WO2023157079A1 - Gas circuit breaker - Google Patents

Gas circuit breaker Download PDF

Info

Publication number
WO2023157079A1
WO2023157079A1 PCT/JP2022/005947 JP2022005947W WO2023157079A1 WO 2023157079 A1 WO2023157079 A1 WO 2023157079A1 JP 2022005947 W JP2022005947 W JP 2022005947W WO 2023157079 A1 WO2023157079 A1 WO 2023157079A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
stirring
insulating
arc
stirring member
Prior art date
Application number
PCT/JP2022/005947
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 吉瀬
泰規 中村
惠介 武石
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/005947 priority Critical patent/WO2023157079A1/en
Priority to JP2024500732A priority patent/JP7487855B2/en
Publication of WO2023157079A1 publication Critical patent/WO2023157079A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/91Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism the arc-extinguishing fluid being air or gas

Definitions

  • the present disclosure relates to a gas circuit breaker equipped with a cooling cylinder that cools insulating gas blown onto an arc.
  • the power system is equipped with a gas circuit breaker that opens and closes the current circuit and interrupts the short-circuit current.
  • a gas circuit breaker opens a current circuit when an excessive current flows through a power system due to a lightning strike or the like. At this time, an arc is generated in the open portion of the current circuit, and a short-circuit current flows.
  • a gas circuit breaker is designed to extinguish an arc by blowing a high-temperature, high-speed insulating gas generated by the energy of the discharge itself onto the arc in order to interrupt the short-circuit current caused by the arc.
  • the blown insulating gas is heated by the arc to a high temperature. If the temperature or amount of the gas between the voltage application portion and the ground portion rises, dielectric breakdown may occur, so it is necessary to diffuse the heat of the gas. As one countermeasure, there is a cooling method that promotes mixing of the high-temperature insulating gas with the ambient low-temperature gas after blowing out the arc (see, for example, Patent Document 1).
  • Patent Document 1 a guide plate installed as a stirring member between the end of a fixed arc contact and a fixed support arranged around the fixed arc contact changes the direction of the gas flow,
  • a gas circuit breaker that promotes mixing and cooling with low-temperature gas.
  • the agitating member is installed at the end of the fixed arc contact located downstream of the insulating nozzle in the flow direction of the high-temperature insulating gas.
  • the separation distance causes the stirring member to move further away from the arc area where the arc is generated.
  • the high-temperature insulating gas leaves the insulating nozzle and travels a certain distance to the end of the fixed arc contact, and then is stirred by the stirring member changing the flow direction. , there was a problem of insufficient mixing with the surrounding low-temperature gas.
  • the present disclosure has been made to solve the above problems, and is closer to the arc area in the direction of flow of the insulating gas after being blown onto the arc, compared to the gas circuit breaker according to Patent Document 1.
  • the stirring member By arranging the stirring member on the upstream side of the gas, the stirring effect of promoting the mixing of the high temperature insulating gas and the surrounding low temperature gas is enhanced, and the efficiency of temperature averaging between the high temperature gas and the surrounding low temperature gas can be improved.
  • a gas circuit breaker includes a sealed container in which an insulating gas is sealed, a fixed arc contact and a movable arc contact provided in the sealed container and coaxially opposed to each other so as to be freely contactable and separated, and a movable arc contact.
  • a gas blowing mechanism that blows insulating gas against the arc generated when the arc contactor and the fixed arc contactor are separated, an insulating nozzle arranged to surround the arc area where the arc is generated, and the flow direction of the insulating gas.
  • a stirring section including a separate stirring member.
  • the stirring part having the stirring member is attached to the tip of the insulating nozzle surrounding the arc area.
  • the stirring member is arranged on the upstream side closer to the arc area in the flow direction of the insulating gas after it is blown to the arc, so it promotes mixing of the high temperature insulating gas and the surrounding low temperature gas.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a gas circuit breaker according to the present disclosure
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an arc-extinguishing device in a gas circuit breaker according to Embodiment 1 of the present disclosure
  • FIG. 4 is a cross-sectional view showing the stirring part of the arc-extinguishing device in the gas circuit breaker according to Embodiment 1 of the present disclosure
  • FIG. 4 is a cross-sectional view showing a comparative example and a modification of the stirring part of the arc-extinguishing device in the gas circuit breaker according to Embodiment 1 of the present disclosure
  • FIG. 7 is a cross-sectional view showing the stirring part of the arc-extinguishing device in the gas circuit breaker according to Embodiment 2 of the present disclosure
  • FIG. 11 is a cross-sectional view showing a stirring portion of an arc-extinguishing device in a gas circuit breaker according to Embodiment 3 of the present disclosure
  • FIG. 11 is a cross-sectional view showing a stirring portion of an arc-extinguishing device in a gas circuit breaker according to Embodiment 4 of the present disclosure
  • FIG. 11 is a cross-sectional view showing a stirring portion of an arc-extinguishing device in a gas circuit breaker according to Embodiment 5 of the present disclosure
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a gas circuit breaker 100 according to the present disclosure.
  • the gas circuit breaker 100 has a sealed container 1 and a drive mechanism section 30 installed outside the sealed container 1 .
  • the sealed container 1 is provided with a first bushing 32 that accommodates the first bushing conductor 31 and a second bushing 34 that accommodates the second bushing conductor 33 .
  • the first bushing conductor 31 and the second bushing conductor 33 form part of a current circuit.
  • the closed container 1 contains an insulating gas that insulates the closed container 1 from the current circuit.
  • the insulating gas include air, compressed air, sulfur hexafluoride (SF6), carbon dioxide (CO2), trifluoromethane iodide (CF3I), nitrogen (N2), oxygen (O2), methane tetrafluoride (CF4 ), argon (Ar), and helium (He), or a mixed gas in which at least two of these gases are mixed.
  • an arc-extinguishing device 40 for extinguishing the arc generated when the current is interrupted, a rod 41 for transmitting driving force from the driving mechanism 30 to the movable portion of the arc-extinguishing device 40, and the arc-extinguishing device 40.
  • a movable side shield 42 that covers the outer circumference of the movable portion is accommodated.
  • the movable shield 42 is electrically connected to the movable main contactor 7 and the movable arc contactor 6 to be described later via metal parts (not shown), and is similar to the movable main contactor 7 and the movable arc contactor 6. maintained at potential.
  • FIG. 2 is a sectional view showing the configuration of the arc-extinguishing device 40 of the gas circuit breaker according to this embodiment.
  • illustration of the movable side shield 42 is omitted.
  • the x-axis, the y-axis and the z-axis are assumed to be three axes perpendicular to each other.
  • the x-axis direction represents the central axis 101 of the arc extinguishing device 40 .
  • the y-direction represents, for example, the vertical up-down direction.
  • FIG. 2 shows an xy section of the arc extinguishing device 40 .
  • a direction parallel to the central axis 101 (horizontal direction in FIG. 2) is referred to as "axial direction”
  • a direction perpendicular to the axial direction is referred to as "radial direction”.
  • Directions around the axial direction are denoted as "circumferential”.
  • the arc extinguishing device 40 has a fixed main contact 8, a fixed arc contact 11, a movable main contact 7 and a movable arc contact 6.
  • the fixed main contact 8 and the fixed arc contact 11 are fixed-side contacts in the gas circuit breaker 100 .
  • the movable main contactor 7 and the movable arc contactor 6 are contactors on the movable side in the gas circuit breaker 100 .
  • Both the stationary main contact 8 and the stationary arc contact 11 are electrically connected to the second bushing conductor 33 shown in FIG.
  • the stationary main contact 8 has, for example, a cylindrical shape.
  • the fixed arc contact 11 has, for example, a rod-like shape.
  • the respective central axes of the fixed main contact 8 and the fixed arc contact 11 are arranged coaxially and are the central axis 101 shown in FIG.
  • the fixed main contact 8 and the fixed arc contact 11 are electrically connected to each other via metal parts (not shown) and maintained at the same potential.
  • Both the movable main contact 7 and the movable arc contact 6 are electrically connected to the first bushing conductor 31 shown in FIG.
  • the respective center axes of the movable main contact 7 and the movable arc contact 6 are arranged coaxially with the center axis 101 of the fixed main contact 8 and the fixed arc contact 11 .
  • the movable arc contact 6 is connected to the drive mechanism section 30 via the rod 41 shown in FIG.
  • the movable main contactor 7 and the movable arc contactor 6 advance and retreat along the axial direction integrally with the puffer cylinder 3 and the insulating nozzle 9 described later by driving force transmitted through the rod 41 .
  • the movable main contact 7 has, for example, an annular shape that can come into contact with the inner peripheral surface of the fixed main contact 8 .
  • the movable main contact 7 is separated from the stationary main contact 8 and electrically isolated from the stationary main contact 8 . That is, in the state shown in FIG. 2, the current circuit is open.
  • the movable main contact 7 moves rightward in FIG. 2, the movable main contact 7 comes into contact with the fixed main contact 8 and is electrically connected with the fixed main contact 8 . As a result, the current circuit is closed and turned on.
  • the stationary arc contact 11 and the movable arc contact 6 are electrically connectable and coaxially opposed to each other so as to be freely contactable and detachable.
  • the movable arc contact 6 is axially driven to contact and separate from the fixed arc contact 11 .
  • the movable arc contact 6 has, for example, a cylindrical shape that can come into contact with the outer peripheral surface of the fixed arc contact 11 .
  • the movable arc contact 6 is separated from the stationary arc contact 11 and electrically isolated from the stationary arc contact 11 .
  • the movable arc contact 6 moves rightward in FIG. 2
  • the movable arc contact 6 comes into contact with the fixed arc contact 11 and is electrically connected with the fixed arc contact 11 .
  • the arc extinguishing device 40 has a gas blowing mechanism 5 for blowing insulating gas onto the arc generated in the arc region 13 .
  • the gas spraying mechanism 5 has at least a puffer cylinder 3 and a puffer piston 50 .
  • the puffer cylinder 3 is formed in a cylindrical shape with the rod 41 shown in FIG. 1 as its central axis.
  • the puffer cylinder 3 is configured to be integrated with the movable main contactor 7 and the movable arc contactor 6 so as to advance and retreat along the axial direction.
  • the puffer piston 50 is inserted inside the puffer cylinder 3 .
  • the puffer piston 50 is fixed to the sealed container 1 using an insulating support member.
  • the puffer piston 50 advances and retreats relative to the puffer cylinder 3 as the puffer cylinder 3 advances and retreats.
  • a space surrounded by the puffer cylinder 3 and the puffer piston 50 is the puffer chamber 4 .
  • the puffer chamber 4 contains an insulating gas enclosed in the sealed container 1 .
  • the arc extinguishing device 40 has a cooling cylinder 10 and an insulating nozzle 9 .
  • the cooling cylinder 10 is configured to cool the insulating gas that has been blown to a high temperature by the arc and return the cooled insulating gas to the space inside the sealed container 1 .
  • the cooling cylinder 10 is maintained at the same potential as the stationary main contact 8 and the stationary arc contact 11 .
  • the insulating nozzle 9 is configured to guide the insulating gas sprayed onto the arc to the cooling cylinder 10, and has a tubular shape extending in the axial direction.
  • the insulating nozzle 9 is made of an insulator.
  • the insulating nozzle 9 is arranged so as to surround the outer circumferences of the movable arc contact 6 and the fixed arc contact 11 .
  • the arc area 13 is located inside the insulating nozzle 9 and the insulating nozzle 9 is arranged so as to surround the arc area 13 .
  • the central axes of the stationary main contact 8, the stationary arc contact 11, the movable main contact 7, the movable arc contact 6, the puffer cylinder 3, the puffer piston 50, the insulating nozzle 9, and the cooling cylinder 10 are arranged coaxially, which is the central axis 101 shown in FIG.
  • the flow direction of the insulating gas that has been blown to the arc and heated to a high temperature is flow direction 2 indicated by an arrow.
  • upstream and downstream mean upstream and downstream in the flow direction 2 of the insulating gas.
  • the stationary arc contact 11 is rod-shaped and extends in the axial direction
  • the insulating nozzle 9 is cylindrical and extends in the axial direction.
  • the flow direction 2 is parallel to the axial direction along the stationary arc contact outer peripheral surface 111 . As shown in FIG.
  • the insulating nozzle 9 has an inner peripheral surface 91 formed with a tapered surface so that the inner diameter increases along the flow direction 2 of the insulating gas. ing.
  • the insulating gas flow direction 2 near the inner peripheral surface of the insulating nozzle 9 is axially inclined along the insulating nozzle inner peripheral surface 91, but the axial component is the main component.
  • the high temperature insulating gas away from the arc area 13 in the insulating nozzle 9 flows into the cooling cylinder 10 arranged downstream from the insulating nozzle 9 and mixes with the original low temperature gas in the cooling cylinder 10 .
  • An insulating gas flow path is formed from the insulating nozzle 9 to the cooling cylinder 10 .
  • the insulating nozzle 9 has a tip portion 92 which is an end portion extending toward the cooling cylinder 10 side.
  • FIG. 3 is a cross-sectional view showing stirring section 12 in gas circuit breaker 100 according to Embodiment 1.
  • FIG. 3(a) is an enlarged view of a region E surrounded by a dashed line in FIG.
  • FIG. 3A shows an xy cross section of the stirring unit 12.
  • FIG. 3(b) shows a yz cross section of the stirring part 12 along line AA in FIG. 3(a).
  • the stirring section 12 is attached to the tip section 92 perpendicularly to the axial direction.
  • a yz cross section of the stirring part 12 perpendicular to the axial direction is a cross section perpendicular to the flow path of the insulating gas.
  • the flow direction 2 of the insulating gas is the same as the axial direction, or the axial direction component is the main component, whereas the yz cross section of the stirring part 12 is regarded as a cross section perpendicular to the flow direction 2 .
  • the stirring section 12 includes a stirring member having a cross section perpendicular to the flow direction 2 of the insulating gas so as to separate the flow of the insulating gas.
  • the yz cross section of the stirring section 12 is a circular shape expanding in the radial direction.
  • the stirring section 12 has a radially inner first stirring member 20 , a radially outer supporting member 22 , and a second stirring member 21 connecting the first stirring member 20 and the supporting member 22 . .
  • the insulating nozzle 9 has a tubular shape extending in the axial direction, and the support member 22 is arranged at the tip portion 92 .
  • the first stirring member 20 is arranged radially inside the insulating nozzle 9 from the support member 22 .
  • the support member 22 and the first stirring member 20 each extend in the circumferential direction and are formed in an annular shape.
  • the second stirring member 21 is an arm radially extending in the radial direction from the first stirring member 20 to the supporting member 22 so as to connect the first stirring member 20 and the supporting member 22 .
  • the stirring part 12 has a stirring effect that promotes mixing of the high-temperature insulating gas and the surrounding low-temperature gas.
  • the high-temperature and high-speed insulating gas advances in the flow direction 2, collides with the first stirring member 20 and the second stirring member 21 of the stirring section 12, and is separated.
  • the flow of the insulating gas is changed by the stirring part 12 to generate a vortex.
  • the size of the vortex increases, and while being stirred by the vortex, it advances to the cooling cylinder 10 arranged downstream of the insulating nozzle 9 .
  • the first stirring member 20 and the second stirring member 21 are stirring members that separate the flow of the insulating gas, and function as gas flow stirring means that promotes mixing of the high-temperature insulating gas and the surrounding low-temperature gas. is.
  • the stirring member Compared to the structure in which the stirring member is installed on the downstream side of the insulating nozzle in the conventional technology, by installing the stirring part 12 at the tip 92 of the insulating nozzle 9, the movable arc contact and the fixed arc contact Due to the distance, the stirring member does not move further away from the arc area, and the high temperature insulating gas can be quickly separated after blowing out the arc. Efficient temperature averaging.
  • the tubular insulating nozzle 9 extending in the axial direction has a circular cross section perpendicular to the axial direction.
  • a cross section perpendicular to the axial direction of the fixed arc contactor 11 is also circular.
  • the cross section perpendicular to the axial direction of the region where the insulating gas flows fast in the insulating nozzle 9 is circular.
  • the cross section of the first stirring member 20 perpendicular to the axial direction is preferably circular.
  • the cross section perpendicular to the axial direction of the support member 22 installed at the tip portion 92 is preferably circular.
  • the purpose of the first stirring member 20 and the support member 22 is to stir the gas flow and to support the stirring member, respectively, and it is possible to realize their respective functions even if the cross-sectional shape is not circular. .
  • the cross-sectional shape of the first stirring member 20 perpendicular to the axial direction may be, for example, a polygon such as a quadrangle, a pentagon, a hexagon, and an octagon. Since the first stirring member 20 has a cross section perpendicular to the flow direction 2 of the insulating gas, it collides with the high-temperature and high-speed insulating gas flow, so that the insulating gas flow is separated, and the high-temperature insulating gas and the surrounding low-temperature gas are separated. It has a stirring effect that promotes mixing with the gas.
  • the supporting member 22 may be intermittently formed in the circumferential direction so that it can be installed at the tip portion 92 of the insulating nozzle 9 to support the stirring member.
  • the support member 22 of the stirring section 12 shown in FIG. Specifically, the support member 22 is attached so as to cover the outer periphery of the tip portion 92 of the insulating nozzle 9 .
  • the support member 22 has an inner diameter larger than the outer diameter of the tip portion 92 and includes a protruding portion 221 that protrudes toward the insulating nozzle 9 .
  • This structure of the support member 22 increases the area covering the outer periphery of the insulating nozzle 9, improves the strength of attaching the stirring part 12 to the insulating nozzle 9, and simplifies assembly.
  • the supporting member 22 and the insulating nozzle 9 may be fastened with screws, a plate or the like may be inserted between the supporting member 22 and the insulating nozzle 9 to mediate the two.
  • first stirring member 20, the second stirring member 21, and the support member 22 may be integrally formed by casting for cost reduction, or may be manufactured as individual parts and screwed together. .
  • the stirring portion 12a of Comparative Example 1 shown in FIG. 4A is attached to the tip portion 92 of the insulating nozzle 9. Installed covered.
  • the support member 22 a has an outer diameter smaller than the inner diameter of the tip 92 and includes a projecting portion 222 projecting toward the insulating nozzle 9 . Since the stirring portion 12a of Comparative Example 1 is also attached to the tip portion 92, the effect of stirring the insulating gas can be enhanced.
  • the stirring part 12 in which the support member 22 shown in FIG. It is possible to reduce the pressure loss caused by giving resistance to the gas flow in the flow path.
  • FIG. 4(b) shows, as Comparative Example 2, a stirring portion 12b having a second stirring member 21 fixed to the tip portion 92 of the insulating nozzle 9. As shown in FIG.
  • the stirring part 12b of Comparative Example 2 When attaching the stirring part 12b of Comparative Example 2, for example, by processing a notch for accommodating the second stirring member 21 in the insulating nozzle 9, the second stirring member 21 overlaps with the tip part 92 of the insulating nozzle 9, and is axially aligned. can be installed without protruding outside the insulating nozzle 9. In this case, the installation strength can be improved by fitting the stirring portion 12b and the insulating nozzle 9 together.
  • the support member 22 may have, for example, a protrusion 221 that protrudes toward the insulating nozzle 9 so as to cover the outer periphery of the tip portion 92 of the insulating nozzle 9. As shown in FIG. Since the stirring portion 12b of Comparative Example 2 is also attached to the tip portion 92, the effect of stirring the insulating gas can be enhanced.
  • FIG. 4(c) shows a stirring section 12c having a support member 22 fixed to the tip portion 92 of the insulating nozzle 9 as a modified example of the stirring section 12 shown in FIG.
  • the stirring portion 12c is attached to the tip portion 92 of the insulating nozzle 9, for example, by flattening the axial surface of the tip portion 92 in contact with the support member 22, the gap between the insulating nozzle 9 and the stirring portion 12c is reduced. Mounting strength can be increased.
  • the stirring part 12c of the modified example can also enhance the stirring effect of the insulating gas in the same manner as the stirring part 12 shown in FIG.
  • the stirring part having the stirring member is arranged at the tip of the insulating nozzle arranged so as to surround the arc region where the arc is generated.
  • the stirring member is arranged on the upstream side closer to the arc area, which promotes mixing of the high-temperature insulating gas with the surrounding low-temperature gas.
  • Embodiment 2 In the second embodiment, the same reference numerals are used for the same components as in the first embodiment of the present disclosure, and the description of the same or corresponding parts is omitted.
  • the stirring section in the gas circuit breaker according to Embodiment 2 will be described with reference to the drawings.
  • FIG. 5 is a cross-sectional view showing the stirring section 12 in the gas circuit breaker according to Embodiment 2.
  • FIG. FIG. 5( a ) shows the xy cross-sectional structure of the stirring section 12 .
  • FIG. 5(b) shows a yz cross section of the stirring part 12 along line AA in FIG. 5(a).
  • a center line 60 represents an extension line in the flow direction 2 of the radial center position of the fixed arc contactor outer peripheral surface 111 and the insulating nozzle inner peripheral surface 91 .
  • the distance from the center line 60 to the insulating nozzle inner peripheral surface 91 is the same as the distance from the center line 60 to the fixed arc contactor outer peripheral surface 111 .
  • the stirring part 12 in the second embodiment is also arranged at the tip part 92 of the insulating nozzle 9 .
  • the first stirring member 20 is positioned on the center line 60 in the stirring section 12 according to the second embodiment. At least a portion of the first stirring member 20 is arranged on the centerline 60 .
  • the flow velocity distribution of the high-temperature, high-speed insulating gas varies depending on the location where the arc region 13 is generated and the shape of the insulating nozzle 9. Generally, between the fixed arc contact outer peripheral surface 111 and the insulating nozzle inner peripheral surface 91, The flow velocity of the insulating gas is the fastest near the center position in the radial direction. By arranging the first stirring member 20 on the extension line in the flow direction 2 of the central position where the flow velocity of the insulating gas is fast, the flow of the insulating gas can be separated more efficiently, forming a vortex and stirring. can promote effectiveness.
  • Embodiment 2 compared to Embodiment 1, it is possible to further improve the stirring effect of promoting the mixing of the high-temperature insulating gas and the ambient low-temperature gas.
  • Embodiment 3 In the third embodiment, the same reference numerals are used for the same components as in the first embodiment of the present disclosure, and the description of the same or corresponding parts is omitted.
  • the stirring part in the gas circuit breaker according to Embodiment 3 will be described with reference to the drawings.
  • FIG. 6 is a cross-sectional view showing the stirring section 12 in the gas circuit breaker according to Embodiment 3.
  • FIG. FIG. 6( a ) shows the xy cross-sectional structure of the stirring section 12 .
  • FIG. 6(b) shows a yz cross section of the stirring part 12 along line AA in FIG. 6(a).
  • 6(c) and 6(d) show xz cross sections of the second stirring member 21 along line BB in FIG. 6(b).
  • At least one of the first stirring member 20 and the second stirring member 21 of the stirring section 12 has an upstream end that extends in the flow direction 2. has a cross-section forming an acute angle towards
  • a portion 201 forms an acute angle in the direction of flow 2 . That is, the upstream end of the first stirring member 20 is formed such that the width in the radial direction becomes smaller in the flow direction 2 . Since the first stirring member 20 has an annular cross-section perpendicular to the axial direction, the upstream end 201 of the first stirring member extending in the circumferential direction forms an acute angle toward the flow direction 2 .
  • the acute-angled first stirring member upstream end 201 of the first stirring member 20 can reduce the pressure loss caused by giving resistance to the gas flow at low cost.
  • the second stirring member 21 extends in the radial direction so as to connect the annular first stirring member 20 and the support member 22.
  • the upstream end 211 of the second stirring member 21, which is the upstream end of the second stirring member 21 faces the flow direction 2. form an acute angle. That is, the upstream end of the second stirring member 21 is formed such that the width in the circumferential direction becomes smaller in the flow direction 2 .
  • the acute-angled second stirring member upstream end 211 of the second stirring member 21 can reduce the pressure loss caused by providing resistance to the gas flow at low cost.
  • the flow direction 2 of the insulating gas is the same direction as the axial direction, or the component in the axial direction is the main component.
  • At least one of the first stirring member 20 and the second stirring member 21 has a cross section parallel to the flow direction 2 in which the upstream end forms an acute angle in the flow direction 2 .
  • the downstream end may have a second stirring member downstream end 213 forming an acute angle along the flow direction 2 .
  • the pressure loss caused by giving resistance to the gas flow can be reduced.
  • the downstream end facing the upstream end 201 of the first stirring member 20 may form an acute angle along the flow direction 2 .
  • the insulating gas flows at a high speed, so that the stirring member generates a vortex, resulting in a high temperature. Mixing of the insulating gas with the ambient low temperature gas can be promoted.
  • the stirring part attached to the tip of the insulating nozzle has a stirring effect of promoting mixing of the high-temperature insulating gas and the surrounding low-temperature gas. can be improved. Moreover, as compared with the first embodiment, the pressure loss caused by giving resistance to the gas flow can be reduced at a low cost.
  • Embodiment 4 In the fourth embodiment, the same reference numerals are used for the same components as in the first embodiment of the present disclosure, and the description of the same or corresponding parts is omitted.
  • the stirring part in the gas circuit breaker according to Embodiment 4 will be described with reference to the drawings.
  • FIG. 7 is a cross-sectional view showing the stirring section 12 in the gas circuit breaker according to Embodiment 4.
  • FIG. FIG. 7 shows the xy cross-sectional structure of the stirring section 12 .
  • the outer peripheral diameter of the upstream end of the first stirring member 20 is indicated by the upstream outer peripheral diameter 24
  • the outer peripheral diameter of the downstream end is indicated by the downstream outer peripheral diameter 25 .
  • the upstream outer peripheral diameter 24 and the downstream outer peripheral diameter 25 are the diameters of the outer peripheral surfaces of the upstream end and the downstream end, respectively. be.
  • the downstream outer peripheral diameter 25 of the first stirring member 20 is larger than the upstream outer peripheral diameter 24 in the flow direction 2 of the insulating gas.
  • the flow direction 2 of the insulating gas spreads toward the outside of the insulating nozzle 9 in the flow direction 2a.
  • the stirring unit 12 according to the third embodiment can further improve the stirring effect of promoting the mixing of the high-temperature insulating gas and the ambient low-temperature gas.
  • Embodiment 5 In Embodiment 5, the same reference numerals are used for the same components as in Embodiment 1 of the present disclosure, and the description of the same or corresponding parts is omitted.
  • the stirring part in the gas circuit breaker according to Embodiment 5 will be described with reference to the drawings.
  • FIGS. 8(a) and 8(b) are cross-sectional views respectively showing stirring parts 12 and 12d in a gas circuit breaker according to Embodiment 5.
  • FIG. 8(a) and 8(b) show the yz cross-sectional structures of the stirring portions 12 and 12d.
  • the yz cross section of the stirring section is regarded as a cross section perpendicular to the flow direction 2 of the insulating gas, and FIGS.
  • the circumferential width of the second stirring member 21 is smaller than the radial width of the first stirring member 20 in the cross section perpendicular to the flow direction 2 .
  • the first stirring member 20 is annular extending in the circumferential direction, and the second stirring member 21 extends from the first stirring member 20 to the support member 22 in the axial direction. It extends radially. Due to this structure, the first stirring member 20 has a higher stirring effect for the insulating gas than the second stirring member 21 does.
  • the second stirring member 21 is a connecting part that connects the first stirring member 20 and the support member 22, and is preferably thin as long as the strength permits.
  • the second stirring member width 26, which is the width of the second stirring member 21 in the circumferential direction is larger than the first stirring member width 27, which is the width of the first stirring member 20 in the radial direction. small. Thereby, the pressure loss caused by giving resistance to the gas flow can be reduced.
  • the second stirring member width 26 of the second stirring member 21 is smaller than the first stirring member width 27 of the first stirring member 20.
  • the number of the second stirring members 21 of the stirring portion 12d shown in FIG. 8B is smaller than that of the stirring portion 12 shown in FIG. It is preferable to reduce the number of second stirring members 21 as connecting parts as long as the strength permits to reduce the pressure loss when the gas flows.
  • the resistance to the gas flow can be reduced. It is also possible to reduce the pressure loss caused by the application.
  • the stirring part attached to the tip of the insulating nozzle has a stirring effect of promoting mixing of the high-temperature insulating gas and the surrounding low-temperature gas. can be improved.
  • the pressure loss caused by the resistance to the gas flow can be reduced.

Landscapes

  • Circuit Breakers (AREA)

Abstract

Provided is a gas circuit breaker capable of improving the effect of cooling a gas that has reached a high temperature as a result of being blown toward an arc. A gas circuit breaker according to the present disclosure comprises: a sealed container (1) enclosing therein an insulating gas; a fixed arc contact (11) and a movable arc contact (6) which are provided in the sealed container (1) and are arranged so as to be coaxially opposite to each other and to be able to contact with/separate from each other; a gas blowing mechanism (5) for blowing the insulating gas to an arc generated when the movable arc contact (6) and the fixed arc contact (11) are separated from each other; an insulating nozzle (9) disposed so as to surround an arc region (13) in which the arc is generated; a cooling cylinder (10) that is disposed downstream of the insulating nozzle (9) in a flowing direction (2) of the insulating gas and that cools the insulating gas blown to the arc; and a stirring part (12) that includes a stirring member for separating the flow of the insulating gas and that is attached to a leading end part (92) which is an end of the insulating nozzle (9) extending toward the cooling cylinder (10) side.

Description

ガス遮断器gas circuit breaker
 本開示は、アークに吹き付けられた絶縁ガスを冷却する冷却筒を備えたガス遮断器に関するものである。 The present disclosure relates to a gas circuit breaker equipped with a cooling cylinder that cools insulating gas blown onto an arc.
 電力系統には、電流回路を開閉するとともに短絡電流を遮断するガス遮断器が設けられている。ガス遮断器は、落雷等により電力系統に過大な電流が流れる際に、電流回路を開放する。このとき、電流回路の開放部にはアークが発生し、短絡電流が流れる。ガス遮断器は、アークによる短絡電流を遮断するため、放電自体のエネルギーにより生じる高温高速の絶縁ガスをアークに吹き付けることによってアークを消滅させるように構成されている。 The power system is equipped with a gas circuit breaker that opens and closes the current circuit and interrupts the short-circuit current. A gas circuit breaker opens a current circuit when an excessive current flows through a power system due to a lightning strike or the like. At this time, an arc is generated in the open portion of the current circuit, and a short-circuit current flows. A gas circuit breaker is designed to extinguish an arc by blowing a high-temperature, high-speed insulating gas generated by the energy of the discharge itself onto the arc in order to interrupt the short-circuit current caused by the arc.
 吹き付けられた絶縁ガスはアークにより加熱され高温になる。電圧印加部と接地部の間にガスの温度や量が上昇すると、絶縁破壊を引き起こすことがあるため、ガスの熱を拡散させる必要がある。対策の一つとして、アークを吹き消した後に、高温の絶縁ガスと周囲の低温ガスとの混合を促進する冷却手法が挙げられる(例えば、特許文献1参照)。 The blown insulating gas is heated by the arc to a high temperature. If the temperature or amount of the gas between the voltage application portion and the ground portion rises, dielectric breakdown may occur, so it is necessary to diffuse the heat of the gas. As one countermeasure, there is a cooling method that promotes mixing of the high-temperature insulating gas with the ambient low-temperature gas after blowing out the arc (see, for example, Patent Document 1).
 特許文献1には、固定アーク接触子の端部と、固定アーク接触子の周辺に配置された固定支えとの間に、撹拌部材として設置されたガイド板によりガス流れの向きを変え、周囲の低温ガスとの混合、冷却を促進するガス遮断器を提案している。 In Patent Document 1, a guide plate installed as a stirring member between the end of a fixed arc contact and a fixed support arranged around the fixed arc contact changes the direction of the gas flow, We propose a gas circuit breaker that promotes mixing and cooling with low-temperature gas.
特開平10-12104号公報JP-A-10-12104
 しかしながら、特許文献1に係るガス遮断器では、高温の絶縁ガスの流れ方向において、絶縁ノズルよりも下流側に位置する固定アーク接触子の端部に撹拌部材が設置されている。電流回路の開放により可動アーク接触子と固定アーク接触子が開離した場合、離間した距離の影響で撹拌部材がアークの発生するアーク領域からさらに離れる。つまり、アークを吹き消した後の高温の絶縁ガスは、絶縁ノズルから離れて固定アーク接触子の端部まで、一定の距離を進んだ後に撹拌部材により流れの向きを変えられて撹拌されるため、周囲の低温ガスとの混合が不十分という問題点があった。
 本開示は、上記のような問題点を解決するためになされたもので、特許文献1に係るガス遮断器に比べて、アークに吹き付けた後の絶縁ガスの流れ方向において、よりアーク領域に接近する上流側に撹拌部材を配置することにより、高温の絶縁ガスと周囲の低温ガスとの混合を促進する撹拌効果を高め、高温ガスと周囲の低温ガスとの温度平均化の効率を向上できるガス遮断器を提供する。
However, in the gas circuit breaker according to Patent Document 1, the agitating member is installed at the end of the fixed arc contact located downstream of the insulating nozzle in the flow direction of the high-temperature insulating gas. When the movable arc contact and the fixed arc contact are separated by opening the current circuit, the separation distance causes the stirring member to move further away from the arc area where the arc is generated. In other words, after blowing out the arc, the high-temperature insulating gas leaves the insulating nozzle and travels a certain distance to the end of the fixed arc contact, and then is stirred by the stirring member changing the flow direction. , there was a problem of insufficient mixing with the surrounding low-temperature gas.
The present disclosure has been made to solve the above problems, and is closer to the arc area in the direction of flow of the insulating gas after being blown onto the arc, compared to the gas circuit breaker according to Patent Document 1. By arranging the stirring member on the upstream side of the gas, the stirring effect of promoting the mixing of the high temperature insulating gas and the surrounding low temperature gas is enhanced, and the efficiency of temperature averaging between the high temperature gas and the surrounding low temperature gas can be improved. Provide circuit breakers.
 本開示に係るガス遮断器は、絶縁ガスが封入された密閉容器と、密閉容器に設けられ、同軸上に対向して接離自在に配置された固定アーク接触子及び可動アーク接触子と、可動アーク接触子と固定アーク接触子の開離時に発生するアークに対して絶縁ガスを吹き付けるガス吹付け機構と、アークが発生するアーク領域を囲むように配置された絶縁ノズルと、絶縁ガスの流れ方向において、絶縁ノズルより下流側に配置され、アークに吹き付けられた前記絶縁ガスを冷却する冷却筒と、冷却筒側に延伸する絶縁ノズルの端部である先端部に取り付けられ、絶縁ガスの流れを分離する撹拌部材を含む撹拌部とを備える。 A gas circuit breaker according to the present disclosure includes a sealed container in which an insulating gas is sealed, a fixed arc contact and a movable arc contact provided in the sealed container and coaxially opposed to each other so as to be freely contactable and separated, and a movable arc contact. A gas blowing mechanism that blows insulating gas against the arc generated when the arc contactor and the fixed arc contactor are separated, an insulating nozzle arranged to surround the arc area where the arc is generated, and the flow direction of the insulating gas. , attached to a cooling cylinder that is arranged downstream from the insulating nozzle and cools the insulating gas blown onto the arc, and a tip that is the end of the insulating nozzle that extends to the cooling cylinder side, and controls the flow of the insulating gas. a stirring section including a separate stirring member.
 本開示に係るガス遮断器によれば、アーク領域を囲む絶縁ノズルの先端部に撹拌部材を有する撹拌部が取り付けられている。従来技術に比べて、アークに吹き付けた後の絶縁ガスの流れ方向において、よりアーク領域に接近する上流側に撹拌部材が配置されるため、高温の絶縁ガスと周囲の低温ガスとの混合を促進する撹拌効果を高め、高温ガスと周囲の低温ガスとの温度平均化の効率を向上できるガス遮断器を提供する。 According to the gas circuit breaker according to the present disclosure, the stirring part having the stirring member is attached to the tip of the insulating nozzle surrounding the arc area. Compared to the conventional technology, the stirring member is arranged on the upstream side closer to the arc area in the flow direction of the insulating gas after it is blown to the arc, so it promotes mixing of the high temperature insulating gas and the surrounding low temperature gas. To provide a gas circuit breaker capable of enhancing the stirring effect of heating and improving the efficiency of temperature averaging between high-temperature gas and surrounding low-temperature gas.
本開示に係るガス遮断器の概略構成を示す断面図である。1 is a cross-sectional view showing a schematic configuration of a gas circuit breaker according to the present disclosure; FIG. 本開示の実施の形態1に係るガス遮断器における消弧装置の概略構成を示す断面図である。1 is a cross-sectional view showing a schematic configuration of an arc-extinguishing device in a gas circuit breaker according to Embodiment 1 of the present disclosure; FIG. 本開示の実施の形態1に係るガス遮断器における消弧装置の撹拌部を示す断面図である。FIG. 4 is a cross-sectional view showing the stirring part of the arc-extinguishing device in the gas circuit breaker according to Embodiment 1 of the present disclosure; 本開示の実施の形態1に係るガス遮断器における消弧装置の撹拌部の比較例と変形例を示す断面図である。FIG. 4 is a cross-sectional view showing a comparative example and a modification of the stirring part of the arc-extinguishing device in the gas circuit breaker according to Embodiment 1 of the present disclosure; 本開示の実施の形態2に係るガス遮断器における消弧装置の撹拌部を示す断面図である。FIG. 7 is a cross-sectional view showing the stirring part of the arc-extinguishing device in the gas circuit breaker according to Embodiment 2 of the present disclosure; 本開示の実施の形態3に係るガス遮断器における消弧装置の撹拌部を示す断面図である。FIG. 11 is a cross-sectional view showing a stirring portion of an arc-extinguishing device in a gas circuit breaker according to Embodiment 3 of the present disclosure; 本開示の実施の形態4に係るガス遮断器における消弧装置の撹拌部を示す断面図である。FIG. 11 is a cross-sectional view showing a stirring portion of an arc-extinguishing device in a gas circuit breaker according to Embodiment 4 of the present disclosure; 本開示の実施の形態5に係るガス遮断器における消弧装置の撹拌部を示す断面図である。FIG. 11 is a cross-sectional view showing a stirring portion of an arc-extinguishing device in a gas circuit breaker according to Embodiment 5 of the present disclosure;
 以下、本開示に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。 Hereinafter, embodiments according to the present disclosure will be described with reference to the drawings. In addition, in each of the following embodiments, the same reference numerals are given to the same components.
実施の形態1.
 実施の形態1に係るガス遮断器について説明する。図1は本開示に係るガス遮断器100の概略構成を示す断面図である。
Embodiment 1.
A gas circuit breaker according to Embodiment 1 will be described. FIG. 1 is a cross-sectional view showing a schematic configuration of a gas circuit breaker 100 according to the present disclosure.
 図1に示すように、ガス遮断器100は、密閉容器1と、密閉容器1の外側に設置された駆動機構部30を有している。密閉容器1には、第1ブッシング導体31を収容する第1ブッシング32と、第2ブッシング導体33を収容する第2ブッシング34と、が設けられている。第1ブッシング導体31及び第2ブッシング導体33は、電流回路の一部を構成している。 As shown in FIG. 1 , the gas circuit breaker 100 has a sealed container 1 and a drive mechanism section 30 installed outside the sealed container 1 . The sealed container 1 is provided with a first bushing 32 that accommodates the first bushing conductor 31 and a second bushing 34 that accommodates the second bushing conductor 33 . The first bushing conductor 31 and the second bushing conductor 33 form part of a current circuit.
 密閉容器1には、密閉容器1と電流回路とを絶縁する絶縁ガスが封入されている。絶縁ガスとしては、例えば、空気、圧縮空気、六フッ化硫黄(SF6)、二酸化炭素(CO2)、ヨウ化トリフルオロメタン(CF3I)、窒素(N2)、酸素(O2)、4フッ化メタン(CF4)、アルゴン(Ar)、ヘリウム(He)等の単一ガス、又は、これらのガスのうち少なくとも2種類を混合した混合ガスが用いられる。 The closed container 1 contains an insulating gas that insulates the closed container 1 from the current circuit. Examples of the insulating gas include air, compressed air, sulfur hexafluoride (SF6), carbon dioxide (CO2), trifluoromethane iodide (CF3I), nitrogen (N2), oxygen (O2), methane tetrafluoride (CF4 ), argon (Ar), and helium (He), or a mixed gas in which at least two of these gases are mixed.
 密閉容器1の内部には、電流遮断時に発生するアークを消滅させる消弧装置40と、駆動機構部30から消弧装置40の可動部分に駆動力を伝達するロッド41と、消弧装置40の可動部分の外周を覆う可動側シールド42と、が収容されている。
 可動側シールド42は、不図示の金属部品を介して、後述する可動主接触子7及び可動アーク接触子6と電気的に接続されており、可動主接触子7及び可動アーク接触子6と同電位に維持されている。
Inside the sealed container 1, there are an arc-extinguishing device 40 for extinguishing the arc generated when the current is interrupted, a rod 41 for transmitting driving force from the driving mechanism 30 to the movable portion of the arc-extinguishing device 40, and the arc-extinguishing device 40. A movable side shield 42 that covers the outer circumference of the movable portion is accommodated.
The movable shield 42 is electrically connected to the movable main contactor 7 and the movable arc contactor 6 to be described later via metal parts (not shown), and is similar to the movable main contactor 7 and the movable arc contactor 6. maintained at potential.
 図2は、本実施の形態に係るガス遮断器の消弧装置40の構成を示す断面図である。
図2では、可動側シールド42の図示を省略している。
 図2と、後述する各図とにおいて、x軸、y軸およびz軸は、互いに垂直な3軸とする。以下の説明において、x軸の方向は消弧装置40の中心軸101を表している。y方向は、例えば、鉛直上下方向を表している。図2には、消弧装置40のxy断面を表している。また、中心軸101に平行な方向(図2の左右方向)を「軸方向」と記し、軸方向に垂直な方向を「径方向」と記す。軸方向の周りの方向は、「周方向」と記す。
FIG. 2 is a sectional view showing the configuration of the arc-extinguishing device 40 of the gas circuit breaker according to this embodiment.
In FIG. 2, illustration of the movable side shield 42 is omitted.
In FIG. 2 and each figure described later, the x-axis, the y-axis and the z-axis are assumed to be three axes perpendicular to each other. In the following description, the x-axis direction represents the central axis 101 of the arc extinguishing device 40 . The y-direction represents, for example, the vertical up-down direction. FIG. 2 shows an xy section of the arc extinguishing device 40 . A direction parallel to the central axis 101 (horizontal direction in FIG. 2) is referred to as "axial direction", and a direction perpendicular to the axial direction is referred to as "radial direction". Directions around the axial direction are denoted as "circumferential".
 図2に示すように、消弧装置40は、固定主接触子8、固定アーク接触子11、可動主接触子7及び可動アーク接触子6を有している。固定主接触子8及び固定アーク接触子11は、ガス遮断器100における固定側の接触子である。可動主接触子7及び可動アーク接触子6は、ガス遮断器100における可動側の接触子である。 As shown in FIG. 2, the arc extinguishing device 40 has a fixed main contact 8, a fixed arc contact 11, a movable main contact 7 and a movable arc contact 6. The fixed main contact 8 and the fixed arc contact 11 are fixed-side contacts in the gas circuit breaker 100 . The movable main contactor 7 and the movable arc contactor 6 are contactors on the movable side in the gas circuit breaker 100 .
 固定主接触子8及び固定アーク接触子11は、いずれも図1に示す第2ブッシング導体33と電気的に接続されている。固定主接触子8は、例えば円筒状の形状を有している。固定アーク接触子11は、例えば棒状の形状を有している。固定主接触子8及び固定アーク接触子11のそれぞれの中心軸は、同軸上に配置されており、図2に示す中心軸101である。固定主接触子8及び固定アーク接触子11は、不図示の金属部品を介して互いに電気的に接続されており、同電位に維持されている。 Both the stationary main contact 8 and the stationary arc contact 11 are electrically connected to the second bushing conductor 33 shown in FIG. The stationary main contact 8 has, for example, a cylindrical shape. The fixed arc contact 11 has, for example, a rod-like shape. The respective central axes of the fixed main contact 8 and the fixed arc contact 11 are arranged coaxially and are the central axis 101 shown in FIG. The fixed main contact 8 and the fixed arc contact 11 are electrically connected to each other via metal parts (not shown) and maintained at the same potential.
 可動主接触子7及び可動アーク接触子6は、いずれも図1に示す第1ブッシング導体31と電気的に接続されている。可動主接触子7及び可動アーク接触子6のそれぞれの中心軸は、固定主接触子8及び固定アーク接触子11の中心軸101と同軸上に配置されている。可動アーク接触子6は、図1に示すロッド41を介して駆動機構部30に接続されている。可動主接触子7及び可動アーク接触子6は、ロッド41を介して伝達される駆動力により、後述するパッファシリンダ3及び絶縁ノズル9と一体となって軸方向に沿って進退する。 Both the movable main contact 7 and the movable arc contact 6 are electrically connected to the first bushing conductor 31 shown in FIG. The respective center axes of the movable main contact 7 and the movable arc contact 6 are arranged coaxially with the center axis 101 of the fixed main contact 8 and the fixed arc contact 11 . The movable arc contact 6 is connected to the drive mechanism section 30 via the rod 41 shown in FIG. The movable main contactor 7 and the movable arc contactor 6 advance and retreat along the axial direction integrally with the puffer cylinder 3 and the insulating nozzle 9 described later by driving force transmitted through the rod 41 .
 可動主接触子7は、例えば、固定主接触子8の内周面と接触可能な円環状の形状を有している。図2に示す状態では、可動主接触子7は、固定主接触子8から離れており、固定主接触子8とは電気的に分離されている。つまり、図2に示す状態では、電流回路は開放されている。可動主接触子7が図2中の右方向に移動すると、可動主接触子7は、固定主接触子8に接触し、固定主接触子8と電気的に接続される。これにより、電流回路が閉じられて通電状態となる。 The movable main contact 7 has, for example, an annular shape that can come into contact with the inner peripheral surface of the fixed main contact 8 . In the state shown in FIG. 2 , the movable main contact 7 is separated from the stationary main contact 8 and electrically isolated from the stationary main contact 8 . That is, in the state shown in FIG. 2, the current circuit is open. When the movable main contact 7 moves rightward in FIG. 2, the movable main contact 7 comes into contact with the fixed main contact 8 and is electrically connected with the fixed main contact 8 . As a result, the current circuit is closed and turned on.
 固定アーク接触子11及び可動アーク接触子6は電気的に接続可能であり、同軸上に対向して接離自在に配置されている。可動アーク接触子6が軸方向に駆動されることにより固定アーク接触子11と接離する。
 可動アーク接触子6は、例えば、固定アーク接触子11の外周面と接触可能な円筒状の形状を有している。図2に示す状態では、可動アーク接触子6は、固定アーク接触子11から離れており、固定アーク接触子11とは電気的に分離されている。可動アーク接触子6が図2中の右方向に移動すると、可動アーク接触子6は、固定アーク接触子11に接触し、固定アーク接触子11と電気的に接続される。
The stationary arc contact 11 and the movable arc contact 6 are electrically connectable and coaxially opposed to each other so as to be freely contactable and detachable. The movable arc contact 6 is axially driven to contact and separate from the fixed arc contact 11 .
The movable arc contact 6 has, for example, a cylindrical shape that can come into contact with the outer peripheral surface of the fixed arc contact 11 . In the state shown in FIG. 2 , the movable arc contact 6 is separated from the stationary arc contact 11 and electrically isolated from the stationary arc contact 11 . When the movable arc contact 6 moves rightward in FIG. 2, the movable arc contact 6 comes into contact with the fixed arc contact 11 and is electrically connected with the fixed arc contact 11 .
 固定アーク接触子11と可動アーク接触子6の開離時にアークが発生する。固定アーク接触子11と可動アーク接触子6との間のアークが発生する領域は図2に示すアーク領域13である。消弧装置40は、アーク領域13に発生したアークに絶縁ガスを吹き付けるガス吹付け機構5を有している。ガス吹付け機構5は、少なくともパッファシリンダ3及びパッファピストン50を有している。 An arc is generated when the fixed arc contact 11 and the movable arc contact 6 are separated. A region where an arc is generated between the stationary arc contact 11 and the movable arc contact 6 is an arc region 13 shown in FIG. The arc extinguishing device 40 has a gas blowing mechanism 5 for blowing insulating gas onto the arc generated in the arc region 13 . The gas spraying mechanism 5 has at least a puffer cylinder 3 and a puffer piston 50 .
 パッファシリンダ3は、図1に示すロッド41を中心軸とした円筒状に形成されている。パッファシリンダ3は、可動主接触子7及び可動アーク接触子6と一体となって軸方向に沿って進退するように構成されている。パッファピストン50は、パッファシリンダ3内に挿入されている。パッファピストン50は、絶縁支持部材を用いて密閉容器1に固定されている。パッファピストン50は、パッファシリンダ3の進退に伴い、パッファシリンダ3に対して相対的に進退する。パッファシリンダ3とパッファピストン50とによって囲まれた空間は、パッファ室4となっている。パッファ室4には、密閉容器1内に封入された絶縁ガスが存在している。 The puffer cylinder 3 is formed in a cylindrical shape with the rod 41 shown in FIG. 1 as its central axis. The puffer cylinder 3 is configured to be integrated with the movable main contactor 7 and the movable arc contactor 6 so as to advance and retreat along the axial direction. The puffer piston 50 is inserted inside the puffer cylinder 3 . The puffer piston 50 is fixed to the sealed container 1 using an insulating support member. The puffer piston 50 advances and retreats relative to the puffer cylinder 3 as the puffer cylinder 3 advances and retreats. A space surrounded by the puffer cylinder 3 and the puffer piston 50 is the puffer chamber 4 . The puffer chamber 4 contains an insulating gas enclosed in the sealed container 1 .
 さらに、消弧装置40は、冷却筒10及び絶縁ノズル9を有している。冷却筒10は、アークに吹き付けられて高温となった絶縁ガスを冷却し、冷却した絶縁ガスを密閉容器1内の空間に戻すように構成されている。冷却筒10は、固定主接触子8及び固定アーク接触子11と同電位に維持されている。絶縁ノズル9は、アークに吹き付けられた絶縁ガスを冷却筒10に導くように構成され、軸方向に延伸する筒状をなしている。絶縁ノズル9は、絶縁体により形成されている。絶縁ノズル9は、可動アーク接触子6及び固定アーク接触子11の外周を囲むように配置されている。これにより、アーク領域13は絶縁ノズル9内に位置し、絶縁ノズル9はアーク領域13を囲むように配置されている。 Furthermore, the arc extinguishing device 40 has a cooling cylinder 10 and an insulating nozzle 9 . The cooling cylinder 10 is configured to cool the insulating gas that has been blown to a high temperature by the arc and return the cooled insulating gas to the space inside the sealed container 1 . The cooling cylinder 10 is maintained at the same potential as the stationary main contact 8 and the stationary arc contact 11 . The insulating nozzle 9 is configured to guide the insulating gas sprayed onto the arc to the cooling cylinder 10, and has a tubular shape extending in the axial direction. The insulating nozzle 9 is made of an insulator. The insulating nozzle 9 is arranged so as to surround the outer circumferences of the movable arc contact 6 and the fixed arc contact 11 . Thereby, the arc area 13 is located inside the insulating nozzle 9 and the insulating nozzle 9 is arranged so as to surround the arc area 13 .
 本実施の形態では、固定主接触子8、固定アーク接触子11、可動主接触子7、可動アーク接触子6、パッファシリンダ3、パッファピストン50、絶縁ノズル9及び冷却筒10のそれぞれの中心軸は、同軸上に配置されており、図2に示す中心軸101である。 In this embodiment, the central axes of the stationary main contact 8, the stationary arc contact 11, the movable main contact 7, the movable arc contact 6, the puffer cylinder 3, the puffer piston 50, the insulating nozzle 9, and the cooling cylinder 10 are arranged coaxially, which is the central axis 101 shown in FIG.
 図2において、アークに吹き付けられて高温となった絶縁ガスの流れ方向は矢印で示す流れ方向2である。以下では、「上流」及び「下流」とは、絶縁ガスの流れ方向2における上流及び下流を意味する。
 一般的に、固定アーク接触子11は軸方向に延伸する棒状であり、絶縁ノズル9は軸方向に延伸する筒状である。固定アーク接触子11の外周面である固定アーク接触子外周面111付近では、流れ方向2は、固定アーク接触子外周面111に沿って軸方向に平行している。絶縁ノズル9は、例えば、図2に示すように絶縁ガスの流れ方向2に沿って内径が広くなるように、絶縁ノズル9の内周面となる絶縁ノズル内周面91はテーパ面が形成されている。この場合、絶縁ノズル9の内周面付近の絶縁ガスの流れ方向2は絶縁ノズル内周面91に沿って、軸方向に傾斜しているが、軸方向成分が主となる。
In FIG. 2, the flow direction of the insulating gas that has been blown to the arc and heated to a high temperature is flow direction 2 indicated by an arrow. In the following, "upstream" and "downstream" mean upstream and downstream in the flow direction 2 of the insulating gas.
In general, the stationary arc contact 11 is rod-shaped and extends in the axial direction, and the insulating nozzle 9 is cylindrical and extends in the axial direction. In the vicinity of the stationary arc contact outer peripheral surface 111 , which is the outer peripheral surface of the stationary arc contact 11 , the flow direction 2 is parallel to the axial direction along the stationary arc contact outer peripheral surface 111 . As shown in FIG. 2, for example, the insulating nozzle 9 has an inner peripheral surface 91 formed with a tapered surface so that the inner diameter increases along the flow direction 2 of the insulating gas. ing. In this case, the insulating gas flow direction 2 near the inner peripheral surface of the insulating nozzle 9 is axially inclined along the insulating nozzle inner peripheral surface 91, but the axial component is the main component.
 絶縁ノズル9内のアーク領域13から離れた高温の絶縁ガスは、絶縁ノズル9より下流側に配置された冷却筒10に流れ、冷却筒10にある元の低温ガスと混合する。絶縁ノズル9から冷却筒10へは、絶縁ガスの流路が形成される。絶縁ノズル9は冷却筒10側に延伸する端部である先端部92を有する。 The high temperature insulating gas away from the arc area 13 in the insulating nozzle 9 flows into the cooling cylinder 10 arranged downstream from the insulating nozzle 9 and mixes with the original low temperature gas in the cooling cylinder 10 . An insulating gas flow path is formed from the insulating nozzle 9 to the cooling cylinder 10 . The insulating nozzle 9 has a tip portion 92 which is an end portion extending toward the cooling cylinder 10 side.
 図2に示すように、絶縁ノズル9の先端部92に、撹拌部12が取り付けられている。撹拌部12は、軸方向に垂直して配置されている。
 図3は実施の形態1に係るガス遮断器100における撹拌部12を示す断面図である。図3(a)は図2に破線で囲まれた領域Eの拡大図である。図3(a)には撹拌部12のxy断面を表している。図3(b)には図3(a)におけるA―A線に沿った撹拌部12のyz断面を表している。
As shown in FIG. 2 , the agitator 12 is attached to the tip 92 of the insulating nozzle 9 . The stirring part 12 is arranged perpendicular to the axial direction.
FIG. 3 is a cross-sectional view showing stirring section 12 in gas circuit breaker 100 according to Embodiment 1. As shown in FIG. FIG. 3(a) is an enlarged view of a region E surrounded by a dashed line in FIG. FIG. 3A shows an xy cross section of the stirring unit 12. As shown in FIG. FIG. 3(b) shows a yz cross section of the stirring part 12 along line AA in FIG. 3(a).
 図3に示すように、本実施の形態において撹拌部12は軸方向に垂直して先端部92に取り付けられている。軸方向に垂直する撹拌部12のyz断面は、絶縁ガスの流路に垂直な断面である。絶縁ガスの流れ方向2は軸方向と同方向であり、または軸方向成分が主であるに対し、撹拌部12のyz断面は、流れ方向2に垂直な断面とみなす。撹拌部12は、絶縁ガスの流れを分離するように絶縁ガスの流れ方向2に垂直な断面を有する撹拌部材を含む。 As shown in FIG. 3, in the present embodiment, the stirring section 12 is attached to the tip section 92 perpendicularly to the axial direction. A yz cross section of the stirring part 12 perpendicular to the axial direction is a cross section perpendicular to the flow path of the insulating gas. The flow direction 2 of the insulating gas is the same as the axial direction, or the axial direction component is the main component, whereas the yz cross section of the stirring part 12 is regarded as a cross section perpendicular to the flow direction 2 . The stirring section 12 includes a stirring member having a cross section perpendicular to the flow direction 2 of the insulating gas so as to separate the flow of the insulating gas.
 図3(b)に示すように、撹拌部12のyz断面は、径方向に広がる円形である。撹拌部12は、径方向の内側の第1撹拌部材20と、径方向の外側の支持部材22と、第1撹拌部材20と支持部材22とを連接する第2撹拌部材21を有している。 As shown in FIG. 3(b), the yz cross section of the stirring section 12 is a circular shape expanding in the radial direction. The stirring section 12 has a radially inner first stirring member 20 , a radially outer supporting member 22 , and a second stirring member 21 connecting the first stirring member 20 and the supporting member 22 . .
 上述したように絶縁ノズル9は軸方向に延伸する筒状であり、支持部材22は、先端部92に配置されている。第1撹拌部材20は、支持部材22より絶縁ノズル9の径方向の内側に配置されている。支持部材22と第1撹拌部材20は、それぞれ周方向に延伸し、環状に形成されている。第2撹拌部材21は第1撹拌部材20と支持部材22を連接するように、第1撹拌部材20から支持部材22へ径方向において放射状に延伸するアームである。 As described above, the insulating nozzle 9 has a tubular shape extending in the axial direction, and the support member 22 is arranged at the tip portion 92 . The first stirring member 20 is arranged radially inside the insulating nozzle 9 from the support member 22 . The support member 22 and the first stirring member 20 each extend in the circumferential direction and are formed in an annular shape. The second stirring member 21 is an arm radially extending in the radial direction from the first stirring member 20 to the supporting member 22 so as to connect the first stirring member 20 and the supporting member 22 .
 撹拌部12は高温の絶縁ガスと周囲の低温ガスとの混合を促進する撹拌効果を有する。高温高速の絶縁ガスは、流れ方向2に進み、撹拌部12の第1撹拌部材20、第2撹拌部材21に衝突して分離される。絶縁ガスは撹拌部12によって流れが変えられ渦が発生する。絶縁ガスの流れが下流に進むにつれて渦の大きさが拡大し、渦でかき混ぜられながら絶縁ノズル9の下流側に配置された冷却筒10へ進む。冷却筒10内において高温の絶縁ガスと周囲の低温ガスとの混合が進むため高温ガスの温度が低下する。第1撹拌部材20と第2撹拌部材21とは、絶縁ガスの流れを分離する撹拌部材であり、高温の絶縁ガスと周囲の低温ガスとの混合を促進するガス流の撹拌手段として機能するものである。 The stirring part 12 has a stirring effect that promotes mixing of the high-temperature insulating gas and the surrounding low-temperature gas. The high-temperature and high-speed insulating gas advances in the flow direction 2, collides with the first stirring member 20 and the second stirring member 21 of the stirring section 12, and is separated. The flow of the insulating gas is changed by the stirring part 12 to generate a vortex. As the flow of insulating gas progresses downstream, the size of the vortex increases, and while being stirred by the vortex, it advances to the cooling cylinder 10 arranged downstream of the insulating nozzle 9 . In the cooling cylinder 10, the high-temperature insulating gas and the surrounding low-temperature gas are mixed, so the temperature of the high-temperature gas decreases. The first stirring member 20 and the second stirring member 21 are stirring members that separate the flow of the insulating gas, and function as gas flow stirring means that promotes mixing of the high-temperature insulating gas and the surrounding low-temperature gas. is.
 従来の技術における絶縁ノズルよりも下流側に撹拌部材が設置された構造と比較して、絶縁ノズル9の先端部92に撹拌部12が設置されることにより、可動アーク接触子と固定アーク接触子が離間した距離の影響により撹拌部材がアーク領域からさらに離れることなく、アークを吹き消した後の高温の絶縁ガスを速やかに分離できるため、ガスの混合を促進する撹拌効果が高くなり、ガスの温度を効率的に平均化できる。 Compared to the structure in which the stirring member is installed on the downstream side of the insulating nozzle in the conventional technology, by installing the stirring part 12 at the tip 92 of the insulating nozzle 9, the movable arc contact and the fixed arc contact Due to the distance, the stirring member does not move further away from the arc area, and the high temperature insulating gas can be quickly separated after blowing out the arc. Efficient temperature averaging.
 一般的に、軸方向に延伸する筒状の絶縁ノズル9は軸方向に垂直な断面が円形をしている。また、固定アーク接触子11の軸方向に垂直な断面も円形である。この場合、絶縁ノズル9内において絶縁ガスの流速がはやい領域の軸方向に垂直な断面は円形である。本実施の形態では、絶ガスの流れを効率よく分離するため、第1撹拌部材20の軸方向に垂直な断面は円形が好ましい。また、絶縁ノズル9の形状に対応して、先端部92に設置される支持部材22の軸方向に垂直な断面は円形が好ましい。 In general, the tubular insulating nozzle 9 extending in the axial direction has a circular cross section perpendicular to the axial direction. A cross section perpendicular to the axial direction of the fixed arc contactor 11 is also circular. In this case, the cross section perpendicular to the axial direction of the region where the insulating gas flows fast in the insulating nozzle 9 is circular. In the present embodiment, in order to efficiently separate the flow of absolute gas, the cross section of the first stirring member 20 perpendicular to the axial direction is preferably circular. Moreover, corresponding to the shape of the insulating nozzle 9, the cross section perpendicular to the axial direction of the support member 22 installed at the tip portion 92 is preferably circular.
 なお、第1撹拌部材20と支持部材22は、それぞれガス流れの撹拌と撹拌部材を支持することが目的であり、断面形状が円形でなくても、それぞれの機能を実現することは可能である。第1撹拌部材20の軸方向に垂直な断面の形状は、例えば、四角形、五角形、六角形、八角形などの多角形であってもよい。第1撹拌部材20は、絶縁ガスの流れ方向2に垂直な断面を有することにより、高温高速の絶縁ガスの流れと衝突するため、絶縁ガスの流れを分離させ、高温の絶縁ガスと周囲の低温ガスとの混合を促進する撹拌効果を奏する。また、支持部材22は、例えば、絶縁ノズル9の先端部92に設置して撹拌部材を支持できるように、周方向に断続的に形成されても良い。 The purpose of the first stirring member 20 and the support member 22 is to stir the gas flow and to support the stirring member, respectively, and it is possible to realize their respective functions even if the cross-sectional shape is not circular. . The cross-sectional shape of the first stirring member 20 perpendicular to the axial direction may be, for example, a polygon such as a quadrangle, a pentagon, a hexagon, and an octagon. Since the first stirring member 20 has a cross section perpendicular to the flow direction 2 of the insulating gas, it collides with the high-temperature and high-speed insulating gas flow, so that the insulating gas flow is separated, and the high-temperature insulating gas and the surrounding low-temperature gas are separated. It has a stirring effect that promotes mixing with the gas. Further, the supporting member 22 may be intermittently formed in the circumferential direction so that it can be installed at the tip portion 92 of the insulating nozzle 9 to support the stirring member.
 また、図3に示す撹拌部12の支持部材22は、絶縁ノズル9よりも外周側に配置されている。具体的に、支持部材22は、絶縁ノズル9の先端部92の外周を覆うように取り付けられている。支持部材22は、先端部92の外径よりも大きな内径を有し、絶縁ノズル9に向かって突出する突出部221を含む。支持部材22のこの構造により、絶縁ノズル9の外周を覆う面積が大きくなり、撹拌部12が絶縁ノズル9に取り付けられる強度を向上でき、組立が簡単である。 In addition, the support member 22 of the stirring section 12 shown in FIG. Specifically, the support member 22 is attached so as to cover the outer periphery of the tip portion 92 of the insulating nozzle 9 . The support member 22 has an inner diameter larger than the outer diameter of the tip portion 92 and includes a protruding portion 221 that protrudes toward the insulating nozzle 9 . This structure of the support member 22 increases the area covering the outer periphery of the insulating nozzle 9, improves the strength of attaching the stirring part 12 to the insulating nozzle 9, and simplifies assembly.
 なお、支持部材22と絶縁ノズル9とはネジで締結されて良いが、支持部材22と絶縁ノズル9との間に、両者を仲介する板などを挿入しても良い。 Although the supporting member 22 and the insulating nozzle 9 may be fastened with screws, a plate or the like may be inserted between the supporting member 22 and the insulating nozzle 9 to mediate the two.
 また、第1撹拌部材20、第2撹拌部材21、および支持部材22は、低コスト化のため、鋳物で一体成形されても良く、個々の部品を作製して、ネジなどでくみ上げても良い。 Further, the first stirring member 20, the second stirring member 21, and the support member 22 may be integrally formed by casting for cost reduction, or may be manufactured as individual parts and screwed together. .
 図4(a)、(b)に、図3に示す撹拌部12の比較例として、撹拌部12a、12bのxy断面構造を示す。 4(a) and (b) show the xy cross-sectional structures of the stirring units 12a and 12b as comparative examples of the stirring unit 12 shown in FIG.
 図4(a)に示す比較例1の撹拌部12aが絶縁ノズル9の先端部92に取り付けられているが、撹拌部12aの支持部材22aは、絶縁ノズル9の内周側に先端部92に覆われて設置されている。支持部材22aは、先端部92の内径よりも小さい外径を有し、絶縁ノズル9に向かって突出する突出部222を含む。
 比較例1の撹拌部12aも先端部92に取り付けられたため、絶縁ガスの撹拌効果を高めることができる。
The stirring portion 12a of Comparative Example 1 shown in FIG. 4A is attached to the tip portion 92 of the insulating nozzle 9. Installed covered. The support member 22 a has an outer diameter smaller than the inner diameter of the tip 92 and includes a projecting portion 222 projecting toward the insulating nozzle 9 .
Since the stirring portion 12a of Comparative Example 1 is also attached to the tip portion 92, the effect of stirring the insulating gas can be enhanced.
 一方、比較例1の撹拌部12a比べて、図3に示す支持部材22が絶縁ノズル9の外周側に取り付けられた撹拌部12は、絶縁ノズル9内の空間への影響が少ないため、絶縁ガスの流路におけるガス流れに対して抵抗を与えることによって生じる圧力損失を低減できる。 On the other hand, compared to the stirring part 12a of Comparative Example 1, the stirring part 12 in which the support member 22 shown in FIG. It is possible to reduce the pressure loss caused by giving resistance to the gas flow in the flow path.
 また、図4(b)に、比較例2として、絶縁ノズル9の先端部92に固定された第2撹拌部材21を有する撹拌部12bを示す。 Further, FIG. 4(b) shows, as Comparative Example 2, a stirring portion 12b having a second stirring member 21 fixed to the tip portion 92 of the insulating nozzle 9. As shown in FIG.
 比較例2の撹拌部12bを取り付ける場合、例えば、絶縁ノズル9に第2撹拌部材21を収める切れ込みを加工することにより、第2撹拌部材21が絶縁ノズル9の先端部92と重なり合って、軸方向において絶縁ノズル9の外側に突き出さない状態で設置できる。この場合、撹拌部12bと絶縁ノズル9との嵌合により設置強度が向上できる。また、撹拌部12bにおいて、支持部材22は、例えば、絶縁ノズル9の先端部92の外周を覆うように絶縁ノズル9に向かって突出する突出部221を有しても良い。
 比較例2の撹拌部12bも先端部92に取り付けられたため、絶縁ガスの撹拌効果を高めることができる。
When attaching the stirring part 12b of Comparative Example 2, for example, by processing a notch for accommodating the second stirring member 21 in the insulating nozzle 9, the second stirring member 21 overlaps with the tip part 92 of the insulating nozzle 9, and is axially aligned. can be installed without protruding outside the insulating nozzle 9. In this case, the installation strength can be improved by fitting the stirring portion 12b and the insulating nozzle 9 together. In addition, in the stirring section 12b, the support member 22 may have, for example, a protrusion 221 that protrudes toward the insulating nozzle 9 so as to cover the outer periphery of the tip portion 92 of the insulating nozzle 9. As shown in FIG.
Since the stirring portion 12b of Comparative Example 2 is also attached to the tip portion 92, the effect of stirring the insulating gas can be enhanced.
 一方、比較例2の場合、絶縁ノズル9と撹拌部12bとが嵌合されるように、切れ込みなどの加工が必要である。このため、比較例2の撹拌部12bに比べて、図3に示す撹拌部12はより簡単に設置でき、加工コストが低い。また、比較例2の撹拌部12bに比べて、図3に示す撹拌部12は軸方向において絶縁ノズル9の外側に位置するため、絶縁ノズル9内の空間への影響が少ないため、絶縁ガスの流路におけるガス流れに対して抵抗を与えることによって生じる圧力損失を低減できる。 On the other hand, in the case of Comparative Example 2, processing such as notching is required so that the insulating nozzle 9 and the stirring portion 12b are fitted. Therefore, compared with the stirring section 12b of Comparative Example 2, the stirring section 12 shown in FIG. 3 can be installed more easily, and the processing cost is low. 3 is located outside the insulating nozzle 9 in the axial direction, compared to the stirring portion 12b of Comparative Example 2, and therefore has less effect on the space inside the insulating nozzle 9. It is possible to reduce the pressure loss caused by giving resistance to the gas flow in the flow path.
 図4(c)に、図3に示す撹拌部12の変形例として、絶縁ノズル9の先端部92に固定された支持部材22を有する撹拌部12cを示す。
 絶縁ノズル9の先端部92に撹拌部12cを取り付ける場合、例えば、支持部材22と接触する先端部92の軸方向の表面を平坦面にすることにより、絶縁ノズル9と撹拌部12cとの間の取り付け強度を高めることができる。変形例の撹拌部12cも図3に示す撹拌部12と同様に、絶縁ガスの撹拌効果を高めることができる。
FIG. 4(c) shows a stirring section 12c having a support member 22 fixed to the tip portion 92 of the insulating nozzle 9 as a modified example of the stirring section 12 shown in FIG.
When the stirring portion 12c is attached to the tip portion 92 of the insulating nozzle 9, for example, by flattening the axial surface of the tip portion 92 in contact with the support member 22, the gap between the insulating nozzle 9 and the stirring portion 12c is reduced. Mounting strength can be increased. The stirring part 12c of the modified example can also enhance the stirring effect of the insulating gas in the same manner as the stirring part 12 shown in FIG.
 実施の形態1に係るガス遮断器によれば、アークが発生するアーク領域を囲むように配置された絶縁ノズルの先端部に撹拌部材を有する撹拌部が配置されている。アークに吹き付けた後の絶縁ガスの流れ方向において、従来技術に比べて、よりアーク領域に接近する上流側に撹拌部材が配置されるため、高温の絶縁ガスと周囲の低温ガスとの混合を促進する撹拌効果を高め、高温ガスと周囲の低温ガスとの温度平均化の効率を向上できるガス遮断器を提供する。 According to the gas circuit breaker according to Embodiment 1, the stirring part having the stirring member is arranged at the tip of the insulating nozzle arranged so as to surround the arc region where the arc is generated. In the flow direction of the insulating gas after it is blown onto the arc, compared to the conventional technology, the stirring member is arranged on the upstream side closer to the arc area, which promotes mixing of the high-temperature insulating gas with the surrounding low-temperature gas. To provide a gas circuit breaker capable of enhancing the stirring effect of heating and improving the efficiency of temperature averaging between high-temperature gas and surrounding low-temperature gas.
実施の形態2.
 実施の形態2では、本開示の実施の形態1と同一の構成要素には同一の符号を使用し、同一または対応する部分についての説明は省略する。以下、図面を参照して、実施の形態2に係るガス遮断器における撹拌部について説明する。
Embodiment 2.
In the second embodiment, the same reference numerals are used for the same components as in the first embodiment of the present disclosure, and the description of the same or corresponding parts is omitted. Hereinafter, the stirring section in the gas circuit breaker according to Embodiment 2 will be described with reference to the drawings.
 図5は実施の形態2に係るガス遮断器における撹拌部12を示す断面図である。図5(a)は撹拌部12のxy断面構造を示す。図5(b)には図5(a)におけるA―A線に沿った撹拌部12のyz断面を表している。 FIG. 5 is a cross-sectional view showing the stirring section 12 in the gas circuit breaker according to Embodiment 2. FIG. FIG. 5( a ) shows the xy cross-sectional structure of the stirring section 12 . FIG. 5(b) shows a yz cross section of the stirring part 12 along line AA in FIG. 5(a).
 固定アーク接触子外周面111と絶縁ノズル内周面91は、径方向に対向している。図5において、中心線60は、固定アーク接触子外周面111と絶縁ノズル内周面91との径方向の中心位置が流れ方向2における延長線を表す。径方向において、中心線60から絶縁ノズル内周面91までの距離は中心線60から固定アーク接触子外周面111までの距離と同じである。 The fixed arc contactor outer peripheral surface 111 and the insulating nozzle inner peripheral surface 91 face each other in the radial direction. In FIG. 5 , a center line 60 represents an extension line in the flow direction 2 of the radial center position of the fixed arc contactor outer peripheral surface 111 and the insulating nozzle inner peripheral surface 91 . In the radial direction, the distance from the center line 60 to the insulating nozzle inner peripheral surface 91 is the same as the distance from the center line 60 to the fixed arc contactor outer peripheral surface 111 .
 実施の形態1と同様に、実施の形態2における撹拌部12も絶縁ノズル9の先端部92に配置されている。実施の形態1に比べて、実施の形態2における撹拌部12では、第1撹拌部材20は中心線60上に位置する。第1撹拌部材20は、少なくとも一部が中心線60に配置されている。 As in the first embodiment, the stirring part 12 in the second embodiment is also arranged at the tip part 92 of the insulating nozzle 9 . Compared to the first embodiment, the first stirring member 20 is positioned on the center line 60 in the stirring section 12 according to the second embodiment. At least a portion of the first stirring member 20 is arranged on the centerline 60 .
 高温高速の絶縁ガスの流速分布は、アーク領域13の発生個所や絶縁ノズル9の形状によって異なるが、一般的には、固定アーク接触子外周面111と絶縁ノズル内周面91との間において、径方向の中心位置付近で絶縁ガスの流速が最もはやい。絶縁ガスの流速のはやい領域となる中心位置の流れ方向2における延長線上に、第1撹拌部材20が配置されることにより、絶縁ガスの流れがより効率的に分離でき、渦を形成して撹拌効果を促進できる。 The flow velocity distribution of the high-temperature, high-speed insulating gas varies depending on the location where the arc region 13 is generated and the shape of the insulating nozzle 9. Generally, between the fixed arc contact outer peripheral surface 111 and the insulating nozzle inner peripheral surface 91, The flow velocity of the insulating gas is the fastest near the center position in the radial direction. By arranging the first stirring member 20 on the extension line in the flow direction 2 of the central position where the flow velocity of the insulating gas is fast, the flow of the insulating gas can be separated more efficiently, forming a vortex and stirring. can promote effectiveness.
 実施の形態2に係るガス遮断器によれば、実施の形態1に比べて、高温の絶縁ガスと周囲の低温ガスとの混合を促進する撹拌効果をさらに向上できる。 According to the gas circuit breaker according to Embodiment 2, compared to Embodiment 1, it is possible to further improve the stirring effect of promoting the mixing of the high-temperature insulating gas and the ambient low-temperature gas.
実施の形態3
 実施の形態3では、本開示の実施の形態1と同一の構成要素には同一の符号を使用し、同一または対応する部分についての説明は省略する。以下、図面を参照して、実施の形態3に係るガス遮断器における撹拌部について説明する。
Embodiment 3
In the third embodiment, the same reference numerals are used for the same components as in the first embodiment of the present disclosure, and the description of the same or corresponding parts is omitted. Hereinafter, the stirring part in the gas circuit breaker according to Embodiment 3 will be described with reference to the drawings.
 図6は実施の形態3に係るガス遮断器における撹拌部12を示す断面図である。図6(a)は撹拌部12のxy断面構造を示す。図6(b)には図6(a)におけるA―A線に沿った撹拌部12のyz断面を表している。図6(c)、(d)には図6(b)におけるB―B線に沿った第2撹拌部材21のxz断面を表している。 FIG. 6 is a cross-sectional view showing the stirring section 12 in the gas circuit breaker according to Embodiment 3. FIG. FIG. 6( a ) shows the xy cross-sectional structure of the stirring section 12 . FIG. 6(b) shows a yz cross section of the stirring part 12 along line AA in FIG. 6(a). 6(c) and 6(d) show xz cross sections of the second stirring member 21 along line BB in FIG. 6(b).
 実施の形態3に係るガス遮断器では、絶縁ガスの流れ方向2において、撹拌部12の第1撹拌部材20、第2撹拌部材21のうち、少なくとも一方は、上流側の端部が流れ方向2に向かって鋭角をなしている断面を有する。 In the gas circuit breaker according to Embodiment 3, in the flow direction 2 of the insulating gas, at least one of the first stirring member 20 and the second stirring member 21 of the stirring section 12 has an upstream end that extends in the flow direction 2. has a cross-section forming an acute angle towards
 固定アーク接触子11の近くに配置された第1撹拌部材20について、図6(a)に示すように、軸方向に平行な断面において、上流側の端部となる第1撹拌部材上流側端部201が流れ方向2に向かって鋭角をなしている。すなわち、第1撹拌部材20の上流側の端部は、径方向の幅が流れ方向2に向かって小さくなるように形成されている。第1撹拌部材20は軸方向に垂直な断面では円環状であるため、周方向に延伸する第1撹拌部材上流側端部201が流れ方向2に向かって鋭角をなしている。
 第1撹拌部材20の鋭角となる第1撹拌部材上流側端部201により、低コストでガス流れに対して抵抗を与えることによって生じる圧力損失を低減できる。
Regarding the first stirring member 20 arranged near the fixed arc contact 11, as shown in FIG. A portion 201 forms an acute angle in the direction of flow 2 . That is, the upstream end of the first stirring member 20 is formed such that the width in the radial direction becomes smaller in the flow direction 2 . Since the first stirring member 20 has an annular cross-section perpendicular to the axial direction, the upstream end 201 of the first stirring member extending in the circumferential direction forms an acute angle toward the flow direction 2 .
The acute-angled first stirring member upstream end 201 of the first stirring member 20 can reduce the pressure loss caused by giving resistance to the gas flow at low cost.
 また、第2撹拌部材21について、図6(b)に示すように、第2撹拌部材21は、円環状の第1撹拌部材20と支持部材22を連接するように、径方向に延伸している。この場合、図6(c)に示すように、軸方向に平行な断面において、第2撹拌部材21の上流側の端部となる第2撹拌部材上流側端部211が、流れ方向2に向かって鋭角をなしている。すなわち、第2撹拌部材21の上流側の端部は、周方向の幅が流れ方向2に向かって小さくなるように形成されている。
 第2撹拌部材21の鋭角となる第2撹拌部材上流側端部211により、低コストでガス流れに対して抵抗を与えることによって生じる圧力損失を低減できる。
As for the second stirring member 21, as shown in FIG. 6(b), the second stirring member 21 extends in the radial direction so as to connect the annular first stirring member 20 and the support member 22. there is In this case, as shown in FIG. 6C, in a cross section parallel to the axial direction, the upstream end 211 of the second stirring member 21, which is the upstream end of the second stirring member 21, faces the flow direction 2. form an acute angle. That is, the upstream end of the second stirring member 21 is formed such that the width in the circumferential direction becomes smaller in the flow direction 2 .
The acute-angled second stirring member upstream end 211 of the second stirring member 21 can reduce the pressure loss caused by providing resistance to the gas flow at low cost.
 絶縁ガスの流れ方向2は軸方向と同方向であり、または軸方向成分が主であるため、軸方向に平行な断面を流れ方向2に平行な断面とみなす。第1撹拌部材20、第2撹拌部材21のうち、少なくとも一方は、流れ方向2に平行な断面において、上流側の端部が流れ方向2に向かって鋭角をなしている断面を有する。 The flow direction 2 of the insulating gas is the same direction as the axial direction, or the component in the axial direction is the main component. At least one of the first stirring member 20 and the second stirring member 21 has a cross section parallel to the flow direction 2 in which the upstream end forms an acute angle in the flow direction 2 .
 なお、図6(c)に示す第2撹拌部材21の下流側の端部となる第2撹拌部材下流側端部212に対して、図6(d)に示す第2撹拌部材21のように、下流側の端部が流れ方向2に沿って鋭角をなす第2撹拌部材下流側端部213を有してもよい。これにより、ガス流れに対して抵抗を与えることによって生じる圧力損失を低減できる。
 また、第1撹拌部材20についても同様に、上流側の第1撹拌部材上流側端部201に対向する下流側の端部が流れ方向2に沿って鋭角をなしてもよい。
It should be noted that the second stirring member 21 shown in FIG. , the downstream end may have a second stirring member downstream end 213 forming an acute angle along the flow direction 2 . Thereby, the pressure loss caused by giving resistance to the gas flow can be reduced.
Similarly, for the first stirring member 20 , the downstream end facing the upstream end 201 of the first stirring member 20 may form an acute angle along the flow direction 2 .
 絶縁ノズル9の先端部92に取り付けられた撹拌部12において、撹拌部材の下流側端部の鋭角形状に関わらず、絶縁ガスの流れが高速であるため、撹拌部材により渦が発生し、高温の絶縁ガスと周囲の低温ガスとの混合が促進できる。 In the stirring part 12 attached to the tip part 92 of the insulating nozzle 9, regardless of the acute angle shape of the downstream end of the stirring member, the insulating gas flows at a high speed, so that the stirring member generates a vortex, resulting in a high temperature. Mixing of the insulating gas with the ambient low temperature gas can be promoted.
 実施の形態3に係るガス遮断器によれば、実施の形態1に同様に、絶縁ノズルの先端部に取り付けられた撹拌部は高温の絶縁ガスと周囲の低温ガスとの混合を促進する撹拌効果を向上できる。また、実施の形態1に比べて、低コストでガス流れに対して抵抗を与えることによって生じる圧力損失を低減できる。 According to the gas circuit breaker according to the third embodiment, as in the first embodiment, the stirring part attached to the tip of the insulating nozzle has a stirring effect of promoting mixing of the high-temperature insulating gas and the surrounding low-temperature gas. can be improved. Moreover, as compared with the first embodiment, the pressure loss caused by giving resistance to the gas flow can be reduced at a low cost.
実施の形態4
 実施の形態4では、本開示の実施の形態1と同一の構成要素には同一の符号を使用し、同一または対応する部分についての説明は省略する。以下、図面を参照して、実施の形態4に係るガス遮断器における撹拌部について説明する。
Embodiment 4
In the fourth embodiment, the same reference numerals are used for the same components as in the first embodiment of the present disclosure, and the description of the same or corresponding parts is omitted. Hereinafter, the stirring part in the gas circuit breaker according to Embodiment 4 will be described with reference to the drawings.
 図7は実施の形態4に係るガス遮断器における撹拌部12を示す断面図である。図7に撹拌部12のxy断面構造を示す。図7に示す撹拌部12では、第1撹拌部材20の上流側の端部における外周径を上流側外周径24で示し、下流側の端部における外周径を下流側外周径25で示す。第1撹拌部材20は、例えば、流れ方向2に延伸する筒状である場合、上流側外周径24と下流側外周径25は、それぞれ上流側端部、下流側端部の外周面の直径である。 FIG. 7 is a cross-sectional view showing the stirring section 12 in the gas circuit breaker according to Embodiment 4. FIG. FIG. 7 shows the xy cross-sectional structure of the stirring section 12 . In the stirring unit 12 shown in FIG. 7 , the outer peripheral diameter of the upstream end of the first stirring member 20 is indicated by the upstream outer peripheral diameter 24 , and the outer peripheral diameter of the downstream end is indicated by the downstream outer peripheral diameter 25 . For example, when the first stirring member 20 has a cylindrical shape extending in the flow direction 2, the upstream outer peripheral diameter 24 and the downstream outer peripheral diameter 25 are the diameters of the outer peripheral surfaces of the upstream end and the downstream end, respectively. be.
 実施の形態4に係るガス遮断器における撹拌部12では、絶縁ガスの流れ方向2において、第1撹拌部材20の下流側外周径25が、上流側外周径24より大きい。これにより、図7に示すように、絶縁ガスの流れ方向2が流れ方向2aへと絶縁ノズル9の外側へ広がって進む。
 実施の形態3における撹拌部12により、実施の形態1に比べて、高温の絶縁ガスと周囲の低温ガスとの混合を促進する撹拌効果がさらに向上できる。
In the stirring portion 12 of the gas circuit breaker according to Embodiment 4, the downstream outer peripheral diameter 25 of the first stirring member 20 is larger than the upstream outer peripheral diameter 24 in the flow direction 2 of the insulating gas. As a result, as shown in FIG. 7, the flow direction 2 of the insulating gas spreads toward the outside of the insulating nozzle 9 in the flow direction 2a.
Compared to the first embodiment, the stirring unit 12 according to the third embodiment can further improve the stirring effect of promoting the mixing of the high-temperature insulating gas and the ambient low-temperature gas.
実施の形態5
 実施の形態5では、本開示の実施の形態1と同一の構成要素には同一の符号を使用し、同一または対応する部分についての説明は省略する。以下、図面を参照して、実施の形態5に係るガス遮断器における撹拌部について説明する。
Embodiment 5
In Embodiment 5, the same reference numerals are used for the same components as in Embodiment 1 of the present disclosure, and the description of the same or corresponding parts is omitted. Hereinafter, the stirring part in the gas circuit breaker according to Embodiment 5 will be described with reference to the drawings.
 図8(a)、(b)は実施の形態5に係るガス遮断器における撹拌部12、12dをそれぞれ示す断面図である。図8(a)、(b)に撹拌部12、12dのyz断面構造を示す。撹拌部のyz断面は、絶縁ガスの流れ方向2に垂直な断面とみなし、図8(a)、(b)は撹拌部12、12dの流れ方向2に垂直な断面図でもある。 FIGS. 8(a) and 8(b) are cross-sectional views respectively showing stirring parts 12 and 12d in a gas circuit breaker according to Embodiment 5. FIG. 8(a) and 8(b) show the yz cross-sectional structures of the stirring portions 12 and 12d. The yz cross section of the stirring section is regarded as a cross section perpendicular to the flow direction 2 of the insulating gas, and FIGS.
 実施の形態5に係るガス遮断器における撹拌部12では、流れ方向2に垂直な断面において、第2撹拌部材21の周方向の幅が、第1撹拌部材20の径方向の幅よりも小さい。 In the stirring section 12 of the gas circuit breaker according to Embodiment 5, the circumferential width of the second stirring member 21 is smaller than the radial width of the first stirring member 20 in the cross section perpendicular to the flow direction 2 .
 図8(a)に示す撹拌部12において、第1撹拌部材20は周方向に延伸する円環状であり、第2撹拌部材21は、軸方向を中心に第1撹拌部材20から支持部材22まで径方向に延伸している。この構造により、第2撹拌部材21に比べて、第1撹拌部材20の絶縁ガスに対する撹拌効果がより高い。第2撹拌部材21は、第1撹拌部材20と支持部材22とを連接する連接部品であり、強度が許す限り細くする方が好ましい。図8(a)に示すように、第2撹拌部材21の周方向の幅となる第2撹拌部材幅26が、第1撹拌部材20の径方向の幅となる第1撹拌部材幅27よりも小さい。これにより、ガス流れに対して抵抗を与えることによって生じる圧力損失を低減できる。 In the stirring unit 12 shown in FIG. 8(a), the first stirring member 20 is annular extending in the circumferential direction, and the second stirring member 21 extends from the first stirring member 20 to the support member 22 in the axial direction. It extends radially. Due to this structure, the first stirring member 20 has a higher stirring effect for the insulating gas than the second stirring member 21 does. The second stirring member 21 is a connecting part that connects the first stirring member 20 and the support member 22, and is preferably thin as long as the strength permits. As shown in FIG. 8A, the second stirring member width 26, which is the width of the second stirring member 21 in the circumferential direction, is larger than the first stirring member width 27, which is the width of the first stirring member 20 in the radial direction. small. Thereby, the pressure loss caused by giving resistance to the gas flow can be reduced.
 また、図8(b)に示す撹拌部12dにおいて、第2撹拌部材21の第2撹拌部材幅26が第1撹拌部材20の第1撹拌部材幅27幅よりも小さく、さらに、図8(a)に示す撹拌部12に比べて、図8(b)に示す撹拌部12dの第2撹拌部材21の本数が少ない。第2撹拌部材21は連接部品として、強度が許す限り本数を減らして、ガスが流れる時の圧力損失を低減させる方が好ましい。 In the stirring portion 12d shown in FIG. 8(b), the second stirring member width 26 of the second stirring member 21 is smaller than the first stirring member width 27 of the first stirring member 20. ), the number of the second stirring members 21 of the stirring portion 12d shown in FIG. 8B is smaller than that of the stirring portion 12 shown in FIG. It is preferable to reduce the number of second stirring members 21 as connecting parts as long as the strength permits to reduce the pressure loss when the gas flows.
 また、例えば、流れ方向2に垂直な断面に占める第1撹拌部材20の断面積の割合に比べて、第2撹拌部材21の合計断面積の割合を減らすことにより、ガス流れに対して抵抗を与えることによって生じる圧力損失を低減することも可能である。 Further, for example, by reducing the proportion of the total cross-sectional area of the second stirring member 21 relative to the proportion of the cross-sectional area of the first stirring member 20 in the cross section perpendicular to the flow direction 2, the resistance to the gas flow can be reduced. It is also possible to reduce the pressure loss caused by the application.
 実施の形態5に係るガス遮断器によれば、実施の形態1に同様に、絶縁ノズルの先端部に取り付けられた撹拌部は高温の絶縁ガスと周囲の低温ガスとの混合を促進する撹拌効果を向上できる。また、実施の形態1に比べて、実施の形態5において、第2撹拌部材の幅、本数または断面積を減らすことにより、ガス流れに対して抵抗を与えることによって生じる圧力損失を低減できる。 According to the gas circuit breaker according to the fifth embodiment, as in the first embodiment, the stirring part attached to the tip of the insulating nozzle has a stirring effect of promoting mixing of the high-temperature insulating gas and the surrounding low-temperature gas. can be improved. Moreover, in the fifth embodiment, by reducing the width, the number, or the cross-sectional area of the second stirring members as compared with the first embodiment, the pressure loss caused by the resistance to the gas flow can be reduced.
 なお、以上の実施の形態に示した構成は、本開示の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本開示の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 Note that the configurations shown in the above embodiments are examples of the content of the present disclosure, and can be combined with other known techniques. It is also possible to omit or change part of
 1 密閉容器、2 流れ方向、3 パッファシリンダ、4 パッファ室、5 ガス吹付け機構、6 可動アーク接触子、7 可動主接触子、8 固定主接触子、9 絶縁ノズル、91 絶縁ノズル内周面、92 先端部、10 冷却筒、11 固定アーク接触子、111 固定アーク接触子外周面、12、12a、12b、12c、12d 撹拌部、13 アーク領域、20 第1撹拌部材、21 第2撹拌部材、22 支持部材、201、第1撹拌部材上流側端部、211 第2撹拌部材上流側端部、212、213 第2撹拌部材下流側端部、24 上流側外周径、25 下流側外周径、26 第2撹拌部材幅、27 第1撹拌部材幅、30 駆動機構部、31 第1ブッシング導体、32 第1ブッシング、33 第2ブッシング導体、34 第2ブッシング、40 消弧装置、41 ロッド、42 可動側シールド、50 パッファピストン、100 ガス遮断器 1 Closed container, 2 Flow direction, 3 Puffer cylinder, 4 Puffer chamber, 5 Gas spraying mechanism, 6 Movable arc contact, 7 Movable main contact, 8 Fixed main contact, 9 Insulated nozzle, 91 Insulated nozzle inner peripheral surface , 92 tip, 10 cooling cylinder, 11 fixed arc contact, 111 fixed arc contact outer peripheral surface, 12, 12a, 12b, 12c, 12d stirring part, 13 arc area, 20 first stirring member, 21 second stirring member , 22 support member, 201, first stirring member upstream end, 211 second stirring member upstream end, 212, 213 second stirring member downstream end, 24 upstream outer diameter, 25 downstream outer peripheral diameter, 26 Second stirring member width 27 First stirring member width 30 Drive mechanism part 31 First bushing conductor 32 First bushing 33 Second bushing conductor 34 Second bushing 40 Arc extinguishing device 41 Rod 42 Movable side shield, 50 puffer piston, 100 gas circuit breaker

Claims (7)

  1.  絶縁ガスが封入された密閉容器と、
     前記密閉容器に設けられ、同軸上に対向して接離自在に配置された固定アーク接触子及び可動アーク接触子と、
     前記可動アーク接触子と前記固定アーク接触子の開離時に発生するアークに対して前記絶縁ガスを吹き付けるガス吹付け機構と、
     前記アークが発生するアーク領域を囲むように配置された絶縁ノズルと、
     前記絶縁ガスの流れ方向において、前記絶縁ノズルより下流側に配置され、前記アークに吹き付けられた前記絶縁ガスを冷却する冷却筒と、
     前記冷却筒側に延伸する前記絶縁ノズルの端部である先端部に取り付けられ、前記絶縁ガスの流れを分離する撹拌部材を含む撹拌部と、
     を備えるガス遮断器。
    a closed container containing an insulating gas;
    A fixed arc contact and a movable arc contact provided in the sealed container and coaxially opposed to each other so as to be freely contactable and detachable;
    a gas blowing mechanism for blowing the insulating gas against an arc generated when the movable arc contact and the fixed arc contact are separated;
    an insulating nozzle arranged to surround an arc region where the arc is generated;
    a cooling cylinder arranged downstream of the insulating nozzle in the flow direction of the insulating gas and cooling the insulating gas sprayed onto the arc;
    a stirring section including a stirring member attached to a tip portion that is an end portion of the insulating nozzle extending toward the cooling cylinder and separating the flow of the insulating gas;
    gas circuit breaker.
  2.  前記絶縁ノズルは筒状をなしており、
     前記撹拌部は、
     前記先端部に配置された支持部材と、
      前記支持部材より前記絶縁ノズルの径方向の内側に配置され、周方向に延伸する第1撹拌部材と、
     前記第1撹拌部材と前記支持部材とを連接する第2撹拌部材とを有し、
     前記第1撹拌部材と前記第2撹拌部材とは前記撹拌部材であることを特徴とする請求項1に記載のガス遮断器。
    The insulating nozzle has a tubular shape,
    The stirring part is
    a support member disposed at the distal end;
    a first stirring member disposed radially inside the insulating nozzle from the support member and extending in the circumferential direction;
    a second stirring member connecting the first stirring member and the supporting member;
    2. The gas circuit breaker according to claim 1, wherein said first stirring member and said second stirring member are said stirring members.
  3.  前記支持部材は、前記絶縁ノズルの外周側に配置されていることを特徴とする請求項2に記載のガス遮断器。 The gas circuit breaker according to claim 2, wherein the support member is arranged on the outer peripheral side of the insulating nozzle.
  4.  前記第1撹拌部材は、
     前記固定アーク接触子の外周面と前記絶縁ノズルの内周面との前記径方向の中心位置の前記絶縁ガスの流れ方向における延長線上に位置することを特徴とする請求項2または3に記載のガス遮断器。
    The first stirring member is
    4. The arc contact according to claim 2, which is positioned on an extension line in the flow direction of the insulating gas from the center position in the radial direction between the outer peripheral surface of the fixed arc contact and the inner peripheral surface of the insulating nozzle. gas circuit breaker.
  5.  前記第1撹拌部材、前記第2撹拌部材のうち、少なくとも一方は、上流側の端部が前記絶縁ガスの流れ方向に向かって鋭角をなしている断面を有することを特徴とする請求項2から4の何れか1項に記載のガス遮断器。  At least one of the first stirring member and the second stirring member has a cross section in which an upstream end portion forms an acute angle toward the flow direction of the insulating gas. 5. The gas circuit breaker according to any one of 4. 
  6.  前記第1撹拌部材は、前記絶縁ガスの流れ方向において、下流側の外周径が上流側の外周径より大きいことを特徴とする請求項2から5の何れか1項に記載のガス遮断器。 The gas circuit breaker according to any one of claims 2 to 5, wherein the outer peripheral diameter of the first stirring member on the downstream side is larger than that on the upstream side in the flow direction of the insulating gas.
  7.  前記第2撹拌部材は前記第1撹拌部材から前記支持部材へ径方向に延伸し、
     前記絶縁ガスの流れ方向に垂直な断面において、前記第2撹拌部材の周方向の幅が前記第1撹拌部材の径方向の幅よりも小さいことを特徴とする請求項2から6の何れか1項に記載のガス遮断器。
    said second stirring member radially extending from said first stirring member to said support member;
    7. Any one of claims 2 to 6, wherein the width of the second stirring member in the circumferential direction is smaller than the width of the first stirring member in the radial direction in a cross section perpendicular to the flow direction of the insulating gas. A gas circuit breaker according to the paragraph.
PCT/JP2022/005947 2022-02-15 2022-02-15 Gas circuit breaker WO2023157079A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/005947 WO2023157079A1 (en) 2022-02-15 2022-02-15 Gas circuit breaker
JP2024500732A JP7487855B2 (en) 2022-02-15 2022-02-15 Gas Circuit Breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/005947 WO2023157079A1 (en) 2022-02-15 2022-02-15 Gas circuit breaker

Publications (1)

Publication Number Publication Date
WO2023157079A1 true WO2023157079A1 (en) 2023-08-24

Family

ID=87577753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005947 WO2023157079A1 (en) 2022-02-15 2022-02-15 Gas circuit breaker

Country Status (2)

Country Link
JP (1) JP7487855B2 (en)
WO (1) WO2023157079A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241223A (en) * 1986-04-14 1987-10-21 三菱電機株式会社 Switch
JP2005019273A (en) * 2003-06-27 2005-01-20 Japan Ae Power Systems Corp Gas circuit breaker
JP2010061858A (en) * 2008-09-01 2010-03-18 Toshiba Corp Gas-blast circuit breaker
JP2010244742A (en) * 2009-04-02 2010-10-28 Japan Ae Power Systems Corp Gas-blast circuit breaker
WO2015008515A1 (en) * 2013-07-19 2015-01-22 株式会社日立製作所 Gas circuit breaker
US20150294818A1 (en) * 2014-04-09 2015-10-15 Hyundai Heavy Industries Co., Ltd. Gas-insulated circuit breaker
JP2017050095A (en) * 2015-08-31 2017-03-09 富士電機株式会社 Gas Circuit Breaker
WO2017187654A1 (en) * 2016-04-27 2017-11-02 三菱電機株式会社 Gas breaker

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241223A (en) * 1986-04-14 1987-10-21 三菱電機株式会社 Switch
JP2005019273A (en) * 2003-06-27 2005-01-20 Japan Ae Power Systems Corp Gas circuit breaker
JP2010061858A (en) * 2008-09-01 2010-03-18 Toshiba Corp Gas-blast circuit breaker
JP2010244742A (en) * 2009-04-02 2010-10-28 Japan Ae Power Systems Corp Gas-blast circuit breaker
WO2015008515A1 (en) * 2013-07-19 2015-01-22 株式会社日立製作所 Gas circuit breaker
US20150294818A1 (en) * 2014-04-09 2015-10-15 Hyundai Heavy Industries Co., Ltd. Gas-insulated circuit breaker
JP2017050095A (en) * 2015-08-31 2017-03-09 富士電機株式会社 Gas Circuit Breaker
WO2017187654A1 (en) * 2016-04-27 2017-11-02 三菱電機株式会社 Gas breaker

Also Published As

Publication number Publication date
JPWO2023157079A1 (en) 2023-08-24
JP7487855B2 (en) 2024-05-21

Similar Documents

Publication Publication Date Title
JP4218216B2 (en) Gas circuit breaker
US7041928B2 (en) Interrupter unit for a high-voltage power switch
WO2014069195A1 (en) Gas circuit breaker
JP2012069348A (en) Gas circuit breaker
CN110088868B (en) Electrical switching device
WO2023157079A1 (en) Gas circuit breaker
CN208548313U (en) Vacuum interrupter
JP3431439B2 (en) Insulated switchgear
WO2013175565A1 (en) Gas circuit breaker
US5151565A (en) Medium tension circuit breaker
KR100331197B1 (en) Rotating Arc Interrupter for Loadbreak Switch
US11127551B2 (en) Circuit breaker and method of performing a current breaking operation
JPH09320405A (en) Arc-extinguishing chamber
EP4383306A1 (en) Interrupter unit for gas-insulated high or medium voltage device
CN215681530U (en) Low-voltage or medium-voltage gas-insulated switchgear
CN110993431A (en) Novel arc extinguishing contact structure of high-voltage switch SF6 gas arc extinguishing chamber
CN113192778B (en) Hot gas flow exhaust device for arc extinguish chamber, arc extinguish chamber and gas insulated switch
EP4246548A1 (en) Interrupter unit for gas-insulated high or medium voltage device and gas-insulated high or medium voltage device
JP2012129091A (en) Puffer type gas circuit breaker
CN216389181U (en) Hot gas flow exhaust device for arc extinguish chamber, arc extinguish chamber and gas insulated switch
JP2009054481A (en) Gas-blast circuit breaker
JPS61171021A (en) Gas blowoff breaker
JPH09288938A (en) Circuit breaker
WO2020003854A1 (en) Gas circuit breaker
JP2023125667A (en) gas circuit breaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926982

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024500732

Country of ref document: JP