JP2010244551A5 - - Google Patents

Download PDF

Info

Publication number
JP2010244551A5
JP2010244551A5 JP2010087604A JP2010087604A JP2010244551A5 JP 2010244551 A5 JP2010244551 A5 JP 2010244551A5 JP 2010087604 A JP2010087604 A JP 2010087604A JP 2010087604 A JP2010087604 A JP 2010087604A JP 2010244551 A5 JP2010244551 A5 JP 2010244551A5
Authority
JP
Japan
Prior art keywords
tool
machining
path
geometry
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010087604A
Other languages
Japanese (ja)
Other versions
JP5406105B2 (en
JP2010244551A (en
Filing date
Publication date
Application filed filed Critical
Publication of JP2010244551A publication Critical patent/JP2010244551A/en
Publication of JP2010244551A5 publication Critical patent/JP2010244551A5/ja
Application granted granted Critical
Publication of JP5406105B2 publication Critical patent/JP5406105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (16)

クランプされた被工作物(150)について、ブランク状態から完成部品に至る機械加工をするための工作機械(100)において、所定ツール(130)を制御するための制御データを生成するための制御データ生成方法であって、所定ツール(130)を制御するための制御装置を含む工作機械(100)の制御装置は、所定ツール(130)が被工作物(150)に対して、三次元方向に自由運動し、そして、少なくとも5本の軸に関して、ツールの自由な方向性を制御することを可能とし、当該制御データの生成工程が、下記工程をさらに含むことを特徴とする制御データ生成方法。
−被工作物(150)における機械加工の幾何学形状(320)に関し、特定の機械加工時において、被工作物(150)における除去状態を示す機械加工幾何学形状モデルデータを生成(S201)する工程
−被工作物(150)における完成部品の幾何学形状(340)を示す完成部品幾何学形状モデルデータを提供(S202)する工程
−完成部品における幾何学形状(340)にするために、除去されるべき材料から構成される、異なる幾何学形状(330a,330b)を示す異なる幾何学形状モデルデータを生成(S203)する工程
−異なる幾何学形状モデルデータに基づいて、所定ツール(130)の機械加工パスが被工作物(150)に対してどのような速度およびいずれのツール方向で移動するかを示すパスデータを生成(S204)する工程であって、
所定ツール(130)に対する最大機械加工量に基づいて、機械加工パスを移動する間に単位時間当たり被工作物(150)の異なる幾何学形状(330a,330b)の大部分を最大限除去するという条件で、異なる幾何学形状(330a,330b)を基に決められた機械加工パスを移動する間、
当該パスデータは、異なる幾何学形状(330a,330b)に基づいてクランプされた被工作物(150)に関しフィード方向および方向性を変化する所定ツール(130)を作成することを特徴とする。
Control data for generating control data for controlling a predetermined tool (130) in a machine tool (100) for machining a clamped workpiece (150) from a blank state to a finished part. A control method of a machine tool (100) including a control device for controlling a predetermined tool (130) in a generation method, wherein the predetermined tool (130) is in a three-dimensional direction with respect to the workpiece (150). A method of generating control data, wherein the control data can be freely moved and the free direction of the tool can be controlled with respect to at least five axes, and the control data generation step further includes the following steps.
- it relates to the geometry of the machining in a workpiece (150) (320), during a particular machining, and generates a machining geometry model data indicating the removal condition in the workpiece (150) (S201) step - step providing (S202) the finished part geometry model data indicating the geometry of the finished part (340) in the workpiece (150) - to the geometry of the finished part (340), removed Generating (S203) different geometric shape model data representing different geometric shapes (330a, 330b) composed of the material to be performed-based on the different geometric shape model data, the predetermined tool (130) Generate path data indicating what speed and in which tool direction the machining path moves relative to the workpiece (150). (S204) to a process,
Based on the maximum amount of machining for a given tool (130), the largest part of the different geometry (330a, 330b) of the workpiece (150) per unit time is removed to the maximum while moving the machining path. While moving a machining path determined based on different geometric shapes (330a, 330b),
The path data is characterized by creating a predetermined tool (130) that changes the feed direction and directionality for a workpiece (150) clamped based on different geometric shapes (330a, 330b).
機械加工幾何学形状モデルデータを生成する工程と、異なる幾何学形状モデルデータを生成する工程と、異なる幾何学形状モデルデータに基づいてパスデータを生成する工程とを、この順序で、一度または複数繰り返して含んでなる制御データ生成方法であって、
第2の機械加工パスのための所定ツール(130)が、その最大機械加工量に基づいて、第2の機械加工パスを移動している間に、単位時間あたり、特定の第2の異なる幾何学形状の被工作物(150)における所定材料の大部分を最大限除去する条件で、第1の機械加工パスのための所定ツール(130)が、第1のパスデータに基づいて、第1の機械加工パスを移動し、第2の異なる機械加工幾何学形状モデルデータに基づいて第2のパスデータを生成した後に、前記工程を1回繰り返す際における特定の第2の機械加工時に、少なくとも被工作物の第2の幾何学形状に対応した第2の機械加工幾何学形状モデルデータと、第2の異なる機械加工幾何学形状モデルデータとを、生成することを特徴とする請求項1に記載の制御データ生成方法。
The step of generating machining geometric shape model data, the step of generating different geometric shape model data, and the step of generating path data based on the different geometric shape model data are performed once or plural times in this order. A control data generation method comprising repeatedly including:
While the predetermined tool (130) for the second machining path moves through the second machining path based on its maximum machining amount, a specific second different geometry per unit time is obtained. A predetermined tool (130) for the first machining pass is conditioned on the basis of the first pass data under conditions that remove most of the predetermined material in the geometrically shaped workpiece (150). machining path to move, after generating the second path data based on a second, different machining geometry model data, specific second machining definitive when to repeat once the step of sometimes claims, characterized in that the second machining geometry model data corresponding to the second geometric shape of at least the workpiece, and a second, different machining geometry model data to generate Item 1. Control data generation Law.
以下の工程を、一度または複数回繰り返すことを特徴とする請求項2に記載の制御データ生成方法。
-工作機械(100)のツール調達に関するツール調達データであって、かつ、工作機械が有するツール調達のツール特性に関して、どのツール特性であるかを示すツール調達データを提供する工程
-次の機械加工パスおよび任意に工程を一度または複数回繰り返すための所定ツールのために異なる幾何学形状モデルデータに基づいて比較的高い最大機械加工量を有するツールを選択する工程
-工作機械の(100)ツール調達に基づいて次の機械加工パスに選択されたツールを、その前に選択された所定ツール(130)と交換することを決定(S504、509)する工程
The control data generation method according to claim 2, wherein the following steps are repeated once or a plurality of times.
-Tool procurement data relating to tool procurement of the machine tool (100) and providing tool procurement data indicating which tool characteristics are related to the tool characteristics of the tool procurement of the machine tool
-Selecting a tool with a relatively high maximum machining amount based on different geometric model data for the next machining pass and optionally a given tool for repeating the process once or multiple times
-Determining (S504, 509) to replace the tool selected for the next machining pass with the previously selected tool (130) based on (100) tool procurement of the machine tool
前記パスデータが、工作機械(100)の性能パラメータおよび/または動力学的特性に基づいて追加的に生成され、
かつ、前記所定ツール(130)が、パスデータに基づいて決定された機械加工パスに沿って移動する際に、工作機械の最大性能パラメータ、および/または最大動力学的特性を超えないことを特徴とする請求項1〜のいずれか一項に記載の制御データの生成方法。
The path data is additionally generated based on performance parameters and / or dynamic characteristics of the machine tool (100) ;
The predetermined tool (130) does not exceed a maximum performance parameter and / or a maximum dynamic characteristic of the machine tool when moving along the machining path determined based on the path data. The generation method of the control data as described in any one of Claims 1-3 .
前記パスデータが、少なくとも一つの所定ツール(130)の一つ以上の最大荷重値に基づいて追加的に生成され、
かつ、所定ツール(130)が、パスデータに基づいて決定された機械加工パスに沿って移動する際に、所定ツールの荷重が、所定ツール(130)の最大荷重を超えないことを特徴とする請求項1〜のいずれか一項に記載の制御データの生成方法。
The path data is additionally generated based on one or more maximum load values of at least one predetermined tool (130) ;
In addition, when the predetermined tool (130) moves along the machining path determined based on the path data, the load of the predetermined tool does not exceed the maximum load of the predetermined tool (130). The generation method of the control data as described in any one of Claims 1-4 .
特定機械時間における被工作物(150)の工作機械幾何学形状を示す工作機械幾何学形状モデルデータを生成(S604)する工程を、1回または複数回繰り返す制御データの生成方法であって、
前記工作機械幾何学形状は、所定ツール(130)の相対的方向性および相対的位置、制御装置の相対的方向性および相対的位置、被工作物(150)をクランプするための工作機械における固定具(120)の相対的方向性および相対的位置を含んでおり、
生成したパスデータに基づいて決定される機械加工パスが所定ツール(130)によって移動する際に、工作機械(100)の要素と、工作機械(100)の要素との衝突、所定ツール(130)以外の工作機械(100)の要素と、被工作物(150)との衝突が妨げられるという条件で、前記パスデータが、前記工作機械幾何学形状モデルデータに基づき、および/または前記工作機械幾何学形状モデルデータと、特定の機械時間における機械加工幾何学形状モデルデータとの比較に基づき、追加的に生成されることを特徴とする請求項1〜5のいずれか一項に記載の制御データの生成方法。
The machine tool geometry generates a machine tool geometry model data indicating (S604) to process the workpiece (150) at a particular machine time, a one or more times repeatedly generate process control data ,
The machine tool geometry includes the relative orientation and relative position of a predetermined tool (130) , the relative orientation and relative position of a control device, and the fixing in the machine tool for clamping the workpiece (150). Including the relative orientation and relative position of the tool (120) ;
When a machining path determined based on the generated path data is moved by a predetermined tool (130), a collision between an element of the machine tool (100) and an element of the machine tool (100), a predetermined tool (130) The path data is based on the machine tool geometry model data and / or the machine tool geometry , provided that collisions between other machine tool (100) elements and the workpiece (150) are prevented. The control data according to any one of claims 1 to 5 , wherein the control data is additionally generated based on a comparison between the geometric shape model data and the machining geometric shape model data at a specific machine time. Generation method.
前記モデルデータが、ブランク状態の幾何学形状、機械加工の幾何学形状、完成部品の幾何学形状、異なる幾何学形状、および/または、工作機械(100)における各バーチャル3次元モデルを生成することに適合していることを特徴とする請求項1〜のいずれか一項に記載の制御データの生成方法。 The model data generating a blank geometry, a machining geometry, a finished part geometry, a different geometry, and / or a virtual three-dimensional model of the machine tool (100) ; method for generating control data according to any one of claims 1 to 6, characterized in that they comply with the. バーチャル工作機械におけるバーチャル被工作物に対する機械加工のシミュレーションであって、下記工程を含むシミュレーションに基づいて、前記パスデータを生成することを特徴とする請求項7に記載の制御データの生成方法。
-元の状態で、被工作物のバーチャル3次元モデルを生成する工程
-バーチャルの所定ツールのための第1の機械加工パスを決定する第1のパスデータを生成する工程
-バーチャルの所定ツールによって生成された第1のパスデータに基づいて、決定された第1の機械加工パスにおける移動をシミュレートする工程
-バーチャルの被工作物の機械加工幾何学形状のバーチャル3次元モデルに関する機械加工幾何学形状モデルデータであって、バーチャルの所定ツールによって第1の決定された機械加工パスが移動した後に、機械加工時間における被工作物のバーチャルの除去状態を示す機械加工幾何学形状モデルデータを生成する工程
-バーチャルの被工作物における完成部品の幾何学形状を示す完成部品幾何学形状のバーチャルの3Dモデルの完成部品幾何学形状モデルデータを提供する工程
-完成部品の幾何学形状に達するために、バーチャルの被工作物から除去されるべき前記材料の異なる幾何学形状を示す異なる幾何学形状モデルデータを生成する工程
-所定ツールの最大機械加工量に基づいて、第2の機械加工パスを移動するシミュレーションの際に、バーチャル所定ツールが、単位時間あたり、被工作物の異なる幾何学形状の大部分を最大限除去する条件で、異なる幾何学形状モデルデータに基づき、第2の機械加工パスを決定するための第2のパスデータを生成する工程
The method of generating control data according to claim 7 , wherein the path data is generated based on a simulation of machining on a virtual workpiece in a virtual machine tool, the simulation including the following steps.
-Create a virtual 3D model of the workpiece in its original state
Generating first path data for determining a first machining path for a virtual predetermined tool;
Simulating the movement in the determined first machining path based on the first path data generated by the virtual predetermined tool
-Machining geometry model data for a virtual three-dimensional model of machining geometry of a virtual workpiece , machining after the first determined machining path is moved by a virtual predetermined tool Process for generating machining geometry model data indicating the virtual removal status of the workpiece in time
-Providing completed part geometry model data of a virtual 3D model of the finished part geometry that indicates the geometry of the finished part on the virtual workpiece
-Generating different geometric model data indicating different geometric shapes of said material to be removed from the virtual workpiece to reach the geometric shape of the finished part
-The virtual predetermined tool removes most of the different geometric shapes of the workpiece per unit time during the simulation of moving the second machining path based on the maximum machining amount of the predetermined tool under conditions in which, based on different geometry model data, generating a second path data for determining the second machining path
前記パスデータが、前記パスデータの生成(S204)工程にしたがって生成され、機械加工パスは、内部接続された複数の機械加工パス部、異なる幾何学形状に基づいて決定される機械加工パスのスタート地点によって生成され、第1の機械加工パス部が、機械パスのスタート地点からの機械加工量が最大化される異なる幾何学形状に基づいて機械加工パスのスタート地点から始まって決定され、また、機械加工量が先の機械加工パス部の端部から始まって最大化される異なる幾何学形状に基づき、さらに機械加工パス部が、内部連結された複数の機械加工部のうちのいずれかの端部から始まって決定され、第1の機械加工部および他の機械加工部に沿って、完成部品幾何学形状から材料が除去されないように決定されることを特徴とする請求項1〜のいずれか一項に記載の制御データの生成方法。 The path data is generated according to the path data generation (S204) step , and the machining path is determined based on a plurality of internally connected machining path sections and different geometric shapes. is generated by a point, the first machining path portion is determined starting from the starting point of the machining path on the basis of different geometric shapes machining amount from the starting point of the mechanical path is maximized, also, Based on different geometric shapes where the machining amount is maximized starting from the end of the previous machining pass , and the machining pass is connected to the end of any of the internally connected machining parts is determined starting from parts, the first machining part and along the other machining unit, characterized in that the material from the finished part geometry is determined so as not to be removed Method for generating control data according to any one of Motomeko 1-8. クランプされた被工作物(150)を、ブランク状態から完成部品にするための工作機械(100)における所定ツール(130)を制御するための制御データの生成装置であって、工作機械(100)が、所定ツール(130)を制御する制御装置を含み、当該制御装置は、三次元方向の自由運動及び少なくとも5本軸のツールの自由な方向性でクランプされた被工作物(150)に対し所定ツール(130)を制御可能であり、下記ユニットを含むことを特徴とする請求項1〜9のいずれか一項に記載の制御データ生成装置。
特定の機械加工時間で除去される被工作物(150)の状態を示す被工作物(150)の機械加工幾何形状(320)における機械加工幾何形状のモデルデータを生成する機械加工幾何学形状モデルデータ生成ユニット(701)
被工作物(150)における完成部品の幾何学形状(340)を示す完成部品幾何学形状モデルデータを提供する完全部品幾何学形状モデルデータ提供ユニット(702)
完成部品における幾何学形状(340)にするために、除去されるべき材料から構成される、異なる幾何学形状(330a、330b)を示す異なる幾何学形状モデルデータを生成するための異なる幾何学形状モデルデータ生成ユニット(703)
所定ツール(130)が、異なる幾何学形状モデルデータに基づき被工作物(150)に対しどのフィード速度およびどのツール方向で移動すべきかの機械加工パスを示すパスデータを生成するパスデータ生成ユニット(705)であって、
所定ツール(130)に対する最大機械加工量に基づいて機械加工パスを移動する際に、所定ツール(130)が、単位時間当たり被工作物(150)の異なる幾何学形状(330a,330b)の大部分を最大限除去するという条件で、異なる幾何学形状(330a,330b)を基に決められた機械加工パスを移動する間、
当該パスデータは、異なる幾何学形状(330a,330b)に基づいてクランプされた被工作物(150)に関しフィード方向および方向性を変化する所定ツールを作成することを特徴とする。
A control data generating device for controlling a predetermined tool (130) in a machine tool (100) for making a clamped workpiece (150) from a blank state into a finished part, the machine tool (100) Includes a control device for controlling a predetermined tool (130), the control device for a workpiece (150) clamped in a three-dimensional free movement and a free orientation of at least a 5-axis tool. The control data generation device according to any one of claims 1 to 9, wherein the predetermined tool (130) is controllable and includes the following units.
A machining geometry model that generates machining geometry model data in the machining geometry (320) of the workpiece (150) indicating the state of the workpiece (150) to be removed in a particular machining time Data generation unit (701)
Complete part geometry model data providing unit (702) for providing completed part geometry model data indicating the geometry (340 ) of the finished part on the workpiece (150 )
Different geometric shapes for generating different geometric shape model data showing the different geometric shapes (330a, 330b) composed of the material to be removed to make the geometric shape (340) in the finished part Model data generation unit (703)
A path data generating unit (generally generating path data indicating a machining path on which a predetermined tool (130) should move with respect to the workpiece (150) at which feed speed and in which tool direction based on different geometric model data. 705),
When moving the machining path based on the maximum machining amount for the predetermined tool (130), the predetermined tool (130) is large in different geometric shapes (330a, 330b) of the workpiece (150) per unit time. While moving a machining path determined based on different geometric shapes (330a, 330b), provided that the part is removed to the maximum
The path data is characterized by creating a predetermined tool that changes the feed direction and directionality for a workpiece (150) clamped based on different geometric shapes (330a, 330b).
前記制御データの生成装置(700)が、所定ツール(130)がパスデータに基づいて決定された機械加工パスを移動するときに、工作機械(100)の最大性能パラメータ、および/または、動力学的特性を超えないという追加条件で、工作機械(100)において容認できる性能パラメータ、および/または、動力学的特性を検知するための工作機械パラメータ検知ユニット(706)および前記パスデータを生成する前記パスデータ生成ユニット(705)をさらに含むことを特徴とする請求項10に記載の制御データの生成装置。 When the control data generation device (700) moves the machining path determined based on the path data by the predetermined tool (130), the maximum performance parameter and / or dynamics of the machine tool (100). Generating a machine tool parameter detection unit (706) for detecting an acceptable performance parameter and / or a dynamic characteristic in the machine tool (100 ) and the path data, with the additional condition that the mechanical characteristic is not exceeded 11. The control data generation device according to claim 10, further comprising a path data generation unit (705) . 制御データの生成装置(700)が、所定ツール(130)が、パスデータに基づき決定された機械加工パスに沿って移動する際に、所定ツール(130)の一つ以上の荷重値が、所定ツール(130)の最大荷重値を超えないという追加条件で、前記ツールの一つ以上の最大荷重値を含む工作機械(100)のツール特性を検出するためのツール特性検知ユニット(706)および、前記パスデータを生成する前記パスデータ生成ユニット(705)を含むことを特徴とする請求項10または11に記載の制御データの生成装置。 When the control data generation device (700) moves along the machining path determined based on the path data, the one or more load values of the predetermined tool (130) are A tool characteristic detection unit (706) for detecting a tool characteristic of the machine tool (100) including one or more maximum load values of the tool, with the additional condition that the maximum load value of the tool (130) is not exceeded; and 12. The control data generation apparatus according to claim 10 or 11 , comprising the path data generation unit (705) for generating the path data . 制御データの生成装置(700)が、工作機械(100)のツール調達を検出するためのツール調達検知ユニット(710)と、次の機械加工パスのために、所定ツールのために異なる幾何学形状モデルデータに基づいて、相対的に高い最大機械加工量を有する検出されたツール調達からツール(130)を選択するためのツール選択ユニット(708)と、検出された工作機械(100)のツール調達に基づいて、次の機械加工パスのために選択される所定ツール(130)によって先の所定のツールのツール交換を決定するためのツール(130)交換決定ユニット(709)と、を有するとともに、
当該ツール交換決定ユニット(709)が、仮に、先の所定ツール以外のツールが、次の機械加工パスのために、前記ツール選択ユニットによって工作機械ツール(100)のツール調達から所定ツールの次の機械加工パスを選択する場合にツール交換を決定することを特徴とする請求項10〜12のいずれか一項に記載の制御データの生成装置。
The control data generator (700) has a different geometry for a given tool for the next machining pass and a tool procurement sensing unit (710) for detecting tool procurement of the machine tool (100). A tool selection unit (708) for selecting a tool (130) from detected tool procurement having a relatively high maximum machining amount based on the model data, and tool procurement of the detected machine tool (100) based on, the next machining tool (130) for determining the tool exchange of the previous predetermined tool by a predetermined tool (130) selected for the path replacement determination unit (709), together with a,
The tool change determination unit (709) is assumed that a tool other than the previous predetermined tool is used for the next machining pass from the tool procurement of the machine tool tool (100) by the tool selection unit to the next of the predetermined tool. The apparatus for generating control data according to any one of claims 10 to 12 , wherein a tool change is determined when a machining path is selected .
前記制御データの生成装置(700)が、工作機械幾何学形状モデルデータ生成ユニット(707)をさらに含んでおり、当該工作機械幾何学形状モデルデータ生成ユニットは、被工作物(150)の特定の機械加工時間における、現時点での工作機械幾何学形状を示す工作機械幾何学形状モデルデータを生成するためのものであって、工作機械幾何学形状は、所定ツール(130)の方向および位置、制御装置の要素の方向および位置、被工作物をクランプするための固定具の方向および位置を含んでおり、
かつ、前記パスデータによって決定される機械加工パスが少なくとも一つの所定ツール(130)によって移動される際に、工作機械(100)の要素と、工作機械(100)の要素との衝突、所定ツール以外の工作機械(100)の要素と、被工作物(150)との衝突が妨げられるという条件で、パスデータ生成ユニット(705)が、工作機械幾何学形状モデルデータに基づいて、および/または工作機械幾何学形状モデルデータと、特定の機械加工時における工作機械幾何学形状モデルデータと、の比較に基づいて、パスデータをさらに生成することを特徴とする請求項10〜13のいずれか一項に記載の制御データの生成装置。
The control data generation apparatus (700) further includes a machine tool geometric shape model data generation unit (707) , and the machine tool geometric shape model data generation unit is configured to specify a specific shape of the workpiece (150) . A machine tool geometry for generating machine tool geometry model data indicating a current machine tool geometry at a machining time, the machine tool geometry being a direction and position of a predetermined tool (130) , control Including the direction and position of the elements of the device, the direction and position of the fixture for clamping the workpiece,
When the machining path determined by the path data is moved by at least one predetermined tool (130), the collision between the element of the machine tool (100) and the element of the machine tool (100), the predetermined tool A path data generation unit (705) based on the machine tool geometry model data and / or on the condition that collisions between elements of the machine tool (100) other than the workpiece (150) are prevented a machine tool geometry model data, the machine tool geometry model data at a particular machining, based on a comparison of one any of claims 10 to 13, characterized by further generating the path data The control data generation device according to Item.
制御データの生成装置(700)が、ブランク状態の幾何学形状、中間的幾何学形状、完成部品の幾何学形状、異なる幾何学形状、および/または、工作機械(100)における各バーチャルの3次元モデルを、それぞれ視覚的に表示するためのディスプレイユニット(711)を有することを特徴とする請求項10〜14のいずれか一つに記載の制御データの生成装置。 A control data generator (700) is provided for each geometry of a blank geometry, an intermediate geometry, a geometry of a finished part, a different geometry, and / or each virtual 3D in the machine tool (100) . 15. The control data generation device according to claim 10 , further comprising a display unit (711) for visually displaying the model. 請求項10〜15のいずれか一つに記載の制御データの生成装置であって、前記パスデータ生成ユニット(705)は、バーチャル工作機械において、バーチャルの被工作物を機械加工するシミュレーションに基づいてパスデータを生成し、さらに、前記制御データ生成装置は、バーチャルの所定ツールによるパスデータ生成ユニットによって生成するパスデータに基づき決定される機械加工パスの移動をシミュレートする機械加工シミュレートユニットを含み、
前記機械加工幾何学形状モデルデータ生成ユニット(701)はバーチャルの所定ツールによる第1の決定された機械加工パスの移動が機械加工シミュレーションユニットによってシミュレートされた後の機械加工時の被工作物におけるバーチャルの除去状態を示し、バーチャルな被工作物における機械加工幾何学形状の3次元モデルに関する機械加工幾何学形状モデルデータを生成し、
前記完成部品の幾何学形状提供ユニットは、バーチャルな被工作物における完成部品の幾何学形状を示す完成部品の幾何学形状に関するバーチャルな3次元モデルにおける完成部品幾何学形状モデルデータを提供し、
前記異なる幾何学形状モデルデータ生成ユニット(703)は、完成部品の幾何学形状に達するためにバーチャルな被工作物から、除去すべき材料の異なる幾何学形状を示す異なる幾何学形状モデルデータを生成し、
前記パスデータ生成ユニット(705)は所定ツールの最大機械加工量に基づいて、前記機械加工シミュレーションユニットによって第2の機械加工パスの移動をシミュレーションの際に、バーチャル所定ツールが、単位時間当たり被工作物の異なる幾何学形状の大部分を最大限除去する条件で、異なる幾何学形状モデルデータに基づき、第2の機械加工パスを決定する第2のパスデータを生成することを特徴とする。
The control data generation device according to any one of claims 10 to 15, wherein the path data generation unit (705) is based on a simulation of machining a virtual workpiece in a virtual machine tool. The path data is generated, and the control data generation device further includes a machining simulation unit for simulating the movement of the machining path determined based on the path data generated by the path data generation unit using a virtual predetermined tool. ,
The machining geometric model data generation unit (701) is a workpiece at the time of machining after the movement of the first determined machining path by the virtual predetermined tool is simulated by the machining simulation unit. Shows the virtual removal state at , generates machining geometry model data for a 3D model of machining geometry on the virtual workpiece ,
The completed part geometric shape providing unit provides completed part geometric shape model data in a virtual three-dimensional model related to the geometric shape of the completed part indicating the geometric shape of the completed part in the virtual workpiece ;
The different geometry model data generation unit (703) is generated from the virtual workpiece in order to reach the geometry of the finished part, the different geometry model data indicating the different geometries of the material to be removed And
The path data generation unit (705) is configured so that the virtual predetermined tool is subjected to a load per unit time when simulating the movement of the second machining path by the machining simulation unit based on the maximum machining amount of the predetermined tool. The second path data for determining the second machining path is generated on the basis of the different geometric model data under the condition of removing most of the different geometric shapes of the workpiece.
JP2010087604A 2009-04-06 2010-04-06 Method and apparatus for generating control data for tool control in machine tools Active JP5406105B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009016338 2009-04-06
DE102009016338.7 2009-04-06

Publications (3)

Publication Number Publication Date
JP2010244551A JP2010244551A (en) 2010-10-28
JP2010244551A5 true JP2010244551A5 (en) 2013-07-25
JP5406105B2 JP5406105B2 (en) 2014-02-05

Family

ID=43097428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010087604A Active JP5406105B2 (en) 2009-04-06 2010-04-06 Method and apparatus for generating control data for tool control in machine tools

Country Status (2)

Country Link
JP (1) JP5406105B2 (en)
CN (1) CN101893873B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9690282B2 (en) 2011-02-28 2017-06-27 Solidcam Ltd. Computerized tool path generation
US8489224B2 (en) * 2011-02-28 2013-07-16 Solidcam Ltd. Computerized tool path generation
US8923999B2 (en) * 2011-09-07 2014-12-30 Siemens Product Lifecycle Management Software Inc. Volumetric cut planning
CN102495585B (en) * 2011-12-26 2013-06-12 北京进取者软件技术有限公司 Method for generating glass polishing machining path of five-axis numerical control machine
US9292626B2 (en) * 2012-12-10 2016-03-22 Palo Alto Research Center Incorporated Computer numerical control (CNC) machining tool and method for controlling a CNC machining tool
TWI500475B (en) * 2012-12-13 2015-09-21 Ind Tech Res Inst Apparatus and method for positioning geometric model
CN103488125A (en) * 2013-10-10 2014-01-01 昆山纯柏精密五金有限公司 Tool control data generation method
TWI577493B (en) 2014-12-26 2017-04-11 財團法人工業技術研究院 Calibration method and automatic apparatus using the same
CN106033214B (en) * 2015-03-19 2018-11-06 宁夏巨能机器人系统有限公司 A kind of cutter feeding control device and its control method of numerically-controlled machine tool
CN105160147B (en) * 2015-07-07 2017-11-10 大连理工大学 A kind of cutter changing time decision-making technique based on state-space model and fuzzy theory
JP6346253B2 (en) 2016-12-05 2018-06-20 ファナック株式会社 Machine tool and machine learning device
JP2020199611A (en) * 2019-06-12 2020-12-17 ファナック株式会社 Machine tool and machine tool control method
CN110597185A (en) * 2019-08-30 2019-12-20 合肥学院 Complex curved surface part mechanical arm machining system and method based on feature library
CN113579818A (en) * 2021-08-12 2021-11-02 珠海格力电器股份有限公司 Tool magazine control method and machining equipment
CN114551301B (en) * 2022-02-17 2023-06-16 无锡芯坤电子科技有限公司 Semiconductor processing method and system thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128870A (en) * 1989-06-09 1992-07-07 Regents Of The University Of Minnesota Automated high-precision fabrication of objects of complex and unique geometry
EP0503642B1 (en) * 1991-03-15 1997-06-11 Spatial Technology, Inc. Method and apparatus for solids-based machining
JPH06124111A (en) * 1992-10-12 1994-05-06 Fanuc Ltd Numerical controller
JPH08257874A (en) * 1995-03-23 1996-10-08 Hitachi Zosen Corp Correcting method for nc machining program
JP2929996B2 (en) * 1996-03-29 1999-08-03 トヨタ自動車株式会社 Tool point sequence generation method
KR100461789B1 (en) * 2002-03-25 2004-12-14 학교법인 포항공과대학교 Method for performing delta volume decomposition and process planning in a turning step-nc system
JP2004164328A (en) * 2002-11-13 2004-06-10 Fujitsu Ltd One person cam system and one person cam program
DE102006043390B4 (en) * 2006-09-15 2010-05-27 Dmg Electronics Gmbh Apparatus and method for simulating a process for machining a workpiece on a machine tool

Similar Documents

Publication Publication Date Title
JP2010244551A5 (en)
US8538574B2 (en) Method and apparatus for generating control data for controlling a tool on a machine tool
JP5406105B2 (en) Method and apparatus for generating control data for tool control in machine tools
JP5816632B2 (en) Predictive control and virtual display system for numerically controlled machine tools
JP6583708B2 (en) Cutting force adaptive control method and cutting force adaptive control system
JP2016500882A5 (en)
CN103180792B (en) Method and device for generating tool path
US20170129066A1 (en) Machine tool
JP5458115B2 (en) Machining path generation method and apparatus
JP6043234B2 (en) Numerical controller
JP2013515313A5 (en)
JP2015510841A5 (en)
JP2005519355A5 (en)
CA2598615A1 (en) Three-dimensional model modification system, method and computer-readable program of the same, and computer-readable recording medium storing the program
JPWO2013002097A1 (en) Processing simulation apparatus and method
EP2482155A3 (en) Machine tool, machining method, program and NC data generation device
JP2015058492A (en) Control device, robot system, robot, robot operation information generation method, and program
JP6038331B2 (en) Tool path generation method and tool path generation apparatus
KR20170033009A (en) Methode of visual representaion of a finishing grinding simulating and recording medium
TWI554856B (en) Apparatus and method for transforming nc programs
Dodok et al. Influence of CNC milling strategies on complex surface machining
US9505175B2 (en) Three-dimensional printing device
CN106094721A (en) The processing method of three-dimensional live topography sand table
US20210016441A1 (en) Tool path generating method, tool path generating unit, program for generating tool path, and recording medium storing program
CN107392384B (en) Lower bound solving method based on double-agent problem with release time flow shop