JP2010240630A - Deodorization apparatus - Google Patents
Deodorization apparatus Download PDFInfo
- Publication number
- JP2010240630A JP2010240630A JP2009103375A JP2009103375A JP2010240630A JP 2010240630 A JP2010240630 A JP 2010240630A JP 2009103375 A JP2009103375 A JP 2009103375A JP 2009103375 A JP2009103375 A JP 2009103375A JP 2010240630 A JP2010240630 A JP 2010240630A
- Authority
- JP
- Japan
- Prior art keywords
- filter
- discharge
- odor
- discharge electrode
- adsorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
本発明は動物飼育施設、下水処理場施設、ごみ処理施設、魚肉類保管施設などの処理施設などから発生するガス中の不快な臭気成分を効率よく除去できるようにした脱臭装置。 The present invention is a deodorizing apparatus capable of efficiently removing unpleasant odor components in gas generated from processing facilities such as animal breeding facilities, sewage treatment facilities, garbage processing facilities, and fish storage facilities.
動物飼育施設、下水処理場施設、ごみ処理施設、魚肉類保管施設などの処理施設などから発生する臭気ガスは環境の高まりから、それらの施設より屋外へと排出される臭気を効率よく除去する確実な脱臭の要求が求められている。特に、臭気ガスには臭気成分としてアンモニア、モノメチルアミン、トリメチルアミンなどの塩基性成分や硫化水素、硫化メチル、メチルメルカプタンなどの硫黄系あるいはVOC、他有機系臭気成分が含まれているため、これらの臭気成分を除去する必要がある。 Odor gas generated from animal breeding facilities, sewage treatment facilities, waste treatment facilities, fish meat storage facilities, etc. is surely removed from those facilities to the outdoors due to the increased environment. There is a need for deodorization. In particular, the odor gas contains basic components such as ammonia, monomethylamine, and trimethylamine, and sulfur-based or VOC such as hydrogen sulfide, methyl sulfide, and methyl mercaptan, and other organic odor components. It is necessary to remove odor components.
これらの臭気成分を含む臭気ガスの脱臭方法としては、活性炭吸着法、薬液洗浄法、生物脱臭法、オゾン脱臭法、光触媒法など各種のものが知られており、最近では活性炭吸着法、光触媒法が多く用いられている。活性炭吸着法は臭気成分を含有した被処理ガスの流通路を横切る形で、活性炭あるいは薬品を添着した添着活性炭を充填した塔あるいは層を配置し臭気ガス中の臭気成分を吸着除去する方法である。また光触媒法はセラミック製ハニカムに光触媒薄膜をつけたハニカム体を配置し臭気ガス中の臭気成分を吸着除去する方法である。 Various methods such as activated carbon adsorption method, chemical solution cleaning method, biological deodorization method, ozone deodorization method and photocatalyst method are known as deodorization methods of odor gas containing these odor components. Recently, activated carbon adsorption method and photocatalyst method are used. Is often used. The activated carbon adsorption method is a method of adsorbing and removing odorous components in odorous gas by placing a tower or layer filled with activated carbon or impregnated activated carbon impregnated with chemicals across the flow path of the gas to be treated containing odorous components. . The photocatalytic method is a method in which a honeycomb body having a photocatalytic thin film attached to a ceramic honeycomb is disposed to adsorb and remove odor components in odor gas.
しかし活性炭吸着法は一般にイニシャルコストは比較的安く、臭気成分の除去は比較的確実であるが、臭気成分の濃度によっては吸着剤の交換を頻繁に行う必要があることから、ランニングコストに費用がかかり過ぎることが懸念されている。 However, the activated carbon adsorption method generally has a relatively low initial cost and the removal of odorous components is relatively reliable. However, depending on the concentration of the odorous components, it is necessary to frequently change the adsorbent, which increases the running cost. There is concern about taking too much.
一方、光触媒法は反応分解速度が遅く、出口ガス濃度が高くなったり、また触媒面に水分が付着したり、硫黄などが付着したりして触媒が劣化し性能が低下してしまうという問題を有している。 On the other hand, the photocatalytic method has a problem that the reaction decomposition rate is slow, the outlet gas concentration becomes high, moisture adheres to the catalyst surface, sulfur adheres to the catalyst, and the performance deteriorates. Have.
また、最近では上記脱臭とは異なる新しい方法として、放電を利用したプラズマ脱臭法が検討されている。この方法は被処理ガスがプラズマ放電極を通過した時点で、放電極から発生した活性なラジカルによって臭気成分を酸化分解し、脱臭しょうとしたものである。 Recently, a plasma deodorization method using electric discharge has been studied as a new method different from the above deodorization. In this method, when the gas to be treated passes through the plasma discharge electrode, the odorous component is oxidized and decomposed by active radicals generated from the discharge electrode to deodorize it.
しかし、この方式では未反応の臭気成分が放電極を通過してしまったり、放電によって放電極に硫酸アンモニウム、硝酸アンモニウムなどの分解困難な物質が多く付着してしまって、プラズマ放電による活性なラジカルの発生が十分でなく、このため臭気成分の酸化分解が難しくなって、脱臭が十分でないといった問題があった。 However, in this method, unreacted odor components pass through the discharge electrode, or a large amount of difficult-to-decompose substances such as ammonium sulfate and ammonium nitrate adhere to the discharge electrode due to discharge, generating active radicals due to plasma discharge. Therefore, there is a problem that oxidative decomposition of odor components becomes difficult and deodorization is not sufficient.
そこで本発明はこれらの課題を解決しょうとしたもので、第1の目的は動物飼育施設、下水処理場施設、ごみ処理施設などの処理施設から発生する比較的濃度の高い複合臭を脱臭しようとしたものである。 Accordingly, the present invention is intended to solve these problems, and a first object is to deodorize a complex odor generated at a relatively high concentration generated from a treatment facility such as an animal breeding facility, a sewage treatment plant facility, or a waste treatment facility. It is a thing.
もう一つの本発明の目的は処理施設から発生する比較的濃度の高い複合臭に対し優れた脱臭効果を発揮すると共に運転コストの低減を図ったものである。 Another object of the present invention is to achieve an excellent deodorizing effect on a complex odor generated at a relatively high concentration from a treatment facility and to reduce the operating cost.
もう一つの本発明の目的は処理施設から発生する複合臭に含まれたちりやほこりを除去しょうとしたものである。 Another object of the present invention is to remove dust and dirt contained in a complex odor generated from a treatment facility.
もう一つの本発明の目的は除菌効果と付着菌・カビなどの抗菌・殺菌効果をそなえることにより、カビ・他の微生物類の除去と殺菌・脱臭効果を可能にしょうとしたものである。 Another object of the present invention is to provide an antibacterial effect and an antibacterial and bactericidal effect on adhering bacteria and fungi, thereby enabling the removal of fungi and other microorganisms and the bactericidal and deodorizing effect.
もう一つの本発明の目的は長時間に亘って優れた脱臭性能を維持することができるようにしたものである。 Another object of the present invention is to maintain an excellent deodorizing performance for a long time.
本発明の第1の解決手段は、吸込み口と吹出し口を形成したハウジング内にプレフィルタとプラズマを発生する放電極と放電極の汚れを洗浄して再生する洗浄ノズルと吸着フィルタ設けて構成したことを特徴とする脱臭装置を提供しょうとしたものである。 The first solving means of the present invention comprises a pre-filter, a discharge electrode for generating plasma, a cleaning nozzle for cleaning and regenerating dirt from the discharge electrode, and an adsorption filter in a housing in which a suction port and a discharge port are formed. An attempt is made to provide a deodorizing device characterized by this.
本発明の第2の解決手段は、プラズマを発生する放電極と吸着フィルタとの間に中性能フィルタあるいは触媒フィルタを配置したことを特徴としたものである。 The second solving means of the present invention is characterized in that a medium performance filter or a catalyst filter is disposed between the discharge electrode for generating plasma and the adsorption filter.
ここで放電極は、ガス中の分子や電子に極短パルスまたは高周波の高電界を印可して電子のみを加速して電子なだれを発生させることで得られるイオンや電子を豊富に含むガスの状態すなわちプラズマを発生する機能を有している。そして電極に送られた臭気ガス中で高圧放電により解離エネルギーを与えることによりラジカルを発生させる。すなわち、放電により空気中に放出された電子が酸素、水分、臭気ガス中の気体分子に衝突し分子を活性化させる。その活性分子の一部は解離してラジカルとなり、臭気ガス中の臭気成分を酸化分解したり、あるいはオゾンを発生させるものと考えられる。ラジカルにより生成されたオゾンも臭気成分の処理に貢献するものと考えられる。また、放電そのものの有するエネルギーによっても臭気成分の酸化分解が行われる。 Here, the discharge electrode is a state of a gas rich in ions and electrons obtained by applying an ultrashort pulse or a high-frequency high electric field to molecules and electrons in the gas to accelerate only the electrons to generate an avalanche. That is, it has a function of generating plasma. Then, radicals are generated by applying dissociation energy by high-pressure discharge in the odor gas sent to the electrode. That is, electrons released into the air by discharge collide with gas molecules in oxygen, moisture, and odor gas to activate the molecules. Some of the active molecules are dissociated into radicals, which are considered to oxidize and decompose odor components in odor gas or generate ozone. Ozone generated by radicals is also considered to contribute to the treatment of odor components. Moreover, the oxidative decomposition of the odor component is also performed by the energy of the discharge itself.
放電極にはパルス放電極式と沿面放電極式の2種類あり、パルス放電極式は大容量の臭気ガスに適用され、その原理は空間放電によって発生するプラズマ中に臭気ガスを通過させることで、臭気分子に直接電子が作用し臭気分子を直接分解すると共にプラズマで生成されたラジカルによっても臭気分子が直接分解される。さらに、ラジカルと同時にオゾンも生成されこのオゾンによって臭気成分が強烈に酸化分解される。 There are two types of discharge electrodes, the pulse discharge electrode type and the creeping discharge electrode type. The pulse discharge electrode type is applied to large-capacity odor gas, and its principle is that the odor gas is passed through the plasma generated by the spatial discharge. Electrons directly act on the odor molecules to directly decompose the odor molecules, and the odor molecules are also directly decomposed by radicals generated by plasma. Furthermore, ozone is also generated at the same time as radicals, and odor components are intensely oxidized and decomposed by this ozone.
次に、沿面放電極式は小容量の臭気ガスに適用され、その原理は誘電体に沿った沿面放電によって発生するプラズマで生成されたラジカルが臭気分子に直接作用し臭気分子を直接分解する。さらに、ラジカルと同時にオゾンも生成されこのオゾンによって臭気分子が強烈に酸化分解される。 Next, the creeping discharge electrode type is applied to a small-capacity odor gas, and the principle thereof is that radicals generated by plasma generated by creeping discharge along the dielectric act directly on the odor molecules to directly decompose the odor molecules. Furthermore, ozone is also generated at the same time as radicals, and odor molecules are intensely oxidized and decomposed by this ozone.
さらに放電極に向かって複数個の洗浄ノズルが配置され、放電極の放電により生じた活性ガスと酸化反応したときに、硫黄が析出したり塩が生じ、しかもこれらの物質はガスとして離脱せずに電極上に残留するため、電極自身の処理能力が低下し脱臭効果が落ちるのを防止するため、電極に洗浄液を噴出し電極面を洗浄するようになっている。 Furthermore, a plurality of cleaning nozzles are arranged toward the discharge electrode, and when it reacts with the active gas generated by the discharge of the discharge electrode, sulfur is precipitated and salt is formed, and these substances do not leave as gas. Therefore, in order to prevent the processing capability of the electrode itself from being reduced and the deodorizing effect from being lowered, a cleaning liquid is jetted onto the electrode to clean the electrode surface.
次に吸着フィルタは直方形状の中空枠と中空枠の内部に気密にジグザグ状に取り付けた吸着パネルから構成されている。 Next, the adsorption filter is composed of a rectangular hollow frame and an adsorption panel attached in an airtight manner in a zigzag manner inside the hollow frame.
また、吸着パネルは四辺形枠の両面にパンチング板を貼着して構成したパネルケースに吸着剤を充填して構成したものである。 Further, the adsorption panel is constructed by filling an adsorbent into a panel case constituted by sticking a punching plate on both sides of a quadrilateral frame.
そして、吸着パネルへの吸着剤の取替えはパネルケースの上方を蓋にして、上方から吸着剤を出し入れするようになっている。 Then, replacement of the adsorbent into the adsorbing panel is performed with the upper side of the panel case as a lid, and the adsorbent is taken in and out from above.
さらに吸着剤は基材にグラフト重合や薬品添着によりイオン交換基が付与された粒状あるいは微粒子状をなしている。基材としては吸着性のある物質でイオン交換基をグラフト重合できるもので良く、例えば活性炭、シリカゲル、ゼオライトといった無機質多孔性体や、バルブ、高分子多孔性体などの有機質多孔性体などが採用される。また繊維状活性炭、イオン交換不織布なども採用される。 Further, the adsorbent is in the form of particles or particles in which ion exchange groups are added to the base material by graft polymerization or chemical addition. The substrate may be an adsorptive substance that can graft polymerize ion exchange groups. For example, inorganic porous materials such as activated carbon, silica gel, and zeolite, and organic porous materials such as valves and polymer porous materials are used. Is done. In addition, fibrous activated carbon, ion exchange nonwoven fabric and the like are also employed.
また、イオン交換基としては、酸性ガスや酢酸ガスなどの有機酸を化学的に吸着するアニオン交換基とアンモニアなどのアルカリ性ガスを吸着するカチオン交換基が挙げられる。そして、アニオン交換基は強塩基性の4級アンモニウム基、弱塩基性の4級アンモニウム基、弱塩基性の3級アミン、2級アミン、苛性ソーダなどが使用され、カチオン交換基はスルホン酸基、カルボキシル基、リン酸基、水酸化カリウムなどが使用される。 Examples of ion exchange groups include anion exchange groups that chemically adsorb organic acids such as acid gas and acetic acid gas, and cation exchange groups that adsorb alkaline gas such as ammonia. The anion exchange group is a strongly basic quaternary ammonium group, a weakly basic quaternary ammonium group, a weakly basic tertiary amine, a secondary amine, or caustic soda. The cation exchange group is a sulfonic acid group, A carboxyl group, a phosphate group, potassium hydroxide, etc. are used.
これらの交換基を基材にグラフト重合する方法としては、従来公知のグラフト重合法が採用でき、例えば紫外線あるいはプラズマ、電離線などを照射して基材にラジカルを発生させ、所定の交換基を重合させて形成することができる。 As a method for graft polymerization of these exchange groups onto a substrate, a conventionally known graft polymerization method can be employed. For example, a radical is generated on the substrate by irradiation with ultraviolet rays, plasma, ionizing radiation, etc., and a predetermined exchange group is formed. It can be formed by polymerization.
さらに前記ハウジングの臭気ガス吸込み口にはプレフィルタがフィルタ保持枠に係止ツメなどを介して取り付けられている。 Further, a pre-filter is attached to the filter holding frame via a locking claw or the like at the odor gas suction port of the housing.
そして、そのプレフィルタはガラス繊維あるいは不織布あるいはポリエステル繊維、ポリアミド繊維、ポリオレフィン繊維、レーヨン繊維などの合成繊維を湿式抄紙法や乾式法、スパンボンド法、メルトブロー法などで形成した1枚の濾材シートをフィルタ枠に取り付けたものである。また、前記プレフィルタは平均除じん効率が重量法で60〜90%であることが望ましい。 The prefilter is a sheet of filter media formed of glass fiber, nonwoven fabric, or synthetic fiber such as polyester fiber, polyamide fiber, polyolefin fiber, or rayon fiber by a wet papermaking method, dry method, spunbond method, melt blow method, or the like. It is attached to the filter frame. The prefilter desirably has an average dust removal efficiency of 60 to 90% by weight.
さらに中性能フィルタは繊維径が6μm以下(中心繊維径:3.5μm前後)で且つ繊維重量の93重量%以上のガラス繊維あるいは不織布あるいはポリエステル繊維、ポリアミド繊維、ポリオレフィン繊維、レーヨン繊維などの合成繊維の単独あるいは適宜混合して湿式抄紙法や乾式法、スパンボンド法、メルトブロー法などで形成した1枚の濾材シートをジグザグ状に折り畳んでフィルタ濾材とし、この濾材間に適宜材質のセパレータを挟んだりジグザグ状に折り畳んだろ材間に塗布したビードでろ材同志が密着しないように剛性をもたせて固定し上下にパッキンを取り付けて気密性を持たせてセル型に形成したものである。そして前記高性能フィルタの濾材シートはシートの厚みが0.2〜2.0mmで、粒径0.3μmの粒子に対して30〜70%の捕集効率を有したものが好ましい。また重量法60〜70%のフィルタを目的に応じて使用しても良い。 Furthermore, the medium-performance filter has a fiber diameter of 6 μm or less (center fiber diameter: around 3.5 μm) and a synthetic fiber such as glass fiber, nonwoven fabric, polyester fiber, polyamide fiber, polyolefin fiber, or rayon fiber having a weight of 93% by weight or more. A single filter medium sheet formed by wet papermaking, dry process, spunbond process, melt blow process, etc., can be folded in a zigzag shape to form a filter medium, and appropriate separators can be sandwiched between the filter medium. It is formed in a cell shape with a bead applied between filter media folded in a zigzag shape so that the filter media are rigidly fixed so that they are not in close contact, and packing is attached up and down to provide airtightness. The filter sheet of the high-performance filter preferably has a sheet thickness of 0.2 to 2.0 mm and a collection efficiency of 30 to 70% with respect to particles having a particle diameter of 0.3 μm. Moreover, you may use the filter of a gravimetric method 60 to 70% according to the objective.
上記効率や数字は各段のフィルタ配置によって種々変更されても何ら要旨を変更するものではない。 Even if the efficiency and numbers are variously changed depending on the filter arrangement of each stage, the gist is not changed.
さらに、触媒フィルタは常温金属触媒や吸着剤を主原料に用いた無数の微細孔を有するセラミック体をハニカム状に成形・焼成したもので、セラミック体をハニカム状に成形することで、臭気成分の接触面積の10倍以上になり、これにより臭気ガスを通気するだけで効率よく脱臭することができる。さらに主原料である吸着剤が有するものでさまざまな大きさの臭気成分を補足・吸着し、臭気が高負荷のときは臭気を一担補足し、低負荷のときは徐々に分解あるいは希釈放出作用を促す。そして脱臭のしくみは、通気中に含まれる臭気成分がフィルター面に接触し微細孔に吸収されると、ラジカルあるいは材料中の触媒作用により酸化分解が行われ、無臭・低臭気成分に変化する。これらは徐々に微細孔から放出されフィルター表面は再び臭気成分の吸収・分解が行われる。 Furthermore, the catalyst filter is a ceramic body with countless fine pores that uses a room temperature metal catalyst or an adsorbent as the main raw material, and is molded and fired into a honeycomb. Since the contact area is 10 times or more, the deodorization can be efficiently performed only by ventilating the odor gas. In addition, the adsorbent, which is the main raw material, captures and adsorbs odor components of various sizes. When the odor is high load, it supplements the odor. When the load is low, it gradually decomposes or dilutes and releases. Prompt. In the deodorization mechanism, when the odorous component contained in the aeration comes into contact with the filter surface and is absorbed by the fine pores, it undergoes oxidative decomposition by radicals or catalytic action in the material, and changes to an odorless / low odorous component. These are gradually released from the micropores, and the filter surface is again absorbed and decomposed by odor components.
上記課題解決手段による作用は次の通りである。まず、動物飼育施設や下水処理場施設などの施設から発生した臭気ガスは別に配置された送風機の吸気運転によりハウジングの吸込み口よりプレフィルタを経由してハウジング内へ吸入される。ここで臭気ガス中に含まれたごみやちりなどはプレフィルタにて除去される。そしてごみやちりなどが除去された臭気成分は数KVの高電圧に印可された放電極を通過する。この時、放電極からはコロナ放電が発生しプラズマ状態が作り出されているため、悪臭ガスは発生した酸素ラジカルや水酸基ラジカルによって酸化分解され清浄空気となる。しかし、それでも通り抜ける悪臭ガスは吸着フィルタに吸着され確実な清浄空気となってハウジングの吹出し口より排出される。そして、放電を繰り返すことにより放電極に汚染物が付着し放電現象が起こりにくくなってくるが、放電極の直近に洗浄ノズルを配置しているので、洗浄ノズルを駆動することにより放電極の洗浄再生が確実に行われる。以上のような操作を繰り返すことにより汚染源から発生する臭気ガスの脱臭および除じんが確実に行われる。 The effect | action by the said problem-solving means is as follows. First, odor gas generated from facilities such as an animal breeding facility and a sewage treatment plant facility is sucked into a housing through a pre-filter from a suction port of the housing by an intake operation of a separately disposed blower. Here, dust or dust contained in the odor gas is removed by a pre-filter. The odor component from which dust and dust are removed passes through a discharge electrode applied with a high voltage of several KV. At this time, since a corona discharge is generated from the discharge electrode and a plasma state is created, the malodorous gas is oxidized and decomposed into clean air by the generated oxygen radicals and hydroxyl radicals. However, the malodorous gas that still passes through is adsorbed by the adsorption filter and becomes reliable clean air and is discharged from the outlet of the housing. And by repeating the discharge, contaminants adhere to the discharge electrode and the discharge phenomenon is less likely to occur. However, since the cleaning nozzle is arranged in the immediate vicinity of the discharge electrode, the discharge electrode can be cleaned by driving the cleaning nozzle. Regeneration is ensured. By repeating the above operation, the odor gas generated from the contamination source is surely deodorized and removed.
下水処理場施設、ごみ処理施設などの比較的高濃度の複合臭、また臭気濃度の変動が大きい処理施設から発生する悪臭ガスの場合、放電極と吸着フィルタの間に触媒フィルタを介在して配置することにより放電部で処理しきれなかった未反応の臭気成分を触媒フィルタに吸着し、この触媒フィルタに吸着された臭気成分に前記放電で生じた活性分子を反応させて臭気成分との酸化反応を促進させることで、脱臭効率を高めるようにしている。 In the case of complex odors with relatively high concentrations, such as sewage treatment plants and waste treatment facilities, and malodorous gases generated from treatment facilities with large fluctuations in odor concentration, a catalyst filter is placed between the discharge electrode and the adsorption filter. By adsorbing unreacted odor components that could not be treated in the discharge part to the catalyst filter, the odor components adsorbed on the catalyst filter are reacted with active molecules generated in the discharge to oxidize the odor components. The deodorization efficiency is improved by promoting the above.
動物飼育施設から発生する臭気ガスの場合は動物自体の臭気と動物のし尿にもとづくため、臭気ガス中に粘着性のごみやちりなどが多く含まれていることから放電極と吸着フィルタの間に中性能フィルタを設け、吸着フィルタの寿命を延ばすと共に臭気ガスの脱臭および除じんがより確実に行われるようにしている。 Odor gas generated from animal breeding facilities is based on the animal's own odor and animal excreta, so the odor gas contains a lot of sticky debris and dust. An intermediate performance filter is provided to extend the life of the adsorption filter and to more reliably perform deodorization and dust removal of odor gas.
上述したように、本発明の脱臭装置は次のような効果が得られる。
(1)本発明の脱臭装置は吸込み口と吹出し口を形成したハウジング内にプレフィルタとプラズマを発生する放電極と放電極の汚れを洗浄して再生する洗浄ノズルおよび吸着フィルタとから構成したので、構造が非常に簡単に出来ていて取り扱いが容易である上、設置スペースを小さくでき現地設置の簡素化が図れる。
(2)高濃度で且つ臭気濃度の変動が大きい処理施設の臭気ガスに対しても脱臭効果がより確実である。
(3)臭気成分を放電で発生させたプラズマ作用でのラジカル、オゾンによって酸化分解するので、脱臭多成分に有効である上、殺菌効果があることからカビ、細菌類、有害ガス対策にも好適である。
(4)放電極の汚れを洗浄再生する洗浄ノズルを設けたので、脱臭装置の放電極の脱臭性能を長期に維持させることができる。
(5)脱臭装置の運転はスイッチのオン/オフのみであり、運転操作は非常に容易である。また吸着フィルタの交換も従来に比べ何倍も持つようになり、ランニングコストも安くなる上、低運転コストで長期間安定した処理を行うことができる。
(6)脱臭装置の運転を停止している間も特性劣化がなく常に安定した性能で運転できる。
(7)放電極と吸着フィルタの間に中性能フィルタを設けたので、臭気ガス中にごみやちりなどが多く含まれていても、吸着フィルタの寿命が延びると共に脱臭および除じんが確実である。
(8)放電極と吸着フィルタの間に触媒フィルタを設けたので、複合および高濃度の臭気ガスが含まれていても吸着フィルタの寿命が延びると共に臭気ガスの脱臭および除じんが確実である。As described above, the deodorizing apparatus of the present invention has the following effects.
(1) Since the deodorizing apparatus of the present invention is composed of a prefilter, a discharge electrode for generating plasma, a cleaning nozzle for cleaning and regenerating dirt from the discharge electrode, and an adsorption filter in a housing in which a suction port and a discharge port are formed. In addition, the structure is very simple and easy to handle, and the installation space can be reduced, simplifying local installation.
(2) The deodorizing effect is more reliable even for odor gas in a processing facility having a high concentration and a large variation in odor concentration.
(3) Oxidation and decomposition by radicals and ozone in the plasma action generated by the discharge of odor components, so it is effective as a deodorizing multi-component and also has a bactericidal effect, so it is also suitable for measures against mold, bacteria, and harmful gases It is.
(4) Since the cleaning nozzle for cleaning and regenerating dirt on the discharge electrode is provided, the deodorization performance of the discharge electrode of the deodorization apparatus can be maintained for a long time.
(5) The operation of the deodorizing device is only on / off of the switch, and the operation is very easy. Further, the adsorption filter can be replaced many times as compared with the conventional one, the running cost is reduced, and stable treatment can be performed for a long time at a low operation cost.
(6) While the operation of the deodorizing device is stopped, there is no characteristic deterioration and the device can always be operated with stable performance.
(7) Since a medium performance filter is provided between the discharge electrode and the adsorption filter, the life of the adsorption filter is extended and deodorization and dust removal are ensured even if the odor gas contains a lot of dust or dust. .
(8) Since the catalyst filter is provided between the discharge electrode and the adsorption filter, the life of the adsorption filter is extended and the deodorization and dust removal of the odor gas are ensured even if complex and high-concentration odor gas is contained.
以下本発明の脱臭装置について図面を参照して詳細に説明する。 Hereinafter, the deodorizing apparatus of the present invention will be described in detail with reference to the drawings.
動物飼育施設から発生する臭気ガスの脱臭の場合について図1を参照して説明する。1はハウジングで、ハウジング1の一端に吸込み口2、他端に吹出し口3が形成されている。吹出し口3にはプレフィルタ4が取り付けられている。 The case of deodorizing odorous gas generated from an animal breeding facility will be described with reference to FIG.
5は臭気ガス通路中に取り付けた円柱形状の放電極、放電極は数KVの高電圧を印加されることによりコロナ放電を発生させてプラズマ状態を作り出す機能をもっている。 5 is a cylindrical discharge electrode installed in the odor gas passage, and the discharge electrode has a function of generating a corona discharge by applying a high voltage of several KV to create a plasma state.
放電極5の前方には放電極5の汚れを洗浄する洗浄ノズル6が複数個取り付けられている。洗浄ノズル6は供給ポンプによって配管を通して水などの液体を噴出するようになっている。 A plurality of cleaning
放電極5の後方には中性能フィルタ7がガスの通路を横切って取り付けられている。中性能フィルタ7はで臭気ガス中に含まれたごみやちりの種類や量によってその都度種々選定される。 A
中性能フィルタ7の後方には、イオン交換基をグラフト重合して得られた吸着剤を充填した吸着パネル8をジグザグ状に枠に取り付けた吸着フィルタ9がガスの通路を横切る形で取り付けられている。3は清浄空気を排出する吹出し口である。 Behind the
実施例1の構造はこのように簡単な構造であるので、ハウジング1に連通した適宜箇所に設けた送風機の吸気運転により動物飼育施設から発生した臭気ガスはハウジング1の吸込み口2よりハウジング1内に取り入れられる。そして取り入れられた臭気ガスはまずプレフィルタ4にてちりやほこりなどの比較的大きなダストが除去される。 Since the structure of the first embodiment is such a simple structure, the odor gas generated from the animal breeding facility by the air intake operation of the blower provided at an appropriate location communicating with the
次にちりやほこりなどが除去された臭気ガスは数KVの高電圧を印加された放電極5を通過するが、この時点で放電極5からはコロナ放電が発生しプラズマ状態が作り出されているため、放電によりハウジング1内に放出された電子が臭気ガス中の臭気成分に衝突し、これらの分子を活性化させる。その活性分子の一部は解離してラジカルとなり、臭気ガス中の臭気成分を酸化分解したり、あるいはオゾンを生成する。ラジカルにより生成されたオゾンも臭気成分を酸化させ動物飼育施設から発生した臭気成分はほぼ完全に脱臭除去される。 Next, the odor gas from which dust and dust are removed passes through the
さらに、放電極5で酸化分解されなかった残りの臭気成分やオゾンは放電極よりの下流にあるラフフィルタ7を通過して、吸着フィルタ9に送られる。 Further, the remaining odor components and ozone that have not been oxidatively decomposed by the
そして、吸着フィルタ9の吸着剤のイオン交換基の化学反応および微細孔に補足された臭気成分はラジカルとの反応作用によって、残りの臭気成分やオゾンは吸着分解され、清浄空気となって吹出し口3より排出される。 The chemical reaction of the ion exchange group of the adsorbent of the
この際、ラフフィルタ7は放電極5にて酸化分解された比較的細かな粒子を除去し、吸着フィルタ9の目詰を防止すると共に排出される清浄空気をより一層清浄化する。 At this time, the
下水処理場施設、ごみ処理施設などから発生する比較的高濃度の複合臭を含んだ臭気ガスの場合について図2を参照して説明する。実施例1との違いは実施例1に使用したラフフィルタ7に変えて、無数の微細孔を有するセラミック体をハニカム状に成形・焼成した触媒フィルタ17を採用した点で、その他の構成要件は実施例1と同じなので、図2には同じ番号を示す。また、実施例1との違いは触媒フィルタ17だけであることから、実施例2の作動については触媒フィルタ17のみについて説明する。 The case of odor gas containing a relatively high concentration of complex odor generated from a sewage treatment facility, a waste disposal facility, or the like will be described with reference to FIG. The difference from Example 1 is that, instead of the
すなわち、触媒フィルタ17は放電極5で酸化分解されなかった残りの臭気成分やオゾンを触媒作用によって酸化分解を行い、比較的高濃度で複合臭の悪臭ガスに対しても対応可能にしたものである。 That is, the catalyst filter 17 catalyzes the remaining odor components and ozone that have not been oxidatively decomposed by the
次に、実施例1、2の場合も放電極5の放電を繰り返すことにより放電極に汚染物が付着し放電現象が起こりにくくなってくるが、放電極の直近に必要に応じ間欠的な作動をする洗浄ノズル6を配置しているので、洗浄ノズルを駆動することにより放電極の洗浄再生が確実に行われる。以上のような操作を繰り返すことにより汚染源から発生する臭気ガスの脱臭および除じんが確実に行われる。 Next, in the case of Examples 1 and 2, the discharge of the
尚、本実施例では本発明の一実施例を述べたもので、これに限定することなく、種々変更しても何ら本発明の要旨を変更するものではない。また、食品化工施設やし尿処理場、飼料・肥料製造工場用の脱臭装置として採用しても何ら本発明の要旨を変更するものではない。 In the present embodiment, one embodiment of the present invention has been described. However, the present invention is not limited to this embodiment, and the gist of the present invention is not changed at all by various modifications. Moreover, even if it employ | adopts as a deodorizing apparatus for food processing facilities, a human waste processing plant, and a feed and fertilizer manufacturing factory, the summary of this invention is not changed at all.
放電極から発生したコロナ放電でプラズマ状態を作り出し、この時放出された電子やラジカルを動物飼育施設や下水処理場施設あるいはごみ処理施設、魚肉類保管施設などから発生する臭気ガス中の臭気成分に衝突し、これらの成分を酸化分解して臭気成分をほぼ完全に脱臭除去すると共に放電極で酸化分解されなかった残りの臭気成分やオゾンを放電極より下流にある吸着フィルタで吸着除去しようとしたもので、実用上はなはだ大なるものである。 A plasma state is created by corona discharge generated from the discharge electrode, and the electrons and radicals released at this time are converted into odorous components in odorous gas generated from animal breeding facilities, sewage treatment plants, garbage disposal facilities, fish storage facilities, etc. They collided and oxidatively decomposed these components to deodorize and remove the odor components almost completely, and tried to adsorb and remove the remaining odor components and ozone that were not oxidatively decomposed by the discharge electrode with an adsorption filter downstream from the discharge electrode. In practice, it is very large.
1・・・ハウジング 2・・・吸込み口 3・・・吹出し口
4・・・プレフィルタ 5・・・放電極 6・・・洗浄ノズル
7・・・中性能フィルタ 8・・・吸着パネル
9・・・吸着フィルタ 17・・・触媒フィルタDESCRIPTION OF
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009103375A JP2010240630A (en) | 2009-03-31 | 2009-03-31 | Deodorization apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009103375A JP2010240630A (en) | 2009-03-31 | 2009-03-31 | Deodorization apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010240630A true JP2010240630A (en) | 2010-10-28 |
Family
ID=43094300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009103375A Pending JP2010240630A (en) | 2009-03-31 | 2009-03-31 | Deodorization apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010240630A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014168741A (en) * | 2013-03-04 | 2014-09-18 | Kurimoto Ltd | Application method of volatile organic compound processing unit |
WO2018124556A1 (en) * | 2016-12-29 | 2018-07-05 | 주식회사 삼도환경 | Agriculture and stockbreeding plasma generation device using resonant power driver |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63190619A (en) * | 1987-01-29 | 1988-08-08 | Ebara Res Co Ltd | Treatment of waste ozone |
JPH01258740A (en) * | 1988-04-07 | 1989-10-16 | Japan Atom Energy Res Inst | Production of adsorbent for gas |
JPH03267113A (en) * | 1990-03-17 | 1991-11-28 | Senichi Masuda | Method and device for treating gas by using high-frequency creeping discharge |
JPH05277336A (en) * | 1992-03-30 | 1993-10-26 | Ebara Corp | Deodorizer |
JPH06134248A (en) * | 1992-10-20 | 1994-05-17 | Ebara Corp | Gas decontamination treatment |
JPH06190236A (en) * | 1992-12-24 | 1994-07-12 | Ebara Infilco Co Ltd | Method of purifying gas and device therefor |
JPH10296042A (en) * | 1997-02-28 | 1998-11-10 | Ebara Corp | Process and device for cleaning gas in clean room |
JP2000070646A (en) * | 1998-08-31 | 2000-03-07 | Mitsubishi Paper Mills Ltd | Air purifying filter member |
JP2003102818A (en) * | 2001-09-28 | 2003-04-08 | Akushii:Kk | Deodorizing filter |
JP2005118748A (en) * | 2003-10-20 | 2005-05-12 | Takuma Co Ltd | Plasma deodorizing equipment |
JP2005237954A (en) * | 2004-01-27 | 2005-09-08 | I'm Pact World:Kk | Plasma chemical reactor and purifying/deodorizing equipment using plasma chemical reactor |
JP2008100169A (en) * | 2006-10-19 | 2008-05-01 | Takasago Thermal Eng Co Ltd | Deodorization method |
-
2009
- 2009-03-31 JP JP2009103375A patent/JP2010240630A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63190619A (en) * | 1987-01-29 | 1988-08-08 | Ebara Res Co Ltd | Treatment of waste ozone |
JPH01258740A (en) * | 1988-04-07 | 1989-10-16 | Japan Atom Energy Res Inst | Production of adsorbent for gas |
JPH03267113A (en) * | 1990-03-17 | 1991-11-28 | Senichi Masuda | Method and device for treating gas by using high-frequency creeping discharge |
JPH05277336A (en) * | 1992-03-30 | 1993-10-26 | Ebara Corp | Deodorizer |
JPH06134248A (en) * | 1992-10-20 | 1994-05-17 | Ebara Corp | Gas decontamination treatment |
JPH06190236A (en) * | 1992-12-24 | 1994-07-12 | Ebara Infilco Co Ltd | Method of purifying gas and device therefor |
JPH10296042A (en) * | 1997-02-28 | 1998-11-10 | Ebara Corp | Process and device for cleaning gas in clean room |
JP2000070646A (en) * | 1998-08-31 | 2000-03-07 | Mitsubishi Paper Mills Ltd | Air purifying filter member |
JP2003102818A (en) * | 2001-09-28 | 2003-04-08 | Akushii:Kk | Deodorizing filter |
JP2005118748A (en) * | 2003-10-20 | 2005-05-12 | Takuma Co Ltd | Plasma deodorizing equipment |
JP2005237954A (en) * | 2004-01-27 | 2005-09-08 | I'm Pact World:Kk | Plasma chemical reactor and purifying/deodorizing equipment using plasma chemical reactor |
JP2008100169A (en) * | 2006-10-19 | 2008-05-01 | Takasago Thermal Eng Co Ltd | Deodorization method |
Non-Patent Citations (1)
Title |
---|
JPN6012048521; 設備工事情報シート 空調 II-A-3-改 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014168741A (en) * | 2013-03-04 | 2014-09-18 | Kurimoto Ltd | Application method of volatile organic compound processing unit |
WO2018124556A1 (en) * | 2016-12-29 | 2018-07-05 | 주식회사 삼도환경 | Agriculture and stockbreeding plasma generation device using resonant power driver |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108568213B (en) | Bench type laboratory air pollutant removing machine | |
CN102481384B (en) | Method and apparatus for disinfecting and deodorizing toilet system | |
KR200468971Y1 (en) | Complex type apparatus capable of removing malodor gas of animal-excretion | |
KR101978395B1 (en) | Apparatus for removing harmful material in material to be treated by using plasma filter | |
KR101386404B1 (en) | Air sterilization purifier with oval tubular photocatalysts module and ion cluster generating module | |
KR20190020442A (en) | Air purifier unit with ultraviolet photo catalysis and air purifier apparatus comprising the same | |
KR100807152B1 (en) | Device for purifying polluted air | |
CN206560793U (en) | A kind of low-temperature plasma UV photodissociation integration apparatus | |
KR100930987B1 (en) | Unification deodorizing apparatus using high efficiency deodorization combined scrubber system have in ozone generator | |
KR200407830Y1 (en) | Hybrid type air purification apparatus for industry | |
KR20120119475A (en) | Multiple air cleaning devices | |
KR20070046281A (en) | Hybrid type air purification apparatus for industry | |
KR100949797B1 (en) | Deodorization and sterilization apparatus using plasma | |
JP5108492B2 (en) | Air purification method and air purification device | |
KR101793497B1 (en) | Odor removal of organic waste unit | |
CN201796584U (en) | Air disinfection and purification medium machine | |
JP2005205094A (en) | Air purification system | |
KR100428965B1 (en) | Air purification method | |
JP2010240630A (en) | Deodorization apparatus | |
CN217887545U (en) | Deodorizing device for organic corrosion-prone garbage treatment equipment | |
CN206262316U (en) | A kind of plasma apparatus for removing kitchen garbage stench | |
KR20170024279A (en) | Apparatus for removing noxious gas and offensive odor | |
KR20160030679A (en) | Air furification apparatus using hydroxyl radical | |
CN211724145U (en) | Air sterilizer with plasma and high-efficiency composite filtering technology | |
CN209771789U (en) | Electrochemical synergistic photocatalytic organic waste gas treatment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120321 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120910 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120918 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20121119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130405 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130702 |