JP2010243262A - 成分濃度分析装置及び成分濃度分析方法 - Google Patents

成分濃度分析装置及び成分濃度分析方法 Download PDF

Info

Publication number
JP2010243262A
JP2010243262A JP2009090468A JP2009090468A JP2010243262A JP 2010243262 A JP2010243262 A JP 2010243262A JP 2009090468 A JP2009090468 A JP 2009090468A JP 2009090468 A JP2009090468 A JP 2009090468A JP 2010243262 A JP2010243262 A JP 2010243262A
Authority
JP
Japan
Prior art keywords
sound wave
measurement
emission point
component concentration
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009090468A
Other languages
English (en)
Other versions
JP5313016B2 (ja
Inventor
Takuro Tajima
卓郎 田島
Camou Serge
セルジュ カムー
Tsuneyuki Haga
恒之 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009090468A priority Critical patent/JP5313016B2/ja
Publication of JP2010243262A publication Critical patent/JP2010243262A/ja
Application granted granted Critical
Publication of JP5313016B2 publication Critical patent/JP5313016B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】校正の際の擾乱を発生させず、測定対象成分の濃度を高精度に同定することを可能にする成分濃度分析装置及び成分濃度分析方法を提供することを目的とする。
【解決手段】本成分濃度分析装置は、検査光を2分岐し、一方を測定試料210aに照射し、光音響効果で発生した測定音波Saを測定音波出射点215aから出射させ、他方を参照試料210bに照射し、光音響効果で発生した参照音波Sbを参照音波出射点215bから出射させる光照射手段と、前記光照射手段で出射させた測定音波Sa及び参照音波Sbを、測定音波出射点215aからの音波伝搬距離と参照音波出射点215bからの音波伝搬距離とが等しい位置にある1つの音波検出器113で検出する音波検出手段と、を備える。
【選択図】図7

Description

本発明は、試料の成分濃度を光音響法で測定する成分濃度分析装置及び成分濃度分析方法に関する。
近年、高齢化が進み、成人病の患者数の増大に対する対応が大きな社会的な課題になりつつある。血糖値などの検査においては血液の採取が必要なために患者にとって大きな負担となるので、血液を採取しない非侵襲な成分濃度分析装置が注目されている。現在までに開発された非侵襲な成分濃度分析装置としては、皮膚内に電磁波を照射し、測定対象とする血液成分、例えば、血糖値の場合はグルコース分子に吸収され、局所的に加熱して熱膨張を起こして生体内から発生する光音響信号と呼ばれる音波を観測する、光音響法が注目されている。以降の説明において、光音響信号を音波と記載することがある。
しかし、グルコースと電磁波との相互作用は小さく、また生体に安全に照射し得る電磁波の強度には制限があり、生体の血糖値測定においては、十分な効果をあげるに至っていない。光音響法の血糖値測定において、精度を劣化させる要因として光源パワー、センサー感度、温度などの複数の要因が考えられるが、それらの要因に対して校正試料による逐次的な校正手段が一般的に用いられる。
従来の光音響効果のための光源には、パルス、および連続波(CW)が用いられる。図1は光パルスを電磁波として用いた従来の成分濃度分析装置である(例えば、非特許文献1を参照。)。本例では試料として血液成分の血糖、すなわちグルコースを測定対象としている。図1において、駆動回路604はパルス状の励起電流をパルス光源617に供給し、パルス光源617はサブマイクロ秒の持続時間を有する光パルスを発生し、発生した光パルスは測定試料610a及び参照試料610bに照射される。光パルスは測定試料610a及び参照試料610bの内部にパルス状の光音響信号と呼ばれる音波を発生させ、発生した音波はそれぞれ音波検出器613a及び音波検出器613bにより検出され、さらに音圧に比例した電気信号に変換される。電気信号はそれぞれ増幅器615a及び増幅器615bで増幅され、差動増幅器625で差分される。差分された電気信号は波形観測器621で平均化され、記録器630が電気信号のピーク振幅を記録する。異なる濃度におけるピーク振幅を計測した検量線から、測定試料610aの成分濃度を測定する。
光パルスの光音響励起にとって発生する音圧は試料の吸光度に比例するため、水の吸光度の温度変動で音圧が変動した場合、測定対象の濃度とピーク振幅の関係である検量線の切片がシフトする可能性があり、成分濃度算定の誤差が生じる。
上記課題を解決するために、複数波長を用いることが容易なCW法における2波長差分方式の成分濃度分析装置も知られている(例えば、特許文献1を参照。)。図2はCW法を用いた従来の成分濃度分析装置である。第1の光源601は、駆動回路604により、発振器603に同期して強度変調されている。一方、第2の光源602は、駆動回路604により、発振器603に同期して強度変調されている。更に、第2の光源602の駆動回路604には、発振器603の出力が遅延調整器605を介して給電される。その結果、第2の光源602は、第1の光源601に対して、位相(周波数)が、逆相に変調されるように構成されている。第1の光源601及び第2の光源602の出力光は、光合波器616により重畳され、1本の光束として、測定試料610aに照射される。測定試料610a内で発生された光音響信号は、音波検出器613により検出され、音圧に比例した電気信号に変換される。電気信号の振幅が、発振器603に同期した波形観測器621によって計測され、記録器630に記録される。図2の成分濃度分析装置は、測定試料610aを予め用意された参照試料610bに交換することで校正用の参照音波の電気信号を取得し、測定試料610aで得られた電気信号の校正を行う。
「電子技術総合研究所彙報」、第53巻、第5号、41〜51頁、1989年 特開2006−326223号公報
実用的な精度を得るために、成分濃度分析では、光源パワーや温度等の擾乱に対して参照試料を用いた校正が必須となる。しかし、図1のような成分濃度分析装置では、測定試料と参照試料のそれぞれに異なる検出器を接着して電気信号で差分を演算するため、検出器の感度差や検出器の周波数特性差という擾乱が生じて校正誤差となり、十分な成分濃度検出の測定精度が得られないという課題があった。
一方、図2のような連続波(CW)を用いた成分濃度分析装置では、測定試料と参照試料に交互に検査光を照射し、それぞれの試料中から発生した音波を同じ音波検出器を用いて検出している。しかし、この方法では、校正試料との交換によって、検査光の照射位置の変化、試料と検出器との接触状態の変化、及び試料の交換にかかる時間的な差異の発生という擾乱が生じて校正誤差となり、十分な成分濃度検出の測定精度が得られないという課題があった。
そこで、本発明は、上述したような校正の際の擾乱を発生させず、測定対象成分の濃度を高精度に同定することを可能にする成分濃度分析装置及び成分濃度分析方法を提供することを目的とする。
上記目的を達成するために、本発明では、測定試料及び参照試料からの音波伝搬距離が同一になる位置に音波検出器1つを配置することで、各試料の検出条件を同一に保つこととした。
具体的には、本発明に係る成分濃度分析装置は、検査光を2分岐し、一方を測定試料に照射し、光音響効果で発生した測定音波を測定音波出射点から出射させ、他方を参照試料に照射し、光音響効果で発生した参照音波を参照音波出射点から出射させる光照射手段と、前記光照射手段で出射させた前記測定音波及び前記参照音波を、前記測定音波出射点からの音波伝搬距離と前記参照音波出射点からの音波伝搬距離とが等しい位置にある1つの音波検出器で検出する音波検出手段と、を備える。
本発明に係る成分濃度分析方法は、検査光を2分岐し、一方を測定試料に照射し、光音響効果で発生した測定音波を測定音波出射点から出射させ、他方を参照試料に照射し、光音響効果で発生した参照音波を参照音波出射点から出射させる光照射手順と、前記光照射手順で出射させた前記測定音波及び前記参照音波を、前記測定音波出射点からの音波伝搬距離と前記参照音波出射点からの音波伝搬距離とが等しい位置で検出する音波検出手順と、を備える。
検査光を2分岐して測定試料及び参照試料に照射しているため、校正のために試料の交換が不要であり、試料交換による、検査光の照射位置の変化、及び試料と検出器との接触状態の変化に伴う擾乱で生ずる校正誤差を低減することができる。また、測定試料と参照試料との差分を同時刻で行うことができ、試料の交換にかかる時間的な差異の発生という擾乱による校正誤差を低減することができる。さらに、測定試料及び参照試料から発生した音彼の伝搬距離を同一に保つことができ、音波検出器も1つであるので検出器の感度差や検出器の周波数特性差という擾乱による校正誤差を低減できる。
従って、本発明は、校正の際の擾乱を発生させる要因を除去したため、測定対象成分の濃度を高精度に同定することを可能にする成分濃度分析装置及び成分濃度分析方法を提供することができる。また、部品点数を削減できることから成分濃度分析装置を安価に提供できる。
本発明に係る成分濃度分析装置の前記音波検出手段は、それぞれの焦点の一方を共通するように2つの半楕円球面を連結させた形状の音波反射鏡で形成された集音板を有し、前記2つの半楕円球面の他方の焦点をそれぞれ前記測定音波出射点及び前記参照音波出射点とし、前記集音板のうち前記測定音波出射点側の半楕円球面で反射した前記測定音波及び前記参照音波出射点側の半楕円球面で反射した前記参照音波を前記2つの半楕円球面の共通する焦点に配置した前記音波検出器で検出することが好ましい。
本発明に係る成分濃度分析方法の前記音波検出手順で、それぞれの焦点の一方を共通するように2つの半楕円球面を連結させた形状の音波反射鏡で形成された集音板を用い、前記2つの半楕円球面の他方の焦点をそれぞれ前記測定音波出射点及び前記参照音波出射点とし、前記集音板のうち前記測定音波出射点側の半楕円球面で反射した前記測定音波及び前記参照音波出射点側の半楕円球面で反射した前記参照音波を前記2つの半楕円球面の共通する焦点で検出することが好ましい。
楕円球面は、一方の焦点から他方の焦点を結んだ経路の距離が異なる経路間で一致するという性質を持つ。二つの半楕円球面の一方の焦点を一致させ、そこに音波検出器を設置し、2つの他方の焦点にそれぞれ測定音波出射点及び参照音波出射点を配置すれば、測定音波と参照音波との音波伝搬距離が一致する。音波検出手段は、集音板を有することで、測定音波と参照音波の音波伝搬距離を簡便に一致させることができる。音波伝搬距離が一致することから、測定試料と参照試料に入射する検査光の位相差と、音波検出器が検出する測定音波と参照音波との位相差が一致する。従って、測定試料と参照試料に入射する検査光の位相を互いに逆相にすることで、音波検出器は測定音波と参照音波の差分を容易に取得することができ、成分濃度分析装置及び成分濃度分析方法の測定精度を向上させることができる。
本発明に係る成分濃度分析装置の前記音波検出手段の前記音波検出器は、音響レンズを介して前記測定音波及び前記参照音波を検出することが好ましい。
本発明に係る成分濃度分析方法の前記音波検出手順で、音響レンズを介して前記測定音波及び前記参照音波を検出することが好ましい。
音波検出器が音響レンズを備えて音波検出の指向性を補正することで、成分濃度分析装置及び成分濃度分析方法は効率良く音波を検出でき、測定精度を向上させることができる。
本発明に係る成分濃度分析装置の前記光照射手段は、内面が音波反射鏡で形成されている楕円球面形状の焦点の一方を前記測定音波出射点とし、内部に前記測定試料を配置する測定試料室と、内面が音波反射鏡で形成されている楕円球面形状の焦点の一方を前記参照音波出射点とし、内部に前記参照試料を配置する参照試料室と、を有することが好ましい。
本発明に係る成分濃度分析方法の前記光照射手順で、内面が音波反射鏡で形成されている楕円球面形状の焦点の一方を前記測定音波出射点とする測定試料室に前記測定試料を配置し、内面が音波反射鏡で形成されている楕円球面形状の焦点の一方を前記参照音波出射点とする参照試料室に前記参照試料を配置することが好ましい。
試料室内部を楕円鏡面とし、一方の焦点と集音板の焦点とを一致させることで、成分濃度分析装置及び成分濃度分析方法は試料室中で発生した音波を効率よく音波検出器に伝達でき、検出する音波を増大できるため、測定精度を向上させることができる。
本発明に係る成分濃度分析装置の前記光照射手段は、前記測定試料室の前記楕円球面形状の焦点の他方に前記検査光を集光する測定試料レンズと、前記参照試料室の前記楕円球面形状の焦点の他方に前記検査光を集光する参照試料レンズと、をさらに有することが好ましい。
本発明に係る成分濃度分析方法の前記光照射手順で、前記測定試料室の前記楕円球面形状の焦点の他方に前記検査光を集光し、前記参照試料室の前記楕円球面形状の焦点の他方に前記検査光を集光することが好ましい。
レンズを用いて検査光を試料室の楕円鏡面の他方の焦点に集光することで、発生した音波は集音板の焦点位置に集中する。従って、成分濃度分析装置及び成分濃度分析方法は発生した音波を効率良く音波検出器に伝達でき、検出する音波を増大できるため、測定精度を向上させることができる。
本発明は、校正の際の擾乱に関わらず、測定対象成分の濃度を高精度に同定することを可能にする成分濃度分析装置及び成分濃度分析方法を提供することができる。
従来の成分濃度分析装置を説明するブロック図である。 従来の成分濃度分析装置を説明するブロック図である。 本発明に係る成分濃度分析装置の2つの半楕円球面を連結させた形状の音波反射鏡で形成された集音板で行う差分検出を説明する図である。 本発明に係る成分濃度分析装置で発生する音波の時間波形を説明する図である。(a)は測定試料から発生する測定音波の時間波形であり、(b)は参照試料から発生する参照音波の時間波形であり、(c)は測定音波と参照音波との差分である差分音波の時間波形である。 水とグルコース水溶液の吸光度スペクトルの模式図である。 グルコースの吸光度スペクトルの模式図である。 本発明に係る成分濃度分析装置を説明する概念図である。 本発明に係る成分濃度分析装置を説明する概念図である。 本発明に係る成分濃度分析装置の資料室を説明する概略図である。 本発明に係る成分濃度分析装置の音波検出器を説明する概略図である。
添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(成分濃度分析装置の動作原理)
まず、本成分濃度分析装置の動作を説明する。光音響効果で発生する光音響信号Sは次式で表すことができる。
Figure 2010243262
ここで、Pは光源パワー、Vは水の体積分率、Mは測定対象成分のモル濃度、αはモル濃度当たりの吸光度、αは水の吸光度、ρは測定対象成分が含まれた水溶液の密度、βは該水溶液の熱膨張率、Cpは該水溶液の比熱、Kは測定対象の形状や検出器の感度や接触状態などの測定系のシステムによって決まるパラメータである。
図3は、本成分濃度分析装置の2つの半楕円球面(220a、220b)を連結させた形状の音波反射鏡で形成された集音板220で行う差分検出を説明する図である。集音板220は、2つの半楕円球面(220a、220b)の一方の焦点を一致させ、音波検出器113を配置している。なお、半楕円球面220aと半楕円球面220bとは、同じ形状の半楕円球面である。また、集音板220は、半楕円球面220aのもう一つの焦点に測定試料からの測定音波Saが出射される測定音波出射点215aを配置している。さらに、集音板220は、半楕円球面220bのもう一つの焦点に測定試料からの参照音波Sbが出射される参照音波出射点215bを配置している。楕円鏡では、一方の焦点から他方の焦点を結んだ経路の距離が異なる経路間で一致するという性質を持つ。このため、測定音波出射点215aから半楕円球面220aで反射して音波検出器113に到達する測定音波Saの音波伝搬距離と参照音波出射点215bから半楕円球面220bで反射して音波検出器113に到達する参照音波Sbの音波伝搬距離とは等しくなる。従って、測定音波出射点215a及び参照音波出射点215bから同位相の音波を出射した場合、音波検出器113はそれぞれの音波を同位相で検出することができる。一方、測定音波出射点215a及び参照音波出射点215bから逆位相の音波を出射した場合、音波検出器113はそれぞれの音波の和、すなわちそれぞれの音波の差分を検出することができる。
図4は、本成分濃度分析装置で発生する音波の時間波形を説明する図である。図4(a)は測定試料から発生する測定音波の時間波形であり、図4(b)は参照試料から発生する参照音波の時間波形であり、図4(c)は測定音波と参照音波との差分である差分音波の時間波形である。測定試料からの測定音波と参照試料からの参照音波とは逆位相である。この時、音波検出器113では測定音波と参照音波とが重ね合わされるため、図4(c)の差分音波が検出される。
以下の説明では測定試料の測定対象成分をグルコースとして説明する。図5は、水の吸光度スペクトル(実線)と2g/dLのグルコース水溶液の吸光度スペクトル(破線)の模式図である。水の吸光度スペクトルは波長1.5μm近傍にOH振動ピークをもつ。また、水の吸光度スペクトルは、波長1.5μmの長波側の波長1.6μm近傍にグルコースのC−Hの一次結合振動吸収をもつ。さらに、水の吸光度スペクトルは、波長1.5μmの短波側1.4μm近傍で水とグルコースの相互作用による負の吸収がある。
図6は、水とグルコース水溶液との吸光度の差分のスペクトルである。ここで、参照試料を水、測定試料をグルコース水溶液とし、両者に逆位相の検査光を照射する。音波検出器113は、前述のように両者の差分音波を検出する。光音響信号は数式1のように吸光度に比例するため、グルコース水溶液の吸光度スペクトルと水の吸光度スペクトルとの差分をとれば、グルコースの吸光度スペクトルを得ることができる。すなわち、図6はグルコースの吸光度スペクトルとなる。
グルコースの吸光度は、グルコース水溶液の濃度により、図5のスペクトル領域1(1.6μm帯)のうち1.6μmでは1g/dL当たり1.85×10−3mm−1程度上昇し、スペクトル領域2(1.4μm帯)の1.4μmでは1g/dL当たり−4.50×10−3mm−1程度下降する傾向を示す。従って、図6のグルコースの吸光度スペクトルを得ることで、グルコース水溶液の濃度を定量することができる。また、グルコースに起因する特徴的なスペクトル情報を取得することにより、多変量解析などを用いて多成分との分離もできる。
(第1実施形態)
図7は、本実施形態の成分濃度分析装置を説明する概念図である。本成分濃度分析装置は、検査光を2分岐し、一方を測定試料室212a内の測定試料に照射し、光音響効果で発生した測定音波Saを測定音波出射点215aから出射させ、他方を参照試料室212b内の参照試料に照射し、光音響効果で発生した参照音波Sbを参照音波出射点215bから出射させる光照射手段と、前記光照射手段で出射させた測定音波Sa及び参照音波Sbを、測定音波出射点215aからの音波伝搬距離と参照音波出射点215bからの音波伝搬距離とが等しい位置にある1つの音波検出器113で検出する音波検出手段と、を備える。
光照射手段は、波長可変光源101、発振器103、光スイッチ201、光ファイバ(205a、205b)、及び試料容器(211a、211b)を有する。音波検出手段は、集音板220、音波検出器113、前置増幅器115、位相検波器121、及び記録器130を有する。集音板220は、それぞれの焦点の一方を共通するように2つの半楕円球面(220a、220b)を連結させた形状の音波反射鏡で形成されている。
音波伝搬槽は、集音板220、フタ223、及び筐体222を有する。集音板220とフタ223との間の空間を音波伝搬媒体221で満たしてもよい。また、試料容器211aの中に測定試料室212aがあり、試料容器211bの中に参照試料室212bがある。試料容器211aは測定音波出射点215aが集音板220側にあるように、試料容器211bは参照音波出射点215aが集音板220側にあるように、及び音波検出器113は音波の検出点が集音板220側にあるように、フタ223に配置されている。ここで、音波検出器113は、集音板220の2つの半楕円球面(220a、220b)の共通させた焦点に配置される。試料容器211aは、半楕円球面220aの音波検出器113が配置されていない方の焦点に測定音波出射点215aがあるように配置される。同様に、試料容器211bは、半楕円球面220bの音波検出器113が配置されていない方の焦点に参照音波出射点215bがあるように配置される。
光スイッチ201は、1×2光スイッチであり、発振器103に同期して出力を切り替えている。光スイッチ201は、可変波長光源101からの検査光を交互に光ファイバ205a及び光ファイバ205bに結合する。このため、光ファイバ(205a、205b)を伝搬する検査光は、互いに位相(周波数)が逆相に変調されている。光ファイバ(205a、205b)の検査光は、それぞれ測定試料室212aの測定試料と参照試料室212bの参照試料に照射される。
測定試料内で発生した測定音波Sa及び参照試料内で発生した参照音波Sbは、それぞれ測定音波出射点215a及び参照音波出射点215bから音波伝搬槽内部へ放射される。集音板220のうち測定音波出射点215a側の半楕円球面220aで反射した測定音波Sa及び参照音波出射点215b側の半楕円球面220bで反射した参照音波Sbを2つの半楕円球面の共通する焦点に配置した音波検出器113で検出する。
測定試料と参照試料にはそれぞれ逆相の検査光が照射されるため、音波検出器113は、測定音波Saと参照音波Sbとの差分の音圧に比例した電気信号を出力する。電気信号は前置増幅器115で増幅され、さらに電気信号の振幅が発振器103に同期した位相検波器121によって計測され、水とグルコース水溶液の光音響信号の差分データとして記録器130で記録される。可変波長光源101が出力する検査光の波長を変えることで、記録器130は光音響信号を差分スペクトルデータとして記録できる。記録器130は、記録された差分スペクトルデータと、異なるグルコース濃度で取得された検量用スペクトルデータと、を用いて多変量解析アルゴリズムなどで測定試料のグルコース濃度を算出する。
図7の成分濃度分析装置は、簡便さのため、光スイッチ201で光の強度変調を行ったが、2分岐素子と2つの光変調器で検査光を2つに分岐したのちにそれぞれ強度変調を行っても良い。
(第2実施形態)
図8は、本実施形態の成分濃度分析装置を説明する概念図である。本成分濃度分析装置と図7の成分濃度分析装置との違いは次の通りである。音波検出器113は、音響レンズ118を介して測定音波Sa及び参照音波Sbを検出する。測定試料室212aの内面が楕円球面形状の音波反射鏡で形成されており、試料容器211aは、その楕円球面の焦点の一方を測定音波出射点215aと一致するようにフタ223に配置されている。参照試料室212bの内面が楕円球面形状の音波反射鏡で形成されており、試料容器211bは、その楕円球面の焦点の一方を参照音波出射点215bと一致するようにフタ223に配置されている。
さらに、光照射手段は、測定試料レンズ217aと参照試料レンズ217bを有する。測定試料レンズ217aは、測定試料室212aの楕円球面の焦点のうち、測定音波出射点215aと一致していない焦点に検査光を集光する。参照試料レンズ217bは、参照試料室212bの楕円球面の焦点のうち、参照音波出射点215bと一致していない焦点に前記検査光を集光する。
可変波長光源101の光出力は、音響光学変調器253の光入力に光ファイバを介して結合される。音響光学変調器253はパルス発生器153からの駆動電圧に同期して1入力×2出力のスイツチングを周波数380kHzで繰返す。このため、光ファイバ(205a、205b)を伝搬する検査光は、互いに位相(周波数)が逆相に変調されている。
本実施例での可変波長光源101は、外部共振器による方式であるが、広帯域光源からの広帯域光を波長可変フィルタによって波長選択を行う方式でもよい。可変波長光源101の波長範囲は1.56〜1.68μmとした。可変波長光源101は内部にフォトディテクタを内蔵しており、光出力をモニターしつつ注入電流を制御し、異なる波長での光パワーを一定に保つ。平均光パワーの設定は10mW程度とした。波長掃引はそれぞれ1.56μmから始め、波長掃引速度は1秒当たり4nmであり、一連の波長掃引測定におよそ30秒を要した。
図9は、測定試料室212aの近傍を説明する概略図である。参照試料室212bの近傍も同様である。測定試料室212aは集音板220側と反対側をガラス窓292で塞いでもよい。光レンズ217aは、楕円球面形状の測定試料室212aの焦点のうち集音板220側と反対側の焦点に音響光学変調器253からの検査光を集光する。測定試料室212aは楕円球面形状であって内面が音波反射鏡であるので、一方の焦点に集光された検査光で発生した音波は音波反射鏡で反射して測定試料室212aの集音板220側の焦点に集まることになる。測定試料室212aの集音板220側の焦点と測定音波出射点215aとが一致しており、測定試料室212a内で発生した音波は、測定音波出射点215aから測定音波Saとして音響伝搬槽に出射される。測定音波出射点215aにスリット291を設けてもよい。
図10は、音波検出器113を説明する概略図である。音波検出器113は圧電エレメント281、受音板282、及び音波整合層283を持つ。圧電エレメント281は共振特性を利用した狭帯域型を用いる。圧電エレメント281の共振周波数とパルス発生器153の駆動電圧のパルス周波数とを一致させることで音波の検出感度を高めることができる。圧電エレメント281は音波を受ける受音板282と接触している。さらに受音板282と音響伝搬槽内の音波伝搬媒体221との間に音響インピーダンスを整合する音波整合層283を持つ。例えば、音波伝搬媒体221がポリジメチルシロキサン(PDMS)である場合、音波整合層283はアクリルとすることができる。また、音波整合層283にシリコンゴムの音響レンズ118を設けてもよい。音響レンズ118は、音波検出器113の指向性で決まる受音角を広げ、音響伝搬槽内からより多くの音波を検出できるため、音波検出感度を高めることができる。
図8の成分濃度分析装置の動作を詳細に説明する。参照試料室212b内に水を入れ、測定試料室212a内に未知のグルコース水溶液を入れる。光レンズ(217a、217b)は、可変波長光源101からの検査光の径を直径2mm程度のガウシアンプロファイルを持つフォーカスビームヘと変換する。測定試料や参照試料の大きさは検査光のエネルギーを略吸収する吸収長以上であることが好ましい。このため、測定試料室212aや参照試料室212bの大きさは楕円球面形状の焦点間の方向に吸収長以上の大きさとした。また、不要な多重光反射による雑音を防ぐために、ガラス窓292には反射防止膜を形成しておくことが好ましく、上記波長帯で1%以下の反射率となるようにした。
測定試料から発生した測定音波Saと参照試料から発生した参照音波Sbは集音板220で反射され、音響レンズ118に集中する。音波検出器113は、測定音波Sa及び参照音波Sbとの差分の音圧に比例した電気信号に変換する。前置増幅器115はこの電気信号を増幅する。パルス発生器153と同期した位相検波器121は増幅された電気信号の振幅を計測する。
位相検波器121の積分時間は波長掃引速度に依存し、1/3秒とした。測定試料の球光度スペクトルと参照試料の吸光度スペクトルとの差分は、例えば波長1.6μmでは、およそ0.12mVと記録器130に記録された。記録器130に記録された測定試料の球光度スペクトルと参照試料の吸光度スペクトルとの差分のスペクトルデータに対して、記録器130は、予め計測しておいた波長ごとに照射される光パワーのパワー補正を除算によって行った。記録器130は、補正後のスペクトルデータを一次微分演算し、異なるグルコース濃度(0〜2g/dL、100mg/dL間隔)に対して検量用スペクトルデータを用いた多変量解析アルゴリズムで処理し、グルコース成分濃度を150mg/dLと算出した。
本発明に係る成分濃度分析装置及び成分濃度分析方法は、液体中の成分濃度を測定する分野、例えば果実の糖度測定に適用することができる。また、本発明に係る成分濃度分析装置及び成分濃度分析方法は、日常の健康管理や美容上のチェックに利用することができる。また、人間ばかりでなく、動物についても健康管理に利用することができる。
101:可変波長光源
103:発振器
113:音波検出器
115:前置増幅器
118:音響レンズ
121:位相検波器
130:記録器
153:パルス発生器
201:光スイッチ
205a、205b:光ファイバ
253:音響光学変調器
211a、211b:試料容器
212a:測定試料室
212b:参照試料室
215a:測定音波出射点
215b:参照音波出射点
217a:測定試料レンズ
217b:参照試料レンズ
220:集音板
221:音波伝搬媒体
222:筐体
223:フタ
281:圧電エレメント
282:受音板
283:音波整合層
291:スリット
292:ガラス窓
601:第1光源
602:第2光源
603:発振器
604:駆動回路
605:遅延調整器
606:参照信号線
610a:測定試料
610b:参照試料
613、613a、613b:音波検出器
615、615a、615b:前記増幅器
616:光合波器
617:パルス光源
621:波形観測機
625:差動増幅器
630:記録器

Claims (10)

  1. 検査光を2分岐し、一方を測定試料に照射し、光音響効果で発生した測定音波を測定音波出射点から出射させ、他方を参照試料に照射し、光音響効果で発生した参照音波を参照音波出射点から出射させる光照射手段と、
    前記光照射手段で出射させた前記測定音波及び前記参照音波を、前記測定音波出射点からの音波伝搬距離と前記参照音波出射点からの音波伝搬距離とが等しい位置にある1つの音波検出器で検出する音波検出手段と、
    を備える成分濃度分析装置。
  2. 前記音波検出手段は、それぞれの焦点の一方を共通するように2つの半楕円球面を連結させた形状の音波反射鏡で形成された集音板を有し、前記2つの半楕円球面の他方の焦点をそれぞれ前記測定音波出射点及び前記参照音波出射点とし、前記集音板のうち前記測定音波出射点側の半楕円球面で反射した前記測定音波及び前記参照音波出射点側の半楕円球面で反射した前記参照音波を前記2つの半楕円球面の共通する焦点に配置した前記音波検出器で検出することを特徴とする請求項1に記載の成分濃度分析装置。
  3. 前記音波検出手段の前記音波検出器は、音響レンズを介して前記測定音波及び前記参照音波を検出することを特徴とする請求項1又は2に記載の成分濃度分析装置。
  4. 前記光照射手段は、
    内面が音波反射鏡で形成されている楕円球面形状の焦点の一方を前記測定音波出射点とし、内部に前記測定試料を配置する測定試料室と、
    内面が音波反射鏡で形成されている楕円球面形状の焦点の一方を前記参照音波出射点とし、内部に前記参照試料を配置する参照試料室と、
    を有することを特徴とする請求項1から3のいずれかに記載の成分濃度分析装置。
  5. 前記光照射手段は、
    前記測定試料室の前記楕円球面形状の焦点の他方に前記検査光を集光する測定試料レンズと、
    前記参照試料室の前記楕円球面形状の焦点の他方に前記検査光を集光する参照試料レンズと、
    をさらに有することを特徴とする請求項4に記載の成分濃度分析装置。
  6. 検査光を2分岐し、一方を測定試料に照射し、光音響効果で発生した測定音波を測定音波出射点から出射させ、他方を参照試料に照射し、光音響効果で発生した参照音波を参照音波出射点から出射させる光照射手順と、
    前記光照射手順で出射させた前記測定音波及び前記参照音波を、前記測定音波出射点からの音波伝搬距離と前記参照音波出射点からの音波伝搬距離とが等しい位置で検出する音波検出手順と、
    を備える成分濃度分析方法。
  7. 前記音波検出手順で、それぞれの焦点の一方を共通するように2つの半楕円球面を連結させた形状の音波反射鏡で形成された集音板を用い、前記2つの半楕円球面の他方の焦点をそれぞれ前記測定音波出射点及び前記参照音波出射点とし、前記集音板のうち前記測定音波出射点側の半楕円球面で反射した前記測定音波及び前記参照音波出射点側の半楕円球面で反射した前記参照音波を前記2つの半楕円球面の共通する焦点で検出することを特徴とする請求項6に記載の成分濃度分析方法。
  8. 前記音波検出手順で、音響レンズを介して前記測定音波及び前記参照音波を検出することを特徴とする請求項6又は7に記載の成分濃度分析方法。
  9. 前記光照射手順で、
    内面が音波反射鏡で形成されている楕円球面形状の焦点の一方を前記測定音波出射点とする測定試料室に前記測定試料を配置し、
    内面が音波反射鏡で形成されている楕円球面形状の焦点の一方を前記参照音波出射点とする参照試料室に前記参照試料を配置する
    ことを特徴とする請求項6から8のいずれかに記載の成分濃度分析方法。
  10. 前記光照射手順で、
    前記測定試料室の前記楕円球面形状の焦点の他方に前記検査光を集光し、
    前記参照試料室の前記楕円球面形状の焦点の他方に前記検査光を集光する
    ことを特徴とする請求項9に記載の成分濃度分析方法。
JP2009090468A 2009-04-02 2009-04-02 成分濃度分析装置及び成分濃度分析方法 Expired - Fee Related JP5313016B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009090468A JP5313016B2 (ja) 2009-04-02 2009-04-02 成分濃度分析装置及び成分濃度分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009090468A JP5313016B2 (ja) 2009-04-02 2009-04-02 成分濃度分析装置及び成分濃度分析方法

Publications (2)

Publication Number Publication Date
JP2010243262A true JP2010243262A (ja) 2010-10-28
JP5313016B2 JP5313016B2 (ja) 2013-10-09

Family

ID=43096434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090468A Expired - Fee Related JP5313016B2 (ja) 2009-04-02 2009-04-02 成分濃度分析装置及び成分濃度分析方法

Country Status (1)

Country Link
JP (1) JP5313016B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020089030A1 (en) * 2018-10-29 2020-05-07 Ithera Medical Gmbh Device for optoacoustic imaging and corresponding control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317566A (ja) * 1993-05-06 1994-11-15 Hitachi Ltd 光音響分析方法および装置並びにこれを利用した血液成分測定装置
JP2004147940A (ja) * 2002-10-31 2004-05-27 Toshiba Corp 非侵襲の生体情報計測方法及び生体情報計測装置
JP2007259913A (ja) * 2006-03-27 2007-10-11 Nippon Telegr & Teleph Corp <Ntt> 成分濃度測定装置及び成分濃度測定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317566A (ja) * 1993-05-06 1994-11-15 Hitachi Ltd 光音響分析方法および装置並びにこれを利用した血液成分測定装置
JP2004147940A (ja) * 2002-10-31 2004-05-27 Toshiba Corp 非侵襲の生体情報計測方法及び生体情報計測装置
JP2007259913A (ja) * 2006-03-27 2007-10-11 Nippon Telegr & Teleph Corp <Ntt> 成分濃度測定装置及び成分濃度測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020089030A1 (en) * 2018-10-29 2020-05-07 Ithera Medical Gmbh Device for optoacoustic imaging and corresponding control method

Also Published As

Publication number Publication date
JP5313016B2 (ja) 2013-10-09

Similar Documents

Publication Publication Date Title
CN106535760B (zh) 非侵入性物质分析
JPWO2007034802A1 (ja) 弾性粘性測定装置
JP4963482B2 (ja) 成分濃度測定装置及び成分濃度測定方法
JP4490386B2 (ja) 成分濃度測定装置
JP4444227B2 (ja) 成分濃度測定装置及び成分濃度測定方法
JP4901432B2 (ja) 成分濃度測定装置
JP4531632B2 (ja) 生体成分濃度測定装置及び生体成分濃度測定装置の制御方法
WO2011152747A1 (en) Photoacoustic material analysis
JP5947761B2 (ja) 成分濃度分析装置及び成分濃度分析方法
JP5400483B2 (ja) 成分濃度分析装置及び成分濃度分析方法
JP4477568B2 (ja) 成分濃度測定装置及び成分濃度測定装置制御方法
JP5313016B2 (ja) 成分濃度分析装置及び成分濃度分析方法
JP4914330B2 (ja) 成分濃度測定装置
JP2018013417A (ja) 成分濃度測定装置および方法
JP4902508B2 (ja) 成分濃度測定装置及び成分濃度測定装置制御方法
RU2435514C1 (ru) Способ фотоакустического анализа материалов и устройство для его реализации
JP5345439B2 (ja) 成分濃度分析装置及び成分濃度分析方法
JP4773390B2 (ja) 成分濃度測定装置
JP2007089662A (ja) 成分濃度測定装置
JP6080004B2 (ja) パラメータ計測装置、パラメータ計測方法、及びプログラム
JP2008125543A (ja) 成分濃度測定装置
JP2019015685A (ja) 成分濃度測定装置および分析方法
JP7110972B2 (ja) 成分濃度測定装置
JP7127530B2 (ja) 成分濃度測定装置
WO2019244559A1 (ja) 成分濃度測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5313016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees