JP2010236180A - Earthquake-resistant structure - Google Patents

Earthquake-resistant structure Download PDF

Info

Publication number
JP2010236180A
JP2010236180A JP2009081887A JP2009081887A JP2010236180A JP 2010236180 A JP2010236180 A JP 2010236180A JP 2009081887 A JP2009081887 A JP 2009081887A JP 2009081887 A JP2009081887 A JP 2009081887A JP 2010236180 A JP2010236180 A JP 2010236180A
Authority
JP
Japan
Prior art keywords
earthquake
column
layer
communication column
foundation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009081887A
Other languages
Japanese (ja)
Inventor
Masahito Koyama
雅人 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP2009081887A priority Critical patent/JP2010236180A/en
Publication of JP2010236180A publication Critical patent/JP2010236180A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an earthquake-resistant structure capable of preventing design of the appearance of a building from being impaired, preventing this structure from being restricted by a shape of the building, and preventing the installation of an opening part from being restricted. <P>SOLUTION: In this earthquake-resistant structure having a plurality of stories each composed of a pin brace structure, the pin brace structure is provided with a communicating column 8 communicating from a foundation to a beam 6Aa in the uppermost part on the uppermost story in the predetermined plane of structure, a lower end of the communicating column 8 is joined with the foundation 2, and an upper end of the communicating column 8 is joined with the beam 6Aa in the uppermost part so that an angle α of deformation between stories of each story becomes equal within the plane of structure when earthquake occurs. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、梁勝ちピンブレース構造を有する複数層の構造体に関するものである。   The present invention relates to a multi-layer structure having a beam-winning pin brace structure.

建築物は、柱を梁より強く設計し、各層に地震によるエネルギーを分散することが安全上望ましいとされるが、低層の住宅建築では、各層が独立に降伏するピンブレース工法や壁式工法が多く用いられているのが現状である。これらの構造は、特定の層が単独で降伏をする。特に、最上層が降伏して建物の終局状態が決まる場合、エネルギー吸収に極めて乏しい建物となる。これに対して、建物の全層がほぼ同時に降伏し、同程度に塑性化する構造をもつ建物は、エネルギー吸収に極めて富み耐震性能の高い建物になる。
地震によるエネルギーを分散する構造として、特開2000−170392号公報がある。この公報には、建物の外側面に沿った補強フレームと地震応答を減衰させるダンパーを備えた耐震補強構造が開示されている。この構成によれば、耐力、剛性の弱い層へのエネルギー集中を緩和し、高い耐震性能を発揮することができる。
For buildings, it is considered safer to design the columns stronger than the beams and distribute the energy from the earthquake to each layer. However, in low-rise residential buildings, the pin brace method or the wall type method where each layer yields independently is used. At present, it is widely used. In these structures, a specific layer yields alone. In particular, when the top layer yields and the final state of the building is determined, the building is extremely poor in energy absorption. On the other hand, a building with a structure in which all layers of the building yield at almost the same time and plasticize to the same extent is a building that is extremely rich in energy absorption and has high seismic performance.
Japanese Patent Laid-Open No. 2000-170392 discloses a structure for dispersing energy caused by an earthquake. This publication discloses a seismic reinforcement structure including a reinforcement frame along the outer surface of a building and a damper that attenuates the seismic response. According to this structure, energy concentration to the layer with weak proof strength and rigidity can be relieved, and high seismic performance can be exhibited.

特開2000−170392号公報JP 2000-170392 A

しかしながら、上記耐震補強構造は、外側面に沿って設置されるものであり、建物の外観デザインを損なうという問題がある。また、設置にあたっては平坦な壁面が必要であり、凹凸のある面には設置が困難であり、壁面自体は平坦であったとしても、壁面にシャッターボックス、看板などの突出物や配線などがあると、設置が困難となることもある。また、間口が小さい狭隘な敷地に建築される建物の場合、採光、通風、出入りの為の開口部を極力大きく確保することが望まれるが、補強フレームの存在によって、開口部の大きさや位置に制約を受けやすい。特に、このような開口部には、外開きの扉や窓を設置し難い。   However, the above-mentioned seismic reinforcement structure is installed along the outer surface, and there is a problem that the appearance design of the building is impaired. In addition, a flat wall surface is required for installation, and it is difficult to install on uneven surfaces. Even if the wall surface itself is flat, there are protrusions and wiring such as shutter boxes and signboards on the wall surface. And installation may be difficult. In addition, in the case of a building built on a narrow site with a small frontage, it is desirable to secure as large an opening as possible for daylighting, ventilation, and going in and out. Easy to be restricted. In particular, it is difficult to install an open door or window in such an opening.

本発明は、建物の外観デザインを損なわず、建物の形状による制約も受けにくく、開口部の設置に制約が生じにくい耐震構造体を提供することを目的とする。   An object of the present invention is to provide a seismic structure that does not impair the appearance design of a building, is not easily restricted by the shape of the building, and is less likely to be restricted in the installation of openings.

本発明は、ピンブレース構造からなる複数層の耐震構造体において、
ピンブレース構造は、所定の構面で、基礎から最上層における最上部の梁に架けて連通する連通コラムが配置され、連通コラムの下端は、基礎に接合され、連通コラムの上端は、最上部の梁に対して接合され、
地震時において構面内で各層の層間変形角が等しくなるように構成されたことを特徴とする。
The present invention is a multi-layer earthquake-resistant structure comprising a pin brace structure,
In the pin brace structure, a communication column that communicates from the foundation to the uppermost beam in the uppermost layer is arranged with a predetermined construction surface, the lower end of the communication column is joined to the foundation, and the upper end of the communication column is the uppermost part. To the other beam
It is characterized in that the interlayer deformation angle of each layer is equal in the frame during an earthquake.

この耐震構造体においては、前述した構成を有するので、建物の外観デザインを損なわず、建物の形状による制約も受けにくく、開口部の設置に制約が生じにくいといった優れた効果が得られる。   Since this seismic structure has the above-described configuration, it is possible to obtain an excellent effect that the external appearance design of the building is not impaired, it is difficult to be restricted by the shape of the building, and the opening is hardly restricted.

また、連通コラムと各層の梁との接合を剛接合にすると好適である。
このような構成を採用すると、大きな地震力が作用した場合には、梁が塑性変形してエネルギーを吸収することができる。これによって、耐震性が更に高まる。
Further, it is preferable that the connection between the communication column and the beam of each layer is a rigid connection.
When such a configuration is adopted, when a large seismic force is applied, the beam can be plastically deformed to absorb energy. This further increases the earthquake resistance.

また、連通コラムと各層の梁とをダンパーで接合すると好適である。
このような構成を採用すると、比較的小さな地震力の段階でもダンパーによってエネルギーを確実に吸収することができる。これによって、耐震性を更に高めることができる。
Further, it is preferable that the communication column and the beams of each layer are joined by a damper.
By adopting such a configuration, energy can be reliably absorbed by the damper even at a relatively small level of seismic force. Thereby, the earthquake resistance can be further improved.

本発明によれば、建物の外観デザインを損なわず、建物の形状による制約も受けにくく、開口部の設置に制約が生じにくい。   According to the present invention, the appearance design of the building is not impaired, the restriction due to the shape of the building is not easily received, and the opening is not easily restricted.

本発明に係る耐震構造体の第1の実施形態を示す平面図である。It is a top view which shows 1st Embodiment of the earthquake-resistant structure which concerns on this invention. 図1のII−II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire of FIG. 本発明に係る耐震構造体に適用される耐力パネルを示す正面図である。It is a front view which shows the load bearing panel applied to the earthquake proof structure which concerns on this invention. ピン接合の一例を示す斜視図である。It is a perspective view which shows an example of pin joining. 剛接合の一例を示す斜視図である。It is a perspective view which shows an example of rigid joining. 地震時の状態をモデル化して示す概略図である。It is the schematic which models and shows the state at the time of an earthquake. 本発明に係る耐震構造体の第2の実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the earthquake-resistant structure which concerns on this invention. ダンパー接合の一例を示す斜視図である。It is a perspective view which shows an example of damper joining. 地震時の状態をモデル化して示す概略図である。It is the schematic which models and shows the state at the time of an earthquake.

以下、図面を参照しつつ本発明に係る耐震構造体の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of an earthquake-resistant structure according to the present invention will be described in detail with reference to the drawings.

[第1の実施形態]
図1及び図2に示すように、ピンブレース構造(軸組み工法)からなる耐震構造体1は、ALCからなる床パネルや壁パネルを組み合わせて躯体が構成される工業化住宅に利用される。この耐震構造体1は、上下3層の鉄骨造の軸組みをなし、各層の階高は統一されている。
[First Embodiment]
As shown in FIG.1 and FIG.2, the earthquake-resistant structure 1 which consists of a pin brace structure (shaft construction method) is utilized for the industrialized house where a frame is comprised combining the floor panel and wall panel which consist of ALC. The seismic structure 1 has a steel frame structure with three upper and lower layers, and the height of each layer is unified.

耐震構造体1は、基礎2の四隅に配置された隅柱3と、隅柱3の間に配置された中柱4と、隅柱3間を架け渡す外側梁5と、床パネルや天井パネルを支持するための内側梁6と、後述する連通コラム8とを備えている。   The seismic structure 1 includes corner pillars 3 disposed at the four corners of the foundation 2, a middle pillar 4 disposed between the corner pillars 3, an outer beam 5 extending between the corner pillars 3, a floor panel and a ceiling panel. Are provided with an inner beam 6 and a communication column 8 to be described later.

基礎2は、断面逆T字状の鉄筋コンクリート造の布基礎からなり、矩形の外側部2Aと、枠部2A内を通るように十字状に延在する内側部2Bとからなる。そして、外側部2Aに隅柱3及び中柱4が立設され、内側部2Bの交差部に連通コラム8が立設されている。   The foundation 2 is composed of a reinforced concrete cloth foundation having an inverted T-shaped cross section, and includes a rectangular outer portion 2A and an inner portion 2B extending in a cross shape so as to pass through the frame portion 2A. The corner pillar 3 and the middle pillar 4 are erected on the outer side 2A, and the communication column 8 is erected on the intersection of the inner side 2B.

基礎2の外側部2Aに立設された隅柱3と外側梁5との関係及び中柱4と外側梁5との関係は、梁勝ちの軸組み構造をなしている。すなわち、隅柱3は、各層で分断され、同様に中柱4も各層で分断され、下層側の隅柱3及び中柱4の上端で、外側梁5が支持され、上層側の隅柱3及び中柱4の下端が外側梁5で支持され、そして、外側梁5は中柱4で分断されることなく連続的に延在する。   The relationship between the corner column 3 and the outer beam 5 and the relationship between the middle column 4 and the outer beam 5 which are erected on the outer side 2A of the foundation 2 form a beam-winning frame structure. That is, the corner pillar 3 is divided by each layer, and similarly, the middle pillar 4 is also divided by each layer, and the outer beam 5 is supported by the lower corner pillar 3 and the upper end of the middle pillar 4, and the upper corner pillar 3. The lower end of the middle column 4 is supported by the outer beam 5, and the outer beam 5 continuously extends without being divided by the middle column 4.

外側梁5はH形鋼からなり、隅柱3及び中柱4は角形鋼管からなり、隅柱3及び中柱4の上下端は、ボルトによって外側梁5に固定されている。また、H形鋼からなる内側梁6は、各層において、中柱4と連通コラム8との間に延在する大梁6Aと、大梁6Aと外側梁5との間に延在する小梁6Bとからなる。   The outer beam 5 is made of H-shaped steel, the corner column 3 and the middle column 4 are made of square steel pipes, and the upper and lower ends of the corner column 3 and the middle column 4 are fixed to the outer beam 5 by bolts. Further, the inner beam 6 made of H-shaped steel includes, in each layer, a large beam 6A extending between the middle column 4 and the communication column 8, and a small beam 6B extending between the large beam 6A and the outer beam 5. Consists of.

耐震構造体1の略重心位置には、基礎2の内側部2Bから最上層における最上部の大梁6Aに架けて連通する連通コラム8が配置されている。この連通コラム8は高い剛性および耐力を有する角形鋼管からなり、大地震の際にも耐震性能に影響を及ぼす変形や破断を生じることがない。また、連通コラム8と大梁6Aとの関係は、各大梁6Aが連通コラム8で分断されたいわゆる柱勝ちの軸組構造をなしている。   A communication column 8 is provided at approximately the center of gravity of the earthquake-resistant structure 1 so as to communicate from the inner side 2B of the foundation 2 to the uppermost beam 6A in the uppermost layer. The communication column 8 is formed of a square steel pipe having high rigidity and strength, and does not cause deformation or breakage that affects the earthquake resistance even in the event of a large earthquake. Further, the relationship between the communication column 8 and the large beam 6A is a so-called column winning structure in which each large beam 6A is divided by the communication column 8.

各層においては、耐力パネル(耐震要素)Sが適宜配置されている。図3に示すように、
耐力パネルSは、所定の間隔をもって立設された一対の中柱4と中柱4Aとの間で縦方向に隣接して配置された2組の耐力部材20とからなる。
In each layer, a load-bearing panel (seismic element) S is appropriately arranged. As shown in FIG.
The load-bearing panel S includes two pairs of load-bearing members 20 that are arranged adjacent to each other in the vertical direction between the pair of middle pillars 4 and the middle pillars 4 </ b> A that are erected at a predetermined interval.

中柱4の上端及び下端は、外側梁5に対してピン接合P(図4参照)で連結され、最下層の中柱4の下端のみ基礎2に対してピン接合P(図4参照)で連結されている。同様に、中柱4Aの上端及び下端は、大梁6Aに対してピン接合Pで連結され、最下層の中柱4Aの下端のみ基礎2に対してピン接合Pで連結されている。   The upper end and the lower end of the middle pillar 4 are connected to the outer beam 5 by a pin joint P (see FIG. 4), and only the lower end of the lowermost middle pillar 4 is a pin joint P to the foundation 2 (see FIG. 4). It is connected. Similarly, the upper end and the lower end of the middle pillar 4A are connected to the large beam 6A by a pin joint P, and only the lower end of the lowermost middle pillar 4A is connected to the foundation 2 by a pin joint P.

耐力部材20は、複数の枠21a〜21eからなって、一対の中柱4,4Aに固定される枠材21と、枠材21の連結に利用される連結材22とからなる。枠材21は、中柱4Aに沿ってボルトで固定される縦枠21aと、一端が縦枠21aの高さ方向の中心位置に溶接されて縦枠21aに対して直角をなす水平枠21bと、一端が縦枠21aの上下端と溶接されて斜め下方及び斜め上方に向けて延在する第1の斜め枠21d及び第2の斜め枠21eと、からなる。そして、水平枠21bの他端と第1の斜め枠21d及び第2の斜め枠21eの他端は、接合板21cに溶接又はボルトで固定されている。そして、枠材21は全体として二等辺三角形をなしている。   The load bearing member 20 includes a plurality of frames 21 a to 21 e, and includes a frame member 21 that is fixed to the pair of middle pillars 4 and 4 </ b> A and a connecting member 22 that is used to connect the frame member 21. The frame member 21 includes a vertical frame 21a fixed with bolts along the middle pillar 4A, and a horizontal frame 21b whose one end is welded to a center position in the height direction of the vertical frame 21a and is perpendicular to the vertical frame 21a. The first diagonal frame 21d and the second diagonal frame 21e are welded to the upper and lower ends of the vertical frame 21a and extend obliquely downward and diagonally upward. The other end of the horizontal frame 21b and the other ends of the first and second oblique frames 21d and 21e are fixed to the joining plate 21c by welding or bolts. The frame member 21 forms an isosceles triangle as a whole.

中柱4側にも同様な構成の枠材21が固定され、中柱4と中柱4Aとの間で左右一対の枠材21が配置され、左側の枠材21の接合板21cと、右側の枠材21の接合板21cとは、連結部材22によって連結されている。各接合板21c及び連結部材22にはボルト孔が穿設されており、このボルト孔に挿入されるボルトを利用して、連結部材22が左右一対の接合板21cを連結している。   A frame member 21 having a similar configuration is also fixed to the middle column 4 side, a pair of left and right frame members 21 are arranged between the middle column 4 and the middle column 4A, and a joining plate 21c of the left frame member 21 and the right side The connecting plate 21 c of the frame member 21 is connected by a connecting member 22. Each joint plate 21c and the connecting member 22 are provided with bolt holes, and the connecting member 22 connects the pair of left and right joining plates 21c using bolts inserted into the bolt holes.

枠材21は高い剛性および耐力を有し、大地震の際にも耐震性能に影響を及ぼす変形や破断を生じることがない。そして、連結部材22は、正面視蝶形で極低降伏点鋼からなり、くびれ部分が所定の値を越える外力によって塑性変形することで地震力のエネルギーを吸収するように構成されている。連結部材22の個数は、必要とされるエネルギー吸収量に応じて適宜変更される。   The frame member 21 has high rigidity and proof strength, and does not cause deformation or breakage that affects the quake resistance even in the event of a large earthquake. The connecting member 22 has a butterfly shape in front view and is made of extremely low yield point steel. The constricted portion is configured to absorb the energy of seismic force by plastic deformation by an external force exceeding a predetermined value. The number of the connecting members 22 is appropriately changed according to the required amount of energy absorption.

図1及び図2に示すように、連通コラム8の下端は、基礎2の内側部2Bに対してピン接合Pによって立設され、連通コラム8の上端は、最上部の大梁6Aaに対して剛接合Gによって連結されている。また、連通コラム8の途中は、中間部の大梁6Abに対して剛接合Gによって連結されている。   As shown in FIGS. 1 and 2, the lower end of the communication column 8 is erected by a pin joint P with respect to the inner portion 2B of the foundation 2, and the upper end of the communication column 8 is rigid with respect to the uppermost beam 6Aa. They are connected by a joint G. The middle of the communication column 8 is connected to the middle beam 6Ab by a rigid joint G.

前述したピン接合Pの一例としては、図4に示すように、連通コラム8の下端に形成された断面十字状の脚部30と、脚部30の下端に形成されて基礎2に対してアンカーボルトで固定されるベースプレート31とから構成される。この場合、脚部30が撓んでエネルギーが吸収され、曲げモーメントを伝え難い構成になっている。   As an example of the pin joint P described above, as shown in FIG. 4, a leg portion 30 having a cross-shaped cross section formed at the lower end of the communication column 8 and an anchor to the foundation 2 formed at the lower end of the leg portion 30. And a base plate 31 fixed with bolts. In this case, the leg 30 is bent to absorb the energy, and the bending moment is hardly transmitted.

剛接合Gの一例としては、図5に示すように、連通コラム8に大梁6Aの端面25が突き当てられて、ボルト26によってしっかりと固定された構成をなし、曲げモーメントを伝える構成になっている。   As an example of the rigid joint G, as shown in FIG. 5, the end face 25 of the large beam 6A is abutted against the communication column 8 and is firmly fixed by the bolt 26, so that the bending moment is transmitted. Yes.

図6に示すように、耐震構造体1に地震力が作用した際、各層毎に、地震力の負担比率と、耐力パネルSの耐力比率とが異なる場合であっても、連通コラム8によって強制的に各層の層間変形角αが統一される。即ち、各層の耐力パネルSの変形量が等しくなる。従って、各層の耐力パネルSのエネルギー吸収量にバラつきが生じることがなく、効率よくエネルギー吸収がなされる。また、大きな地震力が作用した場合には、連通コラム8と大梁6Aa,6Abとの接合が剛接合Gになっているので、大梁6Aa,6Abが塑性変形してエネルギーが吸収される。従って、耐震性能が向上する。   As shown in FIG. 6, when seismic force is applied to the seismic structure 1, even if the load ratio of the seismic force and the load ratio of the load-bearing panel S are different for each layer, it is forced by the communication column 8. Therefore, the interlayer deformation angle α of each layer is unified. That is, the deformation amount of the load-bearing panel S of each layer becomes equal. Therefore, the energy absorption amount of the load-bearing panel S of each layer does not vary, and energy is efficiently absorbed. When a large seismic force is applied, the connection between the communication column 8 and the large beams 6Aa and 6Ab is a rigid connection G, so that the large beams 6Aa and 6Ab are plastically deformed to absorb energy. Therefore, the seismic performance is improved.

また、連通コラム8は通常の柱より断面を大きくなる程度であり、建物の外観デザインを損なわず、建物の形状による制約も受けにくく、開口部の設置に制約が生じにくい。   Further, the communication column 8 has a cross section larger than that of a normal column, does not impair the exterior design of the building, is not easily restricted by the shape of the building, and is not easily restricted in installation of the opening.

[第2の実施形態]
この第2の実施形態では、第1の実施形態と異なる部分の説明に留め、同一の構成には、同一の符号を付し、その説明は省略する。
[Second Embodiment]
In the second embodiment, only the differences from the first embodiment will be described, and the same components will be denoted by the same reference numerals and the description thereof will be omitted.

図7に示すように、耐震構造体1Aは、連通コラム8の下端は、基礎2の内側部2Bに対してピン接合Pによって立設され、連通コラム8の上端は、最上部の大梁6Aaに対してピン接合P1によって連結されている。また、連通コラム8の途中は、中間部の大梁6Abに対してピン接合P1によって連結されている。   As shown in FIG. 7, in the earthquake-resistant structure 1A, the lower end of the communication column 8 is erected by a pin joint P with respect to the inner portion 2B of the foundation 2, and the upper end of the communication column 8 is connected to the uppermost beam 6Aa. On the other hand, they are connected by a pin junction P1. The middle of the communication column 8 is connected to the middle beam 6Ab by a pin joint P1.

ピン接合P1の一例としては、図8に示すように、鉛直方向に延在する平行な2枚のダンパー板33を介して連通コラム8と大梁6Aa,6Abの端部とが連結された構成をなしている。ダンパー板33の一端は大梁6Aa,6Abに溶接され、ダンパー板33の他端は、ボルト34によって連通コラム8に固定される。これによって、曲げモーメントを伝え難い構成になっている。ダンパー板33は、低降伏点鋼からなる。   As an example of the pin joint P1, as shown in FIG. 8, the communication column 8 and the ends of the large beams 6Aa and 6Ab are connected via two parallel damper plates 33 extending in the vertical direction. There is no. One end of the damper plate 33 is welded to the large beams 6Aa and 6Ab, and the other end of the damper plate 33 is fixed to the communication column 8 by a bolt 34. This makes it difficult to transmit the bending moment. The damper plate 33 is made of low yield point steel.

図9に示すように、耐震構造体1Aに地震力が作用した際、各層毎に、地震力の負担比率と、耐力パネルSの耐力比率とが異なる場合であっても、連通コラム8によって強制的に各層の層間変形角αが統一される。即ち、各層の耐力パネルSの変形量が等しくなる。従って、各層の耐力パネルSのエネルギー吸収量にバラつきが生じることがなく、効率よくエネルギー吸収がなされる。   As shown in FIG. 9, when seismic force is applied to the seismic structure 1 </ b> A, even if the load ratio of the seismic force and the load ratio of the load-bearing panel S are different for each layer, it is forced by the communication column 8. Therefore, the interlayer deformation angle α of each layer is unified. That is, the deformation amount of the load-bearing panel S of each layer becomes equal. Therefore, the energy absorption amount of the load-bearing panel S of each layer does not vary, and energy is efficiently absorbed.

そして、比較的小さな地震力の段階でもダンパー板33によってエネルギーを確実に吸収することができる。これによって、耐震性を更に高めることができる。また、終局を迎えたダンパー板33の交換を可能にするために、ダンパー板33を大梁6Aa,6Ab及び連通コラム8にボルトによって連結し、ダンパー板33を着脱自在にしてもよい。   The energy can be reliably absorbed by the damper plate 33 even at a relatively small level of seismic force. Thereby, the earthquake resistance can be further enhanced. Further, in order to make it possible to replace the damper plate 33 that has reached the end, the damper plate 33 may be connected to the large beams 6Aa, 6Ab and the communication column 8 with bolts so that the damper plate 33 is detachable.

本発明は、前述した実施形態に限定されないことは言うまでもない。例えば、上記実施形態は、連通コラム8を比較的建物の重心に近い中通りの交点に1本のみ設置した例であったが、これには限定されない。建物に作用する地震力と連通コラムに求められる剛性、耐力との関係、バランス、平面計画等に基づき、一つの建物に連通コラム8を複数本配置してもよい。また、構面は、どの位置であってもよく、基礎2の外側部2Aに連通コラム8を立設させてもよい。   It goes without saying that the present invention is not limited to the embodiment described above. For example, although the said embodiment was an example which installed only one communication column 8 in the intersection of the middle street comparatively near the gravity center of a building, it is not limited to this. A plurality of communication columns 8 may be arranged in one building based on the relationship between the seismic force acting on the building and the rigidity and proof strength required for the communication column, balance, floor plan, and the like. Further, the composition surface may be at any position, and the communication column 8 may be erected on the outer side 2 </ b> A of the foundation 2.

また、隅柱3と外側梁5との関係及び中柱4と外側梁5との関係は、柱勝ちであってもよい。また、ダンパー接合として、ダンパー板33に代えて、高減衰ゴムダンパーやオイルダンパー等を利用して構成してもよい。また、連通コラム8の上端に、図4に示すようなピン接合Pを利用してもよい。   Further, the relationship between the corner column 3 and the outer beam 5 and the relationship between the middle column 4 and the outer beam 5 may be column winning. Further, as the damper joint, a high damping rubber damper, an oil damper or the like may be used instead of the damper plate 33. Further, a pin joint P as shown in FIG. 4 may be used at the upper end of the communication column 8.

1,1A…耐震構造体、2…基礎、6Aa,6Ab…大梁(梁)、8…連通コラム、33…ダンパー板(ダンパー接合)、P,P1…ピン接合、G…剛接合、α…層間変形角。   DESCRIPTION OF SYMBOLS 1,1A ... Earthquake-resistant structure, 2 ... Foundation, 6Aa, 6Ab ... Large beam (beam), 8 ... Communication column, 33 ... Damper plate (damper joint), P, P1 ... Pin joint, G ... Rigid joint, α ... Interlayer Deformation angle.

Claims (3)

ピンブレース構造からなる複数層の耐震構造体において、
前記ピンブレース構造は、所定の構面で、基礎から最上層における最上部の梁に架けて連通する連通コラムが配置され、前記連通コラムの下端は、前記基礎に接合され、前記連通コラムの上端は、前記最上部の前記梁に対して接合され、
地震時において前記構面内で各層の層間変形角が等しくなるように構成されたことを特徴とする耐震構造体。
In a multi-layer earthquake-resistant structure consisting of a pin brace structure,
The pin brace structure has a predetermined construction surface, a communication column that communicates from the foundation to the uppermost beam in the uppermost layer is disposed, and a lower end of the communication column is joined to the foundation, and an upper end of the communication column Is joined to the beam at the top,
A seismic structure characterized in that an interlayer deformation angle of each layer is equal in the surface during an earthquake.
前記連通コラムと前記各層の梁との接合を剛接合にしたことを特徴とする請求項1記載の耐震構造体。   The earthquake-resistant structure according to claim 1, wherein the connection between the communication column and the beam of each layer is a rigid connection. 前記連通コラムと前記各層の梁とをダンパーで接合したことを特徴とする請求項1記載の耐震構造体。   2. The earthquake-resistant structure according to claim 1, wherein the communication column and the beam of each layer are joined by a damper.
JP2009081887A 2009-03-30 2009-03-30 Earthquake-resistant structure Withdrawn JP2010236180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009081887A JP2010236180A (en) 2009-03-30 2009-03-30 Earthquake-resistant structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009081887A JP2010236180A (en) 2009-03-30 2009-03-30 Earthquake-resistant structure

Publications (1)

Publication Number Publication Date
JP2010236180A true JP2010236180A (en) 2010-10-21

Family

ID=43090766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009081887A Withdrawn JP2010236180A (en) 2009-03-30 2009-03-30 Earthquake-resistant structure

Country Status (1)

Country Link
JP (1) JP2010236180A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098259A (en) * 2012-11-14 2014-05-29 Daiwa House Industry Co Ltd Bearing wall frame and unit constituting the same
CN108049659A (en) * 2017-12-07 2018-05-18 云南省设计院集团 A kind of assembling type steel structure public lavatory
JP7416024B2 (en) 2021-07-30 2024-01-17 Jfeスチール株式会社 Steel frame structure, how to mix steel pipe columns with steel rigid frame

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098259A (en) * 2012-11-14 2014-05-29 Daiwa House Industry Co Ltd Bearing wall frame and unit constituting the same
CN108049659A (en) * 2017-12-07 2018-05-18 云南省设计院集团 A kind of assembling type steel structure public lavatory
JP7416024B2 (en) 2021-07-30 2024-01-17 Jfeスチール株式会社 Steel frame structure, how to mix steel pipe columns with steel rigid frame

Similar Documents

Publication Publication Date Title
JP4247496B2 (en) Seismic reinforcement structure
JP4931490B2 (en) Structure reinforcement structure and method of reinforcement
KR101236592B1 (en) Steel frame joint structure of unit modular house
JP4913660B2 (en) Steel stairs
JP2010236180A (en) Earthquake-resistant structure
JP5827804B2 (en) Structure
JP5827805B2 (en) Structure
JP4423640B2 (en) Building structure
JP5283774B1 (en) Seismic damper for temporary building
JP2006052543A (en) Structure of extension of existing reinforced concrete building
JP2006249756A (en) Frame structure of building
JP5752478B2 (en) housing complex
JP5312163B2 (en) Unit building
JP5235530B2 (en) Damping structure with damping damper
JP5450971B2 (en) Vibration control panel installation structure
JP2006274733A (en) Triple tube structure and vibration control system thereof
JP2774058B2 (en) Three-storey unit building
JP5091580B2 (en) Balcony floor support structure
JPH08277587A (en) Framework bearing wall and frame work construction method based on its application
JP2012144864A (en) Structure
JP2008196264A (en) Structure of balcony
JP2002161580A (en) Multiple dwelling house structure
JP2010018985A (en) Portal frame with damper of brace structure
JP6448832B1 (en) Seismic reinforcement structure of building
JP2012233374A (en) Seismic reinforcement structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605