG. 6. 図8−2は、図6に示した熱伝導複合材を製造する過程において第2板状体に伝熱体を仮接合させる状態を示す断面図である。FIG. 8-2 is a cross-sectional view illustrating a state in which the heat transfer body is temporarily joined to the second plate-like body in the process of manufacturing the heat conductive composite material illustrated in FIG. 6. 図8−3は、図6に示した熱伝導複合材を製造する過程において第2板状体に第1板状体を積層した状態を示す断面図である。8-3 is a cross-sectional view illustrating a state in which the first plate-like body is stacked on the second plate-like body in the process of manufacturing the heat conductive composite material illustrated in FIG. 6. 図8−4は、図6に示した熱伝導複合材を製造する過程において第1板状体に第2板状体を積層して接合する状態を示す断面図である。FIG. 8-4 is a cross-sectional view illustrating a state in which the second plate-like body is laminated and bonded to the first plate-like body in the process of manufacturing the heat conductive composite material illustrated in FIG. 6. 図9は、図7に示した熱伝導複合材の拡大断面図である。FIG. 9 is an enlarged cross-sectional view of the heat conducting composite shown in FIG. 図10は、本発明の実施の形態3である熱伝導複合材の断面側面図である。FIG. 10 is a cross-sectional side view of a heat conducting composite material according to Embodiment 3 of the present invention. 図11は、図10に示した第2板状体の形状を示す断面側面図である。FIG. 11 is a cross-sectional side view showing the shape of the second plate-like body shown in FIG. 図12は、本発明の実施の形態4である熱伝導複合材の分解斜視図である。FIG. 12 is an exploded perspective view of the heat conducting composite material according to the fourth embodiment of the present invention. 図13は、図12に示した熱伝導複合材において第2板状体の断面形状を示す断面側面図である。FIG. 13 is a cross-sectional side view showing the cross-sectional shape of the second plate-like body in the heat conducting composite shown in FIG. 図14は、公知となっている熱伝導複合材を示す側面図である。FIG. 14 is a side view showing a known heat conducting composite material. 図15は、図14に示した熱伝導複合材の材厚比と熱伝導率及び熱膨張率の関係を示すグラフである。FIG. 15 is a graph showing the relationship between the thickness ratio, the thermal conductivity, and the thermal expansion coefficient of the heat conducting composite shown in FIG. 図16は、公知となっている熱伝導複合材を示す斜視図である。FIG. 16 is a perspective view showing a known heat conducting composite material.

以下、添付図面を参照しながら本発明に係る熱伝導複合材及びその製造方法の好適な実施の形態について詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a heat conductive composite material and a manufacturing method thereof according to the present invention will be described in detail with reference to the accompanying drawings.

(実施の形態1)
図1及び図2は、本発明の実施の形態1である熱伝導複合材を示したものである。熱伝導複合材10は、多数の貫通孔11aが設けられた芯材(第1板状体)11と、貫通孔11aに収容された伝熱材(伝熱体)12と、芯材11の一方の表面において伝熱材12に接合された表層材(第2板状体)13と、芯材11の他方の表面において伝熱材12に接合された表層材(第2板状体)14とを備えて構成されている。
(Embodiment 1)
1 and 2 show a heat conducting composite material according to Embodiment 1 of the present invention. The heat conductive composite material 10 includes a core material (first plate-like body) 11 provided with a large number of through holes 11 a, a heat transfer material (heat transfer body) 12 accommodated in the through holes 11 a, and a core material 11. A surface layer material (second plate-like body) 13 joined to the heat transfer material 12 on one surface and a surface layer material (second plate-like body) 14 joined to the heat transfer material 12 on the other surface of the core material 11. And is configured.

芯材11は、伝熱材12及び表層材13,14に比較して熱膨張率が小さな材料、例えばインバー(Fe−Ni合金)によって成形した平板状体である。この芯材11には、板厚方向に沿って多数の貫通孔11aが設けられている。貫通孔11aは、それぞれ横断面が視正方形で正方格子の格子点に位置するように、芯材11の一方の表面から他方の表面に貫通しており、例えば、エッチング法によって設けられている。ここで、エッチング法で形成される貫通孔11aの開口寸法は、一般に、板厚と同等が限界である。従って、例えば、板厚が1mm、貫通孔11aの寸法が0.45mm×0.45mmの芯材11が必要となる場合には、少なくとも複数の板状体を重ね合わせて芯材11を構成しなければならないことになる。そこで、本実施の形態1においては、エッチング法により0.45×0.45mmの貫通孔11aを設けた板厚0.4mmの薄板を二枚積層し、板厚が0.8(0.4×2)mm、貫通孔11aが0.45mm×0.45mmの寸法を有した芯材11を構成した。   The core material 11 is a flat body formed of a material having a smaller coefficient of thermal expansion than the heat transfer material 12 and the surface layer materials 13 and 14, for example, invar (Fe—Ni alloy). The core material 11 is provided with a number of through holes 11a along the thickness direction. The through-holes 11a penetrate from one surface of the core member 11 to the other surface so as to be located at lattice points of a square lattice with a square cross section, respectively, and are provided by, for example, an etching method. Here, the opening dimension of the through hole 11a formed by the etching method is generally limited to the same thickness as the plate thickness. Therefore, for example, when the core material 11 having a plate thickness of 1 mm and the through hole 11a of 0.45 mm × 0.45 mm is required, the core material 11 is configured by superposing at least a plurality of plate-like bodies. Will have to. Therefore, in the first embodiment, two thin plates having a plate thickness of 0.4 mm provided with through holes 11a of 0.45 × 0.45 mm are stacked by an etching method, and the plate thickness is 0.8 (0.4 A core material 11 having a size of × 2) mm and a through hole 11a of 0.45 mm × 0.45 mm was configured.

尚、上述した芯材11は、横断面が正方形の貫通孔11aを設けることとしたが、貫通孔11aは、横断面が正方形に限られるものではなく、横断面が円形のほか、矩形、多角形のいずれであっても良い。また、複数の貫通孔11aは、互いに同一の形状である必要はなく、複数の形状のものを組み合わせても良い。   The core material 11 described above is provided with the through hole 11a having a square cross section. However, the through hole 11a is not limited to the square cross section, and the cross section is circular, rectangular, and many. Any of a square shape may be sufficient. The plurality of through holes 11a do not have to have the same shape as each other, and those having a plurality of shapes may be combined.

伝熱材12は、芯材11に比較して熱伝導率が大きな材料、例えば無酸素銅(純銅)によって成形したブロック状部材である。本実施の形態1では、横断面が貫通孔11aの横断面と相似となる正方形の直方体であり、少なくとも二つの外側面が貫通孔11aの内壁面との間に間隙を確保した状態で貫通孔11aの内部に収容されるように、貫通孔11aの寸法よりも小さな寸法を有するように構成されている。一方、伝熱材12の高さ寸法は、芯材11の板厚以上であることが要求される。従って、上述したように、芯材11に形成する貫通孔11aの寸法を0.45mm×0.45mmとした場合には、伝熱材12の平面寸法を例えば0.42mm×0.42mmとし、芯材11の板厚を0.8mmとした場合には、伝熱材12の高さ寸法を例えば0.85mmとする。このような寸法を有する伝熱材12は、例えば、エッチング法によって製造することができる。   The heat transfer material 12 is a block-shaped member formed of a material having a larger thermal conductivity than the core material 11, for example, oxygen-free copper (pure copper). In the first embodiment, the cross section is a square cuboid whose cross section is similar to the cross section of the through hole 11a, and the through hole is in a state where at least two outer surfaces ensure a gap between the inner wall surface of the through hole 11a. It is comprised so that it may have a dimension smaller than the dimension of the through-hole 11a so that it may be accommodated in the inside of 11a. On the other hand, the height dimension of the heat transfer material 12 is required to be equal to or greater than the thickness of the core material 11. Therefore, as described above, when the dimension of the through hole 11a formed in the core material 11 is 0.45 mm × 0.45 mm, the planar dimension of the heat transfer material 12 is, for example, 0.42 mm × 0.42 mm, When the plate thickness of the core material 11 is 0.8 mm, the height of the heat transfer material 12 is set to 0.85 mm, for example. The heat transfer material 12 having such dimensions can be manufactured by, for example, an etching method.

尚、上述した伝熱材12は、エッチング法により製造するものとしたが、エッチング法による製造に限られるものではなく、横断面が正方形(上述した例では、0.42mm×0.42mm)の線材を所定の長さ(上述した例では、0.85mm)で切断することにより製造しても良いし、所定の板厚(上述した例では、0.85mmあるいは0.42mm)の板材をプレス機械等により打ち抜くことにより製造しても良い。   In addition, although the heat transfer material 12 mentioned above shall be manufactured by the etching method, it is not restricted to manufacture by an etching method, A cross section is square (in the above-mentioned example, 0.42 mm x 0.42 mm). The wire may be manufactured by cutting it at a predetermined length (0.85 mm in the above example), or a plate having a predetermined thickness (0.85 mm or 0.42 mm in the above example) is pressed. You may manufacture by punching with a machine etc.

また、横断面が正方形の柱状を成す伝熱材12を適用しているが、伝熱材12は、芯材11の貫通孔11aと同様、横断面が円形、矩形、多角形のいずれであっても柱状を成すものを適用することができる。但し、伝熱材12の横断面形状は、芯材11の貫通孔11aと相似形であることが好ましい。   Further, although the heat transfer material 12 having a columnar shape with a square cross section is applied, the heat transfer material 12 may be any one of a circular shape, a rectangular shape, and a polygonal shape as with the through hole 11a of the core material 11. Even a columnar shape can be applied. However, the cross-sectional shape of the heat transfer material 12 is preferably similar to the through hole 11 a of the core material 11.

表層材13,14は、伝熱材12と同様、芯材11に比較して熱伝導率が大きな材料によって成形した平板状体である。本実施の形態1では、伝熱材12と同じ無酸素銅を材料とした板厚0.03mmの平坦な板状体を用いることにする。また、表層材13,14は、芯材11の二つの表面全域を覆うことができるように、縦横の寸法が芯材11と同じに形成されている。このような寸法を有する表層材13,14は、例えば、エッチング法によって製造することができる。   Similar to the heat transfer material 12, the surface layer materials 13 and 14 are flat plates formed of a material having a higher thermal conductivity than the core material 11. In the first embodiment, a flat plate-like body having a thickness of 0.03 mm made of the same oxygen-free copper as the heat transfer material 12 is used. Further, the surface layer members 13 and 14 are formed to have the same vertical and horizontal dimensions as the core member 11 so as to cover the entire two surfaces of the core member 11. The surface layer materials 13 and 14 having such dimensions can be manufactured by, for example, an etching method.

図3は、上述した芯材11、伝熱材12及び一対の表層材13,14を用いて熱伝導複合材10を製造する方法を示したものである。以下、この図を参照しながら、熱伝導複合材10の製造方法について説明を行う。   FIG. 3 shows a method of manufacturing the heat conducting composite material 10 using the core material 11, the heat transfer material 12 and the pair of surface layer materials 13 and 14 described above. Hereinafter, the manufacturing method of the heat conductive composite material 10 is demonstrated, referring this figure.

まず、この製造方法においては、一方の表層材13において芯材11の貫通孔11aに対応する部位にそれぞれ伝熱材12を接合させる。伝熱材12と表層材13との接合に際しては、図3−1に示すように、専用の治具J1を適用し、表層材13に予め治具J1を搭載するようにしている。   First, in this manufacturing method, the heat transfer material 12 is joined to the part corresponding to the through-hole 11a of the core material 11 in one surface layer material 13, respectively. When joining the heat transfer material 12 and the surface layer material 13, as shown in FIG. 3A, a dedicated jig J 1 is applied, and the surface layer material 13 is mounted in advance with the jig J 1.

治具J1は、上述した芯材11と同一形状の板状を成すもので、芯材11の貫通孔11aに対応する部位にそれぞれ収容孔JH1を有したものである。収容孔JH1は、横断面形状が貫通孔11aの相似形状となる正方形で、寸法が僅かに小さなものとなっている。例えば、芯材11の貫通孔11aが上述した0.45mm×0.45mmである場合には、治具J1に0.43mm×0.43mmの収容孔JH1を設けるようにしている。より具体的には、0.43mm×0.43mmの収容孔JH1を有した板厚0.4mmの薄板を2枚貼り合わせることにより、板厚0.8mmの治具J1を構成するようにしている。適用する治具J1の材料としては、芯材11と同等以下の熱膨張率を有したものであることが好ましい。   The jig J1 has a plate shape that is the same shape as the core material 11 described above, and has a receiving hole JH1 at a portion corresponding to the through hole 11a of the core material 11. The accommodation hole JH1 is a square whose cross-sectional shape is similar to that of the through-hole 11a, and has a slightly small size. For example, when the through hole 11a of the core material 11 is 0.45 mm × 0.45 mm as described above, a 0.43 mm × 0.43 mm accommodation hole JH1 is provided in the jig J1. More specifically, a jig J1 having a plate thickness of 0.8 mm is configured by bonding two thin plates having a plate thickness of 0.4 mm having a receiving hole JH1 of 0.43 mm × 0.43 mm. Yes. The material of the jig J1 to be applied is preferably one having a thermal expansion coefficient equal to or lower than that of the core material 11.

また、上述した芯材11、表層材13,14及び治具J1のそれぞれには、互いに対応する部位にガイドホールGHを設けておくことが好ましい。ガイドホールGHにアライメントピンAPを挿通させれば、容易に、かつ正確に相互の位置を規定することが可能となる。すなわち、上述した表層材13に治具J1を搭載する工程においては、それぞれのガイドホールGHを介してアライメントピンAPに表層材13及び治具J1を順次挿通させれば、相互の位置を容易に、かつ正確に規定することができる。尚、治具J1と表層材13との間には、拡散接合を阻害する材料を介在させることが好ましい。   Moreover, it is preferable to provide the guide hole GH in the mutually corresponding site | part in each of the core material 11, the surface layer materials 13 and 14, and the jig | tool J1 mentioned above. If the alignment pins AP are inserted through the guide holes GH, the mutual positions can be easily and accurately defined. That is, in the step of mounting the jig J1 on the surface layer material 13 described above, the mutual position can be easily achieved by sequentially inserting the surface layer material 13 and the jig J1 through the alignment pins AP through the respective guide holes GH. And can be accurately defined. In addition, it is preferable to interpose a material that inhibits diffusion bonding between the jig J1 and the surface layer material 13.

この状態から、図3−2に示すように、治具J1の収容孔JH1に伝熱材12を挿入すれば、表層材13に対して複数の伝熱材12を正確な位置に配置することができる。   From this state, as shown in FIG. 3-2, if the heat transfer material 12 is inserted into the accommodation hole JH1 of the jig J1, a plurality of heat transfer materials 12 are arranged at correct positions with respect to the surface layer material 13. Can do.

次いで、図3−3に示すように、挿入した伝熱材12の端面を石英等、拡散接合を阻害する板材Bで押さえた後、適当な圧力を加え、表層材13と伝熱材12との間を拡散接合により仮接合させる。尚、表層材13と伝熱材12との間は、拡散接合以外の方法で仮接合しても良い。   Next, as shown in FIG. 3C, after pressing the end face of the inserted heat transfer material 12 with a plate material B that inhibits diffusion bonding, such as quartz, an appropriate pressure is applied, and the surface layer material 13 and the heat transfer material 12 Is temporarily bonded by diffusion bonding. In addition, you may temporarily join between the surface layer material 13 and the heat-transfer material 12 by methods other than diffusion bonding.

その後、伝熱材12が冷却した状態で治具J1を取り外し、ガイドホールGHを介してアライメントピンAPに芯材11を挿通させることにより、表層材13に芯材11を積層させれば、図3−4に示すように、芯材11の各貫通孔11aにそれぞれ伝熱材12が配置されることになる。   Thereafter, the jig J1 is removed in a state in which the heat transfer material 12 is cooled, and the core material 11 is inserted into the alignment pin AP through the guide hole GH so that the core material 11 is laminated on the surface layer material 13. As shown to 3-4, the heat-transfer material 12 will be arrange | positioned at each through-hole 11a of the core material 11, respectively.

この状態からさらに、図3−5に示すように、ガイドホールGHを介してアライメントピンAPにもう一方の表層材14を挿通させた後、不活性ガス雰囲気中もしくは真空中に配置し、所望の温度及び加圧力で加熱・加圧することにより、一対の表層材13,14と伝熱材12との間、並びに一対の表層材13,14と芯材11との間を拡散接合させれば、芯材11と、複数の伝熱材12と、一対の表層材13,14とが一体化された熱伝導複合材10が構成される。但し、上述したように、芯材11の貫通孔11aに対して伝熱材12の寸法を小さく形成しているため、さらには芯材11と、複数の伝熱材12と、一対の表層材13,14との間を拡散接合により一体化させているため、図1に示すように、伝熱材12の外側面と貫通孔11aの内壁面との間には間隙x,yが確保されることになる。尚、芯材11と、複数の伝熱材12と、一対の表層材13,14との間を拡散接合により一体化した後においては、位置決めに使用したガイドホールGHを塞いでおくことが好ましい。   Further, from this state, as shown in FIG. 3-5, after the other surface layer material 14 is inserted through the alignment pin AP through the guide hole GH, it is placed in an inert gas atmosphere or in a vacuum, By heating and pressurizing with temperature and pressure, diffusion bonding between the pair of surface layer materials 13, 14 and the heat transfer material 12, and between the pair of surface layer materials 13, 14 and the core material 11, A heat conducting composite material 10 is configured in which a core material 11, a plurality of heat transfer materials 12, and a pair of surface layer materials 13 and 14 are integrated. However, as described above, since the size of the heat transfer material 12 is made smaller than the through hole 11a of the core material 11, the core material 11, the plurality of heat transfer materials 12, and a pair of surface layer materials are further provided. As shown in FIG. 1, gaps x and y are ensured between the outer surface of the heat transfer material 12 and the inner wall surface of the through hole 11a. Will be. In addition, after integrating the core material 11, the plurality of heat transfer materials 12, and the pair of surface layer materials 13 and 14 by diffusion bonding, it is preferable to close the guide hole GH used for positioning. .

上記のように構成した熱伝導複合材10を放熱部材として用いる場合には、いずれか一方の表層材、例えば表層材13をチップ等の発熱源に接合させれば良い。表層材13に伝達された熱は、表層材13から伝熱材12及び伝熱材12から表層材14に熱伝導されることになる。これら表層材13、伝熱材12及び表層材14は、いずれも熱伝導率の高い材料によって構成されたものであり、しかも互いに拡散接合によって一体化された状態にある。従って、チップ等の発熱源から効率良く放熱することが可能となる。   When the heat conductive composite material 10 configured as described above is used as a heat radiating member, any one surface layer material, for example, the surface layer material 13 may be bonded to a heat source such as a chip. The heat transferred to the surface layer material 13 is thermally transferred from the surface layer material 13 to the heat transfer material 12 and from the heat transfer material 12 to the surface layer material 14. The surface layer material 13, the heat transfer material 12 and the surface layer material 14 are all made of a material having a high thermal conductivity, and are in an integrated state by diffusion bonding. Therefore, it is possible to efficiently dissipate heat from a heat source such as a chip.

この間、伝熱材12及び一対の表層材13,14は伝熱方向に熱膨張するほか、伝熱方向と直交する方向、つまり熱伝導複合材10の面方向に沿っても熱膨張することになる。しかしながら、上述したように、芯材11に形成した貫通孔11aの内壁面と伝熱材12の外側面との間には、少なくとも一部に間隙x,yが確保されている。従って、熱伝導複合材10の面方向に沿って伝熱材12が熱膨張した場合にも、芯材11に与える影響を可及的に抑えることができる。また、一対の表層材13,14は、いずれも芯材11に大きな面積をもって接合された状態にある。これらの結果、熱伝導複合材10によれば、一対の表層材13,14及び伝熱材12に比較して熱膨張率の小さい芯材11が面方向に沿った熱膨張率を決定する要因となり、板厚方向に大きな熱伝導率を設定した場合にも面方向に沿った熱膨張率を小さく抑えることができ、接合させたチップに剥離や割れを生ずることなく、チップから効率良く放熱することができる。   During this time, the heat transfer material 12 and the pair of surface layer materials 13 and 14 thermally expand in the heat transfer direction, and also expand in the direction perpendicular to the heat transfer direction, that is, along the surface direction of the heat conductive composite material 10. Become. However, as described above, gaps x and y are secured at least partially between the inner wall surface of the through hole 11 a formed in the core material 11 and the outer surface of the heat transfer material 12. Therefore, even when the heat transfer material 12 is thermally expanded along the surface direction of the heat conducting composite material 10, the influence on the core material 11 can be suppressed as much as possible. Further, the pair of surface layer materials 13 and 14 are both joined to the core material 11 with a large area. As a result, according to the heat conductive composite material 10, the core material 11 having a smaller coefficient of thermal expansion than the pair of surface layer materials 13 and 14 and the heat transfer material 12 determines the coefficient of thermal expansion along the surface direction. Therefore, even when a large thermal conductivity is set in the plate thickness direction, the thermal expansion coefficient along the surface direction can be kept small, and heat can be efficiently radiated from the chip without causing peeling or cracking in the bonded chip. be able to.

具体的には、上述した実施の形態1である熱伝導複合材10においては、芯材11に対する伝熱材12の面積占有比率を70%とすると、板厚方向の熱伝導率が250〜280W/mK、面方向に沿った熱膨張率が5.5〜6.5ppm/Kの結果を得ることができた。   Specifically, in the heat conduction composite material 10 according to the first embodiment described above, when the area occupation ratio of the heat transfer material 12 to the core material 11 is 70%, the heat conductivity in the plate thickness direction is 250 to 280 W. / MK, and a coefficient of thermal expansion along the surface direction of 5.5 to 6.5 ppm / K could be obtained.

完成した熱伝導複合材10を切断し、その平断面を確認したところ、すべての伝熱材12が芯材11の貫通孔11aの中心に位置するわけではなく、貫通孔11aの内壁面と伝熱材12の外側面とが一部接触しているものも確認された。これは、拡散接合時における熱膨張や、組み立て精度の影響を受けたものであると考えられる。しかしながら、伝熱材12の外側面が芯材11の貫通孔11aの内壁面に接触しても、伝熱材12の熱膨張が芯材11に作用することによる熱応力の影響は軽微であることが確認された。これは、芯材11に形成した貫通孔11aの寸法と伝熱材12の外形寸法とからすれば、伝熱材12の外側面全周が貫通孔11aの内壁面に接触することがないためであると考えられる。また、伝熱材12が多数設けられているため、熱膨張による個々の変形量が小さくなる(上述の例では熱膨張による伝熱材12の変形量は約2μm程度)ばかりでなく、芯材11との接触ポイントがランダムとなることも上述の要因と考えられる。従って、貫通孔11aの内壁面と伝熱材12の外側面とが全周に亘って離隔されている必要はなく、貫通孔11aの内壁面と伝熱材12の外側面との間に一部でも間隙が確保されていれば、伝熱材12の熱膨張が芯材11に作用することによる熱応力の影響を小さく抑えることができる。   When the completed heat conducting composite material 10 was cut and the flat cross section was confirmed, not all of the heat transfer materials 12 were located at the center of the through hole 11a of the core material 11, and the heat transfer material 12 was transferred to the inner wall surface of the through hole 11a. It was also confirmed that the outer surface of the heat material 12 was partially in contact. This is considered to be affected by thermal expansion during diffusion bonding and assembly accuracy. However, even if the outer surface of the heat transfer material 12 contacts the inner wall surface of the through hole 11a of the core material 11, the influence of thermal stress due to the thermal expansion of the heat transfer material 12 acting on the core material 11 is slight. It was confirmed. This is because if the dimension of the through hole 11a formed in the core material 11 and the outer dimension of the heat transfer material 12 are used, the entire outer surface of the heat transfer material 12 does not contact the inner wall surface of the through hole 11a. It is thought that. In addition, since a large number of heat transfer materials 12 are provided, the amount of individual deformation due to thermal expansion becomes small (in the above example, the amount of deformation of the heat transfer material 12 due to thermal expansion is about 2 μm), as well as the core material It is also considered that the contact point with 11 becomes random. Therefore, it is not necessary that the inner wall surface of the through hole 11a and the outer surface of the heat transfer material 12 are separated from each other over the entire circumference, and there is no difference between the inner wall surface of the through hole 11a and the outer surface of the heat transfer material 12. If a gap is ensured even in the portion, the influence of thermal stress due to the thermal expansion of the heat transfer material 12 acting on the core material 11 can be suppressed to a low level.

上述した実施の形態1において伝熱材12として適用した無酸素銅は、コスト及び加工性の面から適当である。しかしながら、芯材11に対する伝熱材12の面積占有比率が熱伝導複合材10全体の板厚方向の熱伝導率の支配要因であり、伝熱材12にさらに高い熱伝導率を有する材料を用いることが考えられる。例えば、銅(Cu)にダイヤモンドや立方晶窒化ほう素(CBN)の粉末を高い体積比率で分散させた複合材を伝熱材12として用いることで、板厚方向の熱伝導率を大きく改善することも可能である。従って、伝熱材12の素材は、銅(Cu)などの純金属に限られるものではなく、表層材13,14と接合できるものであれば、上述した複合材や非金属を用いることもできる。   The oxygen-free copper applied as the heat transfer material 12 in the first embodiment described above is appropriate from the viewpoint of cost and workability. However, the area occupation ratio of the heat transfer material 12 to the core material 11 is a dominant factor of the heat conductivity in the thickness direction of the entire heat conductive composite material 10, and a material having a higher heat conductivity is used for the heat transfer material 12. It is possible. For example, by using as a heat transfer material 12 a composite material in which diamond or cubic boron nitride (CBN) powder is dispersed in copper (Cu) at a high volume ratio, the thermal conductivity in the plate thickness direction is greatly improved. It is also possible. Therefore, the material of the heat transfer material 12 is not limited to a pure metal such as copper (Cu), and any composite material or nonmetal described above can be used as long as it can be joined to the surface layer materials 13 and 14. .

図4は、実施の形態1と同様の構成を有した熱伝導複合材10において表層材13,14の板厚と熱伝導複合材10の面方向に沿った熱膨張率との関係を示したものである。芯材11としては、熱膨張率が1.2ppm/Kのインバーによって板厚2.0mmに成形したものを適用している。この芯材11には、図5に示すように、横断面がφ=2.1mmの円形状を成す貫通孔11aが形成されている。伝熱材12としては、熱膨張率が17ppm/Kの無酸素銅により、横断面がφ=2.0mmの円柱状に成形された円柱状のものを適用している。芯材11に対する伝熱材12の面積占有比率は70%である。表層材13,14としては、伝熱材12と同様、熱膨張率が17ppm/Kの無酸素銅を適用した。表層材13,14の板厚を0.025〜0.3mmの範囲で変化させ、熱伝導複合材10の面方向に沿った熱膨張率の変化を測定した。   FIG. 4 shows the relationship between the plate thickness of the surface layer materials 13 and 14 and the coefficient of thermal expansion along the surface direction of the heat conductive composite material 10 in the heat conductive composite material 10 having the same configuration as that of the first embodiment. Is. As the core material 11, a material having a plate thickness of 2.0 mm formed by Invar having a thermal expansion coefficient of 1.2 ppm / K is applied. As shown in FIG. 5, the core material 11 is formed with a through hole 11a having a circular shape with a cross section of φ = 2.1 mm. As the heat transfer material 12, a cylindrical material is used that is formed of oxygen-free copper having a thermal expansion coefficient of 17 ppm / K into a cylindrical shape having a cross section of φ = 2.0 mm. The area occupation ratio of the heat transfer material 12 to the core material 11 is 70%. As the surface layer materials 13 and 14, as with the heat transfer material 12, oxygen-free copper having a coefficient of thermal expansion of 17 ppm / K was applied. The plate | board thickness of the surface layer materials 13 and 14 was changed in 0.025-0.3 mm, and the change of the thermal expansion coefficient along the surface direction of the heat conductive composite material 10 was measured.

図4から明らかなように、表層材13,14の板厚を増加させた場合、熱伝導複合材10の面方向に沿った熱膨張率も増加する傾向となる。この間、板厚方向の熱伝導率は、芯材11に対する伝熱材12の面積占有比率に変更がないため、284W/mkで変化なく一定の値を示した。つまり、実施の形態1の熱伝導複合材10によれば、表層材13,14の板厚を適宜変更することにより、面方向に沿った熱膨張率を所望の値に調整することができ、また芯材11に対する伝熱材12の面積占有比率を適宜変更することにより、板厚方向の熱伝導率を所望の値に調整することができ、様々な要求に応じた性能を呈することが可能となる。   As is apparent from FIG. 4, when the plate thickness of the surface material 13, 14 is increased, the coefficient of thermal expansion along the surface direction of the heat conducting composite material 10 also tends to increase. During this time, the thermal conductivity in the plate thickness direction did not change at 284 W / mk because the area occupation ratio of the heat transfer material 12 to the core material 11 was not changed. That is, according to the heat conductive composite material 10 of Embodiment 1, by appropriately changing the plate thickness of the surface layer materials 13 and 14, the coefficient of thermal expansion along the surface direction can be adjusted to a desired value, In addition, by appropriately changing the area occupation ratio of the heat transfer material 12 to the core material 11, the thermal conductivity in the thickness direction can be adjusted to a desired value, and performance according to various requirements can be exhibited. It becomes.

尚、上述した熱伝導複合材10では、表層材13と伝熱材12との間、並びに伝熱材12と表層材14との間を拡散接合するものとしたが、拡散接合に限られるものではなく、ハンダを含むロウづけ、レーザ溶接、電子ビーム溶接など、その他の金属冶金的接合法を適用することが可能である。   In the heat conductive composite material 10 described above, diffusion bonding is performed between the surface layer material 13 and the heat transfer material 12 and between the heat transfer material 12 and the surface layer material 14, but is limited to diffusion bonding. Instead, other metallurgical joining methods such as brazing including solder, laser welding, and electron beam welding can be applied.

また、芯材11をモリブデン(Mo)等の熱伝導率の高い材料に置き換えると、熱伝導複合材10の熱伝導率を320W/mKとすることもできる。これより目標とされる全体の熱膨張率及び熱伝導率に応じて芯材11も種々の材料を選択することが可能であり、その材質が実施の形態1に制限されるものではない。   If the core material 11 is replaced with a material having high thermal conductivity such as molybdenum (Mo), the thermal conductivity of the thermal conductive composite material 10 can be set to 320 W / mK. Accordingly, various materials can be selected for the core material 11 in accordance with the overall thermal expansion coefficient and thermal conductivity which are targeted, and the material is not limited to the first embodiment.

(実施の形態2)
上述した実施の形態1では、その製造工程において治具の収容孔に伝熱材12を挿入する場合、伝熱材12の向きを整える必要があり、またその数量も多いため、その作業を容易化するには伝熱材12を配置するための特別な装置が必要となる。そこで、実施の形態2では、特別な装置を別途用意せずとも、製造作業を容易化することのできる熱伝導複合材及びその製造方法について説明する。
(Embodiment 2)
In the first embodiment described above, when the heat transfer material 12 is inserted into the jig receiving hole in the manufacturing process, the direction of the heat transfer material 12 needs to be adjusted, and the number of the heat transfer materials 12 is large, so that the operation is easy. For this purpose, a special device for arranging the heat transfer material 12 is required. Therefore, in the second embodiment, a heat conductive composite material and a method for manufacturing the heat conductive composite material that can facilitate the manufacturing operation without separately preparing a special device will be described.

図6及び図7は、本発明の実施の形態2である熱伝導複合材を示したものであり、図8−1〜図8−4は、実施の形態2である熱伝導複合材の製造方法を示したものである。図8−1に示すように、熱伝導複合材20では、伝熱材(伝熱体)22として芯材(第1板状体)21に比較して熱伝導率の大きい材料、例えば銅(Cu)によって球状に成形したものを適用している。具体的には、伝熱材22として、外径が0.5mmの銅製球状体を用いる。この銅の球状体は、半導体実装手段であるBGA(Ball Grid Array)パッケージで使用されるハンダ球体のコア材として広く流通しており、簡単に入手できる。また、このようにBGAパッケージで用いられる銅の球状体は、真球度等の精度が保証されているため、本実施の形態2の伝熱材22として好適である。   6 and 7 show the heat conductive composite material according to the second embodiment of the present invention, and FIGS. 8-1 to 8-4 show the manufacture of the heat conductive composite material according to the second embodiment. The method is shown. As shown in FIG. 8A, in the heat conduction composite material 20, a material having a higher thermal conductivity than the core material (first plate-like body) 21 as the heat transfer material (heat transfer body) 22, for example, copper ( A product formed into a spherical shape by Cu) is applied. Specifically, a copper spherical body having an outer diameter of 0.5 mm is used as the heat transfer material 22. This copper sphere is widely distributed as a core material of a solder sphere used in a BGA (Ball Grid Array) package which is a semiconductor mounting means, and can be easily obtained. In addition, the copper spherical body used in the BGA package as described above is suitable as the heat transfer material 22 of the second embodiment because accuracy such as sphericity is guaranteed.

芯材21は、伝熱材22及び表層材(第2板状体)23,24に比較して熱膨張率が小さな材料、例えばインバー(Fe−Ni合金)によって成形した平板状体である。この芯材21には、板厚方向に沿って多数の貫通孔21aが設けられている。貫通孔21aは、それぞれ平面視が伝熱材22の投影形状に対して相似形の円形で、三角格子の格子点に位置するように、芯材21の一方の表面から他方の表面に貫通しており、例えば、エッチング法によって設けられている。本実施の形態2では、0.5mmの伝熱材22を用いる場合、板厚が0.45mmで、貫通孔21aの内径が0.6mmの芯材21を適用している。つまり、芯材21としては、伝熱材22として用いる球状体に対して、板厚が外径よりも小さく、かつ貫通孔21aの内径が外径よりも僅かに大きい寸法に設定したものを適用している。   The core material 21 is a flat plate formed of a material having a smaller coefficient of thermal expansion than the heat transfer material 22 and the surface layer materials (second plate bodies) 23, 24, for example, invar (Fe—Ni alloy). The core member 21 is provided with a number of through holes 21a along the thickness direction. Each of the through holes 21a has a circular shape similar to the projected shape of the heat transfer material 22 in plan view, and penetrates from one surface of the core material 21 to the other surface so as to be positioned at a lattice point of the triangular lattice. For example, it is provided by an etching method. In the second embodiment, when the 0.5 mm heat transfer material 22 is used, the core material 21 having a plate thickness of 0.45 mm and an inner diameter of the through hole 21a of 0.6 mm is applied. That is, as the core material 21, a spherical body used as the heat transfer material 22 is set so that the plate thickness is smaller than the outer diameter and the inner diameter of the through hole 21 a is slightly larger than the outer diameter. is doing.

尚、実施の形態2である熱伝導複合材20に用いる表層材23,24は、上述した実施の形態1の熱伝導複合材10で適用した表層材13,14と同様、芯材21に対して熱伝導率の大きな材料によって成形したものであるため、詳細説明は省略する。   In addition, the surface layer materials 23 and 24 used for the heat conductive composite material 20 which is Embodiment 2 are the same as the surface layer materials 13 and 14 applied by the heat conductive composite material 10 of Embodiment 1 mentioned above with respect to the core material 21. Therefore, the detailed description is omitted.

上述した芯材21、伝熱材22及び一対の表層材23,24を用いて熱伝導複合材20を製造する場合には、まず、一方の表層材23において芯材21の貫通孔21aに対応する部位にそれぞれ伝熱材22を接合させる。伝熱材22と表層材23との接合に際しては、図8−1に示すように、専用の治具J2を適用し、表層材23に予め治具J2を搭載することにより伝熱材22と表層材23との位置を規定するようにしている。   When the heat conductive composite material 20 is manufactured using the core material 21, the heat transfer material 22, and the pair of surface layer materials 23, 24 described above, first, one surface layer material 23 corresponds to the through hole 21 a of the core material 21. The heat transfer material 22 is joined to each part to be performed. When joining the heat transfer material 22 and the surface layer material 23, as shown in FIG. 8A, a dedicated jig J2 is applied, and the heat transfer material 22 is mounted on the surface layer material 23 in advance. The position with the surface material 23 is defined.

治具J2は、上述した芯材21と同一形状の板状を成すもので、芯材21の貫通孔21aに対応する部位にそれぞれ収容孔JH2を有したものである。収容孔JH2は、横断面形状が貫通孔21aの相似形である円形で、寸法が貫通孔21aより僅かに小さなものとなっている。例えば、芯材21の貫通孔21aが内径0.6mmである場合には、治具J2に0.51mmの収容孔JH2を設けるようにしている。より具体的には、0.51mmの収容孔JH2を有した板厚0.45mmの薄板によって治具J2を構成するようにしている。適用する治具J2の材料としては、芯材21と同等以下の熱膨張率を有したものであることが好ましい。   The jig J2 has a plate shape having the same shape as that of the core material 21 described above, and has a receiving hole JH2 at a portion corresponding to the through hole 21a of the core material 21. The accommodation hole JH2 has a circular shape whose cross-sectional shape is similar to that of the through hole 21a, and is slightly smaller than the through hole 21a. For example, when the through hole 21a of the core member 21 has an inner diameter of 0.6 mm, the jig J2 is provided with a housing hole JH2 of 0.51 mm. More specifically, the jig J2 is constituted by a thin plate having a plate thickness of 0.45 mm having a housing hole JH2 of 0.51 mm. It is preferable that the material of the jig J2 to be applied has a thermal expansion coefficient equal to or lower than that of the core material 21.

また、図には明示していないが、実施の形態1と同様、芯材21、表層材23,24及び治具J2のそれぞれには、互いに対応する部位にガイドホールを設けておき、積層する順でガイドホールにアライメントピンを順次挿通させることが好ましい。この状態から、図8−1に示すように、治具J2の収容孔JH2に伝熱材22を挿入すれば、表層材23に対して複数の伝熱材22を正確な位置に配置することができる。   Further, although not clearly shown in the drawing, as in the first embodiment, each of the core material 21, the surface layer materials 23 and 24, and the jig J2 is provided with a guide hole at a corresponding portion and laminated. It is preferable that the alignment pins are sequentially inserted through the guide holes in order. From this state, as shown in FIG. 8A, if the heat transfer material 22 is inserted into the accommodation hole JH2 of the jig J2, a plurality of heat transfer materials 22 are arranged at correct positions with respect to the surface layer material 23. Can do.

ここで、伝熱材22として球状に成形したものを適用した実施の形態2では、これを治具J2の上面で転動させて移動させることが可能となる。しかも、球状体である伝熱材22は、治具J2の収容孔JH2に配置する場合にその向きや方向を規定する必要がない。従って、治具J2の収容孔JH2に伝熱材22を配置させる場合には、複数の伝熱材22を治具J2の上面に流し込めば良い。治具J2の上面に流し込まれた伝熱材22は、収容孔JH2が空いている場合(伝熱材22が収容されていない場合)、その内部に収容され、一方、既に収容孔JH2が埋まっている場合(伝熱材22が収容されている場合)、次の収容孔JH2に向かって流れることにより、収容孔JH2に順次収容される。収容孔JH2の内径と伝熱材22の外径との関係から、一つの収容孔JH2に二つの伝熱材22が重複して収容されることはない。従って、この工程を繰り返すことより、特別な装置を要せずとも、すべての収容孔JH2に伝熱材22を個別に収容することができる。   Here, in the second embodiment in which a spherical shape is applied as the heat transfer material 22, it can be moved by rolling on the upper surface of the jig J2. In addition, the heat transfer material 22 that is a spherical body does not need to define the direction or direction when it is disposed in the accommodation hole JH2 of the jig J2. Therefore, when the heat transfer material 22 is disposed in the accommodation hole JH2 of the jig J2, a plurality of heat transfer materials 22 may be poured into the upper surface of the jig J2. The heat transfer material 22 poured into the upper surface of the jig J2 is accommodated inside the accommodation hole JH2 (when the heat transfer material 22 is not accommodated), while the accommodation hole JH2 is already filled. If the heat transfer material 22 is housed, it flows toward the next housing hole JH2 and is sequentially housed in the housing hole JH2. Due to the relationship between the inner diameter of the accommodation hole JH2 and the outer diameter of the heat transfer material 22, the two heat transfer materials 22 are not accommodated in one accommodation hole JH2. Therefore, by repeating this process, the heat transfer material 22 can be individually accommodated in all the accommodation holes JH2 without requiring a special device.

次いで、図8−2に示すように、挿入した伝熱材22を石英等、拡散接合を阻害する板材Bで押さえた後、適当な圧力を加え、表層材23と伝熱材22との間を拡散接合により仮接合させる。その後、伝熱材22が冷却した状態で治具J2を取り外し、ガイドホール(図示せず)を介してアライメントピン(図示せず)に芯材21を挿通させることにより、表層材23に芯材21を積層させれば、図8−3に示すように、芯材21の各貫通孔21aにそれぞれ伝熱材22が配置されることになる。   Next, as shown in FIG. 8-2, after the inserted heat transfer material 22 is pressed with a plate material B that inhibits diffusion bonding, such as quartz, an appropriate pressure is applied, and the surface layer material 23 and the heat transfer material 22 are interposed. Are temporarily bonded by diffusion bonding. Thereafter, the jig J2 is removed in a state in which the heat transfer material 22 is cooled, and the core material 21 is inserted into an alignment pin (not shown) through a guide hole (not shown), whereby the core material is placed on the surface material 23. If 21 is laminated | stacked, as shown to FIGS. 8-3, the heat-transfer material 22 will be each arrange | positioned to each through-hole 21a of the core material 21. FIG.

この状態からさらに、ガイドホール(図示せず)を介してアライメントピン(図示せず)にもう一方の表層材24を挿通させた後、不活性ガス雰囲気中もしくは真空中に配置し、図8−4に示すように、所望の温度及び加圧力で加熱・加圧することにより、一対の表層材23,24と伝熱材22との間、並びに一対の表層材23,24と芯材21との間を拡散接合させれば、芯材21と、複数の伝熱材22と、一対の表層材23,24とが一体化された熱伝導複合材20が構成される。このとき、伝熱材22は、荷重方向の力を受けるため、芯材21の板厚方向に沿って潰されるとともに、拡散接合によって表層材23,24に食い込む一方、芯材21の面方向に沿って径方向へ膨張する。但し、上述したように、芯材21の貫通孔21aに対して伝熱材22の外径を小さく形成しているため、さらには芯材21と、複数の伝熱材22と、一対の表層材23,24との間を拡散接合により一体化させているため、図9に示すように、伝熱材22の外表面と貫通孔21aの内壁面との間にはほぼ全周に亘って間隙dが確保されることになる。   From this state, the other surface layer material 24 is inserted through an alignment pin (not shown) through a guide hole (not shown), and then placed in an inert gas atmosphere or in a vacuum. 4, by heating and pressurizing at a desired temperature and pressure, between the pair of surface layer materials 23 and 24 and the heat transfer material 22 and between the pair of surface layer materials 23 and 24 and the core material 21. If they are diffusion-bonded together, the heat conductive composite material 20 in which the core material 21, the plurality of heat transfer materials 22, and the pair of surface layer materials 23 and 24 are integrated is configured. At this time, since the heat transfer material 22 receives force in the load direction, the heat transfer material 22 is crushed along the thickness direction of the core material 21 and bites into the surface layer materials 23 and 24 by diffusion bonding, while in the surface direction of the core material 21. Swell along the radial direction. However, as described above, since the outer diameter of the heat transfer material 22 is smaller than the through hole 21a of the core material 21, the core material 21, the plurality of heat transfer materials 22, and a pair of surface layers are further provided. Since the members 23 and 24 are integrated by diffusion bonding, as shown in FIG. 9, the outer surface of the heat transfer material 22 and the inner wall surface of the through-hole 21a are almost entirely covered. The gap d is secured.

尚、必ずしも上述した治具J2を用いて予め表層材23と伝熱材22とを仮接合する必要はない。例えば、表層材23に芯材21を積層させた状態で貫通孔21aの中に伝熱材22を流し込み、表層材24を積層させた後にこれらを拡散接合により一時に一体化させても熱伝導複合材20を得ることができる。但し、この製造方法では、芯材21に形成した貫通孔21aの内壁面と伝熱材22の外表面との間の全周に亘っては間隙dを確保できない場合があり得る。   It is not always necessary to temporarily bond the surface layer material 23 and the heat transfer material 22 using the jig J2 described above. For example, the heat transfer material 22 is poured into the through-hole 21a in a state where the core material 21 is laminated on the surface layer material 23, and after the surface layer material 24 is laminated, the heat conduction material 22 is integrated at once by diffusion bonding. The composite material 20 can be obtained. However, in this manufacturing method, there may be a case where the gap d cannot be secured over the entire circumference between the inner wall surface of the through hole 21 a formed in the core member 21 and the outer surface of the heat transfer material 22.

しかしながら、貫通孔21aの寸法と伝熱材22の外径寸法とからすれば、伝熱材22の外表面全周が貫通孔21aの内壁面に接触することがないため、伝熱材22の熱膨張が芯材21に作用することによる熱応力の影響は軽微となる。また、伝熱材22が多数設けられているため、熱膨張による個々の変形量が小さくなるばかりでなく、芯材21との接触ポイントがランダムとなることも上述の要因と考えられる。つまり、貫通孔21aの内壁面と伝熱材22の外表面とが全周に亘って離隔されている必要はなく、貫通孔21aの内壁面と伝熱材22の外表面との間に一部でも間隙dが確保されていれば、伝熱材22の熱膨張が芯材21に作用することによる熱応力の影響を小さく抑えることができる。   However, according to the dimension of the through hole 21a and the outer diameter of the heat transfer material 22, the entire outer surface of the heat transfer material 22 does not contact the inner wall surface of the through hole 21a. The influence of thermal stress due to the thermal expansion acting on the core material 21 is slight. In addition, since a large number of heat transfer materials 22 are provided, not only the amount of individual deformation due to thermal expansion is reduced, but also that the contact point with the core material 21 is random is considered as the above-mentioned factor. That is, the inner wall surface of the through hole 21a and the outer surface of the heat transfer material 22 do not need to be separated from each other over the entire circumference, and there is no difference between the inner wall surface of the through hole 21a and the outer surface of the heat transfer material 22. If the gap d is secured even at the portion, the influence of thermal stress due to the thermal expansion of the heat transfer material 22 acting on the core material 21 can be suppressed to a small level.

上記のように構成した熱伝導複合材20を放熱部材として用いる場合には、いずれか一方の表層材、例えば表層材23をチップ等の発熱源に接合させれば良い。表層材23に伝達された熱は、表層材23から伝熱材22及び伝熱材22から表層材24に熱伝導されることになる。これら表層材23、伝熱材22及び表層材24は、いずれも熱伝導率の高い材料によって構成されたものであり、しかも互いに拡散接合によって一体化された状態にある。従って、チップ等の発熱源から効率良く放熱することが可能となる。   When the heat conductive composite material 20 configured as described above is used as a heat radiating member, any one surface layer material, for example, the surface layer material 23 may be bonded to a heat source such as a chip. The heat transferred to the surface layer material 23 is thermally transferred from the surface layer material 23 to the heat transfer material 22 and from the heat transfer material 22 to the surface layer material 24. The surface layer material 23, the heat transfer material 22 and the surface layer material 24 are all made of a material having a high thermal conductivity, and are in an integrated state by diffusion bonding. Therefore, it is possible to efficiently dissipate heat from a heat source such as a chip.

この間、伝熱材22及び一対の表層材23,24は伝熱方向に熱膨張するほか、伝熱方向と直交する方向、つまり熱伝導複合材20の面方向に沿っても熱膨張することになる。しかしながら、上述したように、芯材21に形成した貫通孔21aの内壁面と伝熱材22の外表面との間には、少なくとも一部に間隙dが確保されている。従って、熱伝導複合材20の面方向に沿って伝熱材22が熱膨張した場合にも、芯材21に与える影響を可及的に抑えることができる。また、一対の表層材23,24は、いずれも芯材21に大きな面積をもって接合された状態にある。これらの結果、熱伝導複合材20によれば、一対の表層材23,24及び伝熱材22に比較して熱膨張率の小さい芯材21が面方向に沿った熱膨張率を決定する要因となるため、板厚方向に大きな熱伝導率を設定した場合にも面方向に沿った熱膨張率を小さく抑えることができ、接合させたチップに剥離や割れを生ずることなく、チップから効率良く放熱することができるようになる。   During this time, the heat transfer material 22 and the pair of surface layer materials 23 and 24 thermally expand in the heat transfer direction, and also expand in the direction orthogonal to the heat transfer direction, that is, along the surface direction of the heat conducting composite material 20. Become. However, as described above, a gap d is secured at least partially between the inner wall surface of the through hole 21 a formed in the core member 21 and the outer surface of the heat transfer material 22. Therefore, even when the heat transfer material 22 is thermally expanded along the surface direction of the heat conducting composite material 20, the influence on the core material 21 can be suppressed as much as possible. The pair of surface layer materials 23 and 24 are both joined to the core material 21 with a large area. As a result, according to the heat conductive composite material 20, the core material 21 having a smaller coefficient of thermal expansion than the pair of surface layer materials 23, 24 and the heat transfer material 22 determines the coefficient of thermal expansion along the surface direction. Therefore, even when a large thermal conductivity is set in the plate thickness direction, the thermal expansion coefficient along the surface direction can be kept small, and the bonded chip can be efficiently removed from the chip without causing peeling or cracking. It becomes possible to dissipate heat.

尚、上述した実施の形態2では、伝熱材22に銅の球状体を用いているため、製造する際に治具J2の収容孔JH2に簡単に流し込むことができる。このため、治具J2の収容孔JH2に伝熱材22を挿入する作業は簡単なものとなり、治具J2の収容孔JH2に伝熱材22を挿入するための特別な装置は不要となる。   In the second embodiment described above, since the copper spherical body is used for the heat transfer material 22, it can be easily poured into the accommodation hole JH2 of the jig J2. For this reason, the operation | work which inserts the heat-transfer material 22 in the accommodation hole JH2 of the jig | tool J2 becomes easy, and the special apparatus for inserting the heat-transfer material 22 in the accommodation hole JH2 of the jig | tool J2 becomes unnecessary.

また、銅の球状体としては、BGAパッケージに使用されるハンダ球体のコア材として広く流通しており、廉価に入手できるため、熱伝導複合材20の材料コストを低減することもできる。   Moreover, since the copper spherical body is widely distributed as a core material of a solder sphere used for the BGA package and can be obtained at a low price, the material cost of the heat conducting composite material 20 can be reduced.

尚、伝熱材22は、銅(Cu)に限られるものではなく、銀(Ag)等の金属材料、あるいは銅(Cu)にダイヤモンドやCBNの粉末を高い体積比率で分散させた材料を用いることで、板厚方向の熱伝導率を大きく改善することも可能である。   The heat transfer material 22 is not limited to copper (Cu), and a metal material such as silver (Ag) or a material in which diamond or CBN powder is dispersed in copper (Cu) at a high volume ratio is used. Thus, it is possible to greatly improve the thermal conductivity in the thickness direction.

また、上述した表層材23と伝熱材22との間、伝熱材22と表層材24との間を拡散接合するものとしたが、拡散接合に限られるものではなく、ハンダを含むロウづけ、レーザ溶接、電子ビーム溶接など、金属冶金的接合を適用できる。   In addition, diffusion bonding is performed between the surface layer material 23 and the heat transfer material 22 described above, and between the heat transfer material 22 and the surface layer material 24. However, the bonding is not limited to diffusion bonding, and brazing including solder. Metallic metallurgical joining such as laser welding and electron beam welding can be applied.

(実施の形態3)
上述した実施の形態2では、平坦な表層材23,24を用いることとしたが、球体状の伝熱材22と表層材23,24との接合面積が熱伝導率に及ぼす影響が大きいことから、実施の形態3では、これらの間の接合面積を増大させるようにしている。
(Embodiment 3)
In the second embodiment described above, the flat surface layer materials 23 and 24 are used. However, the effect of the bonding area between the spherical heat transfer material 22 and the surface layer materials 23 and 24 on the thermal conductivity is great. In the third embodiment, the junction area between them is increased.

図10は、本発明の実施の形態3である熱伝導複合材を示したものである。ここで例示する熱伝導複合材30は、実施の形態2と同様、伝熱材(伝熱体)32として球体状に形成したものを用いるものであり、適用する表層材(第2板状体)33,34の構成のみが異なっている。すなわち、実施の形態3で適用する一対の表層材33,34は、芯材(第1板状体)31に比較して熱伝導率の大きい材料、例えば、無酸素銅によって板厚0.15mmの板状体に成形したものである。図11に示すように、それぞれの表層材33,34には、芯材31の貫通孔31aと対応する位置に予め凹部33a,34aが設けてある。凹部33a,34aは、伝熱材32の外径と同等の曲率を有するように形成した球面状を成すものである。これらの凹部33a,34aは、例えばハーフエッチングによって形成することができる。   FIG. 10 shows a heat conductive composite material according to Embodiment 3 of the present invention. As in the second embodiment, the heat conductive composite material 30 exemplified here uses a sphere-shaped material as the heat transfer material (heat transfer body) 32, and the surface layer material (second plate-like body) to be applied. ) Only the configuration of 33 and 34 is different. That is, the pair of surface layer materials 33 and 34 applied in the third embodiment is made of a material having a higher thermal conductivity than the core material (first plate-like body) 31, for example, oxygen-free copper, and has a thickness of 0.15 mm. This is formed into a plate-like body. As shown in FIG. 11, concave portions 33 a and 34 a are provided in advance in positions corresponding to the through holes 31 a of the core material 31 in the respective surface layer materials 33 and 34. The recesses 33a and 34a have a spherical shape formed so as to have a curvature equivalent to the outer diameter of the heat transfer material 32. These concave portions 33a and 34a can be formed by, for example, half etching.

尚、実施の形態3で適用する伝熱材32が、表層材33,34と同様に、芯材31に比較して大きな熱伝導率を有した材料によって成形したものであり、芯材31が、これら表層材33,34及び伝熱材32と比較して熱膨張率が小さい材料によって成形したものである点は、実施の形態2と同様である。また、芯材31に形成する貫通孔31aが伝熱材32の外径よりも僅かに大きな内径を有するものである点も実施の形態2と同様である。   The heat transfer material 32 applied in the third embodiment is formed by a material having a larger thermal conductivity than the core material 31, as with the surface layer materials 33 and 34. The point that it is formed of a material having a smaller coefficient of thermal expansion than those of the surface layer materials 33 and 34 and the heat transfer material 32 is the same as in the second embodiment. The point that the through hole 31a formed in the core material 31 has an inner diameter slightly larger than the outer diameter of the heat transfer material 32 is the same as that of the second embodiment.

上述した芯材31、伝熱材32及び一対の表層材33,34を用いて熱伝導複合材30を製造する方法についても、実施の形態2で示したものと同様である。但し、表層材33,34に伝熱材32を配置する場合に予め形成した凹部33a,34aが伝熱材32の位置決めとして機能するため、実施の形態2で用いた治具J2を用いる必要がない。すなわち、ガイドホールを介してアライメントピンに表層材33及び芯材31を順次挿通させて積層し、直接芯材31の貫通孔31aに伝熱材32を流し込めば良い。すべての貫通孔31aに伝熱材32が収容された状態で、アライメントピンに表層材34を挿通させて芯材31の上に表層材34を積層した後、不活性ガス雰囲気中もしくは真空中に配置し、所望の温度及び加圧力で加熱・加圧することにより、一対の表層材33,34と伝熱材32との間、並びに一対の表層材33,34と芯材31との間を拡散接合させれば、芯材31と、複数の伝熱材32と、一対の表層材33,34とが一体化された熱伝導複合材30が構成される。   The method for manufacturing the heat conductive composite material 30 using the core material 31, the heat transfer material 32, and the pair of surface layer materials 33 and 34 described above is also the same as that described in the second embodiment. However, since the recessed portions 33a and 34a formed in advance when the heat transfer material 32 is disposed on the surface layer materials 33 and 34 function as positioning of the heat transfer material 32, it is necessary to use the jig J2 used in the second embodiment. Absent. That is, the surface layer material 33 and the core material 31 are sequentially inserted into the alignment pins through the guide holes and stacked, and the heat transfer material 32 is poured directly into the through holes 31a of the core material 31. In a state in which the heat transfer material 32 is accommodated in all the through holes 31a, the surface layer material 34 is inserted into the alignment pins and the surface layer material 34 is laminated on the core material 31, and then in an inert gas atmosphere or in a vacuum. By arranging and heating and pressurizing at a desired temperature and pressure, diffusion between the pair of surface layer materials 33 and 34 and the heat transfer material 32 and between the pair of surface layer materials 33 and 34 and the core material 31 is performed. If joined, the heat conductive composite material 30 in which the core material 31, the plurality of heat transfer materials 32, and the pair of surface layer materials 33 and 34 are integrated is configured.

このとき、実施の形態3においては、予め表層材33,34に凹部33a,34aが形成されているため、実施の形態2のものに比べて、大きな加圧力を付与せずとも伝熱材32との間に大きな接合面積を確保することができ、板厚方向に沿った熱伝導率をより大きくすることが可能となる。但し、上述したように、芯材31の貫通孔31aに対して伝熱材32の外径を小さく形成しているため、さらには芯材31と、複数の伝熱材32と、一対の表層材33,34との間を拡散接合により一体化させているため、伝熱材32の外表面と貫通孔31aの内壁面との間にはほぼ全周に亘って間隙が確保されることになる。   At this time, in the third embodiment, since the concave portions 33a and 34a are formed in the surface layer materials 33 and 34 in advance, the heat transfer material 32 can be applied without applying a large pressing force as compared with the second embodiment. A large bonding area can be ensured between and the thermal conductivity along the thickness direction can be further increased. However, as described above, since the outer diameter of the heat transfer material 32 is smaller than the through hole 31a of the core material 31, the core material 31, the plurality of heat transfer materials 32, and a pair of surface layers are further provided. Since the members 33 and 34 are integrated by diffusion bonding, a gap is ensured over the entire circumference between the outer surface of the heat transfer material 32 and the inner wall surface of the through hole 31a. Become.

上記のように構成した熱伝導複合材30を放熱部材として用いる場合には、いずれか一方の表層材、例えば表層材33をチップ等の発熱源に接合させれば良い。表層材33に伝達された熱は、表層材33から伝熱材32及び伝熱材32から表層材34に熱伝導されることになる。これら表層材33、伝熱材32及び表層材34は、いずれも熱伝導率の高い材料によって構成されたものであり、しかも互いに拡散接合によって一体化された状態にある。従って、チップ等の発熱源から効率良く放熱することが可能となる。   In the case where the heat conducting composite material 30 configured as described above is used as a heat radiating member, any one surface layer material, for example, the surface layer material 33 may be bonded to a heat source such as a chip. The heat transferred to the surface layer material 33 is thermally transferred from the surface layer material 33 to the heat transfer material 32 and from the heat transfer material 32 to the surface layer material 34. The surface layer material 33, the heat transfer material 32, and the surface layer material 34 are all made of a material having a high thermal conductivity, and are integrated with each other by diffusion bonding. Therefore, it is possible to efficiently dissipate heat from a heat source such as a chip.

この間、伝熱材32及び一対の表層材33,34は伝熱方向に熱膨張するほか、伝熱方向と直交する方向、つまり熱伝導複合材30の面方向に沿っても熱膨張することになる。しかしながら、芯材31に形成した貫通孔31aの内壁面と伝熱材32の外表面との間には、少なくとも一部に間隙が確保されている。従って、熱伝導複合材30の面方向に沿って伝熱材32が熱膨張した場合にも、芯材31に与える影響を可及的に抑えることができる。また、一対の表層材33,34は、いずれも芯材31に大きな面積をもって接合された状態にある。これらの結果、熱伝導複合材30によれば、一対の表層材33,34及び伝熱材32に比較して熱膨張率の小さい芯材31が面方向に沿った熱膨張率を決定する要因となるため、板厚方向に大きな熱伝導率を設定した場合にも面方向に沿った熱膨張率を小さく抑えることができ、接合させたチップに剥離や割れを生ずることなく、チップから効率良く放熱することができるようになる。   During this time, the heat transfer material 32 and the pair of surface layer materials 33 and 34 thermally expand in the heat transfer direction, and also expand in the direction perpendicular to the heat transfer direction, that is, along the surface direction of the heat conductive composite 30. Become. However, a gap is secured at least partially between the inner wall surface of the through hole 31 a formed in the core material 31 and the outer surface of the heat transfer material 32. Therefore, even when the heat transfer material 32 is thermally expanded along the surface direction of the heat conducting composite material 30, the influence on the core material 31 can be suppressed as much as possible. Further, the pair of surface layer materials 33 and 34 are both joined to the core material 31 with a large area. As a result, according to the heat conductive composite 30, the core material 31 having a smaller coefficient of thermal expansion than the pair of surface layer materials 33 and 34 and the heat transfer material 32 determines the coefficient of thermal expansion along the surface direction. Therefore, even when a large thermal conductivity is set in the plate thickness direction, the thermal expansion coefficient along the surface direction can be kept small, and the bonded chip can be efficiently removed from the chip without causing peeling or cracking. It becomes possible to dissipate heat.

上述したように、実施の形態3の熱伝導複合材30によれば、表層材33の凹部33a及び表層材34の凹部34aの間に球状体である伝熱材32が収容されることになるため、製造段階において実施の形態1及び実施の形態2で示した治具J1,J2を適用したり、仮接合することなく、表層材33,34と伝熱材32との間に位置決めして直接本接合である拡散接合を行うことができる。このため、熱伝導複合材30を製造する場合の作業が効率化され、製造コストを低減することが可能となる。   As described above, according to the heat conduction composite material 30 of the third embodiment, the heat transfer material 32 that is a spherical body is accommodated between the concave portion 33 a of the surface layer material 33 and the concave portion 34 a of the surface layer material 34. For this reason, the jigs J1 and J2 shown in the first and second embodiments are not applied or temporarily joined in the manufacturing stage, and positioned between the surface layer materials 33 and 34 and the heat transfer material 32. Diffusion bonding, which is direct main bonding, can be performed. For this reason, the operation | work at the time of manufacturing the heat conductive composite material 30 becomes efficient, and it becomes possible to reduce manufacturing cost.

尚、上述した実施の形態3である熱伝導複合材30において、芯材31と表層材33,34の接触面高さにおける伝熱材32の伝熱面積の割合は、芯材31の総面積に対し60%の割合である。   In the heat conduction composite material 30 according to the third embodiment described above, the ratio of the heat transfer area of the heat transfer material 32 to the contact surface height between the core material 31 and the surface layer materials 33 and 34 is the total area of the core material 31. The ratio is 60%.

また、表層材33と伝熱材32との間、伝熱材32と表層材34との間を拡散接合した後、表層材33,34を除去加工することにより、熱伝導複合材30全体の熱膨張率を調整することができる。具体的には、表層材33,34の板厚が0.03mmとなるまでラップ研磨を行った。このようにラップ研磨した熱伝導複合材30の熱伝導率は、200〜240W/mK、平面方向の熱膨張率は5〜6.6ppm/Kの結果を得ることができた。従って、タングステン(W)、モリブデン(Mo)などの高価な材料を用いることなく、同等の特性を実現することができる。   In addition, after diffusion bonding between the surface layer material 33 and the heat transfer material 32 and between the heat transfer material 32 and the surface layer material 34, the surface layer materials 33 and 34 are removed to process the heat conduction composite material 30 as a whole. The coefficient of thermal expansion can be adjusted. Specifically, lapping was performed until the surface layer materials 33 and 34 had a thickness of 0.03 mm. The thermal conductivity of the thermal conductive composite 30 thus lapped was 200 to 240 W / mK, and the thermal expansion coefficient in the plane direction was 5 to 6.6 ppm / K. Therefore, equivalent characteristics can be realized without using expensive materials such as tungsten (W) and molybdenum (Mo).

(実施の形態4)
上述した実施の形態1〜3では、表層材13,23,33と伝熱材12,22,32とが独立した部材であったが、実施の形態4では、図12に示すように、一方の表層材(第2板状体)43と伝熱材(伝熱体)42とが予め一体に構成された熱伝導複合材40であって、多数の貫通孔41aが設けられた芯材(第1板状体)41と、貫通孔41aに収容される伝熱材42が一体に形成され、芯材41の一方の表面に配設された表層体45と、芯材41の他方の表面において伝熱材に接合された表層材(第2板状体)44とにより構成されている。
(Embodiment 4)
In the first to third embodiments described above, the surface layer materials 13, 23, 33 and the heat transfer materials 12, 22, 32 are independent members. However, in the fourth embodiment, as shown in FIG. The surface layer material (second plate-like body) 43 and the heat transfer material (heat transfer body) 42 are integrally formed in advance with a heat conduction composite material 40, which is a core material provided with a large number of through holes 41a ( (First plate-like body) 41, a heat transfer material 42 accommodated in the through hole 41 a are integrally formed, a surface layer body 45 disposed on one surface of the core material 41, and the other surface of the core material 41 And a surface layer material (second plate-like body) 44 joined to the heat transfer material.

芯材41は、表層材44及び表層体45に比較して熱膨張率が小さなインバー(Fe−Ni合金)によって成形した平板状体である。芯材41には、平面視円形の貫通孔41aが正方格子の格子点に位置するように、多数設けられている。貫通孔41aは、芯材41の一方の表面から他方の表面に貫通しており、例えば、エッチング法によって設けられる。例えば、実施の形態4で用いる芯材41は、板厚が0.3mm、貫通孔41aの内径が0.32mmとする。   The core material 41 is a flat body formed of invar (Fe—Ni alloy) having a smaller coefficient of thermal expansion than the surface layer material 44 and the surface layer body 45. A large number of through holes 41a having a circular shape in plan view are provided in the core member 41 so as to be positioned at lattice points of a square lattice. The through hole 41a penetrates from one surface of the core material 41 to the other surface, and is provided by, for example, an etching method. For example, the core material 41 used in Embodiment 4 has a plate thickness of 0.3 mm and the inner diameter of the through hole 41a is 0.32 mm.

図13に示すように、表層体45は、板厚0.02mmの表層材43と、表層材43の一方の表面において芯材41の貫通孔41aと対応する位置に設けた直径が0.3mm、高さが0.3mmの横断面形状が平面視円形の円柱状を成す伝熱材42とを一体に成形したものである。伝熱材42は、横断面が貫通孔41aと相似形である。   As shown in FIG. 13, the surface layer body 45 has a surface layer material 43 having a thickness of 0.02 mm, and a diameter provided at a position corresponding to the through hole 41 a of the core material 41 on one surface of the surface layer material 43 is 0.3 mm. The heat transfer material 42 is formed integrally with a heat transfer material 42 having a height of 0.3 mm and a circular cross-sectional shape in a plan view. The heat transfer material 42 has a cross section similar to the through hole 41a.

このように、表層材43に複数の伝熱材42が一体に形成された表層体45は、例えば電鋳法により製造される。具体的には、まず、ステンレスなどの金属板に表層材43の外形を露出させたパターンをレジスト工程と、半導体素子の製造におけるフォトリソグラフィーと同様の工程により形成する。次に、ステンレス板を銅(Cu)の電界析出浴に浸漬し、板厚が0.02mmとなるまで銅(Cu)を析出させる。そして、ステンレス板を取り出し、表面を洗浄乾燥後、析出した銅(Cu)の上に伝熱材42を構成する直径が0.3mmの円筒状のパターンをレジストで形成し、同じく銅(Cu)の電解析出浴に浸漬し、板厚が0.3mmとなるまで銅(Cu)を析出させる。析出が完了すると、不要なレジストを除去し、ステンレス板から成型品を剥離することにより、伝熱材42が一体に形成された表層体45を得ることができる。   Thus, the surface layer body 45 in which the plurality of heat transfer materials 42 are integrally formed on the surface layer material 43 is manufactured by, for example, an electroforming method. Specifically, first, a pattern in which the outer shape of the surface layer material 43 is exposed on a metal plate such as stainless steel is formed by a resist process and a process similar to photolithography in manufacturing a semiconductor element. Next, the stainless steel plate is immersed in a copper (Cu) field deposition bath, and copper (Cu) is deposited until the plate thickness becomes 0.02 mm. Then, the stainless steel plate is taken out, the surface is washed and dried, and a cylindrical pattern having a diameter of 0.3 mm constituting the heat transfer material 42 is formed on the deposited copper (Cu) with a resist. In the electrolytic deposition bath, copper (Cu) is deposited until the plate thickness becomes 0.3 mm. When the deposition is completed, an unnecessary resist is removed, and the molded product is peeled off from the stainless steel plate, whereby the surface layer body 45 in which the heat transfer material 42 is integrally formed can be obtained.

表層材44は、芯材41に比較して熱伝導率が大きな材料が好ましく、ここでは、無酸素銅の板厚0.02mmの平坦な板状体を用いることにする。また、表層材44は、芯材41の他方の表面を覆うことができるように、芯材41と同一の面積を有している。このような寸法を有する表層材44は、例えば、エッチング法によって製造される。   The surface layer material 44 is preferably made of a material having a larger thermal conductivity than the core material 41, and here, a flat plate-like body made of oxygen-free copper and having a thickness of 0.02 mm is used. Further, the surface layer material 44 has the same area as the core material 41 so as to cover the other surface of the core material 41. The surface layer material 44 having such dimensions is manufactured by, for example, an etching method.

上述した熱伝導複合材40を製造する場合には、まず、伝熱材42が上になるように配置した表層体45に対して芯材41及び表層材44を順次積層させる。図には明示していないが、実施の形態1と同様、芯材41、表層材44及び表層体45のそれぞれには、互いに対応する部位にガイドホールを設けておき、積層する順でガイドホールにアライメントピンを順次挿通させることが好ましい。   When manufacturing the above-described heat conductive composite material 40, first, the core material 41 and the surface layer material 44 are sequentially laminated on the surface layer body 45 arranged so that the heat transfer material 42 is on top. Although not clearly shown in the drawing, as in the first embodiment, each of the core material 41, the surface layer material 44, and the surface layer body 45 is provided with a guide hole in a corresponding part, and the guide holes are stacked in the order of stacking. It is preferable that the alignment pins are sequentially inserted through.

この状態から、不活性ガス雰囲気中もしくは真空中に配置し、所望の温度及び加圧力で加熱・加圧することにより、表層材44と表層体45の伝熱材42との間、並びに表層材44及び表層体45と芯材41との間を拡散接合させれば、芯材41と、表層材44と、表層体45とが一体化された熱伝導複合材40が構成される。但し、上述したように、芯材41の貫通孔41aに対して伝熱材42の寸法を小さく形成しているため、さらには芯材41と表層材44と表層体45との間を拡散接合により一体化させているため、伝熱材42の外周面と貫通孔41aの内壁面との間には間隙が確保されることになる。   From this state, it is placed in an inert gas atmosphere or in vacuum, and heated / pressurized at a desired temperature and pressure, so that the surface layer material 44 and the heat transfer material 42 of the surface layer body 45 and the surface layer material 44 When the surface layer body 45 and the core material 41 are diffusion-bonded, the heat conductive composite material 40 in which the core material 41, the surface layer material 44, and the surface layer body 45 are integrated is configured. However, as described above, since the size of the heat transfer material 42 is smaller than the through hole 41a of the core material 41, diffusion bonding is further performed between the core material 41, the surface layer material 44, and the surface layer body 45. Therefore, a gap is secured between the outer peripheral surface of the heat transfer material 42 and the inner wall surface of the through hole 41a.

上記のように構成した熱伝導複合材40を放熱部材として用いる場合には、いずれか一方の表層材、例えば表層材43をチップ等の発熱源に接合させれば良い。表層材43に伝達された熱は、表層材43から伝熱材42及び伝熱材42から表層材44に熱伝導されることになる。これら表層材43、伝熱材42及び表層材44は、いずれも熱伝導率の高い材料によって構成されたものであり、しかも互いに拡散接合によって一体化された状態にある。従って、チップ等の発熱源から効率良く放熱することが可能となる。   When the heat conductive composite material 40 configured as described above is used as a heat radiating member, any one surface layer material, for example, the surface layer material 43 may be bonded to a heat source such as a chip. The heat transferred to the surface layer material 43 is thermally transferred from the surface layer material 43 to the heat transfer material 42 and from the heat transfer material 42 to the surface layer material 44. The surface layer material 43, the heat transfer material 42, and the surface layer material 44 are all made of a material having a high thermal conductivity, and are integrated with each other by diffusion bonding. Therefore, it is possible to efficiently dissipate heat from a heat source such as a chip.

この間、伝熱材42及び一対の表層材43,44は伝熱方向に熱膨張するほか、伝熱方向と直交する方向、つまり熱伝導複合材40の面方向に沿っても熱膨張することになる。しかしながら、芯材41に形成した貫通孔41aの内壁面と伝熱材42の外表面との間には、少なくとも一部に間隙が確保されている。従って、熱伝導複合材40の面方向に沿って伝熱材42が熱膨張した場合にも、芯材41に与える影響を可及的に抑えることができる。また、一対の表層材43,44は、いずれも芯材41に大きな面積をもって接合された状態にある。これらの結果、熱伝導複合材40によれば、一対の表層材43,44及び伝熱材42に比較して熱膨張率の小さい芯材41が面方向に沿った熱膨張率を決定する要因となるため、板厚方向に大きな熱伝導率を設定した場合にも面方向に沿った熱膨張率を小さく抑えることができ、接合させたチップに剥離や割れを生ずることなく、チップから効率良く放熱することができるようになる。   During this time, the heat transfer material 42 and the pair of surface layer materials 43 and 44 thermally expand in the heat transfer direction, and also expand in the direction orthogonal to the heat transfer direction, that is, along the surface direction of the heat conductive composite 40. Become. However, a gap is secured at least partially between the inner wall surface of the through hole 41 a formed in the core member 41 and the outer surface of the heat transfer material 42. Therefore, even when the heat transfer material 42 is thermally expanded along the surface direction of the heat conducting composite material 40, the influence on the core material 41 can be suppressed as much as possible. The pair of surface layer materials 43 and 44 are both joined to the core material 41 with a large area. As a result, according to the heat conductive composite material 40, the core material 41 having a smaller coefficient of thermal expansion than the pair of surface layer materials 43 and 44 and the heat transfer material 42 determines the coefficient of thermal expansion along the surface direction. Therefore, even when a large thermal conductivity is set in the plate thickness direction, the thermal expansion coefficient along the surface direction can be kept small, and the bonded chip can be efficiently removed from the chip without causing peeling or cracking. It becomes possible to dissipate heat.

上述した実施の形態4である熱伝導複合材40は、伝熱材42と一方の表層材43とが予め一体に構成されているので、組立精度が上がり、結果的に、板厚方向の伝熱面積を大きく取ることができた。また、組立工数も減り、組立コストを低減することもできた。   In the heat conduction composite material 40 according to the fourth embodiment described above, the heat transfer material 42 and one surface layer material 43 are integrally formed in advance, so that the assembly accuracy is improved, and as a result, the heat transfer material in the plate thickness direction is increased. A large heat area was obtained. In addition, assembly man-hours were reduced, and assembly costs could be reduced.

尚、伝熱材42は、平面視円形の円柱状に限られるものではなく、平面視正方形を含む矩形、多角形の柱体とすることができる。   The heat transfer material 42 is not limited to a circular cylindrical shape in plan view, and may be a rectangular or polygonal column including a square in plan view.

また、一方の表層材43と伝熱材42とを一体に構成するのみならず、他方の表層材44と伝熱材42とも一体に構成し、伝熱材42を互いに対向させて拡散接合させても良い。このように構成すると、完成した熱伝導複合材40の板厚を2倍にすることができ、熱伝導複合材40における芯材41の板厚方向の割合を増やすことができる。そして、芯材41の板厚方向の割合を増やすと、熱伝導複合材40の面方向の熱伝導率をさらに低下させることができる。例えば、上述した例では、芯材41の板厚を0.6mmとすることができる。   Further, not only the one surface layer material 43 and the heat transfer material 42 are integrally formed, but also the other surface layer material 44 and the heat transfer material 42 are integrally formed, and the heat transfer materials 42 are opposed to each other and diffusion bonded. May be. If comprised in this way, the plate | board thickness of the completed heat conductive composite material 40 can be doubled, and the ratio of the thickness direction of the core material 41 in the heat conductive composite material 40 can be increased. And if the ratio of the plate | board thickness direction of the core material 41 is increased, the heat conductivity of the surface direction of the heat conductive composite material 40 can further be reduced. For example, in the example mentioned above, the plate | board thickness of the core material 41 can be 0.6 mm.

また、電鋳法において、共析メッキの技術を応用し、銅(Cu)にダイヤモンドまたはCBN等の高熱伝導材を微粒子として分散することも可能であり、この様な構成にした場合、完成した熱伝導複合材40の熱伝導率をさらに引上げることが可能である。   In electroforming, it is also possible to disperse high thermal conductive materials such as diamond or CBN as fine particles in copper (Cu) by applying the eutectoid plating technique. It is possible to further increase the thermal conductivity of the heat conductive composite 40.

また、本実施の形態においては電鋳法による製造法を示したが、精密鋳造法や、金属粉体を樹脂バインダーに混練し、インジェクション成型を行い、その後、MIM(Metal Injection Molding)法を用いて、成型品を焼結させて表層材としても良い。   Moreover, although the manufacturing method by the electroforming method is shown in the present embodiment, a precision casting method or a metal powder is kneaded into a resin binder, injection molding is performed, and then a MIM (Metal Injection Molding) method is used. Then, the molded product may be sintered to form a surface layer material.

尚、上述した実施の形態1〜4では、いずれも伝熱体が第1板状体に形成した貫通孔の内部横断面形状に対して相似形となる横断面形状を有したものを例示しているが、必ずしも相似形である必要はなく、例えば貫通孔の内部横断面形状が六角形で、伝熱体の横断面が四角形や円形でもあっても構わない。   In the first to fourth embodiments described above, the heat transfer body has a cross-sectional shape that is similar to the internal cross-sectional shape of the through hole formed in the first plate-like body. However, it is not always necessary to have a similar shape. For example, the internal cross-sectional shape of the through-hole may be a hexagon, and the cross-section of the heat transfer body may be a square or a circle.

また、上述した実施の形態1〜4では、互いに積層する板状体や治具にガイドホールを形成し、これらのガイドホールにアライメントピンを挿通させることによって位置決めを行う製造方法を例示しているが、必ずしもガイドホール及びアライメントピンを適用して製造する必要はない。   Moreover, in Embodiment 1-4 mentioned above, the manufacturing method which positions by making a guide hole in the plate-shaped body and jig | tool laminated | stacked mutually and inserting an alignment pin in these guide holes is illustrated. However, it is not always necessary to manufacture by applying the guide hole and the alignment pin.

10 熱伝導複合材
11 芯材
11a 貫通孔
12 伝熱材
13,14 表層材
20 熱伝導複合材
21 芯材
21a 貫通孔
22 伝熱材
23,24 表層材
30 熱伝導複合材
31 芯材
31a 貫通孔
32 伝熱材
33,34 表層材
33a,34a 凹部
40 熱伝導複合材
41 芯材
41a 貫通孔
42 伝熱材
43,44 表層材
DESCRIPTION OF SYMBOLS 10 Heat conductive composite material 11 Core material 11a Through-hole 12 Heat transfer material 13, 14 Surface layer material 20 Heat conductive composite material 21 Core material 21a Through hole 22 Heat transfer material 23, 24 Surface layer material 30 Heat conductive composite material 31 Core material 31a Through Hole 32 Heat transfer material 33, 34 Surface layer material 33a, 34a Recess 40 Heat conduction composite material 41 Core material 41a Through hole 42 Heat transfer material 43, 44 Surface layer material

Claims (10)

互いに熱膨張率及び熱伝導率が異なる複数の板状体を積層することにより構成した熱伝導複合材であって、
比較的熱膨張率の小さい材料によって成形し、かつ板厚方向に沿って貫通した複数の貫通孔を有する第1板状体と、
前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記第1板状体の2つの表面にそれぞれ接合させた一対の第2板状体と、
前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記貫通孔の内壁面との間の少なくとも一部に間隙を確保する一方、前記一対の第2板状体に対してそれぞれ接合する態様で前記複数の貫通孔のそれぞれに配設した伝熱体と
を備えたことを特徴とする熱伝導複合材。
A heat conduction composite material formed by laminating a plurality of plate-like bodies having different thermal expansion coefficients and thermal conductivity,
A first plate-like body formed of a material having a relatively low coefficient of thermal expansion and having a plurality of through holes penetrating along the plate thickness direction;
A pair of second plate-like bodies formed by a material having a large thermal conductivity compared to the first plate-like body and bonded to the two surfaces of the first plate-like body;
The pair of second plate-shaped bodies are formed of a material having a higher thermal conductivity than the first plate-shaped body, and a gap is secured at least in part between the inner wall surfaces of the through holes. And a heat transfer member disposed in each of the plurality of through-holes in a mode of being joined to each other.
互いに熱膨張率及び熱伝導率が異なる複数の板状体を積層することにより構成した熱伝導複合材であって、
比較的熱膨張率の小さい材料によって成形し、かつ板厚方向に沿って貫通した複数の貫通孔を有する第1板状体と、
前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記第1板状体の2つの表面にそれぞれ積層させた一対の第2板状体と、
前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記貫通孔の内壁面との間の少なくとも一部に間隙を確保する一方、前記一対の第2板状体に対してそれぞれ接触する態様で前記複数の貫通孔のそれぞれに配設した伝熱体と
を備え、かつこれら第1板状体と一対の第2板状体との間及び伝熱体と一対の第2板状体との間をそれぞれ拡散接合により一体化したことを特徴とする熱伝導複合材。
A heat conduction composite material formed by laminating a plurality of plate-like bodies having different thermal expansion coefficients and thermal conductivity,
A first plate-like body formed of a material having a relatively low coefficient of thermal expansion and having a plurality of through holes penetrating along the plate thickness direction;
A pair of second plate-like bodies formed by a material having a larger thermal conductivity than that of the first plate-like body and laminated on the two surfaces of the first plate-like body;
The pair of second plate-shaped bodies are formed of a material having a higher thermal conductivity than the first plate-shaped body, and a gap is secured at least in part between the inner wall surfaces of the through holes. A heat transfer body disposed in each of the plurality of through-holes in a manner in contact with each other, and between the first plate-like body and the pair of second plate-like bodies and between the heat-transfer body and the pair. A heat conductive composite material characterized in that the second plate-like body is integrated by diffusion bonding.
前記伝熱体は、前記第1板状体に形成した貫通孔の内部横断面形状に対して相似形となる横断面形状を有した柱状部材であることを特徴とする請求項1または請求項2に記載の熱伝導複合材。   The heat transfer body is a columnar member having a cross-sectional shape that is similar to an internal cross-sectional shape of a through-hole formed in the first plate-like body. 2. The heat conducting composite material according to 2. 前記第1板状体は、横断面が円形の貫通孔を有したものであり、
前記伝熱体は、横断面が円形の柱状部材であることを特徴とする請求項1または請求項2に記載の熱伝導複合材。
The first plate-like body has a through-hole having a circular cross section,
The heat transfer composite according to claim 1, wherein the heat transfer body is a columnar member having a circular cross section.
互いに熱膨張率及び熱伝導率が異なる複数の板状体を積層することにより構成され、
比較的熱膨張率の小さい材料によって成形し、かつ板厚方向に沿って貫通した複数の貫通孔を有する第1板状体と、
前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記第1板状体の2つの表面にそれぞれ接合させた一対の第2板状体と、
前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記貫通孔の内壁面との間の少なくとも一部に間隙を確保する一方、前記一対の第2板状体に対してそれぞれ接合する態様で前記複数の貫通孔のそれぞれに配設した伝熱体と
を備えた熱伝導複合材を製造する方法であって、
前記第1板状体の下方に位置する表面に前記第2板状体を積層する工程と、
前記第1板状体の貫通孔にそれぞれ前記伝熱体を配置する工程と、
前記第1板状体の上方に位置する表面に前記第2板状体を積層する工程と、
これら積層した第1板状体及び一対の第2板状体の板厚方向に沿って圧力を加えることにより、前記第1板状体と前記一対の第2板状体との間及び前記伝熱体と前記一対の第2板状体との間をそれぞれ拡散接合させる工程と
を含むことを特徴とする熱伝導複合材の製造方法。
It is constituted by laminating a plurality of plate-like bodies having different thermal expansion coefficients and thermal conductivities,
A first plate-like body formed of a material having a relatively low coefficient of thermal expansion and having a plurality of through holes penetrating along the plate thickness direction;
A pair of second plate-like bodies formed by a material having a large thermal conductivity compared to the first plate-like body and bonded to the two surfaces of the first plate-like body;
The pair of second plate-shaped bodies are formed of a material having a higher thermal conductivity than the first plate-shaped body, and a gap is secured at least in part between the inner wall surfaces of the through holes. Each of the plurality of through-holes in a manner of being joined to each other, and a method of manufacturing a heat conductive composite material comprising:
Laminating the second plate-like body on the surface located below the first plate-like body;
Disposing the heat transfer bodies in the through holes of the first plate-like body,
Laminating the second plate-like body on the surface located above the first plate-like body;
By applying pressure along the thickness direction of the laminated first plate and the pair of second plates, between the first plate and the pair of second plates and the transmission. And a step of performing diffusion bonding between the heat body and the pair of second plate-like bodies, respectively.
互いに熱膨張率及び熱伝導率が異なる複数の板状体を積層することにより構成され、
比較的熱膨張率の小さい材料によって成形し、かつ板厚方向に沿って貫通した複数の貫通孔を有する第1板状体と、
前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記第1板状体の2つの表面にそれぞれ接合させた一対の第2板状体と、
前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記貫通孔の内壁面との間の少なくとも一部に間隙を確保する一方、前記一対の第2板状体に対してそれぞれ接合する態様で前記複数の貫通孔のそれぞれに配設した伝熱体と
を備えた熱伝導複合材を製造する方法であって、
一方の第2板状体において前記第1板状体の貫通孔に対応する部位にそれぞれ前記伝熱体を予め拡散接合させる工程と、
貫通孔のそれぞれに伝熱体を配置する態様で前記一方の第2板状体に前記第1板状体を積層する工程と、
伝熱体が拡散接合された一方の第2板状体との間に前記第1板状体を挟む態様で第1板状体に他方の第2板状体を積層する工程と、
これら積層した第1板状体及び一対の第2板状体の板厚方向に沿って圧力を加えることにより、前記第1板状体と前記一対の第2板状体との間及び前記伝熱体と前記他方の第2板状体との間をそれぞれ拡散接合させる工程と
を含むことを特徴とする熱伝導複合材の製造方法。
It is constituted by laminating a plurality of plate-like bodies having different thermal expansion coefficients and thermal conductivities,
A first plate-like body formed of a material having a relatively low coefficient of thermal expansion and having a plurality of through holes penetrating along the plate thickness direction;
A pair of second plate-like bodies formed by a material having a large thermal conductivity compared to the first plate-like body and bonded to the two surfaces of the first plate-like body;
The pair of second plate-shaped bodies are formed of a material having a higher thermal conductivity than the first plate-shaped body, and a gap is secured at least in part between the inner wall surfaces of the through holes. Each of the plurality of through-holes in a manner of being joined to each other, and a method of manufacturing a heat conductive composite material comprising:
A step of preliminarily diffusing and bonding the heat transfer body respectively to a portion corresponding to the through hole of the first plate-like body in one second plate-like body;
Laminating the first plate-like body on the one second plate-like body in a manner in which a heat transfer body is disposed in each of the through holes;
A step of laminating the other second plate-like body on the first plate-like body in such a manner that the first plate-like body is sandwiched between one heat-transfer body and the second plate-like body joined by diffusion bonding;
By applying pressure along the thickness direction of the laminated first plate and the pair of second plates, between the first plate and the pair of second plates and the transmission. And a step of performing diffusion bonding between the thermal body and the other second plate-like body, respectively.
互いに熱膨張率及び熱伝導率が異なる複数の板状体を積層することにより構成され、
比較的熱膨張率の小さい材料によって成形し、かつ板厚方向に沿って貫通した複数の貫通孔を有する第1板状体と、
前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記第1板状体の2つの表面にそれぞれ接合させた一対の第2板状体と、
前記第1板状体に比較して大きな熱伝導率を有した材料によって成形し、前記貫通孔の内壁面との間の少なくとも一部に間隙を確保する一方、前記一対の第2板状体に対してそれぞれ接合する態様で前記複数の貫通孔のそれぞれに配設した伝熱体と
を備えた熱伝導複合材を製造する方法であって、
一方の第2板状体において前記第1板状体の貫通孔に対応する部位に予め前記伝熱体を一体に成形する工程と、
貫通孔のそれぞれに伝熱体を配置する態様で前記一方の第2板状体に前記第1板状体を積層する工程と、
伝熱体が拡散接合された一方の第2板状体との間に前記第1板状体を挟む態様で第1板状体に他方の第2板状体を積層する工程と、
これら積層した第1板状体及び一対の第2板状体の板厚方向に沿って圧力を加えることにより、前記第1板状体と前記一対の第2板状体との間及び前記伝熱体と前記他方の第2板状体との間をそれぞれ拡散接合させる工程と
を含むことを特徴とする熱伝導複合材の製造方法。
It is constituted by laminating a plurality of plate-like bodies having different thermal expansion coefficients and thermal conductivities,
A first plate-like body formed of a material having a relatively low coefficient of thermal expansion and having a plurality of through holes penetrating along the plate thickness direction;
A pair of second plate-like bodies formed by a material having a large thermal conductivity compared to the first plate-like body and bonded to the two surfaces of the first plate-like body;
The pair of second plate-shaped bodies are formed of a material having a higher thermal conductivity than the first plate-shaped body, and a gap is secured at least in part between the inner wall surfaces of the through holes. Each of the plurality of through-holes in a manner of being joined to each other, and a method of manufacturing a heat conductive composite material comprising:
A step of integrally molding the heat transfer body in advance in a portion corresponding to the through hole of the first plate-like body in one second plate-like body;
Laminating the first plate-like body on the one second plate-like body in a manner in which a heat transfer body is disposed in each of the through holes;
A step of laminating the other second plate-like body on the first plate-like body in such a manner that the first plate-like body is sandwiched between one heat-transfer body and the second plate-like body joined by diffusion bonding;
By applying pressure along the thickness direction of the laminated first plate and the pair of second plates, between the first plate and the pair of second plates and the transmission. And a step of performing diffusion bonding between the thermal body and the other second plate-like body, respectively.
前記伝熱体として、前記第1板状体の板厚よりも大きな外径を有した球状に成形したものを適用することを特徴とする請求項5または請求項6に記載の熱伝導複合材の製造方法。   The heat conductive composite material according to claim 5 or 6, wherein a spherical shape having an outer diameter larger than a plate thickness of the first plate-like body is applied as the heat transfer body. Manufacturing method. 前記第2板状体において前記第1板状体の貫通孔に対応する部位のそれぞれに予め球面状の凹部を形成したことを特徴とする請求項8に記載の熱伝導複合材の製造方法。   9. The method of manufacturing a heat conducting composite material according to claim 8, wherein a spherical concave portion is formed in advance in each of the portions corresponding to the through holes of the first plate-like body in the second plate-like body. 前記第1板状体として、横断面が円形の貫通孔を有したものを適用し、
前記伝熱体として、横断面が円形の柱状を成すものを適用したことを特徴とする請求項5または請求項6または請求項7に記載の熱伝導複合材の製造方法。
As the first plate-like body, one having a through hole with a circular cross section is applied,
The method for manufacturing a heat-conducting composite material according to claim 5, wherein the heat transfer body is a column having a circular cross section.
JP2009168177A 2009-03-17 2009-07-16 Thermally conductive composite material and manufacturing method thereof Expired - Fee Related JP5292556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009168177A JP5292556B2 (en) 2009-03-17 2009-07-16 Thermally conductive composite material and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009064911 2009-03-17
JP2009064911 2009-03-17
JP2009168177A JP5292556B2 (en) 2009-03-17 2009-07-16 Thermally conductive composite material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010245496A true JP2010245496A (en) 2010-10-28
JP5292556B2 JP5292556B2 (en) 2013-09-18

Family

ID=43098130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009168177A Expired - Fee Related JP5292556B2 (en) 2009-03-17 2009-07-16 Thermally conductive composite material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5292556B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101274377B1 (en) * 2011-10-19 2013-06-17 한국산업기술대학교산학협력단 Fabrication method of clad metal for high heat realease
KR101307141B1 (en) * 2011-10-19 2013-09-10 한국산업기술대학교산학협력단 Fabrication method of clad metal with high conductivity
WO2021241161A1 (en) * 2020-05-28 2021-12-02 信越ポリマー株式会社 Heat radiation structure, and battery provided with same
WO2024029311A1 (en) * 2022-08-04 2024-02-08 住友電気工業株式会社 Composite material, heat spreader, and semiconductor package

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109947A (en) * 1991-10-12 1993-04-30 Sumitomo Special Metals Co Ltd Heat conducting material and its manufacture
JPH05283474A (en) * 1986-04-29 1993-10-29 Internatl Business Mach Corp <Ibm> Forming method of semiconductor chip package and chip-bonding tape for the method
JPH0924500A (en) * 1995-07-13 1997-01-28 Sumitomo Special Metals Co Ltd Production of thermally conductive composite material
JP2007019203A (en) * 2005-07-07 2007-01-25 Toyota Industries Corp Heat radiator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283474A (en) * 1986-04-29 1993-10-29 Internatl Business Mach Corp <Ibm> Forming method of semiconductor chip package and chip-bonding tape for the method
JPH05109947A (en) * 1991-10-12 1993-04-30 Sumitomo Special Metals Co Ltd Heat conducting material and its manufacture
JPH0924500A (en) * 1995-07-13 1997-01-28 Sumitomo Special Metals Co Ltd Production of thermally conductive composite material
JP2007019203A (en) * 2005-07-07 2007-01-25 Toyota Industries Corp Heat radiator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101274377B1 (en) * 2011-10-19 2013-06-17 한국산업기술대학교산학협력단 Fabrication method of clad metal for high heat realease
KR101307141B1 (en) * 2011-10-19 2013-09-10 한국산업기술대학교산학협력단 Fabrication method of clad metal with high conductivity
WO2021241161A1 (en) * 2020-05-28 2021-12-02 信越ポリマー株式会社 Heat radiation structure, and battery provided with same
WO2024029311A1 (en) * 2022-08-04 2024-02-08 住友電気工業株式会社 Composite material, heat spreader, and semiconductor package

Also Published As

Publication number Publication date
JP5292556B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
US11239095B2 (en) Stacked semiconductor die assemblies with high efficiency thermal paths and molded underfill
CN104037153B (en) 3D packaging parts and forming method thereof
US5844310A (en) Heat spreader semiconductor device with heat spreader and method for producing same
CA2695746C (en) Methods for making millichannel substrate, and cooling device and apparatus using the substrate
JP5484429B2 (en) Power converter
JPH0799273A (en) Heat sink
JP2004507073A (en) High rigidity, multi-layer semiconductor package and manufacturing method thereof
KR102429675B1 (en) Monolithic Microwave Integrated Circuit (MMIC) Cooling Architecture
JP5292556B2 (en) Thermally conductive composite material and manufacturing method thereof
JP2003152144A (en) Composite material and method for its manufacture
US20100302734A1 (en) Heatsink and method of fabricating same
JPH09312361A (en) Composite material for electronic component and its manufacture
CN109923650B (en) Strain resistant die attach and fabrication methods with improved thermal conductivity
JP2008226916A (en) Heat dissipation component and manufacturing method thereof, and heat dissipation structure
JPS5987893A (en) Circuit board, method of producing same and semiconductor device using same
WO2021040030A1 (en) Heat dissipation plate, semiconductor package and semiconductor module
JP5919692B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2016012612A (en) Base plate for power module with heat sink, manufacturing method and power module
WO2018190023A1 (en) Heat dissipation substrate, heat dissipation substrate electrode, semiconductor package, and semiconductor module
JP2017152606A (en) Heat radiation substrate, semiconductor package using the same, and semiconductor module
JP2001168255A (en) Semiconductor integrated circuit device with cooler and manufacturing method thereof
JP2018041868A (en) Heat dissipation substrate
JP2017183533A (en) Heat sink with circuit board and manufacturing method therefor
JPH03218031A (en) Semiconductor integrated circuit device and preform bonding material used in the same
JPWO2018164206A1 (en) Insulated circuit board terminal, insulated circuit board composite, and semiconductor device composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130509

R150 Certificate of patent or registration of utility model

Ref document number: 5292556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees