JP2010244742A - Gas-blast circuit breaker - Google Patents

Gas-blast circuit breaker Download PDF

Info

Publication number
JP2010244742A
JP2010244742A JP2009089707A JP2009089707A JP2010244742A JP 2010244742 A JP2010244742 A JP 2010244742A JP 2009089707 A JP2009089707 A JP 2009089707A JP 2009089707 A JP2009089707 A JP 2009089707A JP 2010244742 A JP2010244742 A JP 2010244742A
Authority
JP
Japan
Prior art keywords
arc
contact
insulating nozzle
arc contact
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009089707A
Other languages
Japanese (ja)
Inventor
Masaru Sato
賢 佐藤
Hideaki Uchiyama
英昭 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan AE Power Systems Corp
Original Assignee
Japan AE Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan AE Power Systems Corp filed Critical Japan AE Power Systems Corp
Priority to JP2009089707A priority Critical patent/JP2010244742A/en
Publication of JP2010244742A publication Critical patent/JP2010244742A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Circuit Breakers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas-blast circuit breaker which, even if an arc-caused blocking phenomenon occurs in an insulating nozzle, effectively gives a spray gas a swirling component to improve large current cut-off performance. <P>SOLUTION: The insulating nozzle 4 is disposed to encircle a contact portion between a fixed arc contact 1 and a movable arc contact 2, and guides a flow of a spray gas to cause it to act on an arc between both arc contacts 1 and 2. The throat 12 of the insulating nozzle 4 has a plurality of swirling component slots 13a to 13n formed circumferentially at almost equal intervals. These swirling component slots 13a to 13n are formed to be tilt against the basic direction of the flow of the spray gas so as to give the spray gas flowing through the slots 13a to 13n an aggressive swirling component. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、遮断動作時に圧縮した消弧性ガスを絶縁ノズルにより案内して吹き付け消弧を行うガス遮断器に関する。   The present invention relates to a gas circuit breaker that performs arc extinguishing by blowing an arc extinguishing gas compressed during an interruption operation by an insulating nozzle.

この種のガス遮断器として、対を成す固定アーク接触子と可動アーク接触子間の開離動作に関連して消弧性ガスを圧縮し、両アーク接触子間の開離によって発生したアークに対してこの圧縮したガスを絶縁ノズルによって案内しながら吹き付けて消弧を行う構成が知られており、アークに対して効果的に吹き付けガス流を作用させて遮断性能を向上するための改良が行われている。例えば、従来のガス遮断器として、絶縁ノズルにおけるスロート部よりも吹き付けガス流の上流側または下流側に位置する部分に、ガス流を整流する整流格子を形成して、ガス流の停滞発生および低圧力領域の発生を防止して進み小電流遮断性能を向上しようとしたもの(例えば、特許文献1を参照)や、開離動作に関連して消弧性ガスを圧縮する圧縮装置から絶縁ノズル内に吹き付けガス流を導く流通路に、吹き付けガス流に円周方向に回転する流れ成分を与え、固定アーク接触子の先端部におけるガス流の乱れや停滞を防止して遮断性能を向上しようとしたもの(例えば、特許文献2を参照)が知られている。   As this type of gas circuit breaker, the arc extinguishing gas is compressed in connection with the breaking operation between the pair of stationary and moving arc contacts, and the arc generated by the breaking between the arc contacts is reduced. On the other hand, there is known a structure in which the compressed gas is blown while being guided by an insulating nozzle to extinguish the arc, and an improvement has been made in order to improve the shut-off performance by effectively blowing the gas flow against the arc. It has been broken. For example, as a conventional gas circuit breaker, a rectifying grid that rectifies the gas flow is formed in a portion located upstream or downstream of the blowing gas flow from the throat portion in the insulating nozzle, so that the stagnation of the gas flow is reduced. Insulating nozzles are used to prevent the generation of a pressure region and improve the small current interruption performance (see, for example, Patent Document 1) or from a compression device that compresses arc-extinguishing gas in connection with the opening operation. An attempt was made to improve the shut-off performance by giving a flow component that rotates in the circumferential direction to the flow path that guides the blowing gas flow to the tip, preventing turbulence and stagnation of the gas flow at the tip of the fixed arc contactor The thing (for example, refer patent document 2) is known.

特開平2−98025号公報JP-A-2-98025 特開平9−92102号公報JP-A-9-92102

しかしながら、従来のガス遮断器では、固定アーク接触子と可動アーク接触子間の開離距離が小さい時点で消弧が完了する小電流遮断に対しては吹き付けガス流の改善が望めるが、固定アーク接触子が絶縁ノズルのスロート部から抜け出てから消弧が完了する近距離遮断(SLF)のような大電流遮断性能との兼ね合いについては十分な考慮が払われていなかった。つまり、特許文献1に記載されたガス遮断器では、小電流遮断について考慮した構成であり、固定アーク接触子が絶縁ノズルのスロート部から抜け出た後に消弧が行われる大電流遮断時、絶縁ノズル内部全体にアークによる圧力上昇で閉塞現象が生じると、アークから離れて形成されている整流格子はガス流の整流に対して殆ど影響を与えなくなってしまう。また特許文献2に記載されたガス遮断器では、固定アーク接触子が絶縁ノズルのスロート部から抜け出た後に消弧が行われる大電流遮断時、吹き付けガス流に旋回成分を与えることは効果的であるが、固定アーク接触子が絶縁ノズルのスロート部から抜け出るまでは、アークによって絶縁ノズル内の圧力が上昇し、絶縁ノズル内では吹き付けガス流の停滞する閉塞現象が生じると、吹き付けガス流に与えようとしている旋回成分は全く発生せず、大電流遮断性能を向上することは殆ど期待できない。   However, with conventional gas circuit breakers, improvement of the blowing gas flow can be expected for small current interruptions where arc extinguishing is completed when the separation distance between the fixed arc contact and the movable arc contact is small. Sufficient consideration has not been given to a balance with a large current interruption performance such as a short distance interruption (SLF) in which the arc extinguishing is completed after the contact comes out of the throat portion of the insulating nozzle. In other words, the gas circuit breaker described in Patent Document 1 has a configuration that considers a small current interruption, and the insulation nozzle is used when a large current interruption is performed in which arc extinguishing is performed after the fixed arc contactor comes out of the throat portion of the insulation nozzle. When a clogging phenomenon occurs due to an increase in pressure due to the arc in the entire interior, the rectifying grid formed away from the arc hardly affects the rectification of the gas flow. Further, in the gas circuit breaker described in Patent Document 2, it is effective to give a swirl component to the blowing gas flow at the time of large current interruption in which arc extinguishing is performed after the fixed arc contactor comes out of the throat portion of the insulating nozzle. However, until the fixed arc contact comes out of the throat portion of the insulating nozzle, the pressure in the insulating nozzle rises due to the arc. The turning component is not generated at all, and it can hardly be expected to improve the high current interruption performance.

本発明の目的は、絶縁ノズル内でアークによって閉塞現象を生じても効果的に吹き付けガスに旋回成分を与えて大電流遮断性能を向上したガス遮断器を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a gas circuit breaker in which a swirl component is effectively applied to a blowing gas even when a clogging phenomenon occurs due to an arc in an insulating nozzle to improve a large current interruption performance.

本発明は上記目的を達成するために、開離可能な対を成す固定アーク接触子および可動アーク接触子と、遮断動作時に消弧性ガスを圧縮する圧縮装置と、そのスロート部を通して挿入した前記固定アーク接触子と前記可動アーク接触子の接触部を包囲して設け前記圧縮装置で圧縮した消弧性ガスを前記固定アーク接触子と可動アーク接触子間の開離によって発生したアークに吹き付けるように案内する絶縁ノズルとを備えたガス遮断器において、前記絶縁ノズルの前記スロート部に、前記スロートを通過する吹き付けガス流に旋回成分を与える旋回成分溝を形成したことを特徴とする。   In order to achieve the above object, the present invention provides a stationary arc contact and a movable arc contact that form a separable pair, a compression device that compresses arc-extinguishing gas during a breaking operation, and the throat portion inserted through the throat portion. An arc extinguishing gas compressed by the compression device is blown against the arc generated by the separation between the fixed arc contact and the movable arc contact. In the gas circuit breaker including the insulating nozzle for guiding, a swirl component groove is provided in the throat portion of the insulating nozzle to give a swirl component to the blowing gas flow passing through the throat.

本発明のガス遮断器によれば、固定アーク接触子が絶縁ノズルのスロート部を抜け出ると、このスロート部を通しての吹き付けガス流が形成されることになるが、スロート部を通過するとき旋回成分溝によって円周方向または固定アーク接触子の中心軸に向かうような旋回成分が積極的に与えられ、アークの全周部から全体的にほぼ均等な吹き付け作用および冷却作用などを与えて、大電流遮断性能を向上することができる。また、この旋回成分溝の形成位置はスロート部であるから、大電流遮断時におけるアークによって生じる圧力上昇による閉塞現象で効果が損なわれることはなく、固定アーク接触子が絶縁ノズルのスロート部を抜け出る時点では常に有効に作用する。   According to the gas circuit breaker of the present invention, when the fixed arc contact comes out of the throat portion of the insulating nozzle, a blowing gas flow through the throat portion is formed. The swirl component is positively imparted in the circumferential direction or toward the central axis of the fixed arc contact by means of a large current interruption by giving almost uniform spraying action and cooling action from the entire circumference of the arc. The performance can be improved. In addition, since the swirl component groove is formed at the throat portion, the effect is not impaired by the clogging phenomenon caused by the pressure rise caused by the arc when a large current is interrupted, and the fixed arc contact exits the throat portion of the insulating nozzle. It always works effectively at the moment.

図1は本発明に一実施の形態によるガス遮断器の遮断途中状態を示す断面図である。FIG. 1 is a cross-sectional view showing a state in the middle of breaking of a gas circuit breaker according to an embodiment of the present invention. 図2は図1に示したガス遮断器の要部である絶縁ノズルの部分断面斜視図である。FIG. 2 is a partial cross-sectional perspective view of an insulating nozzle which is a main part of the gas circuit breaker shown in FIG.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、図1は本発明に一実施の形態によるガス遮断器の遮断部を示す断面図である。
遮断部は消弧性ガスを封入した密閉容器内に構成しており、対を成す固定アーク接触子1と可動アーク接触子2が接離可能に対向配置し、固定アーク接触子1は図示しない手段によって図示の位置に固定しているのに対して、可動アーク接触子2は図示しない操作器によって駆動軸3を介してその軸線上を開閉動作するように構成している。接触状態の固定アーク接触子1と可動アーク接触子2の接触部を包囲して配置した絶縁ノズル4は、可動アーク接触子2と、この可動アーク接触子2の外周部を包囲して配置した絶縁筒5と共にパッファシリンダ6に取り付けている。固定アーク接触子1の外周部には同様に支持した固定主接触子7を配置し、この固定主接触子7は絶縁ノズル4の外周部でパッファシリンダ6に取り付けた可動主接触子8に対して接離可能に対向配置している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing a breaker of a gas circuit breaker according to an embodiment of the present invention.
The interrupting part is configured in a hermetically sealed container filled with an arc extinguishing gas, and the stationary arc contact 1 and the movable arc contact 2 forming a pair are arranged so as to be able to contact and separate, and the stationary arc contact 1 is not shown. The movable arc contact 2 is configured to be opened and closed on its axis via a drive shaft 3 by an operating device (not shown), while being fixed at the position shown by means. The insulating nozzle 4 that surrounds and arranges the contact portion between the fixed arc contact 1 and the movable arc contact 2 in a contact state is disposed so as to surround the movable arc contact 2 and the outer peripheral portion of the movable arc contact 2. It is attached to the puffer cylinder 6 together with the insulating cylinder 5. A fixed main contact 7 supported in the same manner is disposed on the outer peripheral portion of the fixed arc contact 1, and this fixed main contact 7 is against the movable main contact 8 attached to the puffer cylinder 6 at the outer peripheral portion of the insulating nozzle 4. Are arranged opposite to each other.

駆動軸3に中心軸9を介して連結したパッファシリンダ6は、ピストン10と可摺動的に関係で配置し、パッファシリンダ6とピストン10により遮断動作に関連してパッファ室11内の消弧性ガスを圧縮する圧縮装置を構成している。上述した絶縁ノズル4は圧縮装置からの消弧性ガスをその内面に沿って案内し、固定アーク接触子1と可動アーク接触子2間に発生したアークに対して効果的に作用させるために最狭部であるスロート部12を有し、この最狭部12に詳細を後述する旋回成分溝13を有している。   The puffer cylinder 6 connected to the drive shaft 3 via the central shaft 9 is arranged in a slidable relationship with the piston 10, and the arc extinguishing in the puffer chamber 11 is related to the shut-off operation by the puffer cylinder 6 and the piston 10. The compression apparatus which compresses sex gas is comprised. The insulating nozzle 4 described above guides the arc-extinguishing gas from the compression device along the inner surface thereof, and is effective to effectively act on the arc generated between the fixed arc contact 1 and the movable arc contact 2. It has a throat portion 12 that is a narrow portion, and the narrowest portion 12 has a turning component groove 13 that will be described in detail later.

投入状態で、可動主接触子8は固定主接触子7と接触し、固定アーク接触子1は絶縁ノズル4のスロート部12内に挿入されて可動アーク接触子2と接触している。定格電流は主に可動主接触子8と固定主接触子7を流れている。遮断動作は図示しない操作器によって駆動軸3を図示の下方の遮断方向に駆動して行い、先ず、固定主接触子7から可動主接触子8を開離し、その後、可動アーク接触子2を固定アーク接触子1から開離する。従って、両アーク接触子1,2間の開離に伴ってアークが発生することになるが、この遮断動作に関連して圧縮装置を構成するパッファ室11内で消弧性ガスを圧縮し、この圧縮した吹き付けガスを絶縁筒5と絶縁ノズル4の対向面に沿って案内してアークに作用させて消弧を行う。SLF遮断のような大電流遮断時は、固定アーク接触子1が図示のように絶縁ノズル4のスロート部12を抜け出た後、スロート部12を通る主要な吹き付けガス流が形成されてから消弧が行われる。   In the charged state, the movable main contact 8 is in contact with the fixed main contact 7, and the fixed arc contact 1 is inserted into the throat portion 12 of the insulating nozzle 4 and is in contact with the movable arc contact 2. The rated current flows mainly through the movable main contact 8 and the fixed main contact 7. The shut-off operation is performed by driving the drive shaft 3 in the shut-off direction shown in the figure with an operating device (not shown). First, the movable main contact 8 is separated from the fixed main contact 7 and then the movable arc contact 2 is fixed. Separated from the arc contact 1. Therefore, an arc is generated with the separation between the arc contacts 1 and 2, and the arc extinguishing gas is compressed in the puffer chamber 11 constituting the compression device in connection with the interruption operation. The compressed blowing gas is guided along the opposed surfaces of the insulating cylinder 5 and the insulating nozzle 4 to act on the arc to extinguish the arc. At the time of interrupting a large current such as SLF interruption, after the fixed arc contactor 1 exits the throat portion 12 of the insulating nozzle 4 as shown in the figure, a main blowing gas flow passing through the throat portion 12 is formed and then the arc is extinguished. Is done.

この大電流遮断時の吹き付けガス流について、さらに説明する。
吹き付けガス流は、基本的にはパッファ室11内で圧縮した消弧性ガスを絶縁ノズル4内に供給して形成されるが、固定アーク接触子1が絶縁ノズル4のスロート部12を抜け出るまでは、両アーク接触子1,2間に発生したアークの影響を受けて絶縁ノズル4内の圧力が急速に上昇し、閉塞状態となりガス流は停滞する。しかし、固定アーク接触子1が絶縁ノズル4のスロート部12を抜け出ると、このスロート部12を通しての吹き付けガス流が形成される。このときの吹き付けガス流は、圧縮装置によるパッファ作用の他に、絶縁ノズル4内でのアークによる上昇圧力や、絶縁ノズル4の内面や、旋回成分溝13の影響を受けて形成される。
The blowing gas flow when the large current is interrupted will be further described.
The blowing gas flow is basically formed by supplying the arc extinguishing gas compressed in the puffer chamber 11 into the insulating nozzle 4 until the fixed arc contact 1 exits the throat portion 12 of the insulating nozzle 4. Is affected by the arc generated between the arc contacts 1 and 2, the pressure in the insulating nozzle 4 rapidly rises and becomes closed, and the gas flow is stagnated. However, when the fixed arc contact 1 exits the throat portion 12 of the insulating nozzle 4, a blowing gas flow through the throat portion 12 is formed. The blowing gas flow at this time is formed under the influence of the rising pressure due to the arc in the insulating nozzle 4, the inner surface of the insulating nozzle 4, and the swirling component groove 13 in addition to the puffing action by the compression device.

図2は、絶縁ノズル4のスロート部12のみを拡大して示す斜視図である。
ここでは右方が圧縮装置からの吹き付けガス流の上流側であり、左方が同吹き付けガス流の下流側である。スロート部12にはライフリング加工によって複数の旋回成分溝13a〜13nを周方向にほぼ等間隔で形成しており、これらの旋回成分溝13a〜13nは、吹き付けガス流の基本的な流れ方向、つまり固定アーク接触子1の軸線に対して傾きを有し、斜めの直線またはスパイラル状に形成している。この旋回成分溝13a〜13nは、同部を流れる吹き付けガス流に対して積極的な旋回成分を与えることになる。
FIG. 2 is an enlarged perspective view showing only the throat portion 12 of the insulating nozzle 4.
Here, the right side is the upstream side of the blowing gas flow from the compressor, and the left side is the downstream side of the blowing gas flow. The throat portion 12 is formed with a plurality of swirl component grooves 13a to 13n at substantially equal intervals in the circumferential direction by life ring processing, and these swirl component grooves 13a to 13n are formed in the basic flow direction of the blowing gas flow, That is, it has an inclination with respect to the axis of the fixed arc contact 1 and is formed in an oblique straight line or spiral. The swirl component grooves 13a to 13n give a positive swirl component to the blowing gas flow flowing through the swirl component grooves 13a to 13n.

この旋回成分溝13a〜13nが絶縁ノズル4のスロート部12に形成しているため、固定アーク接触子1が絶縁ノズル4のスロート部12を抜け出る前でも絶縁ノズル4内が旋回成分溝13a〜13nを介して連通するが、これが悪影響を与えることはない。つまり、固定アーク接触子1がスロート部12を抜け出る前の大電流遮断時の遮断動作初期において、固定アーク接触子1と可動アーク接触子2間に発生したアークの温度や、アークに曝されて絶縁ノズル4から発生したガスなどの影響を受けて、絶縁ノズル4内は急激な圧力上昇を示し閉塞状態となり、絶縁ノズル4内の圧力上昇は保持され、その後のアークへの吹き付けに利用することができる。   Since the swirl component grooves 13a to 13n are formed in the throat portion 12 of the insulating nozzle 4, the swivel component grooves 13a to 13n are formed in the insulating nozzle 4 even before the fixed arc contact 1 exits the throat portion 12 of the insulating nozzle 4. This will not adversely affect the communication. In other words, at the beginning of the breaking operation at the time of breaking a large current before the fixed arc contact 1 exits the throat portion 12, the temperature of the arc generated between the fixed arc contact 1 and the movable arc contact 2 or the arc is exposed. Under the influence of the gas generated from the insulating nozzle 4, the inside of the insulating nozzle 4 shows a sudden pressure rise and becomes a closed state, the pressure rise in the insulating nozzle 4 is maintained, and used for subsequent spraying to the arc. Can do.

しかも、旋回成分溝13a〜13nが絶縁ノズル4のスロート部12に形成しているため、固定アーク接触子1がスロート部12を抜け出るまで絶縁ノズル4内の圧力上昇を保持することができる。   Moreover, since the swirl component grooves 13 a to 13 n are formed in the throat portion 12 of the insulating nozzle 4, the pressure increase in the insulating nozzle 4 can be maintained until the fixed arc contact 1 exits the throat portion 12.

しかしながら、遮断動作が進んで固定アーク接触子1が絶縁ノズル4のスロート部12を抜け出ると、このスロート部12を通しての吹き付けガス流が形成されることになるが、スロート部12を通過するとき外周部の吹き付けガス流には旋回成分溝13a〜13nによって円周方向または固定アーク接触子1の中心軸に向かうような旋回成分が積極的に与えられ、他の部分の吹き付けガス流にも影響を与える。このため、図1に示すように吹き付けガス流は、固定アーク接触子1の中心軸を中心として螺旋状に回転しながらアークに作用して流れ、アークの全周部から全体的にほぼ均等な吹き付け作用および冷却作用などを与えることができる。また固定アーク接触子1の先端部にも同様の作用を与えることができ、こうして大電流遮断性能を向上することができる。   However, when the shut-off operation proceeds and the fixed arc contact 1 exits the throat portion 12 of the insulating nozzle 4, a blowing gas flow through the throat portion 12 is formed. The swirling component flow is positively applied to the blowing gas flow by the swirling component grooves 13a to 13n in the circumferential direction or toward the central axis of the fixed arc contact 1 and affects the blowing gas flow in other portions. give. For this reason, as shown in FIG. 1, the blowing gas flow acts on the arc while rotating spirally around the central axis of the fixed arc contact 1, and is almost uniform from the entire circumference of the arc. A spraying action, a cooling action, etc. can be given. Moreover, the same effect | action can be given also to the front-end | tip part of the fixed arc contact 1, and a large current interruption | blocking performance can be improved in this way.

上述の説明から分かるように本実施の形態のガス遮断器は、、絶縁ノズル4のスロート部12に旋回成分溝13a〜13nを形成しているために、大電流遮断時の動作初期に絶縁ノズル4内で閉塞現象が生じても影響を受けず、遮断動作が進んで固定アーク接触子1が絶縁ノズル4のスロート部12を抜け出るときに旋回成分溝13a〜13nが吹き付けガス流に作用する構成である。従来のようにスロート部よりも吹き付けガス流の上流側に形成した手段によって遮断動作初期から旋回流を形成するものでは、この遮断動作初期の閉塞現象によって効果を損なうが、そのような不都合は全く生じることがなく、常に、安定した効果を期待することができる。   As can be seen from the above description, the gas circuit breaker according to the present embodiment has the swirl component grooves 13a to 13n formed in the throat portion 12 of the insulating nozzle 4, so that the insulating nozzle is in the initial stage of operation when a large current is interrupted. 4 is not affected even if a clogging phenomenon occurs in the configuration 4, and the turning component grooves 13a to 13n act on the blowing gas flow when the shut-off operation proceeds and the fixed arc contact 1 exits the throat portion 12 of the insulating nozzle 4. It is. In the case where the swirl flow is formed from the beginning of the shutoff operation by means formed on the upstream side of the blowing gas flow from the throat portion as in the prior art, the effect is impaired by the blockage phenomenon in the early stage of the shutoff operation, but such inconvenience is completely It does not occur and a stable effect can always be expected.

上述した旋回成分溝13a〜13nは、吹き付けガス流の基本的な流れ方向に対する傾きや本数や深さを任意に設定することができ、いずれの場合も円周方向にほぼ均等な間隔で形成するのが望ましい。   The above-described swirl component grooves 13a to 13n can be arbitrarily set with respect to the basic flow direction of the blowing gas flow, the number and depth thereof, and in any case, are formed at substantially equal intervals in the circumferential direction. Is desirable.

本発明によるガス遮断器は、図1に示した構成に限らず、その他の構成のものにも適用することができる。   The gas circuit breaker according to the present invention is not limited to the configuration shown in FIG. 1 but can be applied to other configurations.

1 固定アーク接触子
2 可動アーク接触子
3 駆動軸
4 絶縁ノズル
5 絶縁筒
6 パッファシリンダ
7 固定主接触子
8 可動主接触子
9 中心軸
10 ピストン
11 パッファ室
DESCRIPTION OF SYMBOLS 1 Fixed arc contact 2 Movable arc contact 3 Drive shaft 4 Insulation nozzle 5 Insulation cylinder 6 Puffer cylinder 7 Fixed main contact 8 Movable main contact 9 Center shaft 10 Piston 11 Puffer chamber

Claims (1)

開離可能な対を成す固定アーク接触子および可動アーク接触子と、遮断動作時に消弧性ガスを圧縮する圧縮装置と、そのスロート部を通して挿入した前記固定アーク接触子と前記可動アーク接触子の接触部を包囲して設け前記圧縮装置で圧縮した消弧性ガスを前記固定アーク接触子と可動アーク接触子間の開離によって発生したアークに吹き付けるように案内する絶縁ノズルとを備えたガス遮断器において、前記絶縁ノズルの前記スロート部に、前記スロートを通過する吹き付けガス流に旋回成分を与える旋回成分溝を形成したことを特徴とするガス遮断器。   A fixed arc contact and a movable arc contact that form a pair that can be separated; a compression device that compresses the arc-extinguishing gas during the breaking operation; and the fixed arc contact and the movable arc contact that are inserted through the throat portion thereof. A gas barrier comprising an insulating nozzle that surrounds the contact portion and guides the arc extinguishing gas compressed by the compression device to blow the arc generated by the separation between the stationary arc contact and the movable arc contact A gas circuit breaker characterized in that a swirl component groove for imparting a swirl component to the sprayed gas flow passing through the throat is formed in the throat portion of the insulating nozzle.
JP2009089707A 2009-04-02 2009-04-02 Gas-blast circuit breaker Pending JP2010244742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009089707A JP2010244742A (en) 2009-04-02 2009-04-02 Gas-blast circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089707A JP2010244742A (en) 2009-04-02 2009-04-02 Gas-blast circuit breaker

Publications (1)

Publication Number Publication Date
JP2010244742A true JP2010244742A (en) 2010-10-28

Family

ID=43097551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089707A Pending JP2010244742A (en) 2009-04-02 2009-04-02 Gas-blast circuit breaker

Country Status (1)

Country Link
JP (1) JP2010244742A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538239A (en) * 2014-11-20 2015-04-22 平高集团有限公司 Nozzle, arc chute using nozzle, breaker and change-over switch
EP3261107A1 (en) * 2016-06-20 2017-12-27 ABB Schweiz AG Gas-insulated low- or medium-voltage switch with swirling device
CN111630621A (en) * 2017-12-20 2020-09-04 Abb电网瑞士股份公司 Circuit breaker and method for performing current breaking operation
WO2023157079A1 (en) * 2022-02-15 2023-08-24 三菱電機株式会社 Gas circuit breaker

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538239A (en) * 2014-11-20 2015-04-22 平高集团有限公司 Nozzle, arc chute using nozzle, breaker and change-over switch
EP3261107A1 (en) * 2016-06-20 2017-12-27 ABB Schweiz AG Gas-insulated low- or medium-voltage switch with swirling device
US10727013B2 (en) 2016-06-20 2020-07-28 Abb Schweiz Ag Gas-insulated low- or medium-voltage switch with swirling device
CN111630621A (en) * 2017-12-20 2020-09-04 Abb电网瑞士股份公司 Circuit breaker and method for performing current breaking operation
CN111630621B (en) * 2017-12-20 2024-04-02 日立能源有限公司 Circuit breaker and method of performing current breaking operation
WO2023157079A1 (en) * 2022-02-15 2023-08-24 三菱電機株式会社 Gas circuit breaker
JP7487855B2 (en) 2022-02-15 2024-05-21 三菱電機株式会社 Gas Circuit Breaker

Similar Documents

Publication Publication Date Title
US10964498B2 (en) Gas-insulated low- or medium-voltage load break switch
JP2014089899A (en) Gas circuit breaker
JP6478836B2 (en) Gas circuit breaker
JP2010244742A (en) Gas-blast circuit breaker
JP2012069348A (en) Gas circuit breaker
JP2017050095A (en) Gas Circuit Breaker
JP2013164994A (en) Gas circuit breaker
JP6244262B2 (en) Gas circuit breaker
KR101605142B1 (en) Gas isolated circuit breaker
JP2013191466A (en) Gas circuit breaker
JP5286569B2 (en) Puffer type gas circuit breaker
US11127551B2 (en) Circuit breaker and method of performing a current breaking operation
JP2015011911A (en) Gas circuit breaker
JP2009054481A (en) Gas-blast circuit breaker
JPWO2018066119A1 (en) Gas circuit breaker
JP6601671B2 (en) Gas circuit breaker
JP6961105B2 (en) Gas circuit breaker
KR101697583B1 (en) High Voltage type Gas Circuit Breaker
WO2019106841A1 (en) Gas circuit breaker
WO2022070397A1 (en) Gas circuit breaker
JP2016018702A (en) Gas circuit breaker
WO2019092864A1 (en) Gas circuit breaker
JPH02100218A (en) Buffer-type gas circuit breaker
RU2254635C1 (en) Arc-control device of high-voltage air circuit breaker
WO2019092862A1 (en) Gas circuit breaker