JP2010236218A - Shaft member joint structure of building using perforated steel plate dowel - Google Patents

Shaft member joint structure of building using perforated steel plate dowel Download PDF

Info

Publication number
JP2010236218A
JP2010236218A JP2009083932A JP2009083932A JP2010236218A JP 2010236218 A JP2010236218 A JP 2010236218A JP 2009083932 A JP2009083932 A JP 2009083932A JP 2009083932 A JP2009083932 A JP 2009083932A JP 2010236218 A JP2010236218 A JP 2010236218A
Authority
JP
Japan
Prior art keywords
steel plate
perforated steel
shaft member
reinforced concrete
gibber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009083932A
Other languages
Japanese (ja)
Other versions
JP5419516B2 (en
Inventor
Yuki Okamoto
勇紀 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2009083932A priority Critical patent/JP5419516B2/en
Publication of JP2010236218A publication Critical patent/JP2010236218A/en
Application granted granted Critical
Publication of JP5419516B2 publication Critical patent/JP5419516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shaft member joint structure of a building using a perforated steel plate dowel, which can obtain a vibration control effect by enabling a portion for being joined by the perforated steel plate dowel to function as a hysteretic damper. <P>SOLUTION: This shaft member joint structure includes the perforated steel plate dowel 1, a reinforced concrete body 2A in which the perforated steel plate dowel 1 is placed in an embedded state, and the shaft member 3 which is joined to the perforated steel plate dowel 1. In this constitution, the shear strength of concrete is set higher than the strength of the perforated steel plate dowel. More specifically, when a great shearing force acts between the perforated steel plate dowel 1 and the reinforced concrete body 2A, the perforated steel plate dowel 1 yields ahead of the shear fracture of the concrete. Thus, the shaft member joint structure functions as the hysteretic damper against shaking caused by earthquakes etc., and obtains the vibration control effect. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、孔あき鋼板ジベルを使用した建築物の軸部材接合構造に関する。   The present invention relates to a structure for joining shaft members of a building using a perforated steel plate diver.

建物の鉄筋コンクリート柱や鉄筋コンクリート梁等の鉄筋コンクリート体にブレース等の軸部材を接合するのに、ずれ止めとして孔あき鋼板ジベルを介在させることがある。この場合、ガセットプレートの一部に溶接などにより孔あき鋼板ジベルを接合する。この孔あき鋼板ジベルを埋め込み状態としてコンクリートを打設し、鉄筋コンクリート体を構築する。ガセットプレートに軸部材である例えばブレースを接合する。
上記の軸部材接合構造によると、鉄筋コンクリート体のコンクリートが孔あき鋼板ジベルの孔に入り込むことにより、ずれ止め作用が得られ、接合部の強度を高めることができる。
In order to join a shaft member such as a brace to a reinforced concrete body such as a reinforced concrete column or a reinforced concrete beam of a building, a perforated steel plate dowel may be interposed as a slip stopper. In this case, a perforated steel plate dowel is joined to a part of the gusset plate by welding or the like. Concrete is cast with this perforated steel plate gibber embedded, and a reinforced concrete body is constructed. For example, a brace which is a shaft member is joined to the gusset plate.
According to said shaft member joining structure, when the concrete of a reinforced concrete body enters into the hole of a perforated steel plate dowel, an anti-slipping action is obtained and the strength of the joint can be increased.

なお、構造物の柱,梁間に対角線状に設けるブレースにつき、座屈拘束を行って履歴型ダンパーとして用いるものが提案されている。   In addition, about the brace provided diagonally between the pillar and beam of a structure, what is used as a hysteretic damper by buckling restraint is proposed.

特開2008−088639号公報JP 2008-088639 A 特開2007−132524号公報JP 2007-132524 A

孔あき鋼板ジベルを使用する通常の設計では、孔あき鋼板ジベルの降伏が、その孔に入ったコンクリートのせん断破壊に先行して起こらないようにされる。このため、上記孔あき鋼板ジベルを用いた接合部は、制振効果が得られない。また、孔あき鋼板ジベルによる接合部を利用して制振効果を得るという発想は、従来には例がない。   In a normal design using perforated steel plate dowels, the yield of the perforated steel plate dowels is prevented from occurring prior to the shear failure of the concrete entering the holes. For this reason, the joint part using the said perforated steel plate dowel cannot obtain the vibration damping effect. Further, the idea of obtaining a vibration damping effect by utilizing a joint portion with a perforated steel plate gibber has never been known.

この発明の目的は、孔あき鋼板ジベルによる接合部分を履歴型ダンパーとして機能させることができて、制振効果を得ることができる孔あき鋼板ジベル使用建築物の軸部材接合構造を提供することである。   An object of the present invention is to provide a shaft member joining structure for a building using a perforated steel plate gibel that can function as a hysteretic damper by using a joined portion by a perforated steel plate diver and obtain a vibration damping effect. is there.

この発明の孔あき鋼板ジベル使用建築物の軸部材接合構造は、孔あき鋼板ジベルと、この孔あき鋼板ジベルを埋め込み状態に打設した鉄筋コンクリート体と、孔あき鋼板ジベルに接合した軸部材とを備える孔あき鋼板ジベル使用建築物の軸部材接合構造において、
前記孔あき鋼板ジベルの表面に沿う方向に沿って孔あき鋼板ジベルと鉄筋コンクリート体間に生じるせん断力により、孔あき鋼板ジベルに降伏が生じることに対する耐力である孔あき鋼板ジベル耐力と、
前記鉄筋コンクリート体における孔あき鋼板ジベルの孔内に入った部分またはその付近にせん断破壊が生じることに対する耐力であるコンクリートせん断耐力との関係を、
(コンリートせん断耐力)>(孔あき鋼板ジベル耐力)
としたことを特長とする。
The shaft member joining structure of a building using a perforated steel plate gibel according to the present invention includes a perforated steel plate diver, a reinforced concrete body in which the perforated steel plate diver is embedded, and a shaft member joined to the perforated steel plate divel. In the shaft member joint structure of the building using the perforated steel plate gibber provided,
A perforated steel plate gibel proof strength, which is a resistance against the yielding of the perforated steel plate gibel due to the shearing force generated between the perforated steel plate gibel and the reinforced concrete body along the direction along the surface of the perforated steel plate gibel,
The relationship with the concrete shear strength, which is the strength against the occurrence of shear fracture in or near the part of the reinforced concrete body that enters the hole of the perforated steel plate gibber,
(Concrete shear strength)> (Perforated steel plate gibber strength)
It is characterized by that.

この軸部材接合構造によると、(コンリートせん断耐力)>(孔あき鋼板ジベル耐力)としたため、孔あき鋼板ジベルと前記鉄筋コンクリート体との間に大きなせん断力が作用したときに、コンクリートのせん断破壊に先行して孔あき鋼板ジベルが降伏する。孔あき鋼板ジベルは鉄筋コンクリート体内に埋め込まれていることから、座屈拘束されていると考えることができる。このため、孔あき鋼板ジベルによる接合部分は、履歴型ダンパーとして高いエネルギー吸収能力を発揮すると考えられる。これにより、制振効果の高い軸部材接合構造となる。なお、履歴型ダンパーは、鋼材などの塑性変形による履歴減衰により地震エネルギー等の振動エネルギーを吸収・消散するダンパーを言う。   According to this shaft member joint structure, since (concrete shear strength)> (perforated steel plate gibber strength), when a large shearing force acts between the perforated steel plate gibber and the reinforced concrete body, The perforated steel plate gibber yields ahead. Since the perforated steel plate gibber is embedded in the reinforced concrete body, it can be considered that it is buckled. For this reason, it is thought that the joint part by a perforated steel plate gibber exhibits a high energy absorption capability as a hysteretic damper. Thereby, it becomes a shaft member joining structure with a high damping effect. The hysteretic damper is a damper that absorbs and dissipates vibration energy such as seismic energy by hysteretic damping caused by plastic deformation of steel or the like.

この発明において、前記孔あき鋼板ジベルの表面と鉄筋コンクリート体との間に、アンボンド材層を設けても良い。このようにアンボンド材層を介在させて孔あき鋼板ジベルの表面と鉄筋コンクリート体との付着を切ることで、履歴型ダンパーとしての振動エネルギーの吸収効果を安定せることができる。なお、孔あき鋼板ジベルを用いたずれ止めの設計において、孔あき鋼板ジベルの表面と鉄筋コンクリート体との付着による抵抗力は考慮されず、孔あき鋼板ジベルの孔内にコンクリートが介在することで、ずれ止めの効果の計算する。そのため、アンボンド材層を介在させて孔あき鋼板ジベルの表面と鉄筋コンクリート体との付着を切っても、ジベルとしてのずれ止め効果の低減の問題は生じない。   In the present invention, an unbonded material layer may be provided between the surface of the perforated steel plate gibber and the reinforced concrete body. Thus, the effect of absorbing the vibration energy as the hysteretic damper can be stabilized by cutting the adhesion between the surface of the perforated steel plate gibber and the reinforced concrete body with the unbonded material layer interposed. In addition, in the design of the slip prevention using the perforated steel plate dowel, the resistance force due to the adhesion between the surface of the perforated steel plate dowel and the reinforced concrete body is not considered, and the concrete intervenes in the hole of the perforated steel plate dowel, Calculate the anti-slipping effect. For this reason, even if the adhesion between the surface of the perforated steel plate gibel and the reinforced concrete body is cut with an unbonded material layer interposed, there is no problem of reducing the effect of preventing the shift as the diver.

この発明において、前記軸部材がブレースであり、前記鉄筋コンクリート体が梁または柱であり、前記孔あき鋼板ジベルに接合されるか、または孔あき鋼板ジベルと一体の部材とされたガセットプレートに前記ブレースを接合したものであっても良い。孔あき鋼板ジベルに接合される軸部材がブレースである場合、すなわち斜材である場合、建築物の振動はブレースに対して主に引っ張り力および圧縮力の繰り返し軸力として作用する。この軸力が、孔あき鋼板ジベルと鉄筋コンクリート体との間にせん断力として作用する。この発明によると、このように伝わる振動に対して、上記の履歴型ダンパーとしての振動エネルギーの吸収効果が良好に得られる。   In this invention, the shaft member is a brace, the reinforced concrete body is a beam or a column, and the brace is attached to the perforated steel plate gibel or a gusset plate formed as an integral member with the perforated steel plate gibel. May be joined. When the shaft member joined to the perforated steel plate gibel is a brace, that is, a diagonal member, the vibration of the building mainly acts as a repeated axial force of a tensile force and a compressive force on the brace. This axial force acts as a shearing force between the perforated steel plate dowel and the reinforced concrete body. According to the present invention, the vibration energy absorbing effect as the above-mentioned hysteretic damper can be favorably obtained with respect to the vibration transmitted in this way.

この発明において、前記軸部材が間柱であり、前記鉄筋コンクリート体が梁または基礎または床スラブであっても良い。軸部材が間柱である場合、地震等による建築物の層間変位等によって、間柱が傾斜するように変形する。そのため、孔あき鋼板ジベルと鉄筋コンクリート体との間には、間柱に作用する軸力と、上記傾斜変形させようとする力とが合成された力によるせん断力が生じる。このように伝わる振動に対しても、上記の履歴型ダンパーとしての振動エネルギーの吸収効果が良好に得られる。   In this invention, the shaft member may be a stud, and the reinforced concrete body may be a beam, a foundation, or a floor slab. When the shaft member is a stud, it is deformed so that the stud is inclined due to an interlayer displacement of the building due to an earthquake or the like. Therefore, a shearing force is generated between the perforated steel plate gibber and the reinforced concrete body by a force obtained by synthesizing the axial force acting on the stud and the force to be inclined and deformed. The vibration energy absorbing effect as the hysteretic damper can be favorably obtained even for the vibration transmitted in this way.

この発明の孔あき鋼板ジベル使用建築物の軸部材接合構造は、孔あき鋼板ジベルと、この孔あき鋼板ジベルを埋め込み状態に打設した鉄筋コンクリート体と、前記孔あき鋼板ジベルに接合した軸部材とを備えた孔あき鋼板ジベル使用建築物の軸部材接合構造において、前記孔あき鋼板ジベルの表面に沿う方向に沿って孔あき鋼板ジベルと鉄筋コンクリート体間に生じるせん断力により、孔あき鋼板ジベルに降伏が生じることに対する耐力である孔あき鋼板ジベル耐力と、前記鉄筋コンクリート体における孔あき鋼板ジベルの孔内に入った部分またはその付近にせん断破壊が生じることに対する耐力であるコンクリートせん断耐力との関係を、
(コンリートせん断耐力)>(孔あき鋼板ジベル力)
としたため、孔あき鋼板ジベルによる接合部分を履歴型ダンパーとして機能させることができて、制振効果を得ることができる。
The shaft member joining structure of the building using the perforated steel plate gibel according to the present invention includes a perforated steel plate diver, a reinforced concrete body in which the perforated steel plate diver is embedded, and a shaft member joined to the perforated steel plate divel. In a shaft member joint structure of a building using a perforated steel plate gibber with a yielding to a perforated steel plate diver due to the shearing force generated between the perforated steel plate jebel and the reinforced concrete body along the direction along the surface of the perforated steel plate gibber The relationship between the perforated steel plate gibber strength, which is the strength against the occurrence of cracks, and the concrete shear strength, which is the strength against the occurrence of shear fracture in or near the portion of the reinforced concrete body that enters the hole of the perforated steel plate gibel,
(Concrete shear strength)> (Perforated steel plate gibber force)
Therefore, the joint portion by the perforated steel plate gibber can function as a hysteretic damper, and a vibration damping effect can be obtained.

この発明の第1の実施形態にかかる孔あき鋼板ジベル使用建築物の軸部材接合構造の正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a front view of the shaft member junction structure of the building using a perforated steel plate gibber concerning 1st Embodiment of this invention. 図1におけるA部の拡大図である。It is an enlarged view of the A section in FIG. 孔あき鋼板ジベルの部分拡大断面図である。It is a partial expanded sectional view of a perforated steel plate gibber. この発明の他の実施形態にかかる孔あき鋼板ジベル使用建築物の軸部材接合構造の正面図である。It is a front view of the shaft member junction structure of the building using a perforated steel plate gibber concerning other embodiments of this invention. この発明のさらに他の実施形態にかかる孔あき鋼板ジベル使用建築物の軸部材接合構造の正面図である。It is a front view of the shaft member junction structure of the building using a perforated steel plate dowel concerning further another embodiment of this invention. この発明のさらに他の実施形態にかかる孔あき鋼板ジベル使用建築物の軸部材接合構造の正面図である。It is a front view of the shaft member junction structure of the building using a perforated steel plate dowel concerning further another embodiment of this invention.

この発明の第1の実施形態を図1ないし図3と共に説明する。この孔あき鋼板ジベル使用建築物の軸部材接合構造は、梁である鉄筋コンクリート体2Aとブレースである軸部材3との取り合いに、孔あき鋼板ジベル1を用いた例である。梁である鉄筋コンクリート体2Aは、隣合う2本の柱である鉄筋コンクリート体2Bの間に接合されている。これら梁または柱である鉄筋コンクリート体2A,2Bは、現場打設されたものであっても良く、プレキャストコンクリートであっても良い。孔あき鋼板ジベル1は、梁である鉄筋コンクリート体2Aのコンクリート打設時に、配筋6と共にコンクリート内に埋め込まれる。   A first embodiment of the present invention will be described with reference to FIGS. This shaft member joining structure of a building using a perforated steel plate gibber is an example in which the perforated steel plate gibber 1 is used for the connection between the reinforced concrete body 2A as a beam and the shaft member 3 as a brace. The reinforced concrete body 2A which is a beam is joined between the reinforced concrete bodies 2B which are two adjacent columns. These reinforced concrete bodies 2A and 2B, which are beams or columns, may be those cast on site or may be precast concrete. The perforated steel plate gibber 1 is embedded in the concrete together with the reinforcing bar 6 at the time of concrete placement of the reinforced concrete body 2A which is a beam.

図1において、ブレースである軸部材3は、梁である鉄筋ンコンクリート体2Aの、柱である鉄筋コンクリート体2Bとの接合部と、その上階の梁である鉄筋コンクリート体2Aの中央部との間に傾斜姿勢で配置される。この軸部材3の両端は、孔あき鋼板ジベル1と一体の部材とされたガセットプレート4に接合される。孔あき鋼板ジベル1とガセットプレート4とは、別々に設けて互いに接合しても良い。梁である鉄筋コンクリート体2Aの中央部のガセットプレート4には、互いに対称に配置された2本のブレースである軸部材3が接合される。
ブレースである軸部材3は、両端に継手部を有しており、その継手部をガセットプレート4に重ねてボルト締めすることで、摩擦ボルト結合されている。ブレースである軸部材3は、例えば座屈拘束ブレースであり、前記両端の継手部を有する鋼製の芯材とこの芯材を挟み込む拘束材とでなる。ブレースである軸部材3は、形鋼や丸棒等の1本の鋼材からなるものであっても良い。
In FIG. 1, the shaft member 3 that is a brace is between a joint portion of a reinforced concrete body 2A that is a beam and a reinforced concrete body 2B that is a column and a central portion of the reinforced concrete body 2A that is a beam on the upper floor. Are arranged in an inclined posture. Both ends of the shaft member 3 are joined to a gusset plate 4 which is a member integrated with the perforated steel plate gibber 1. The perforated steel plate gibber 1 and the gusset plate 4 may be provided separately and joined to each other. The shaft member 3 which is two braces arranged symmetrically to each other is joined to the gusset plate 4 in the center of the reinforced concrete body 2A which is a beam.
The shaft member 3, which is a brace, has joint portions at both ends, and the joint portions are overlapped on the gusset plate 4 and bolted together, and are friction bolted. The shaft member 3 that is a brace is, for example, a buckling restraint brace, and is composed of a steel core member having joint portions at both ends and a restraint member that sandwiches the core member. The shaft member 3 that is a brace may be made of a single steel material such as a shape steel or a round bar.

図1のA部を拡大して図2に示す。同図に示すように、柱際のガセットプレート4は、柱である鉄筋コンクリート体2Bに沿う一側端およびこの一側端と反対側の他側端にスチフナ4aを有する断面H形とされている。スチフナ4aは、ガセットプレート4の部分だけに設けられ、孔あき鋼板ジベル1の部分には設けられていない。   FIG. 2 shows an enlarged view of part A in FIG. As shown in the figure, the gusset plate 4 at the end of the pillar has an H-shaped cross section having a stiffener 4a at one end along the reinforced concrete body 2B as the pillar and the other end opposite to the one end. . The stiffener 4a is provided only in the portion of the gusset plate 4, and is not provided in the portion of the perforated steel plate gibber 1.

図3に拡大断面図で示すように、孔あき鋼板ジベル1の各孔5内には、鉄筋コンクリート体2AのコンクリートAの打設時に、コンクリート7が充填される。孔あき鋼板ジベル1は、鋼板に複数の孔が設けられたものであればよく、その孔の個数や配列、鋼材の種類は特に限定されないが、次の耐力を持つものとされる。   As shown in an enlarged cross-sectional view in FIG. 3, each hole 5 of the perforated steel plate dowel 1 is filled with concrete 7 when the concrete A of the reinforced concrete body 2 </ b> A is placed. The perforated steel plate gibber 1 is not limited as long as a plurality of holes are provided in the steel plate, and the number and arrangement of the holes and the type of steel material are not particularly limited.

すなわち、ブレースである軸部材3(図1)には地震等による振動が作用することで、強い引っ張り力や圧縮力が繰り返し作用することがある。このような引っ張り力や圧縮力により、孔あき鋼板ジベル1と鉄筋コンクリート体2Aとの間には、孔あき鋼板ジベル1の表面に沿う方向に沿ってせん断力が作用する。
このせん断力が大きくなると、孔あき鋼板ジベル1の隣り合う孔5の間の非孔部分a(図3)や孔5とジベル端縁との間の非孔部分に降伏が生じる。また、鉄筋コンクリート体2Aのコンクリート7における孔あき鋼板ジベル1の孔5内に入った部分(図3におけるb部)またはその付近にせん断破壊が生じる。
孔あき鋼板ジベル1の上記降伏が生じることに対する耐力を、「孔あき鋼板ジベル耐力」と呼び、前記コンクリート7のせん断破壊に対する耐力を「コンクリートせん断耐力」と呼ぶものとする。ここでは、これら両耐力の関係を、
(コンクリートせん断耐力)>(孔あき鋼板ジベル耐力)
とする。
なお、上記「孔あき鋼板ジベル耐力」は、孔あき鋼板ジベル1における上記せん断力に対して最も弱い部分の耐力であり、例えば、孔あき鋼板ジベル1の最小断面部分の耐力である。また、上記「コンクリートせん断耐力」は、上記せん断力に対して最もせん断破壊が生じ易い部分の耐力である。
That is, a strong tensile force or a compressive force may repeatedly act on the shaft member 3 (FIG. 1) that is a brace due to the vibration caused by an earthquake or the like. Due to such pulling force and compressive force, a shearing force acts between the perforated steel plate gibber 1 and the reinforced concrete body 2A along the direction along the surface of the perforated steel plate gibber 1.
When this shearing force is increased, yielding occurs in the non-hole portion a (FIG. 3) between the adjacent holes 5 of the perforated steel plate gibel 1 and in the non-hole portion between the hole 5 and the edge of the diver. Further, a shear fracture occurs in a portion (b portion in FIG. 3) that enters the hole 5 of the perforated steel plate dowel 1 in the concrete 7 of the reinforced concrete body 2A or in the vicinity thereof.
The yield strength of the perforated steel plate gibel 1 against the yielding is referred to as “perforated steel plate gibel strength”, and the strength against shear fracture of the concrete 7 is referred to as “concrete shear strength”. Here, the relationship between these two proof stresses is
(Concrete shear strength)> (Perforated steel plate gibber strength)
And
The “perforated steel plate gibber yield strength” is the strength of the weakest part with respect to the shearing force in the perforated steel plate gibel 1, for example, the yield strength of the minimum cross-sectional portion of the perforated steel plate diver 1. The “concrete shear strength” is the strength of the portion where shear fracture is most likely to occur with respect to the shear force.

また、この実施形態では、孔あき鋼板ジベル1の表面と鉄筋コンクリート体2A,2Bとの間に、アンボンド材層8が設けられている。アンボンド材層8は、例えば、孔あき鋼板ジベル1の両側の表面の全体にアンボンド処理することにより設けられる。アンボンド材層8の材質としては、アスファルトや、アスファルト系ポリマー等の粘弾性体や、ブチルゴム等が用いられる。   Moreover, in this embodiment, the unbond material layer 8 is provided between the surface of the perforated steel plate gibber 1 and the reinforced concrete bodies 2A and 2B. The unbond material layer 8 is provided, for example, by unbonding the entire surface on both sides of the perforated steel plate gibber 1. As the material of the unbond material layer 8, viscoelastic materials such as asphalt and asphalt polymers, butyl rubber, and the like are used.

この軸部材接合構造によると、地震等の振動により、ブレートである軸部材3に大きな引っ張り荷重や圧縮荷重等の軸力が繰り返し作用することがある。この軸部材3に作用する軸力により、梁である鉄筋コンクリート体2Aのコンクリート7と孔あき鋼板ジベル1の表面との間に、大きなせん断力が繰り返し作用することがある。このせん断力に対し、 (コンリートせん断耐力)>(孔あき鋼板ジベル耐力)
としたため、コンクリートのせん断破壊に先行して孔あき鋼板ジベルが降伏することになる。
孔あき鋼板ジベル1は、鉄筋コンクリート体2Aのコンクリート7内に埋め込まれていることから、座屈拘束されていると考えることができる。このため、孔あき鋼板ジベル1による接合部分は、履歴型ダンパーとして高いエネルギー吸収能力を発揮する。そのため、制振効果の高い軸部材接合構造となる。
According to this shaft member joining structure, axial forces such as a large tensile load and a compressive load may repeatedly act on the shaft member 3 that is a blade due to vibration such as an earthquake. Due to the axial force acting on the shaft member 3, a large shearing force may repeatedly act between the concrete 7 of the reinforced concrete body 2A, which is a beam, and the surface of the perforated steel plate gibber 1. For this shear force, (Concrete shear strength)> (Perforated steel plate gibber strength)
Therefore, the perforated steel plate gibber yields prior to the shear fracture of concrete.
Since the perforated steel plate gibber 1 is embedded in the concrete 7 of the reinforced concrete body 2A, it can be considered to be buckled. For this reason, the joint part by the perforated steel plate gibber 1 exhibits a high energy absorption capability as a hysteretic damper. Therefore, it becomes a shaft member joining structure with a high damping effect.

この実施形態では、孔あき鋼板ジベル1にアンボンド材層8を設け、コンクリート7との付着を切るようにしたため、より一層安定したエネルギーの吸収性能が発揮される。なお、孔あき鋼板ジベル1を用いたずれ止めの設計において、孔あき鋼板ジベル1の表面と鉄筋コンクリート体2Aとの付着による抵抗力は考慮されず、孔あき鋼板ジベル1の孔5内にコンクリート7が介在することで、ずれ止めの効果の計算する。そのため、アンボンド材層8を介在させて孔あき鋼板ジベル1の表面と鉄筋コンクリート体2Aとの付着を切っても、ジベルとしてのずれ止め効果の低減の問題は生じない。   In this embodiment, since the unbonded material layer 8 is provided on the perforated steel plate gibber 1 and the adhesion with the concrete 7 is cut off, more stable energy absorption performance is exhibited. In addition, in the design of the slip prevention using the perforated steel plate gibel 1, the resistance force due to the adhesion between the surface of the perforated steel plate gibel 1 and the reinforced concrete body 2A is not considered, and the concrete 7 The effect of the slip prevention is calculated by intervening. Therefore, even if the adhesion between the surface of the perforated steel plate gibber 1 and the reinforced concrete body 2A is cut with the unbond material layer 8 interposed, there is no problem of reducing the effect of preventing the shift as the diver.

図4は、この発明の他の実施形態を示す。この孔あき鋼板ジベル使用建築物の軸部材接合構造は、図1〜図3の実施形態において、軸部材3を、柱である鉄筋コンクリート体2Bの途中部分と梁である鉄筋コンクリート体2Aの途中部分との間に傾斜姿勢で配置される方杖型ブレースとしたものである。この軸部材3の両端が、孔あき鋼板ジベル1と一体の部材とされたガセットプレート4に接合されることなど、その他の構成は図1〜図3の実施形態の場合と同様である。
この場合も、前記実施形態と同様に、孔あき鋼板ジベル1による接合部分を履歴型ダンパーとして機能させることができて、制振効果を得ることができる。また、軸部材3を方杖型ブレースとしているので、軸部材3の座屈長を短くすることができる。
FIG. 4 shows another embodiment of the present invention. In the embodiment shown in FIGS. 1 to 3, the shaft member joining structure of the building using the perforated steel plate gibber includes the shaft member 3, the middle part of the reinforced concrete body 2 </ b> B that is a column, and the middle part of the reinforced concrete body 2 </ b> A that is a beam. A brace type brace placed in an inclined position between the two. Other configurations such as joining both ends of the shaft member 3 to a gusset plate 4 formed as a member integral with the perforated steel plate gibber 1 are the same as those in the embodiment of FIGS.
Also in this case, similarly to the above-described embodiment, the joined portion by the perforated steel plate gibber 1 can function as a hysteretic damper, and a vibration damping effect can be obtained. Further, since the shaft member 3 is a cane type brace, the buckling length of the shaft member 3 can be shortened.

図5は、この発明のさらに他の実施形態を示す。この孔あき鋼板ジベル使用建築物の軸部材接合構造は、図1〜図3の実施形態において、軸部材3を、鉄筋コンクリート体2Cである上下階の鉄筋コンクリート梁の間に立設される間柱としたものである。間柱である軸部材3の両端に孔あき鋼板ジベル1が接合されている。鉄筋コンクリート体2Cは床スラブであっても良い。
この場合、軸部材3が間柱型ダンパーとして機能し、制振効果を発揮することになる。軸部材3が間柱である場合、地震等による建築物の層間変位等によって、間柱が傾斜するように変形する。そのため、孔あき鋼板ジベル1と鉄筋コンクリート体21Cとの間には、間柱に作用する軸力と、上記傾斜変形させようとする力とが合成された力によるせん断力が生じる。このように伝わる振動に対しても、上記の履歴型ダンパーとしての振動エネルギーの吸収効果が良好に得られる。その他の構成,効果は図1〜図3の実施形態の場合と同様である。
FIG. 5 shows still another embodiment of the present invention. In the embodiment of FIGS. 1 to 3, the shaft member joining structure of the building using the perforated steel plate gibber is a stud that is erected between the reinforced concrete beams on the upper and lower floors that are the reinforced concrete bodies 2 </ b> C. Is. A perforated steel plate dowel 1 is joined to both ends of a shaft member 3 that is a stud. The reinforced concrete body 2C may be a floor slab.
In this case, the shaft member 3 functions as a stud-type damper and exhibits a damping effect. When the shaft member 3 is a stud, it is deformed so that the stud is inclined by an interlayer displacement of a building due to an earthquake or the like. Therefore, a shearing force is generated between the perforated steel plate gibber 1 and the reinforced concrete body 21C by a force obtained by synthesizing the axial force acting on the stud and the force to be inclined and deformed. The vibration energy absorbing effect as the hysteretic damper can be favorably obtained even for the vibration transmitted in this way. Other configurations and effects are the same as those of the embodiment of FIGS.

図6は、この発明のさらに他の実施形態を示す。この孔あき鋼板ジベル使用建築物の軸部材接合構造は、図5の実施形態において、下階側の鉄筋コンクリート体2Dを鉄筋コンクリート基礎としたものである。この場合、鉄筋コンクリート基礎である鉄筋コンクリート体2Dに埋め込まれた孔あき鋼板ジベル1は、間柱である軸部材3の柱脚埋め込み部となる。その他の構成,効果は、図5の実施形態の場合と同様である。   FIG. 6 shows still another embodiment of the present invention. The shaft member joining structure of a building using a perforated steel plate gibber is a reinforced concrete foundation in which the lower floor side reinforced concrete body 2D is used in the embodiment of FIG. In this case, the perforated steel plate gibber 1 embedded in the reinforced concrete body 2D which is a reinforced concrete foundation serves as a column base embedded portion of the shaft member 3 which is a stud. Other configurations and effects are the same as those of the embodiment of FIG.

1…孔あき鋼板ジベル
2A〜2D…鉄筋コンクリート体
3…軸部材
4…ガセットプレート
5…孔あき鋼板ジベルの孔
7…コンクリート
8…アンボンド材層
DESCRIPTION OF SYMBOLS 1 ... Perforated steel plate gibel 2A-2D ... Reinforced concrete body 3 ... Shaft member 4 ... Gusset plate 5 ... Hole 7 of perforated steel plate gibel ... Concrete 8 ... Unbonded material layer

Claims (4)

孔あき鋼板ジベルと、この孔あき鋼板ジベルを埋め込み状態に打設した鉄筋コンクリート体と、前記孔あき鋼板ジベルに接合した軸部材とを備える孔あき鋼板ジベル使用建築物の軸部材接合構造において、
前記孔あき鋼板ジベルの表面に沿う方向に沿って孔あき鋼板ジベルと鉄筋コンクリート体間に生じるせん断力により、孔あき鋼板ジベルに降伏が生じることに対する耐力である孔あき鋼板ジベル耐力と、
前記鉄筋コンクリート体における孔あき鋼板ジベルの孔内に入った部分またはその付近にせん断破壊が生じることに対する耐力であるコンクリートせん断耐力との関係を、
(コンリートせん断耐力)>(孔あき鋼板ジベル耐力)
としたことを特徴とする孔あき鋼板ジベル使用建築物の軸部材接合構造。
In the shaft member joint structure of a building using a perforated steel plate gibber comprising a perforated steel plate gibbel, a reinforced concrete body in which the perforated steel plate gibber is embedded, and a shaft member joined to the perforated steel plate gibber,
A perforated steel plate gibel proof strength, which is a resistance against the yielding of the perforated steel plate gibel due to the shearing force generated between the perforated steel plate gibel and the reinforced concrete body along the direction along the surface of the perforated steel plate gibel,
The relationship with the concrete shear strength, which is the strength against the occurrence of shear fracture in or near the part of the reinforced concrete body that enters the hole of the perforated steel plate gibber,
(Concrete shear strength)> (Perforated steel plate gibber strength)
The shaft member joint structure of a building using a perforated steel plate gibber characterized by the above.
請求項1において、前記孔あき鋼板ジベルの表面と鉄筋コンクリート体との間に、アンボンド材層を設けた孔あき鋼板ジベル処理建築物の軸部材接合構造。   The shaft member joining structure of a perforated steel plate gibber-processed building according to claim 1, wherein an unbonded material layer is provided between the surface of the perforated steel plate diver and the reinforced concrete body. 請求項1または請求項2において、前記軸部材がブレースであり、前記鉄筋コンクリート体が梁または柱であり、前記孔あき鋼板ジベルに接合されるか、または孔あき鋼板ジベルと一体の部材とされたガセットプレートに前記ブレースを接合した孔あき鋼板ジベル使用建築物の軸部材接合構造。   3. The shaft member according to claim 1 or 2, wherein the shaft member is a brace, the reinforced concrete body is a beam or a column, and is joined to the perforated steel plate gibber or integrated with the perforated steel plate gibber. A shaft member joining structure of a building using a perforated steel plate gibber in which the brace is joined to a gusset plate. 請求項1または請求項2において、前記軸部材が間柱であり、前記鉄筋コンクリート体が梁または基礎または床スラブである孔あき鋼板ジベル使用建築物の軸部材接合構造。   The shaft member joint structure according to claim 1 or 2, wherein the shaft member is a stud and the reinforced concrete body is a beam, a foundation, or a floor slab.
JP2009083932A 2009-03-31 2009-03-31 Shaft member joint structure for buildings using perforated steel plate gibbels Active JP5419516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009083932A JP5419516B2 (en) 2009-03-31 2009-03-31 Shaft member joint structure for buildings using perforated steel plate gibbels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009083932A JP5419516B2 (en) 2009-03-31 2009-03-31 Shaft member joint structure for buildings using perforated steel plate gibbels

Publications (2)

Publication Number Publication Date
JP2010236218A true JP2010236218A (en) 2010-10-21
JP5419516B2 JP5419516B2 (en) 2014-02-19

Family

ID=43090804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009083932A Active JP5419516B2 (en) 2009-03-31 2009-03-31 Shaft member joint structure for buildings using perforated steel plate gibbels

Country Status (1)

Country Link
JP (1) JP5419516B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107152098A (en) * 2017-05-17 2017-09-12 大连大学 It is classified shock-dampening method
JP7469915B2 (en) 2020-03-10 2024-04-17 日鉄建材株式会社 Flushing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247556A (en) * 1994-03-03 1995-09-26 Nippon Steel Corp Structure for fixing base of column in steel column member
JPH09324557A (en) * 1996-06-05 1997-12-16 Ohbayashi Corp Vibration-control structure of building
JP2001159195A (en) * 1999-12-03 2001-06-12 Sumitomo Constr Co Ltd Joining structure between steel pipe member and concrete member
JP2004308121A (en) * 2003-04-02 2004-11-04 Kajima Corp Joint structure of steel and concrete
JP2008214973A (en) * 2007-03-05 2008-09-18 Kajima Corp Seismic-control bridge pier structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247556A (en) * 1994-03-03 1995-09-26 Nippon Steel Corp Structure for fixing base of column in steel column member
JPH09324557A (en) * 1996-06-05 1997-12-16 Ohbayashi Corp Vibration-control structure of building
JP2001159195A (en) * 1999-12-03 2001-06-12 Sumitomo Constr Co Ltd Joining structure between steel pipe member and concrete member
JP2004308121A (en) * 2003-04-02 2004-11-04 Kajima Corp Joint structure of steel and concrete
JP2008214973A (en) * 2007-03-05 2008-09-18 Kajima Corp Seismic-control bridge pier structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107152098A (en) * 2017-05-17 2017-09-12 大连大学 It is classified shock-dampening method
CN107152098B (en) * 2017-05-17 2019-04-19 大连大学 It is classified shock-dampening method
JP7469915B2 (en) 2020-03-10 2024-04-17 日鉄建材株式会社 Flushing

Also Published As

Publication number Publication date
JP5419516B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP2009256885A (en) Exposed column base structure
JP5726590B2 (en) Connection structure of reinforced concrete beams or columns
JP2000213200A (en) Damping construction
JP5798359B2 (en) Seismic device with built-in damper with deformation limiting function
JP5596990B2 (en) Bearing wall structure of wooden building
JP2017082532A (en) Braced column frame
JP5196638B2 (en) Column base semi-rigid joint building
JP4020212B2 (en) Hinge-induced structure of concrete members
JP5419516B2 (en) Shaft member joint structure for buildings using perforated steel plate gibbels
JP5132503B2 (en) Seismic structure and building
JP5158947B2 (en) Composite structural beam and building structure having composite structural beam
JP2008088756A (en) Aseismatic repair method for existing building structure
JP4189292B2 (en) Shear resistance type fixing device
JP4414833B2 (en) Seismic walls using corrugated steel
JP2006336378A (en) Earthquake resisting wall
JP5429812B2 (en) Joining structure and method of shaft member and RC member
JP5144182B2 (en) Seismic reinforcement structure and seismic reinforcement method for existing buildings
JP6412684B2 (en) Vibration control structure
JP2017082904A (en) Rod-like vibration isolation member
JP6117974B1 (en) Joint structure of seismic retrofitting frame
JP7052953B2 (en) Damping structure
JP6414877B2 (en) Reinforcement structure and building
JP5417489B2 (en) Joint structure of wooden building components
JP6033574B2 (en) Seismic reinforcement structure with compression braces
JP2010285804A (en) Floor slab structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R150 Certificate of patent or registration of utility model

Ref document number: 5419516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250