JP2010245262A - Cmos circuit - Google Patents

Cmos circuit Download PDF

Info

Publication number
JP2010245262A
JP2010245262A JP2009091992A JP2009091992A JP2010245262A JP 2010245262 A JP2010245262 A JP 2010245262A JP 2009091992 A JP2009091992 A JP 2009091992A JP 2009091992 A JP2009091992 A JP 2009091992A JP 2010245262 A JP2010245262 A JP 2010245262A
Authority
JP
Japan
Prior art keywords
cmos circuit
channel transistor
cmos
transistors
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009091992A
Other languages
Japanese (ja)
Inventor
Mitsue Yamanaka
三枝 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009091992A priority Critical patent/JP2010245262A/en
Priority to PCT/JP2009/005611 priority patent/WO2010116429A1/en
Publication of JP2010245262A publication Critical patent/JP2010245262A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/074Stacked arrangements of non-apertured devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/8113Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors using marks formed on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a CMOS circuit from causing latch-up. <P>SOLUTION: In the CMOS circuit 10, an N-channel transistor 11 and a P-channel transistor 12 are formed on different substrates 1A, 1B, respectively, and the transistors 11, 12 on both substrates 1A, 1B face each other and are connected. In the CMOS circuit 10, since a current path is not formed between the N-channel transistor 11 and the P-channel transistor 12 due to a parasitic transistor, the occurrence of latch-up can be completely prevented. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、CMOS回路とその製造方法に関する。   The present invention relates to a CMOS circuit and a manufacturing method thereof.

CMOS回路は、PチャネルルトランジスタとNチャネルトランジスタとで構成される。従来のCMOS回路は、PチャネルルトランジスタとNチャネルトランジスタとが同一基板上に混載されているため、ラッチアップ現象が生じる可能性がある。すなわち、ウェルや基板のpn接合部により形成される寄生トランジスタが、電源や入出力端子からの雑音によりオン状態となり、電源と接地の間に大電流が流れる現象を引き起こす可能性がある。この点に関して、CMOS回路を用いたインバータを例に、具体的に説明する。   The CMOS circuit is composed of a P-channel transistor and an N-channel transistor. In the conventional CMOS circuit, since the P-channel transistor and the N-channel transistor are mixedly mounted on the same substrate, a latch-up phenomenon may occur. That is, the parasitic transistor formed by the well or the pn junction of the substrate may be turned on by noise from the power supply or the input / output terminal, which may cause a phenomenon that a large current flows between the power supply and the ground. This point will be specifically described by taking an inverter using a CMOS circuit as an example.

図16はインバータ回路の回路図である。図17は従来のCMOS構造のインバータ回路の概念図である。図17に示すように、従来のCMOS構造では、同一の基板30上にNチャネルトランジスタ31とPチャネルトランジスタ32が形成されている。図18は、図17のインバータ回路のPN接合部に寄生トランジスタが形成されることを示す概念図である。図18では、PN接合部によって形成される寄生トランジスタがTr1、Tr2、Tr3、Tr4によって示され、Pウェル(PW)30P及びNウェル(NW)30Nの抵抗がRnw、Rpwによって示されている。なお、Tr1、Tr2、Tr3、Tr4は全てバイポーラトランジスタである。   FIG. 16 is a circuit diagram of an inverter circuit. FIG. 17 is a conceptual diagram of a conventional inverter circuit having a CMOS structure. As shown in FIG. 17, in the conventional CMOS structure, an N channel transistor 31 and a P channel transistor 32 are formed on the same substrate 30. 18 is a conceptual diagram showing that a parasitic transistor is formed at the PN junction of the inverter circuit of FIG. In FIG. 18, the parasitic transistors formed by the PN junction are indicated by Tr1, Tr2, Tr3, and Tr4, and the resistances of the P well (PW) 30P and the N well (NW) 30N are indicated by Rnw and Rpw. Tr1, Tr2, Tr3, and Tr4 are all bipolar transistors.

このインバータ回路におけるラッチアップ現象のメカニズムについて説明する。出力端子(B)から外部雑音が入った場合を想定すると((1))、Tr1のベースとエミッタ間は順バイアスされ、電流伝播経路(Tr1→Tr3)からRnwを通り((2))、VDDに電流が流れる。次に、電流伝播経路(Tr1→Tr4→Tr2)からRpwを通り((3))、VSSに電流が流れる。Rpwの両端に電位差が生じ、Tr2のベース・エミッタ間の電圧がある一定の電圧以上になると、Tr2がON状態になる。Tr2のコレクタ電流は、Tr3のベース電位を下げることになり、Tr3がON状態になる。それによって、電流伝播経路(Tr3→Tr4→Tr2)からRpwを通り((4))、VDDとVSSの間に電流パスが形成される。これがラッチアップ現象のメカニズムである。   The mechanism of the latch-up phenomenon in this inverter circuit will be described. Assuming that external noise enters from the output terminal (B) ((1)), the base and emitter of Tr1 are forward-biased and pass through Rnw from the current propagation path (Tr1 → Tr3) ((2)). Current flows through VDD. Next, current flows through VSS through the current propagation path (Tr1 → Tr4 → Tr2) through Rpw ((3)). When a potential difference occurs between both ends of Rpw and the voltage between the base and the emitter of Tr2 exceeds a certain voltage, Tr2 is turned on. The collector current of Tr2 lowers the base potential of Tr3, and Tr3 is turned on. As a result, a current path is formed between VDD and VSS through Rpw from the current propagation path (Tr3 → Tr4 → Tr2) ((4)). This is the mechanism of the latch-up phenomenon.

ラッチアップを防止するための技術として、Pウェル(PW)30P及びNウェル(NW)30Nのコンタクトや基板30のコンタクトを頻繁にとることにより、電位のふらつきを防止する方法がある。しかし、実際のCMOS回路においては、集積度の高いレイアウトが要求されるため、コンタクト領域を十分に確保できないという問題がある。   As a technique for preventing latch-up, there is a method of preventing potential fluctuation by frequently making contacts of the P well (PW) 30P and the N well (NW) 30N and the contact of the substrate 30. However, since an actual CMOS circuit requires a highly integrated layout, there is a problem that a sufficient contact region cannot be secured.

SOI構造のCMOS回路においては、寄生トランジスタが形成する電流パスを遮断することにより、ラッチアップ現象を防止できる。しかし現実には、SOIは薄膜で形成されており、大電流を流す回路では耐えられない(例えば、非特許文献1参照)。大電流に対応したCMOSアナログスイッチも製品化されているが(例えば、非特許文献2参照)、この種の従来の製品はトランジスタ単体で構成されたものである。将来的に回路が複雑になり複数のトランジスタで構成されるようになった場合、寄生トランジスタが形成する電流パスを遮断することは難しくなる。   In a CMOS circuit having an SOI structure, a latch-up phenomenon can be prevented by blocking a current path formed by a parasitic transistor. However, in reality, the SOI is formed of a thin film and cannot withstand a circuit through which a large current flows (see, for example, Non-Patent Document 1). A CMOS analog switch corresponding to a large current has been commercialized (see, for example, Non-Patent Document 2), but this type of conventional product is constituted by a single transistor. If the circuit becomes complex in the future and is composed of a plurality of transistors, it is difficult to cut off the current path formed by the parasitic transistors.

また、基板制御技術の適用に関して言えば、従来のCMOS回路のレイアウト構成ではNチャネルトランジスタとPチャネルトランジスタとが同一基板上に混在して形成され、これらのトランジスタを形成するためのPウェル(PW)とNウェル(NW)が同一チップ上に多数分離して配置されているため、多数のウェルに電力供給を行う必要がある。また、基板制御対象トランジスタに対して制御用の配線接続をしなければならない。このため、各トランジスタに電力を供給する電源設計と同様の設計方法が基板制御用の回路にも採用されていた。このような設計方法は、設計工数や配線領域の観点から、あまり効率的とは言い難い。基板制御技術の動向を踏まえると、将来の高性能低電力LSIは電源制御ブロック毎にスピードと電力の要求や回路的特徴に応じて最適な電源電圧と閾値電圧(Vth)の供給が要求される。(例えば、非特許文献3参照)   As for the application of the substrate control technology, in the conventional CMOS circuit layout configuration, an N-channel transistor and a P-channel transistor are formed on the same substrate, and a P well (PW) for forming these transistors is formed. ) And N wells (NW) are arranged separately on the same chip, and it is necessary to supply power to many wells. In addition, a wiring connection for control must be connected to the substrate control target transistor. For this reason, a design method similar to the power supply design for supplying power to each transistor has been adopted in the circuit for substrate control. Such a design method is not very efficient from the viewpoint of design man-hours and wiring area. Considering the trend of substrate control technology, future high-performance low-power LSIs are required to supply optimal power supply voltage and threshold voltage (Vth) according to speed and power requirements and circuit characteristics for each power supply control block. . (For example, see Non-Patent Document 3)

特開2003−92375号公報JP 2003-92375 A

相崎尚昭著,「薄膜SOI技術」,財団法人 武田計測先端知財団,[平成20年12月1日検索]、インターネット<URL:http://unit.aist.go.jp/ripo/ci/symposium/management/aizaki.pdf>Naoaki Aizaki, “Thin Film SOI Technology”, Takeda Measurement Advanced Intelligence Foundation, [Searched on December 1, 2008], Internet <URL: http://unit.aist.go.jp/ripo/ci/symposium /management/aizaki.pdf> 「大電流、25Ω、SPDT、CMOSアナログスイッチ」,マキシム・ジャパン株式会社,[平成20年12月1日検索]、インターネット<URL:http://datasheets.maxim-ic.com/jp/ds/MAX4659-MAX4660_jp.pdf>“High Current, 25Ω, SPDT, CMOS Analog Switch”, Maxim Japan, Inc., [December 1, 2008 search], Internet <URL: http://datasheets.maxim-ic.com/jp/ds/ MAX4659-MAX4660_en.pdf> 黒田忠広著,「VTCMOS」,株式会社 東芝(システムLSI技術研究所)[平成20年12月1日検索]、インターネット<URL:http://www.realize-se.co.jp/items/bt/128-129/2/index.html>Tadahiro Kuroda, “VTCMOS”, Toshiba Corporation (System LSI Research Laboratories) [searched on December 1, 2008], Internet <URL: http://www.realize-se.co.jp/items/bt /128-129/2/index.html>

上述したように、従来のCMOS回路では、ウェルや基板のpn接合部により形成される寄生トランジスタによる電流パスを完全に遮断することができなかったため、ラッチアップの発生を有効に防止することができなかった。   As described above, in the conventional CMOS circuit, the current path caused by the parasitic transistor formed by the well or the pn junction of the substrate cannot be completely cut off, so that the occurrence of latch-up can be effectively prevented. There wasn't.

本発明の目的は、寄生トランジスタによるNチャネルトランジスタとPチャネルトランジスタ間の電流パスの形成を完全に防止してラッチアップの発生を防止することができる新規な構成のCMOS回路とその製造方法を提供することである。   An object of the present invention is to provide a CMOS circuit having a novel configuration capable of completely preventing the formation of a current path between an N-channel transistor and a P-channel transistor by a parasitic transistor and preventing the occurrence of latch-up, and a method for manufacturing the same. It is to be.

本発明は、NチャネルトランジスタとPチャネルトランジスタがそれぞれ別の基板上に形成され、両基板上のトランジスタが互いに向き合わせて接続されたCMOS回路を提供する。   The present invention provides a CMOS circuit in which an N-channel transistor and a P-channel transistor are formed on different substrates, and the transistors on both substrates are connected to face each other.

また、本発明は、上記CMOS回路が複数接続されたCMOS回路であって、Nチャネルトランジスタが形成されている領域同士、Pチャネルトランジスタが形成されている領域同士が、それぞれ基板面に沿った方向に隣り合うように並べて配置されたCMOS回路を提供する。   Further, the present invention is a CMOS circuit in which a plurality of the above-described CMOS circuits are connected, in which the regions where the N-channel transistors are formed and the regions where the P-channel transistors are formed are respectively in the direction along the substrate surface. CMOS circuits arranged side by side are provided.

上記CMOS回路では、前記領域の周囲が絶縁材で覆われている。   In the CMOS circuit, the periphery of the region is covered with an insulating material.

また、本発明は、上記CMOS回路が複数接続されたCMOS回路であって、Nチャネルトランジスタが形成されている領域同士、Pチャネルトランジスタが形成されている領域同士が、それぞれ基板の厚さ方向に分離して配置されたCMOS回路を提供する。   Further, the present invention is a CMOS circuit in which a plurality of the above-described CMOS circuits are connected, and regions where N-channel transistors are formed and regions where P-channel transistors are formed are respectively in the thickness direction of the substrate. A CMOS circuit is provided separately.

また、本発明は、NチャネルトランジスタとPチャネルトランジスタとをそれぞれ別の基板上に形成し、両基板上のトランジスタを互いに向き合わせて接合するCMOS回路の製造方法を提供する。   The present invention also provides a method of manufacturing a CMOS circuit in which an N-channel transistor and a P-channel transistor are formed on different substrates, and the transistors on both substrates are bonded to face each other.

また、本発明は、上記CMOS回路が複数接続されたCMOS回路の製造方法であって、Nチャネルトランジスタが形成されている領域同士、Pチャネルトランジスタが形成されている領域同士を、それぞれ基板面に沿った方向に隣り合うように並べて配置するCMOS回路の製造方法を提供する。   The present invention is also a method for manufacturing a CMOS circuit in which a plurality of the above-mentioned CMOS circuits are connected, wherein regions where N-channel transistors are formed and regions where P-channel transistors are formed are respectively formed on the substrate surface. Provided is a method for manufacturing a CMOS circuit which is arranged side by side so as to be adjacent to each other in the direction along the line.

上記CMOS回路の製造方法では、前記領域の周囲を絶縁材で覆う。   In the CMOS circuit manufacturing method, the periphery of the region is covered with an insulating material.

また、本発明は、上記CMOS回路が複数接続されたCMOS回路の製造方法であって、Nチャネルトランジスタが形成されている領域同士、Pチャネルトランジスタが形成されている領域同士を、それぞれ基板の厚さ方向に分離して配置するCMOS回路の製造方法を提供する。   Further, the present invention is a method of manufacturing a CMOS circuit in which a plurality of the above-described CMOS circuits are connected, wherein the regions where N-channel transistors are formed and the regions where P-channel transistors are formed are respectively connected to the thickness of the substrate. Provided is a method for manufacturing a CMOS circuit which is arranged separately in the vertical direction.

本発明に係るCMOS回路によれば、NチャネルトランジスタとPチャネルトランジスタの間に寄生トランジスタによる電流パスが形成されないため、ラッチアップの発生を完全に防止できる。また、本発明に係るCMOS回路の製造方法によれば、ラッチアップが発生しないCMOS回路を製造できる。   According to the CMOS circuit of the present invention, since a current path due to a parasitic transistor is not formed between the N-channel transistor and the P-channel transistor, it is possible to completely prevent the occurrence of latch-up. In addition, according to the CMOS circuit manufacturing method of the present invention, a CMOS circuit that does not cause latch-up can be manufactured.

本発明の第1の実施形態を示す概念図The conceptual diagram which shows the 1st Embodiment of this invention 図1のCMOS回路における寄生トランジスタの構成を示す概念図Schematic diagram showing the configuration of parasitic transistors in the CMOS circuit of FIG. 本発明の第1の実施形態におけるCMOS回路のNチャネルトランジスタ領域の断面図(a)及びPチャネルトランジスタ領域の断面図(b)Sectional view (a) of the N-channel transistor region and sectional view of the P-channel transistor region (b) of the CMOS circuit in the first embodiment of the present invention Nチャネルトランジスタ領域及びPチャネルトランジスタ領域を互いに接合する直前の状態を示す断面図Sectional drawing which shows the state just before joining N channel transistor region and P channel transistor region mutually Nチャネルトランジスタ領域及びPチャネルトランジスタ領域を互いに接合した状態を示す断面図Sectional drawing which shows the state which joined the N channel transistor area | region and the P channel transistor area | region mutually Nチャネルトランジスタ領域の斜視図(a)及びPチャネルトランジスタ領域の斜視図(b)Perspective view of N-channel transistor region (a) and perspective view of P-channel transistor region (b) Nチャネルトランジスタ領域及びPチャネルトランジスタ領域を互いに接合する直前の状態を示す斜視図The perspective view which shows the state just before joining N channel transistor region and P channel transistor region mutually Nチャネルトランジスタ領域及びPチャネルトランジスタ領域を互いに接合した状態を示す斜視図The perspective view which shows the state which mutually joined the N channel transistor area | region and the P channel transistor area | region. 各トランジスタ領域の配置を概念的に示した斜視図A perspective view conceptually showing the arrangement of each transistor region Pチャネルトランジスタ領域のウェルレイアウトを示す平面図(a)及びNチャネルトランジスタ領域のウェルレイアウトを示す平面図(b)A plan view showing a well layout of a P-channel transistor region (a) and a plan view showing a well layout of an N-channel transistor region (b) NAND回路の回路図Circuit diagram of NAND circuit 本発明の第1の実施形態におけるNAND回路の構造を示す斜視図The perspective view which shows the structure of the NAND circuit in the 1st Embodiment of this invention 本発明の第2の実施形態におけるCMOS回路のNチャネルトランジスタ領域の断面図(a)及びPチャネルトランジスタ領域の断面図(b)Sectional view (a) of the N-channel transistor region and sectional view of the P-channel transistor region (b) of the CMOS circuit in the second embodiment of the present invention 本発明の第2の実施形態におけるCMOS回路の各トランジスタ領域の配置を概念的に示した斜視図The perspective view which showed notionally arrangement | positioning of each transistor area | region of the CMOS circuit in the 2nd Embodiment of this invention 本発明の第3の実施形態におけるCMOS回路の各トランジスタ領域の配置を概念的に示した斜視図The perspective view which showed notionally arrangement | positioning of each transistor area | region of the CMOS circuit in the 3rd Embodiment of this invention インバータ回路の回路図Circuit diagram of inverter circuit 従来のCMOS構造のインバータ回路の概念図Conceptual diagram of conventional inverter circuit with CMOS structure 図17のインバータ回路のPN接合部に形成される寄生トランジスタを示す概念図17 is a conceptual diagram showing a parasitic transistor formed at the PN junction of the inverter circuit of FIG. 従来のスタンダードセルのウェル構造を示す断面図Sectional view showing the well structure of a conventional standard cell 従来のスタンダードセル方式によるウェルレイアウトを示す平面図Plan view showing well layout by conventional standard cell method

以下、本発明を実施するための形態を、図面を参照しつつ説明する。以下の実施形態では、本発明のCMOS回路をインバータ回路に適用した例について説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the following embodiments, an example in which the CMOS circuit of the present invention is applied to an inverter circuit will be described.

(第1の実施形態)
図1は本発明の第1の実施形態を示す概念図である。図2は図1のCMOS回路における寄生トランジスタの構成を示す概念図である。このCMOS回路10においては、Nチャネルトランジスタ11とPチャネルトランジスタ12とが、それぞれ別の基板(N基板)1A、1B上に形成されることにより、互いに分離されている。PN接合部によって形成されるトランジスタは、Tr5(図18のTr2に相当)及びTr6(図18のTr4に相当)となる。図18のTr1及びTr3に相当するトランジスタは、このCMOS回路10においては、Pウェル(PW)2とNウェル(NW)3によるPN接合部が互いに分離されているため形成されない。したがって、このCMOS回路10は、出力端子(B)から外部雑音が入った場合でも(丸囲み符号1)、VDDとVSSの間に電流パスが形成されないため、ラッチアップを起こさない。
(First embodiment)
FIG. 1 is a conceptual diagram showing a first embodiment of the present invention. FIG. 2 is a conceptual diagram showing the configuration of parasitic transistors in the CMOS circuit of FIG. In this CMOS circuit 10, an N channel transistor 11 and a P channel transistor 12 are separated from each other by being formed on different substrates (N substrates) 1A and 1B. Transistors formed by the PN junction are Tr5 (corresponding to Tr2 in FIG. 18) and Tr6 (corresponding to Tr4 in FIG. 18). Transistors corresponding to Tr1 and Tr3 in FIG. 18 are not formed in the CMOS circuit 10 because the PN junctions of the P well (PW) 2 and the N well (NW) 3 are separated from each other. Therefore, even when external noise enters from the output terminal (B) (circled code 1), the CMOS circuit 10 does not cause a latch-up because a current path is not formed between VDD and VSS.

図3〜図5は、本発明の第1の実施形態におけるCMOS回路の一連の製造工程を示す断面図である。この実施形態のCMOS回路10は、Nチャネルトランジスタ11とPチャネルトランジスタ12とを各々別体として製造した後(図3)、両者を互いに重ね合わせて接合することにより製造される(図4、図5)。   3 to 5 are sectional views showing a series of manufacturing steps of the CMOS circuit according to the first embodiment of the present invention. The CMOS circuit 10 of this embodiment is manufactured by manufacturing the N-channel transistor 11 and the P-channel transistor 12 as separate bodies (FIG. 3) and then superimposing them on each other and bonding them (FIG. 4, FIG. 4). 5).

図3(a)及び図3(b)は、それぞれ別体として製造されたNチャネルトランジスタ11及びPチャネルトランジスタ12を示している。Nチャネルトランジスタ11のゲートG1、ソースS1、ドレインD1には、第一層配線6Aが接続されている。第一層配線6Aに形成された空間には絶縁材5Aが注入されている。Pチャネルトランジスタ12のゲートG2、ソースS2、ドレインD2には、第一層配線6Bが接続されている。第一層配線6Bに形成された空間には絶縁材5Bが注入されている。また、第一層配線6Bの上には第二層配線7が形成され、ゲートG2とドレインD2が第二層配線7の表面まで延在している。そして、第二層配線7の上に半田ペースト層8が設けられている。   FIGS. 3A and 3B show an N-channel transistor 11 and a P-channel transistor 12 that are manufactured separately. A first layer wiring 6A is connected to the gate G1, the source S1, and the drain D1 of the N-channel transistor 11. An insulating material 5A is injected into the space formed in the first layer wiring 6A. A first layer wiring 6B is connected to the gate G2, the source S2, and the drain D2 of the P-channel transistor 12. An insulating material 5B is injected into the space formed in the first layer wiring 6B. A second layer wiring 7 is formed on the first layer wiring 6B, and the gate G2 and the drain D2 extend to the surface of the second layer wiring 7. A solder paste layer 8 is provided on the second layer wiring 7.

図4はNチャネルトランジスタ11及びPチャネルトランジスタ12を互いに接合する直前の状態を示し、図5は両トランジスタを互いに接合した状態を示している。図4に示すように、Nチャネルトランジスタ11とPチャネルトランジスタ12の電極が形成されている面同士を互いに向き合わせた状態で、図5に示すように、両トランジスタ11、12を互いに重ね合わせて接合することによりCMOS回路10が製造される。両トランジスタ11、12の配線同士は、Pチャネルトランジスタ12の第二配線7上に形成された半田ペースト層8で接着されることにより互いに接続される。   4 shows a state immediately before the N-channel transistor 11 and the P-channel transistor 12 are joined to each other, and FIG. 5 shows a state in which both transistors are joined to each other. As shown in FIG. 4, with the surfaces on which the electrodes of the N-channel transistor 11 and the P-channel transistor 12 are formed facing each other, the transistors 11 and 12 are overlapped with each other as shown in FIG. The CMOS circuit 10 is manufactured by bonding. The wirings of both transistors 11 and 12 are connected to each other by being bonded with a solder paste layer 8 formed on the second wiring 7 of the P-channel transistor 12.

図6〜図8は、本発明の第1の実施形態におけるCMOS回路の一連の製造工程を示す斜視図である。これらの図は、回路の立体構造を概念的に示したものである。図6(a)、(b)は図3(a)、(b)に対応し、図7は図4に対応し、図8は図5に対応している。なお、図6〜図8においては、両トランジスタ11、12同士の配線接続状態を分かりやすくするために、第一層配線6と第二層配線7の周囲の空間を埋める絶縁材は省略されている。   6 to 8 are perspective views showing a series of manufacturing steps of the CMOS circuit according to the first embodiment of the present invention. These drawings conceptually show the three-dimensional structure of the circuit. 6A and 6B correspond to FIGS. 3A and 3B, FIG. 7 corresponds to FIG. 4, and FIG. 8 corresponds to FIG. 6 to 8, in order to make it easy to understand the wiring connection state between the transistors 11 and 12, the insulating material that fills the space around the first layer wiring 6 and the second layer wiring 7 is omitted. Yes.

図5、図8のように両トランジスタ11、12を対応する電極同士を正確に位置合わせして重ね合わせることができるように、各トランジスタ11、12の四隅には、図9に示すように十字マークP1〜P4、N1〜N4が付されている。両トランジスタ11、12の対応する十字マーク同士、この例では、P1とN1、P2とN2、P3とN3、P4とN4をそれぞれ位置合わせして重ね合わせることによって、両トランジスタ11、12に形成されている配線同士が互いに正確に接続される。   As shown in FIG. 9, cross-sections are formed at the four corners of the transistors 11 and 12 so that the corresponding electrodes of the transistors 11 and 12 can be accurately aligned and overlapped as shown in FIGS. Marks P1 to P4 and N1 to N4 are attached. The corresponding cross marks of the transistors 11 and 12 are formed in the transistors 11 and 12 by aligning and overlapping P1 and N1, P2 and N2, P3 and N3, and P4 and N4 in this example. Wirings are connected to each other accurately.

以上の製造工程により、Nチャネルトランジスタ11の基板1AとPチャネルトランジスタ12の基板1Bが互いに分離された構造のCMOS回路10が製造される。   Through the above manufacturing process, the CMOS circuit 10 having a structure in which the substrate 1A of the N-channel transistor 11 and the substrate 1B of the P-channel transistor 12 are separated from each other is manufactured.

次に、上記の構造のCMOS回路のウェルレイアウトについて説明する。CMOS回路のレイアウトは、スタンダードセルを使用する手法が主流であるため、本実施形態では、スタンダードセル方式のウェルレイアウトを前提に説明する。   Next, the well layout of the CMOS circuit having the above structure will be described. Since the CMOS circuit layout is mainly based on a method using standard cells, this embodiment will be described on the premise of a standard cell type well layout.

図19は従来のスタンダードセル方式におけるウェル構造を示す断面図である。Pウェル(PW)30PとNウェル(NW)30Nは上下に重なり合っている。このスタンダードセルを複数並べて配置すると、PチャネルトランジスタとNチャネルトランジスタとが混載されることにより、図20に示すように、Pウェル(PW)30P及びNウェル(NW)30Nも混載された構造になる。その結果、共通の基板制御用の電力が供給されるウェルであっても電力配線が分離されるため、電源配線が複雑化する。図20の例では、VSS用の配線9SとVDD用の配線9Dがそれぞれ複数に分離されて交互に配置されている。電源配線の複雑化により、信号配線の設計も複雑化することになる。   FIG. 19 is a sectional view showing a well structure in a conventional standard cell system. The P well (PW) 30P and the N well (NW) 30N overlap each other. When a plurality of standard cells are arranged side by side, a P-channel transistor and an N-channel transistor are mixedly mounted, so that a P-well (PW) 30P and an N-well (NW) 30N are also mounted together as shown in FIG. Become. As a result, since the power wiring is separated even in the well supplied with the common substrate control power, the power wiring is complicated. In the example of FIG. 20, the VSS wiring 9S and the VDD wiring 9D are separated into a plurality and alternately arranged. The complexity of power supply wiring also complicates signal wiring design.

これに対し、この実施形態のCMOS回路構造を適用することにより、図10(a)、図10(b)のようなウェルレイアウトとし、同一基板上にPウェル(PW)2とNウェル(NW)3とが混載されていないレイアウト構造とすることができる。その結果、基板制御用の配線設計を簡素化でき、それに伴い設計工数の削減が可能となり、他の配線領域を信号配線領域として有効活用できるようになるため開発効率が向上する。   On the other hand, by applying the CMOS circuit structure of this embodiment, the well layout as shown in FIGS. 10A and 10B is obtained, and the P well (PW) 2 and the N well (NW) are formed on the same substrate. ) 3 and a layout structure in which 3 is not mixedly mounted. As a result, the wiring design for board control can be simplified, and the design man-hours can be reduced accordingly, and other wiring areas can be effectively used as signal wiring areas, so that development efficiency is improved.

本実施形態のCMOS回路1によれば、ラッチアップを防止することができるという効果に加えて、基板制御用の配線設計を簡素化できるという効果が得られる。ラッチアップを防止できるという効果に関しては、大電流に対応したCMOSアナログスイッチが製品化されていることから、薄膜を使用するSOIでは解決できない製品等に特に効果的であるといえる。   According to the CMOS circuit 1 of the present embodiment, in addition to the effect that latch-up can be prevented, the effect that the wiring design for substrate control can be simplified can be obtained. With respect to the effect of preventing latch-up, it can be said that it is particularly effective for products that cannot be solved by SOI using a thin film, since CMOS analog switches corresponding to large currents have been commercialized.

なお、本発明のCMOS回路のその他の適用例として、図11に示すNAND回路を挙げることができる。図12はインバータ回路と同様の製造プロセスにより製造したNAND回路の立体構造を示している。   As another application example of the CMOS circuit of the present invention, a NAND circuit shown in FIG. 11 can be cited. FIG. 12 shows a three-dimensional structure of a NAND circuit manufactured by the same manufacturing process as that of the inverter circuit.

(第2の実施形態)
図13は本発明の第2の実施形態におけるCMOS回路の内部構造を概念的に示した断面図である。図13(a)はNチャネルトランジスタの断面構造を、図13(b)はPチャネルトランジスタの断面構造をそれぞれ示している。図14は本発明の第2の実施形態におけるCMOS回路の各トランジスタ領域の配置を概念的に示した斜視図である。この実施形態のCMOS回路20は、図14に示すように、複数(この例では2つ)のCMOS回路21、22を、伝導型が同一のトランジスタ領域同士を横方向すなわち基板面に沿った方向に隣り合うように並べて配置してなる。伝導型が同一であっても、基板制御によって制御する電圧値の異なるトランジスタ領域間は電気的導通を防止する必要があるため、図13(a)、(b)に示すように、各CMOS回路21、22を構成する各トランジスタ11、12の周囲はそれぞれ絶縁材5で覆われている。
(Second Embodiment)
FIG. 13 is a sectional view conceptually showing the internal structure of the CMOS circuit in the second embodiment of the present invention. FIG. 13A shows a cross-sectional structure of an N-channel transistor, and FIG. 13B shows a cross-sectional structure of a P-channel transistor. FIG. 14 is a perspective view conceptually showing the arrangement of the transistor regions of the CMOS circuit according to the second embodiment of the present invention. As shown in FIG. 14, the CMOS circuit 20 of this embodiment includes a plurality (two in this example) of CMOS circuits 21 and 22, in which the transistor regions having the same conductivity type are arranged in the lateral direction, that is, along the substrate surface. Are arranged next to each other. Even if the conductivity type is the same, since it is necessary to prevent electrical conduction between transistor regions having different voltage values controlled by substrate control, as shown in FIGS. The peripheries of the transistors 11 and 12 constituting the transistors 21 and 22 are each covered with an insulating material 5.

図14に例示するCMOS回路20は、Nチャネルトランジスタ領域21NとPチャネルトランジスタ領域21Pとで構成された第1のCMOS回路21と、Nチャネルトランジスタ領域22NとPチャネルトランジスタ領域22Pとで構成された第2のCMOS回路22とからなり、各CMOS回路21、22単位で基板制御を行うものである。各トランジスタ領域21N、21P、22N、22Pの四隅には、十字マークP1〜P4、N1〜N4が付されている。Nチャネルトランジスタ領域21N、22NとPチャネルトランジスタ領域21P、22Pの対応する十字マーク同士、この例では、P1とN1、P2とN2、P3とN3、P4とN4をそれぞれ位置合わせして重ね合わせることによって、Nチャネルトランジスタ領域21N、22Nに形成されている配線とPチャネルトランジスタ領域21P、22Pに形成されている配線同士が正確に互いに接続される。   A CMOS circuit 20 illustrated in FIG. 14 includes a first CMOS circuit 21 configured by an N-channel transistor region 21N and a P-channel transistor region 21P, and an N-channel transistor region 22N and a P-channel transistor region 22P. The second CMOS circuit 22 is used to control the substrate in units of the CMOS circuits 21 and 22. Cross marks P1 to P4 and N1 to N4 are attached to the four corners of each of the transistor regions 21N, 21P, 22N, and 22P. The corresponding cross marks in the N channel transistor regions 21N, 22N and the P channel transistor regions 21P, 22P are aligned and overlapped in this example, P1 and N1, P2 and N2, P3 and N3, and P4 and N4, respectively. Thus, the wiring formed in the N channel transistor regions 21N and 22N and the wiring formed in the P channel transistor regions 21P and 22P are accurately connected to each other.

本実施形態の構成によれば、各CMOS回路21、22におけるラッチアップの発生を防止するとともに、各CMOS回路21、22ごとに基板制御電圧を調整することができる。   According to the configuration of the present embodiment, it is possible to prevent the latch-up from occurring in the CMOS circuits 21 and 22, and to adjust the substrate control voltage for each of the CMOS circuits 21 and 22.

(第3の実施形態)
図15は本発明の第3の実施形態におけるCMOS回路の各トランジスタ領域の配置を概念的に示した斜視図である。この実施形態のCMOS回路30は、Nチャネルトランジスタ領域31N、32N同士、Pチャネルトランジスタ領域31P、32P同士を、それぞれ基板の厚さ方向に分離して配置してなる。そして、Nチャネルトランジスタ領域31NとPチャネルトランジスタ領域31Pとで構成された第1のCMOS回路31と、Nチャネルトランジスタ領域32NとPチャネルトランジスタ領域32Pとで構成された第2のCMOS回路32とを、各CMOS回路31、32単位で基板制御を行うものである。各トランジスタ領域31N、31P、32N、32Pの四隅には、十字マークP1〜P4、N1〜N4が付されており、対応する十字マーク同士をそれぞれ位置合わせして重ね合わせることによって、上下に隣接するトランジスタ領域同士が正確に位置合わせされて接合される。第1のCMOS回路31を構成するNチャネルトランジスタ領域31NとPチャネルトランジスタ領域31Pは、対応する十字マーク同士をそれぞれ位置合わせして接合することにより、各領域31N、31Pに形成されている配線同士が正確に互いに接続される。一方、第2のCMOS回路32を構成するNチャネルトランジスタ領域32NとPチャネルトランジスタ領域32Pの間には、第1のCMOS回路31が存在するため、従来技術である特開2003−92375号公報を用いて、第1のCMOS回路31の基板にスルーホールなどを形成することにより、両トランジスタ領域32N、32P間の配線接続がなされる。
(Third embodiment)
FIG. 15 is a perspective view conceptually showing the arrangement of the transistor regions of the CMOS circuit according to the third embodiment of the present invention. In the CMOS circuit 30 of this embodiment, N-channel transistor regions 31N and 32N and P-channel transistor regions 31P and 32P are separated from each other in the thickness direction of the substrate. A first CMOS circuit 31 composed of an N-channel transistor region 31N and a P-channel transistor region 31P, and a second CMOS circuit 32 composed of an N-channel transistor region 32N and a P-channel transistor region 32P. The substrate is controlled in units of CMOS circuits 31 and 32. Cross marks P1 to P4 and N1 to N4 are attached to the four corners of each of the transistor regions 31N, 31P, 32N, and 32P, and are adjacent to each other by aligning and overlapping the corresponding cross marks. The transistor regions are accurately aligned and joined. The N-channel transistor region 31N and the P-channel transistor region 31P constituting the first CMOS circuit 31 are connected to each other in the regions 31N and 31P by aligning and joining the corresponding cross marks. Are precisely connected to each other. On the other hand, since the first CMOS circuit 31 exists between the N-channel transistor region 32N and the P-channel transistor region 32P constituting the second CMOS circuit 32, Japanese Patent Application Laid-Open No. 2003-92375 is disclosed. By using and forming a through hole or the like in the substrate of the first CMOS circuit 31, wiring connection between the transistor regions 32N and 32P is made.

本実施形態の構成によれば、各CMOS回路31、32におけるラッチアップの発生を防止するとともに、各CMOS回路31、32ごとに基板制御電圧を調整することができる。   According to the configuration of the present embodiment, it is possible to prevent the latch-up from occurring in each of the CMOS circuits 31 and 32, and to adjust the substrate control voltage for each of the CMOS circuits 31 and 32.

本発明は、ラッチアップの発生がないCMOS回路等として有用である。   The present invention is useful as a CMOS circuit or the like that does not cause latch-up.

1A 基板
1B 基板
2 Pウェル(PW)
3 Nウェル(NW)
5A,5B 絶縁材
6A,6B 第一層配線
7 第二層配線
8 半田ペースト層
10 CMOS回路
11 Nチャネルトランジスタ
12 Pチャネルトランジスタ
20 CMOS回路
21 第1のCMOS回路
21N Nチャネルトランジスタ領域
21P Pチャネルトランジスタ領域
22 第2のCMOS回路
30 CMOS回路
31 第1のCMOS回路
31N Nチャネルトランジスタ領域
31P Pチャネルトランジスタ領域
32 第2のCMOS回路
1A Substrate 1B Substrate 2 P-well (PW)
3 N-well (NW)
5A, 5B Insulating material 6A, 6B First layer wiring 7 Second layer wiring 8 Solder paste layer 10 CMOS circuit 11 N channel transistor 12 P channel transistor 20 CMOS circuit 21 First CMOS circuit 21N N channel transistor region 21P P channel transistor Region 22 Second CMOS circuit 30 CMOS circuit 31 First CMOS circuit 31N N-channel transistor region 31P P-channel transistor region 32 Second CMOS circuit

Claims (8)

NチャネルトランジスタとPチャネルトランジスタとがそれぞれ別の基板上に形成され、両基板上のトランジスタが互いに向き合わせて接続されていることを特徴とするCMOS回路。   A CMOS circuit, wherein an N-channel transistor and a P-channel transistor are formed on different substrates, and the transistors on both substrates are connected to face each other. 請求項1に記載のCMOS回路が複数接続されたCMOS回路であって、
Nチャネルトランジスタが形成されている領域同士、Pチャネルトランジスタが形成されている領域同士が、それぞれ基板面に沿った方向に隣り合うように並べて配置されたことを特徴とするCMOS回路。
A CMOS circuit in which a plurality of the CMOS circuits according to claim 1 are connected,
A CMOS circuit, wherein regions where N-channel transistors are formed and regions where P-channel transistors are formed are arranged side by side in a direction along the substrate surface.
請求項2に記載のCMOS回路であって、
前記領域の周囲が絶縁材で覆われていることを特徴とするCMOS回路。
A CMOS circuit according to claim 2, comprising:
A CMOS circuit, wherein the region is covered with an insulating material.
請求項1に記載のCMOS回路が複数接続されたCMOS回路であって、
Nチャネルトランジスタが形成されている領域同士、Pチャネルトランジスタが形成されている領域同士が、それぞれ基板の厚さ方向に分離して配置されたことを特徴とするCMOS回路。
A CMOS circuit in which a plurality of the CMOS circuits according to claim 1 are connected,
A CMOS circuit, wherein regions where N-channel transistors are formed and regions where P-channel transistors are formed are arranged separately in the thickness direction of the substrate.
NチャネルトランジスタとPチャネルトランジスタとをそれぞれ別の基板上に形成し、両基板上のトランジスタを互いに向き合わせて接合することを特徴とするCMOS回路の製造方法。   A method of manufacturing a CMOS circuit, wherein an N-channel transistor and a P-channel transistor are formed on different substrates, and the transistors on both substrates are bonded to face each other. 請求項1に記載のCMOS回路が複数接続されたCMOS回路の製造方法であって、
Nチャネルトランジスタが形成されている領域同士、Pチャネルトランジスタが形成されている領域同士を、それぞれ基板面に沿った方向に隣り合うように並べて配置することを特徴とするCMOS回路の製造方法。
A method of manufacturing a CMOS circuit in which a plurality of the CMOS circuits according to claim 1 are connected,
A method of manufacturing a CMOS circuit, wherein regions where N channel transistors are formed and regions where P channel transistors are formed are arranged side by side in a direction along the substrate surface.
請求項6に記載のCMOS回路の製造方法であって、
前記領域の周囲を絶縁材で覆うことを特徴とするCMOS回路の製造方法。
A method of manufacturing a CMOS circuit according to claim 6,
A method of manufacturing a CMOS circuit, wherein the periphery of the region is covered with an insulating material.
請求項1に記載のCMOS回路が複数接続されたCMOS回路の製造方法であって、
Nチャネルトランジスタが形成されている領域同士、Pチャネルトランジスタが形成されている領域同士を、それぞれ基板の厚さ方向に分離して配置することを特徴とするCMOS回路の製造方法。
A method of manufacturing a CMOS circuit in which a plurality of the CMOS circuits according to claim 1 are connected,
A method of manufacturing a CMOS circuit, wherein regions where N-channel transistors are formed and regions where P-channel transistors are formed are arranged separately in the thickness direction of the substrate.
JP2009091992A 2009-04-06 2009-04-06 Cmos circuit Withdrawn JP2010245262A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009091992A JP2010245262A (en) 2009-04-06 2009-04-06 Cmos circuit
PCT/JP2009/005611 WO2010116429A1 (en) 2009-04-06 2009-10-23 Cmos circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009091992A JP2010245262A (en) 2009-04-06 2009-04-06 Cmos circuit

Publications (1)

Publication Number Publication Date
JP2010245262A true JP2010245262A (en) 2010-10-28

Family

ID=42935742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009091992A Withdrawn JP2010245262A (en) 2009-04-06 2009-04-06 Cmos circuit

Country Status (2)

Country Link
JP (1) JP2010245262A (en)
WO (1) WO2010116429A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216776A (en) * 2011-03-31 2012-11-08 Sony Corp Semiconductor device and method of manufacturing the same
JP2014194976A (en) * 2013-03-28 2014-10-09 Nippon Hoso Kyokai <Nhk> Design device, design method and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5956736B2 (en) * 2011-10-18 2016-07-27 日本放送協会 Multilayer semiconductor device and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868963A (en) * 1981-10-19 1983-04-25 Fujitsu Ltd Semiconductor device
JPS6074660A (en) * 1983-09-30 1985-04-26 Nec Corp Three-dimensional logic circuit
JPS61112364A (en) * 1984-11-07 1986-05-30 Hitachi Ltd Semiconductor device
JPH0485872A (en) * 1990-07-26 1992-03-18 Seiko Epson Corp Semiconductor device
JPH05259398A (en) * 1992-03-13 1993-10-08 Mazda Motor Corp Semiconductor device and manufacture thereof
JP2004247373A (en) * 2003-02-12 2004-09-02 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2005268662A (en) * 2004-03-19 2005-09-29 Seiko Epson Corp Method of manufacturing three-dimensional device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216776A (en) * 2011-03-31 2012-11-08 Sony Corp Semiconductor device and method of manufacturing the same
JP2014194976A (en) * 2013-03-28 2014-10-09 Nippon Hoso Kyokai <Nhk> Design device, design method and program

Also Published As

Publication number Publication date
WO2010116429A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
US7456447B2 (en) Semiconductor integrated circuit device
JPWO2020065916A1 (en) Semiconductor device
JP2007299860A (en) Semiconductor device
US9035389B2 (en) Layout schemes for cascade MOS transistors
US9484424B2 (en) Semiconductor device with a NAND circuit having four transistors
US9373611B2 (en) Semiconductor integrated circuit device
JP2009049041A (en) Semiconductor device
US20220336499A1 (en) Semiconductor integrated circuit device
WO2010116429A1 (en) Cmos circuit
US8445987B2 (en) Semiconductor device having a lower-layer line
US7884424B2 (en) Structure of MTCMOS cell
US9627496B2 (en) Semiconductor with a two-input NOR circuit
JPS62119936A (en) Complementary lsi chip
JP6776192B2 (en) Semiconductor devices and their manufacturing methods
JP2005354023A (en) Semiconductor device and manufacturing method thereof
JP4609907B2 (en) Semiconductor integrated circuit
KR100745570B1 (en) Organic field effect transistor and integrated circuit
US20170243788A1 (en) Layout structure for semiconductor integrated circuit
JP2012169379A (en) Solar cell and integrated circuit having the solar cell
US20240213153A1 (en) Electronic device with a cell of transistors
JP2006019647A (en) Semiconductor integrated circuit
US7449731B2 (en) Semiconductor gate circuit and delay circuit comprising series connected CMOS transistors
CN118248692A (en) Electronic device with transistor cells
JP3805662B2 (en) Semiconductor integrated circuit
TW202228268A (en) Semiconductor structure

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120703