JP2010235427A - Fuel reformer and method for manufacturing the same - Google Patents

Fuel reformer and method for manufacturing the same Download PDF

Info

Publication number
JP2010235427A
JP2010235427A JP2009088346A JP2009088346A JP2010235427A JP 2010235427 A JP2010235427 A JP 2010235427A JP 2009088346 A JP2009088346 A JP 2009088346A JP 2009088346 A JP2009088346 A JP 2009088346A JP 2010235427 A JP2010235427 A JP 2010235427A
Authority
JP
Japan
Prior art keywords
fuel
outer container
heat insulating
insulating material
reactors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009088346A
Other languages
Japanese (ja)
Inventor
Mitsuaki Echigo
満秋 越後
Norihisa Kamiya
規寿 神家
Yukio Yasuda
征雄 安田
Yuji Sawada
雄治 澤田
Naoya Maki
尚哉 牧
Isamu Takenaga
勇 武長
Hiroshi Yano
寛史 矢野
Hiromi Sasaki
広美 佐々木
Mototaka Kono
元貴 公野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Osaka Gas Co Ltd
Toshiba Energy Systems and Solutions Corp
Chofu Seisakusho Co Ltd
Original Assignee
Toshiba Corp
Osaka Gas Co Ltd
Toshiba Fuel Cell Power Systems Corp
Chofu Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Osaka Gas Co Ltd, Toshiba Fuel Cell Power Systems Corp, Chofu Seisakusho Co Ltd filed Critical Toshiba Corp
Priority to JP2009088346A priority Critical patent/JP2010235427A/en
Publication of JP2010235427A publication Critical patent/JP2010235427A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel reformer that has a simple configuration and can reduce the cost of the construction for heat insulation. <P>SOLUTION: The fuel reformer R comprises a plurality of reactors B for reforming a hydrocarbon raw fuel to generate a reformed gas essentially comprising hydrogen as a fuel of a fuel cell, and an exterior container C housing the apparatus M inside. The reactor B is configured as a planar module including a processing space inside to be used for the generation process of a reformed gas. The plurality of reactors B are housed inside the exterior container C in a tightly arranged in parallel to one another, and the plurality of reactors B are thermally insulated from the exterior container C by a granular heat insulator K filling the inside of the exterior container C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭化水素系の原燃料を改質して燃料電池の燃料となる水素を主成分とする改質ガスを生成するための複数の反応器と、それら複数の反応器を内部に収容する外装容器とを備える燃料改質装置、及び、その製造方法に関する。   The present invention includes a plurality of reactors for reforming a hydrocarbon-based raw fuel to generate a reformed gas containing hydrogen as a main component of a fuel cell, and the plurality of reactors accommodated therein. The present invention relates to a fuel reformer including an outer container and a manufacturing method thereof.

燃料電池の燃料となる水素を主成分とする改質ガスは、天然ガスなどの炭化水素を含む原燃料を水蒸気改質して得るのが一般的である。原燃料の水蒸気改質によって水素を主成分とする改質ガスを生成する燃料改質装置において、その水蒸気改質反応は吸熱反応であるため、燃焼用ガスを燃焼させることで得た燃焼熱を水蒸気改質反応に必要な熱として供給する必要がある。特許文献1には、燃焼部を取り囲むように筒状の水蒸気改質部が設けられた多重円筒管型の燃料改質装置が記載されている。多重円筒管型の燃料改質装置は、燃焼部で得た燃焼熱を効率良く水蒸気改質部に伝達できるため、高い熱効率が得られる。また、外観上は単純な円柱構造物となっており、且つ、高温部分(燃焼部)が最表面に露出していないため、高性能な断熱材が不要であることに加えて、断熱施工が容易であるというメリットがある。一方で、多重円筒管型の燃料改質装置は反応器の内部構造が複雑であり、特に家庭用途などの小型の多重円筒管型の燃料改質装置の場合は、反応器の製造コストは高くなるというデメリットがある。   The reformed gas containing hydrogen as a main component as a fuel for a fuel cell is generally obtained by steam reforming a raw fuel containing a hydrocarbon such as natural gas. In a fuel reformer that generates reformed gas containing hydrogen as the main component by steam reforming of the raw fuel, the steam reforming reaction is an endothermic reaction, so the combustion heat obtained by burning the combustion gas is reduced. It is necessary to supply heat necessary for the steam reforming reaction. Patent Document 1 describes a multi-cylindrical tube type fuel reforming apparatus in which a cylindrical steam reforming section is provided so as to surround a combustion section. The multi-cylindrical tube type fuel reforming apparatus can efficiently transfer the combustion heat obtained in the combustion section to the steam reforming section, so that high thermal efficiency can be obtained. In addition, it has a simple cylindrical structure in appearance, and the high-temperature part (burning part) is not exposed on the outermost surface, so in addition to the need for high-performance heat-insulating materials, heat-insulating construction is required. There is a merit that it is easy. On the other hand, the multi-cylindrical tube type fuel reformer has a complicated internal structure of the reactor. In particular, in the case of a small multi-cylindrical tube type fuel reformer for home use, the manufacturing cost of the reactor is high. There is a demerit that

特許文献2には、多重円筒管型とは異なる構造の燃料改質装置が記載されている。特許文献2に記載の燃料改質装置は、改質ガスの生成処理工程で用いられる処理空間を内部に備えた平板型モジュールとして構成される反応器(燃焼部、水蒸気改質部など)を複数備え、それら複数の反応器(平板型モジュール)を並列に密着して並べて構成してある。このタイプの燃料改質装置は、複数の反応器を密着して並べればよいため、多重円筒管型の燃料改質装置に比べて反応器の内部構造が単純なので、反応器の製造コストを低くできるというメリットがある。   Patent Document 2 describes a fuel reformer having a structure different from that of a multiple cylindrical tube type. The fuel reformer described in Patent Document 2 includes a plurality of reactors (combustion units, steam reforming units, and the like) configured as flat plate modules each having a processing space used in a reformed gas generation processing step. The plurality of reactors (flat module) are arranged in close contact in parallel. In this type of fuel reformer, a plurality of reactors need only be arranged in close contact with each other, so the internal structure of the reactor is simpler than that of a multi-cylinder tube type fuel reformer. There is a merit that you can.

特開2003−252604号公報JP 2003-252604 A 特開2000−178003号公報JP 2000-178003 A

特許文献2に記載の燃料改質装置では、各反応器を接続する配管の形状が複雑になる。例えば、各反応器の処理空間は反応器の外部で配管により互いに接続されており、反応器自体の形状も、複数の皿形状の容器形成用部材をそれらの間に板状の仕切り部材を位置させた状態で溶接接続して二つの処理空間を備えるように構成されており、溶接部分が外側に突出している。
従って、特許文献2に記載の燃料改質装置では、複数の板状に成型した断熱材に対して、配管接続の形状や反応器の溶接部分などの位置に合わせた複雑な穴加工や溝加工を施した上で、それらの板状断熱材を組み合わせて断熱施工を行う必要があった。そのため、断熱材の加工コストや断熱材を含めた組み立てコストが高くなるというデメリットが生じていた。
In the fuel reformer described in Patent Document 2, the shape of the pipe connecting each reactor is complicated. For example, the processing space of each reactor is connected to each other by piping outside the reactor, and the reactor itself has a plurality of dish-shaped container forming members with a plate-shaped partition member positioned between them. It is comprised so that it may be weld-connected in the state made to have two process space, and the welding part protrudes outside.
Therefore, in the fuel reformer described in Patent Document 2, complicated hole processing and grooving processing in accordance with the shape of the pipe connection and the position of the welded portion of the reactor, etc., for the heat insulating material formed into a plurality of plates. In addition, it was necessary to perform heat insulation work by combining these plate-like heat insulating materials. Therefore, the demerit that the processing cost of a heat insulating material and the assembly cost including a heat insulating material became high had arisen.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、構造が単純であり且つ断熱施工のコストも低くできる燃料改質装置及びその製造方法を提供する点にある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a fuel reforming apparatus that has a simple structure and that can reduce the cost of heat insulation work, and a method for manufacturing the same.

上記目的を達成するための本発明に係る燃料改質装置の特徴構成は、炭化水素系の原燃料を改質して燃料電池の燃料となる水素を主成分とする改質ガスを生成するための複数の反応器と、前記複数の反応器を内部に収容する外装容器とを備え、
前記反応器は、前記改質ガスの生成処理工程で用いられる処理空間を内部に備えた平板型モジュールとして構成され、
複数の前記反応器は、並列に密着して並べられた状態で前記外装容器の内部に収容され、
前記外装容器の内部に充填された粒状断熱材により前記複数の反応器が前記外装容器から断熱されている点にある。
In order to achieve the above object, the fuel reforming apparatus according to the present invention is characterized by reforming a hydrocarbon-based raw fuel to generate a reformed gas containing hydrogen as a main component of a fuel cell. A plurality of reactors, and an outer container containing the plurality of reactors inside,
The reactor is configured as a flat module with a processing space used in the reformed gas generation processing step inside,
The plurality of reactors are housed inside the outer container in a state of being closely arranged in parallel,
The plurality of reactors are insulated from the outer container by the granular heat insulating material filled in the outer container.

上記特徴構成によれば、外装容器に収容された、並列に密着して並べられた状態の複数の反応器の断熱は、外装容器の内部に充填される粒状断熱材によって確実に行われる。つまり、粒状断熱材を用いることで、断熱材の加工コストや断熱材を含めた組み立てコストがほとんど不要になる。また、燃料改質装置を製造するに際して複数の反応器(平板型モジュール)を互いに密着して並べればよいため、多重円筒管型の燃料改質装置に比べて反応器の内部構造は単純になり且つ製造コストを低くできる。
従って、構造が単純であり且つ断熱施工のコストも低くできる燃料改質装置を提供できる。
According to the above characteristic configuration, the heat insulation of the plurality of reactors housed in the outer container and arranged in close contact in parallel is reliably performed by the granular heat insulating material filled in the outer container. That is, by using the granular heat insulating material, the processing cost of the heat insulating material and the assembly cost including the heat insulating material become almost unnecessary. In addition, since a plurality of reactors (flat plate modules) may be arranged in close contact with each other when manufacturing a fuel reformer, the internal structure of the reactor becomes simpler than a multi-cylindrical tube type fuel reformer. In addition, the manufacturing cost can be reduced.
Therefore, it is possible to provide a fuel reforming apparatus that has a simple structure and can reduce the cost of heat insulation work.

本発明に係る燃料改質装置の別の特徴構成は、前記複数の反応器の前記処理空間は、前記反応器の外部で配管により互いに接続されている点にある。   Another characteristic configuration of the fuel reformer according to the present invention is that the processing spaces of the plurality of reactors are connected to each other by piping outside the reactor.

上記特徴構成によれば、前記配管の形状が複雑であっても、複数の反応器及び配管の断熱は、外装容器の内部に充填される粒状断熱材によって容易に且つ確実に行うことができる。   According to the above characteristic configuration, even if the shape of the pipe is complicated, the heat insulation of the plurality of reactors and the pipe can be easily and reliably performed by the granular heat insulating material filled in the exterior container.

本発明に係る燃料改質装置の更に別の特徴構成は、前記反応器は、複数の皿形状の容器形成用部材を、それらの間に板状の仕切り部材を位置させた状態で溶接接続して、二つの処理空間を備えるように構成されている点にある。   Still another characteristic configuration of the fuel reformer according to the present invention is that the reactor is connected by welding a plurality of dish-shaped container forming members with a plate-shaped partition member positioned therebetween. Thus, there are two processing spaces.

上記特徴構成によれば、二つの処理空間を備えた反応器を用いることにより、反応器の設置数を少なくすることができ、それに伴って、組立作業を簡略化することができる。更に、この二つの処理空間を備えた反応器を用いて、互いに熱交換させる必要のある二つの処理空間を形成することにより、効率よく熱交換させて熱効率を向上させることができる。   According to the above characteristic configuration, the number of reactors installed can be reduced by using a reactor having two processing spaces, and as a result, assembly work can be simplified. Furthermore, by using the reactor provided with these two processing spaces, two processing spaces that need to be heat-exchanged with each other are formed, so that heat can be efficiently exchanged and the thermal efficiency can be improved.

本発明に係る燃料改質装置の更に別の特徴構成は、前記外装容器が、金属、樹脂及びセラミックスの何れかで構成される点にある。   Yet another characteristic configuration of the fuel reformer according to the present invention is that the outer container is made of any one of metal, resin, and ceramics.

上記特徴構成によれば、金属、樹脂及びセラミックスの何れかを用いることで、外装容器としての必要な強度と加工のし易さを得ることができる。   According to the above characteristic configuration, by using any one of metal, resin, and ceramics, it is possible to obtain the necessary strength and ease of processing as an outer container.

上記目的を達成するための本発明に係る燃料改質装置の製造方法の特徴構成は、上記特徴構成の何れかを備える燃料改質装置の製造方法であって、
並列に密着して並べられ、前記反応器の外部で配管により前記処理空間が互いに接続された状態の前記複数の反応器で構成される装置本体を、前記外装容器の一部を構成する下部容器に設置した状態で前記粒状断熱材を前記下部容器に充填する工程と、
前記外装容器の一部を構成する側面部材を前記下部容器に組み付けて前記装置本体の側面を取り囲んだ状態で前記粒状断熱材を前記側面部材の内側に充填する工程と、
前記外装容器の一部を構成する上面部材を前記側面部材に組み付けて前記外装容器に蓋をする工程と、を有する点にある。
In order to achieve the above object, a characteristic configuration of a method for manufacturing a fuel reformer according to the present invention is a method for manufacturing a fuel reformer including any one of the above-described characteristic configurations,
An apparatus main body composed of the plurality of reactors arranged in close contact in parallel and connected to each other by piping outside the reactor, and a lower container constituting a part of the outer container Filling the lower container with the granular heat insulating material in a state installed in
A step of assembling a side surface member constituting a part of the exterior container to the lower container and filling the granular heat insulating material inside the side surface member in a state of surrounding the side surface of the apparatus main body;
A step of assembling an upper surface member constituting a part of the outer container to the side member and covering the outer container.

上記特徴構成によれば、外装容器に収容された、並列に密着して並べられた状態の複数の反応器の断熱は、外装容器の内部に充填される粒状断熱材によって確実に行われる。つまり、粒状断熱材を用いることで、断熱材の加工コストや断熱材を含めた組み立てコストが大幅に低減される。また、燃料改質装置を製造するに際して複数の反応器を互いに密着して並べればよいため、多重円筒管型の燃料改質装置に比べて反応器の構造は単純で且つ製造コストを低くできる。
加えて、粒状断熱材を充填し難い装置本体の下部には、側面部材及び上面部材を組み付けない状態で粒状断熱材の充填が行われる。その結果、装置本体の下部に対して確実に粒状断熱材を充填できる。そして、装置本体の下部に対して確実に粒状断熱材を充填した後で、装置本体の側面を取り囲む側面部材を組み付けて、装置本体の全体を粒状断熱材で覆うことができる。
According to the above characteristic configuration, the heat insulation of the plurality of reactors housed in the outer container and arranged in close contact in parallel is reliably performed by the granular heat insulating material filled in the outer container. That is, by using the granular heat insulating material, the processing cost of the heat insulating material and the assembly cost including the heat insulating material are greatly reduced. In addition, since a plurality of reactors may be arranged in close contact with each other when manufacturing the fuel reformer, the structure of the reactor is simple and the manufacturing cost can be reduced as compared with a multi-cylinder tube type fuel reformer.
In addition, the lower part of the apparatus main body that is difficult to be filled with the granular heat insulating material is filled with the granular heat insulating material in a state where the side surface member and the upper surface member are not assembled. As a result, the granular heat insulating material can be reliably filled into the lower portion of the apparatus main body. And after filling a granular heat insulating material with respect to the lower part of an apparatus main body reliably, the side member surrounding the side surface of an apparatus main body can be assembled | attached, and the whole apparatus main body can be covered with a granular heat insulating material.

本発明に係る燃料改質装置の製造方法の別の特徴構成は、前記粒状断熱材を充填するときに前記外装容器に振動を加える点にある。   Another characteristic configuration of the fuel reformer manufacturing method according to the present invention is that vibration is applied to the outer container when the granular heat insulating material is filled.

上記特徴構成によれば、振動を加えることで粒状断熱材同士の隙間を小さくして粒状断熱材の充填率を上げることができる。その結果、装置本体の断熱を更に確実に行える。   According to the above characteristic configuration, by applying vibration, the gap between the granular heat insulating materials can be reduced and the filling rate of the granular heat insulating materials can be increased. As a result, it is possible to further reliably insulate the apparatus main body.

燃料改質装置の構成を説明する図である。It is a figure explaining the composition of a fuel reformer. 装置本体が外装容器に収容されている状態を説明する図である。It is a figure explaining the state by which the apparatus main body is accommodated in the exterior container. 装置本体と外装容器とを備える燃料改質装置の斜視図である。It is a perspective view of a fuel reformer provided with an apparatus main part and an exterior container. 外装容器の上下方向と垂直な方向に向けて並列に密着して並べられた容器を配管で接続する方法を説明する図である。It is a figure explaining the method of connecting the container arrange | positioned closely in parallel toward the direction perpendicular | vertical to the up-down direction of an exterior container with piping. 外装容器の一部を構成する下部容器に装置本体を設置する状態を示す図である。It is a figure which shows the state which installs an apparatus main body in the lower container which comprises some exterior containers. 粒状断熱材を下部容器に充填する工程を説明する図である。It is a figure explaining the process of filling a granular insulator with a lower container. 外装容器の一部を構成する側面部材を下部容器に組み付けた状態を示す図である。It is a figure which shows the state which assembled | attached the side surface member which comprises some exterior containers to a lower container. 粒状断熱材を側面部材の内側に充填した後、外装容器の一部を構成する上面部材を側面部材に組み付けて外装容器に蓋をする工程を説明する図である。It is a figure explaining the process of attaching the upper surface member which comprises a part of exterior container to a side member, and filling an exterior container after filling a granular heat insulating material inside a side member.

以下に、図面を参照して、発電出力700W級の家庭用燃料電池システムにおいて、炭化水素系の原燃料を改質して、燃料電池の燃料となる水素を主成分とする改質ガスを生成する燃料改質装置の構成について説明する。
図1は、燃料改質装置の構成を説明する図である。図1に示すように、燃料改質装置Rが備える装置本体Mは、改質ガスを生成するための複数の反応器(脱硫処理部1、水蒸気生成部2、燃焼部4、水蒸気改質部3、変成処理部5、選択酸化部6)を有する。図1において、装置本体Mは断面図で示す。以下に説明するように、装置本体Mは外装容器Cに収容される。図2は、装置本体Mが外装容器Cに収容されている状態を説明する図であり、図3は、装置本体Mと外装容器Cとを備える燃料改質装置Rの斜視図である。図2及び図3に示すように、外装容器Cの内部に充填された粒状断熱材Kにより、複数の反応器を有する装置本体Mは外装容器Cから断熱されている。
In the following, referring to the drawings, in a household fuel cell system with a power generation output of 700 W, reforming a hydrocarbon-based raw fuel to produce a reformed gas mainly composed of hydrogen as fuel for the fuel cell The structure of the fuel reforming apparatus will be described.
FIG. 1 is a diagram illustrating the configuration of a fuel reformer. As shown in FIG. 1, the apparatus main body M included in the fuel reformer R includes a plurality of reactors (desulfurization processing unit 1, steam generation unit 2, combustion unit 4, steam reforming unit) for generating reformed gas. 3. It has a modification treatment unit 5 and a selective oxidation unit 6). In FIG. 1, the apparatus main body M is shown in a sectional view. As will be described below, the apparatus main body M is accommodated in an outer container C. FIG. 2 is a diagram illustrating a state in which the apparatus main body M is accommodated in the outer container C, and FIG. 3 is a perspective view of a fuel reformer R including the apparatus main body M and the outer container C. As shown in FIGS. 2 and 3, the apparatus main body M having a plurality of reactors is thermally insulated from the outer container C by the granular heat insulating material K filled in the outer container C.

まず、脱硫処理部1から選択酸化部6に至るガスの流路について説明する。
図1に示すように、原燃料ガス用熱交換器Eaの原燃料ガス通流部16に原燃料ガス供給路21を接続して、そこから原燃料ガスを供給する。そして、原燃料ガス通流部16、脱硫処理部1、被改質ガス用熱交換器Epの被改質ガス通流部13、水蒸気改質部3、保温用通流部7、被改質ガス用熱交換器Epの上流側改質処理ガス通流部12、原燃料ガス用熱交換器Eaの下流側改質処理ガス通流部15、変成処理部5、選択酸化部6の順に流れるガス処理経路を形成するように、それらをガス処理用流路22で接続している。
First, the gas flow path from the desulfurization processing unit 1 to the selective oxidation unit 6 will be described.
As shown in FIG. 1, a raw fuel gas supply path 21 is connected to the raw fuel gas flow passage 16 of the raw fuel gas heat exchanger Ea, and the raw fuel gas is supplied therefrom. The raw fuel gas flow section 16, the desulfurization processing section 1, the reformed gas flow section 13 of the reformed gas heat exchanger Ep, the steam reforming section 3, the heat retaining flow section 7, the reformed target It flows in order of the upstream reforming process gas flow part 12 of the gas heat exchanger Ep, the downstream reforming process gas flow part 15 of the raw fuel gas heat exchanger Ea, the shift treatment part 5 and the selective oxidation part 6. They are connected by a gas processing flow path 22 so as to form a gas processing path.

脱硫処理部1は、供給される都市ガスなどの炭化水素系の原燃料ガス(炭化水素系の原燃料)を脱硫処理する。水蒸気生成部2は、燃焼部4から排出された燃焼ガスを通流させる水蒸気生成用加熱通流部11と、供給される原料水を水蒸気生成用加熱通流部11による加熱にて蒸発させる蒸発部Vとを有する。燃焼部4は、燃焼用ガスを燃焼して燃焼熱を発生させる。燃焼用ガスとしては、燃料電池(図示せず)から排出された排燃料ガス(発電反応に用いられなかった水素を含むガス)を用いることができ、原燃料ガスを燃焼用ガスとして用いることもできる。水蒸気改質部3は、燃焼部4で発生された燃焼熱を利用して原燃料ガスを水蒸気改質して上記改質ガスを生成する。具体的には、水蒸気改質部3には、ルテニウム、ニッケル、白金などの改質触媒を保持したセラミック製の多孔質粒状体の多数が通気可能な状態で充填される。水蒸気改質部3には、改質処理温度(即ち、反応器の温度)を検出する温度センサ38が設けられている。そして、水蒸気改質部3に被改質ガス(後述する脱硫原燃料ガスと水蒸気との混合ガス)を通流させて、原燃料ガスを水素と一酸化炭素と二酸化炭素とを含む改質ガスに改質する。原燃料ガスが、メタンを主成分とする天然ガスである場合、水蒸気改質部3では、燃焼部4による例えば650℃〜750℃程度の加熱下でメタンと水蒸気とが下記の反応式にて改質反応して、水素と一酸化炭素と二酸化炭素を含むガスに改質処理される。   The desulfurization processing unit 1 desulfurizes a hydrocarbon-based raw fuel gas (hydrocarbon-based raw fuel) such as city gas to be supplied. The steam generation unit 2 is a steam generation heating flow-through unit 11 that allows the combustion gas discharged from the combustion unit 4 to flow, and an evaporation that evaporates the supplied raw water by heating by the steam generation heating flow-through unit 11. Part V. The combustion unit 4 burns combustion gas and generates combustion heat. As the combustion gas, exhaust fuel gas (a gas containing hydrogen that has not been used in the power generation reaction) discharged from a fuel cell (not shown) can be used, and the raw fuel gas can also be used as the combustion gas. it can. The steam reforming unit 3 uses the combustion heat generated in the combustion unit 4 to steam reform the raw fuel gas to generate the reformed gas. Specifically, the steam reforming unit 3 is filled with a large number of ceramic porous particles holding a reforming catalyst such as ruthenium, nickel, or platinum in a state in which it can be vented. The steam reforming unit 3 is provided with a temperature sensor 38 for detecting the reforming treatment temperature (that is, the temperature of the reactor). Then, the gas to be reformed (a mixed gas of desulfurized raw fuel gas and water vapor, which will be described later) is passed through the steam reforming section 3, and the raw fuel gas is reformed gas containing hydrogen, carbon monoxide, and carbon dioxide. To reform. When the raw fuel gas is a natural gas mainly composed of methane, in the steam reforming unit 3, methane and steam are heated by the combustion unit 4, for example, about 650 ° C. to 750 ° C. according to the following reaction formula. The reforming reaction is performed to reform the gas containing hydrogen, carbon monoxide, and carbon dioxide.

〔化1〕
CH4+H2O→CO+3H2
〔化2〕
CH4+2H2O→CO2+4H2
[Chemical formula 1]
CH 4 + H 2 O → CO + 3H 2
[Chemical 2]
CH 4 + 2H 2 O → CO 2 + 4H 2

変成処理部5は、水蒸気改質部3にて生成された改質ガスに含まれる一酸化炭素を低減するように処理する。具体的には、変成処理部5においては、改質処理ガス中の一酸化炭素と水蒸気とが、例えば200℃〜300℃程度の反応温度で下記の反応式にて変成反応して、一酸化炭素が二酸化炭素に変成処理される。   The modification processing unit 5 performs processing so as to reduce carbon monoxide contained in the reformed gas generated in the steam reforming unit 3. Specifically, in the shift treatment unit 5, carbon monoxide and water vapor in the reformed gas undergo a shift reaction according to the following reaction formula at a reaction temperature of, for example, about 200 ° C. to 300 ° C. Carbon is transformed into carbon dioxide.

〔化3〕
CO+H2O→CO2+H2
[Chemical formula 3]
CO + H 2 O → CO 2 + H 2

選択酸化部6は、変成処理部5から排出される変成処理ガス中に残留している一酸化炭素を除去する。具体的には、選択酸化部6においては、ルテニウムや白金、パラジウム、ロジウム等の触媒作用によって、100℃〜200℃程度の反応温度で変成処理ガス中に残っている一酸化炭素が、添加された空気中の酸素によって酸化される。その結果、一酸化炭素濃度の低い(例えば10ppm以下)、水素リッチな燃料ガスが生成される。
生成された燃料ガスは、燃料ガス路23を通じて燃料電池に供給される。本実施形態では、選択酸化部6から排出された選択酸化処理ガス(燃料電池に供給される燃料ガス)の温度は100℃〜200℃程度であり、例えば固体高分子型の燃料電池の動作温度は70℃〜80℃程度であるので、燃料ガス路23には、選択酸化部6から排出された選択酸化処理ガスを、燃料電池の動作温度付近にまで冷却する燃料ガス冷却用熱交換器(図示せず)が設けられている。
また、上述したように、燃料電池から排出される排燃料ガス(発電反応に用いられなかった水素を含むガス)は、排燃料ガス路24を通じて一対のパイプバーナ44に燃焼用ガスとして供給される。
The selective oxidation unit 6 removes carbon monoxide remaining in the shift treatment gas discharged from the shift treatment unit 5. Specifically, in the selective oxidation unit 6, carbon monoxide remaining in the shift gas at a reaction temperature of about 100 ° C. to 200 ° C. is added by a catalytic action of ruthenium, platinum, palladium, rhodium or the like. Oxidized by oxygen in the air. As a result, a hydrogen-rich fuel gas having a low carbon monoxide concentration (for example, 10 ppm or less) is generated.
The generated fuel gas is supplied to the fuel cell through the fuel gas passage 23. In this embodiment, the temperature of the selective oxidation treatment gas (fuel gas supplied to the fuel cell) discharged from the selective oxidation unit 6 is about 100 ° C. to 200 ° C., for example, the operating temperature of a solid polymer fuel cell Is about 70 ° C. to 80 ° C. Therefore, in the fuel gas passage 23, a fuel gas cooling heat exchanger (cooling gas) that cools the selective oxidation treatment gas discharged from the selective oxidation unit 6 to near the operating temperature of the fuel cell ( (Not shown) is provided.
Further, as described above, the exhaust fuel gas discharged from the fuel cell (a gas containing hydrogen that has not been used in the power generation reaction) is supplied as a combustion gas to the pair of pipe burners 44 through the exhaust fuel gas passage 24. .

〔水蒸気生成部への原料水の供給経路〕
次に、水蒸気生成部2の蒸発部Vへの原料水の供給経路について説明する。
変成処理部5と選択酸化部6とを接続するガス処理用流路22には、原料水供給路25を流れる原料水を変成処理ガスにて予熱する原料水予熱用熱交換器17と、更に、もう1つの水冷熱交換器(図示せず)と、変成処理ガスから凝縮水を除去するドレントラップ34とが順に設けられている。
更に、原料水供給路25における原料水予熱用熱交換器17よりも下流側の箇所には、原料水を蛇行状に流す蛇行状通流部18が設けられている。蛇行状通流部18は、装置本体Mの外壁部のうちの、燃焼部4を覆う箇所に熱伝導可能に当て付けて設けられる。その結果、装置本体Mの外壁部からの伝導熱および輻射熱により、蛇行状通流部18を通流する原料水が予熱される。
以上のようにして、水蒸気生成部2の蒸発部Vに供給する原料水を、原料水予熱用熱交換器17及び蛇行状通流部18を用いて予熱する。
[Supply water supply path to the steam generator]
Next, the supply path of the raw material water to the evaporation part V of the water vapor generation part 2 will be described.
In the gas processing flow path 22 that connects the shift treatment section 5 and the selective oxidation section 6, a raw material water preheating heat exchanger 17 that preheats the raw water flowing in the raw water supply path 25 with the shift treatment gas, and further Another water-cooled heat exchanger (not shown) and a drain trap 34 for removing condensed water from the shift treatment gas are provided in this order.
Further, a meandering flow portion 18 for flowing the raw water in a meandering manner is provided at a location downstream of the raw material water preheating heat exchanger 17 in the raw water supply path 25. The meandering flow portion 18 is provided so as to be capable of conducting heat to a portion of the outer wall portion of the apparatus main body M that covers the combustion portion 4. As a result, the raw water flowing through the serpentine flow passage 18 is preheated by the conduction heat and radiant heat from the outer wall portion of the apparatus main body M.
As described above, the raw water supplied to the evaporation section V of the water vapor generating section 2 is preheated using the raw water preheating heat exchanger 17 and the meandering flow section 18.

〔燃焼部等の装置構成〕
燃焼部4は、燃焼用ガス(排燃料ガス)を火炎を形成する状態で燃焼させる有炎燃焼部4Fと、その有炎燃焼部4Fに対して、その有炎燃焼部4Fの火炎形成方向下流側に配置されて、有炎燃焼部4Fにて燃焼しなかった燃焼用ガスを燃焼触媒4cにて燃焼させる触媒燃焼部4Cを備える。有炎燃焼部4Fには、改質装置用の加熱バーナとしての一対のパイプバーナ44が設けられる。パイプバーナ44にはイグナイタ4iを用いて点火される。燃焼部4の外表面の最高温度は例えば600℃〜700℃である。
[Device configuration such as combustion section]
The combustion unit 4 combusts the combustion gas (exhaust fuel gas) in a state of forming a flame, and the flame formation unit 4F is downstream in the flame formation direction with respect to the flame combustion unit 4F. The catalyst combustion part 4C which is arrange | positioned at the side and burns the combustion gas which was not burned in the flammable combustion part 4F by the combustion catalyst 4c is provided. A pair of pipe burners 44 as a heating burner for the reformer is provided in the flammable combustion section 4F. The pipe burner 44 is ignited using an igniter 4i. The maximum temperature of the outer surface of the combustion unit 4 is, for example, 600 ° C to 700 ° C.

図1において一点鎖線矢印にて示すように、燃焼用空気が、燃焼用ブロア28から燃焼用空気路29を通って一対のパイプバーナ44に供給される。
更に、燃焼用ブロア28に接続した酸化用空気供給路31が、変成処理部5と選択酸化部6とを接続するガス処理用流路22に接続される。それにより、燃焼用ブロア28からの空気は酸化用空気として選択酸化部6に供給される。但し、酸化用空気供給路31には開閉弁35が設けられており、開閉弁35を閉止作動させることで選択酸化部6への空気の供給を遮断可能である。
As indicated by a one-dot chain line arrow in FIG. 1, combustion air is supplied from the combustion blower 28 through the combustion air passage 29 to the pair of pipe burners 44.
Further, an oxidizing air supply path 31 connected to the combustion blower 28 is connected to a gas processing flow path 22 that connects the shift treatment section 5 and the selective oxidation section 6. Thereby, the air from the combustion blower 28 is supplied to the selective oxidation unit 6 as oxidizing air. However, the on-off valve 35 is provided in the oxidation air supply path 31, and the supply of air to the selective oxidation unit 6 can be shut off by closing the on-off valve 35.

〔装置本体Mを通流するガスの熱交換〕
次に、装置本体Mを通流するガスの熱交換について説明する。
燃料改質装置の装置本体Mには、水蒸気改質部3から排出された高温の改質処理ガスを通流させて、水蒸気改質部3を保温する保温用通流部7と、高温の改質処理ガスにより水蒸気改質部3に供給される被改質ガスを加熱する被改質ガス用熱交換器Epと、高温の改質処理ガスにより脱硫処理部1に供給される原燃料ガスを加熱する原燃料ガス用熱交換器Eaと、変成処理部5を冷却するために冷却用流体を通流させる変成部冷却用通流部8と、変成処理部5および選択酸化部6を冷却する冷却用ファン10とが設けられている。
[Heat exchange of gas flowing through the device body M]
Next, heat exchange of gas flowing through the apparatus main body M will be described.
A high temperature reforming treatment gas discharged from the steam reforming unit 3 is passed through the apparatus body M of the fuel reformer, and a heat retaining flow unit 7 that keeps the steam reforming unit 3 warm, A heat exchanger Ep for the gas to be reformed that heats the gas to be reformed that is supplied to the steam reforming unit 3 by the reforming process gas, and a raw fuel gas that is supplied to the desulfurization processing unit 1 by the high-temperature reforming process gas The raw fuel gas heat exchanger Ea that heats the gas, the metamorphic part cooling flow part 8 that allows the cooling fluid to flow in order to cool the metamorphic part 5, and the metamorphic treatment part 5 and the selective oxidation part 6 are cooled. And a cooling fan 10 is provided.

被改質ガス用熱交換器Epでは、保温用通流部7から排出された改質処理ガスを通流させる上流側改質処理ガス通流部12と、水蒸気改質部3に供給する被改質ガスを通流させる被改質ガス通流部13との熱交換が行われる。
原燃料ガス用熱交換器Eaでは、上流側改質処理ガス通流部12から排出された改質処理ガスを通流させる下流側改質処理ガス通流部15と、脱硫処理部1に供給する原燃料ガスを通流させる原燃料ガス通流部16との熱交換が行われる。
In the to-be-reformed gas heat exchanger Ep, the reforming gas to be supplied to the upstream reforming process gas flow section 12 and the steam reforming section 3 through which the reforming process gas discharged from the heat retaining flow section 7 flows. Heat exchange is performed with the reformed gas flow section 13 through which the reformed gas flows.
In the raw fuel gas heat exchanger Ea, the downstream reforming process gas flow section 15 for flowing the reforming process gas discharged from the upstream reforming process gas flow section 12 and the desulfurization processing section 1 are supplied. Heat exchange is performed with the raw fuel gas flow section 16 through which the raw fuel gas flows.

〔水蒸気と原燃料ガスとの混合〕
原燃料ガス供給路21から供給される原燃料ガスを脱硫処理部1で脱硫処理し、その脱硫原燃料ガスと水蒸気路26からの水蒸気とを混合する。具体的には、図1に示すように、装置本体Mにおいて、水蒸気生成用の原料水を供給する原料水供給路25を水蒸気生成部2の蒸発部Vに接続し、蒸発部Vにて生成された水蒸気を送出する水蒸気路26を、脱硫処理部1と被改質ガス通流部13とを接続するガス処理用流路22に接続する。その結果、ガス処理用流路22を通流する脱硫原燃料ガスに改質用の水蒸気が混合される。
[Mixing of steam and raw fuel gas]
The raw fuel gas supplied from the raw fuel gas supply path 21 is desulfurized in the desulfurization processing unit 1, and the desulfurized raw fuel gas and the water vapor from the water vapor path 26 are mixed. Specifically, as shown in FIG. 1, in the apparatus main body M, a raw material water supply path 25 for supplying raw water for steam generation is connected to the evaporation section V of the steam generation section 2 and is generated by the evaporation section V. The steam passage 26 for delivering the steam is connected to a gas processing flow path 22 that connects the desulfurization processing section 1 and the reformed gas flow section 13. As a result, the reforming steam is mixed with the desulfurized raw fuel gas flowing through the gas processing flow path 22.

〔燃焼部から排出される燃焼ガスの利用形態〕
図1において、破線矢印にて示すように、燃焼部4から排出された燃焼ガスを、水蒸気生成用加熱通流部11、変成部冷却用通流部8の順に流すように、それら燃焼部4、水蒸気生成用加熱通流部11、変成部冷却用通流部8が燃焼ガス路27により接続されている。そして、水蒸気生成用加熱通流部11においては、燃焼ガスによって蒸発部Vを加熱し、変成部冷却用通流部8においては、燃焼ガスによって、発熱反応である変成反応が行われる変成処理部5を冷却する。
[Usage form of combustion gas discharged from the combustion section]
In FIG. 1, as indicated by broken line arrows, the combustion gas discharged from the combustion part 4 flows through the steam generation heating heating part 11 and the metamorphic part cooling communication part 8 in this order. The steam generating heating flow passage 11 and the metamorphic portion cooling flow passage 8 are connected by a combustion gas passage 27. In the steam generation heating flow-through portion 11, the evaporation portion V is heated by the combustion gas, and in the shift-flow cooling flow portion 8, a shift treatment portion in which a shift reaction that is an exothermic reaction is performed by the combustion gas. 5 is cooled.

〔燃料改質装置の装置本体の構成〕
図1及び図2に示すように、燃料改質装置Rが備える複数の反応器(脱硫処理部1、水蒸気生成部2、燃焼部4、水蒸気改質部3、変成処理部5、選択酸化部6)は、上記改質ガスの生成処理工程で用いられる処理空間を内部に備えた平板型モジュールとしての容器Bを用いて形成される。それら複数の容器B(複数の反応器:平板型モジュール)は、並列に密着して並べられた状態で装置本体Mを構成する。複数の容器Bを並べるに当たっては、上述したような伝熱させる必要のあるもの同士は互いに密着させた状態で並べ、且つ、伝熱量を調節する必要のあるもの同士の間に伝熱量調節用の断熱材19を介在させた状態で並べてある。また、容器Bは、皿形状の容器形成用部材b1を、それらの間に板状の仕切り部材b2を位置させた状態で溶接接続して、二つの処理空間を備えるように構成されている。本実施形態では、図1に示すように、燃焼部4を直接覆うように設けられている断熱材19は皿状容器部材b1で覆われ、その皿状容器部材b1は板状部材b2に溶接接続される。従って、図2に示すように、燃焼部4を取り囲んでいる断熱材19は装置本体Mの外部からは見えない。
更に、図示しないが、並列に密着して並べられた状態の複数の容器Bを、並び方向に沿った両方から金属製のパネルなどで挟んで固定している。それにより、複数の容器B(装置本体M)を一体として取り扱うことができる。
[Configuration of fuel reformer main unit]
As shown in FIGS. 1 and 2, a plurality of reactors (desulfurization treatment unit 1, steam generation unit 2, combustion unit 4, steam reforming unit 3, shift treatment unit 5, selective oxidation unit) provided in the fuel reformer R are provided. 6) is formed by using a container B as a flat plate module provided with a processing space used in the reformed gas generation processing step. The plurality of containers B (a plurality of reactors: flat plate type modules) constitute the apparatus main body M in a state of being in close contact with each other in parallel. When arranging the plurality of containers B, the above-mentioned items that need to be heat-transferred are arranged in close contact with each other, and the heat-transfer amount adjustment is between those that need to adjust the heat-transfer amount. It arranges in the state which interposed the heat insulating material 19. In FIG. The container B is configured to have two processing spaces by welding and connecting a dish-shaped container forming member b1 with a plate-shaped partition member b2 positioned therebetween. In this embodiment, as shown in FIG. 1, the heat insulating material 19 provided so as to directly cover the combustion part 4 is covered with a dish-like container member b1, and the dish-like container member b1 is welded to the plate-like member b2. Connected. Therefore, as shown in FIG. 2, the heat insulating material 19 surrounding the combustion part 4 cannot be seen from the outside of the apparatus main body M.
Furthermore, although not shown in figure, the some container B of the state arrange | positioned closely in parallel is pinched | interposed and fixed by the metal panels etc. from both along the arrangement direction. Thereby, a plurality of containers B (apparatus body M) can be handled as one.

図4は、外装容器Cの上下方向と垂直な方向に向けて並列に密着して並べられた容器Bを配管P(例えば、ガス処理用流路22、燃料ガス路23、排燃料ガス路24、原料水供給路25、水蒸気路26、燃焼ガス路27、燃焼用空気路29)で接続する方法を説明する図である。尚、図4は、容器Bを配管Pで接続する方法を例示する目的で描いたものであり、実際の配管Pの寸法、位置及び形状とは異なる。同様に、図2に示す配管Pも例示目的で描いたものである。   FIG. 4 shows a pipe P (for example, a gas processing flow path 22, a fuel gas path 23, and an exhaust fuel gas path 24) arranged in parallel in close contact with the outer casing C in a direction perpendicular to the vertical direction. FIG. 5 is a diagram for explaining a method of connecting by a raw water supply path 25, a water vapor path 26, a combustion gas path 27, and a combustion air path 29). FIG. 4 is drawn for the purpose of illustrating a method of connecting the container B with the pipe P, and is different from the actual size, position, and shape of the pipe P. Similarly, the piping P shown in FIG. 2 is also drawn for illustrative purposes.

図2及び図4に示すように、容器Bには、配管Pの一部を構成する接続部47が上下方向に向けて溶接接続されている。そして、接続部47同士が、U字型の配管P(ガス処理用流路22、燃料ガス路23、排燃料ガス路24、原料水供給路25、水蒸気路26、燃焼ガス路27、燃焼用空気路29)で接続される。その結果、上述した複数の反応器の内部の処理空間が、配管Pで接続される。
以上のようにして、装置本体Mを構成する複数の容器B(反応器)の処理空間の少なくとも一対又は全部が、容器Bのそれぞれから上下方向に引き出される配管Pによって接続される。
また、図示していないが、外装容器Cの側面部材C2には、原燃料ガス供給路21や燃料ガス路23、排燃料ガス路24、原料水供給路25、燃焼用空気路29などを形成する配管径とほぼ同様の孔があけられていて、その孔を通して、それらの配管が燃料改質装置Rの外側に張り出しており、燃料改質装置Rの外部にある原燃料供給設備や原料水供給設備、燃焼用ブロア28、燃料電池などと接続されている。さらに、外装容器Cの側面部材C2には、装置本体Mに取り付けられている温度センサ38などの複数の温度センサ(例えば、熱電対、サーミスタなど)や電気ヒータなどのケーブル類を通す孔があけられている。
As shown in FIG.2 and FIG.4, the connection part 47 which comprises some piping P is weld-connected to the container B toward the up-down direction. The connecting portions 47 are connected to each other by a U-shaped pipe P (gas processing flow path 22, fuel gas path 23, exhaust fuel gas path 24, raw water supply path 25, water vapor path 26, combustion gas path 27, combustion gas. Connected by air passage 29). As a result, the processing spaces inside the plurality of reactors described above are connected by the pipe P.
As described above, at least a pair or all of the processing spaces of the plurality of containers B (reactors) constituting the apparatus main body M are connected by the pipes P drawn from the containers B in the vertical direction.
Although not shown, the side fuel C2 of the outer container C is formed with the raw fuel gas supply passage 21, the fuel gas passage 23, the exhaust fuel gas passage 24, the raw water supply passage 25, the combustion air passage 29, and the like. Holes that are almost the same as the diameter of the pipes to be formed are opened, through which the pipes project outside the fuel reformer R, and the raw fuel supply equipment and raw water outside the fuel reformer R are provided. It is connected to a supply facility, a combustion blower 28, a fuel cell, and the like. Furthermore, a hole through which cables such as a plurality of temperature sensors (for example, a thermocouple, thermistor, etc.) such as a temperature sensor 38 attached to the apparatus main body M and an electric heater are formed in the side member C2 of the outer container C. It has been.

〔燃料改質装置の製造方法〕
以下に、図2〜図8を参照して燃料改質装置の製造方法について説明する。
図5は、外装容器Cの一部を構成する下部容器C1に装置本体Mを設置する状態を示す図であり、図6は、粒状断熱材を下部容器に充填する工程を説明する図である。図示するように、下部容器C1は、矩形の平板部材C1aに側面部材C1bが装着された浅い器状に形成されている。この工程では、装置本体Mを外装容器Cの一部を構成する下部容器C1に設置した状態で粒状断熱材Kを下部容器C1に充填する。
[Manufacturing method of fuel reformer]
Below, with reference to FIGS. 2-8, the manufacturing method of a fuel reformer is demonstrated.
FIG. 5 is a diagram illustrating a state in which the apparatus main body M is installed in the lower container C1 constituting a part of the outer container C, and FIG. 6 is a diagram illustrating a process of filling the lower container with the granular heat insulating material. . As shown in the drawing, the lower container C1 is formed in a shallow vessel shape in which a side plate member C1b is mounted on a rectangular flat plate member C1a. In this step, the granular heat insulating material K is filled in the lower container C1 in a state where the apparatus main body M is installed in the lower container C1 constituting a part of the outer container C.

装置本体Mを下部容器C1に安定して設置するため、本実施形態では、装置本体Mの下部と下部容器C1との間に板状断熱材Tを介在させてある。図2及び図4に示したように、本実施形態で用いる板状断熱材Tは、三層構造である。容器Bに対して接する一層目の板状断熱材T1には、接続部47が貫通できる孔が形成されている。二層目の板状断熱材T2には、容器Bの外部において水平方向に引き回されるU字型の配管Pが通る孔が形成されている。三層目の板状断熱材T3には孔は形成されていない。
また、図5及び図6に示すように、本実施形態で説明する下部容器C1の側面部材C1bの一部は切欠かれている。但し、その部分には装置本体M及び板状断熱材Tが外装容器Cの内側から密着するため、粒状断熱材Kが下部容器C1の切欠き部分から外部に流出することはない。
In order to stably install the apparatus main body M in the lower container C1, in this embodiment, a plate-like heat insulating material T is interposed between the lower part of the apparatus main body M and the lower container C1. As shown in FIGS. 2 and 4, the plate-like heat insulating material T used in the present embodiment has a three-layer structure. In the first-layer plate-shaped heat insulating material T <b> 1 in contact with the container B, a hole through which the connection portion 47 can penetrate is formed. In the second-layer plate-shaped heat insulating material T2, a hole through which a U-shaped pipe P drawn in the horizontal direction outside the container B passes is formed. No holes are formed in the third-layer plate-like heat insulating material T3.
Moreover, as shown in FIG.5 and FIG.6, a part of side member C1b of the lower container C1 demonstrated by this embodiment is notched. However, since the apparatus main body M and the plate-like heat insulating material T are in close contact with the portion from the inside of the outer container C, the granular heat insulating material K does not flow out from the cutout portion of the lower container C1.

装置本体Mの下部に板状断熱材Tを装着するとき、先ず、接続部47が上下方向に向けて溶接接続されている状態の複数の容器Bを、並列に密着して並べる。その状態では、接続部47のみが容器Bに接続されているので、接続部47が板状断熱材T1に形成された孔を貫通するように板状断熱材T1を装置本体Mの下部に装着できる。次に、接続部47に対してU字型の配管Pを溶接接続し、その配管Pが板状断熱材T2の孔に嵌るように板状断熱材T2を板状断熱材T1に重ね合わせる。その後、板状断熱材T3を板状断熱材T2に重ね合わせることで、図2及び図4に示すように、装置本体Mの下部への板状断熱材T(T1、T2、T3)の装着が完了する。そして、図5及び図6に示すように、板状断熱材Tが下部に装着された装置本体Mを下部容器C1に設置する。   When the plate-like heat insulating material T is attached to the lower part of the apparatus main body M, first, a plurality of containers B in a state where the connection portion 47 is welded in the vertical direction are arranged in close contact in parallel. In that state, since only the connecting portion 47 is connected to the container B, the plate-like heat insulating material T1 is attached to the lower part of the apparatus main body M so that the connecting portion 47 penetrates the hole formed in the plate-like heat insulating material T1. it can. Next, a U-shaped pipe P is welded to the connection portion 47, and the plate-like heat insulating material T2 is overlaid on the plate-like heat insulating material T1 so that the pipe P fits into the hole of the plate-like heat insulating material T2. Thereafter, the plate-like heat insulating material T3 is superposed on the plate-like heat insulating material T2, so that the plate-like heat insulating material T (T1, T2, T3) is attached to the lower part of the apparatus body M as shown in FIGS. Is completed. And as shown in FIG.5 and FIG.6, the apparatus main body M by which the plate-shaped heat insulating material T was mounted | worn by the lower part is installed in the lower container C1.

本実施形態において、外装容器Cは、金属、樹脂及びセラミックスの何れかで構成される。樹脂及びセラミックスを用いる場合は、金属よりも断熱性を有するものが好ましい。外装容器Cに充填される粒状断熱材K及び板状断熱材Tとしては、日本マイクロサーム社のマイクロサーム等を使用できる。このような断熱材は、燃焼部4の外表面の最高温度である例えば600℃〜700℃の温度で良好な断熱性能を示すので、使用する断熱材の量を減らすことができ、燃料改質装置をコンパクトにすることができる。なお、粒状断熱材Kとしては、例えば、粒径がおよそ0.3〜2.5mmの範囲にあり、嵩密度が150〜350kg/m3のものを用いることができる。 In this embodiment, the exterior container C is comprised with either a metal, resin, and ceramics. When using resin and ceramics, what has heat insulation rather than a metal is preferable. As the granular heat insulating material K and the plate-shaped heat insulating material T filled in the outer container C, a microtherm manufactured by Nippon Microtherm Co., Ltd. can be used. Since such a heat insulating material exhibits good heat insulating performance at a temperature of, for example, 600 ° C. to 700 ° C., which is the maximum temperature of the outer surface of the combustion section 4, the amount of heat insulating material to be used can be reduced, and fuel reforming can be performed. The device can be made compact. As the granular heat insulating material K, for example, one having a particle size in the range of about 0.3 to 2.5 mm and a bulk density of 150 to 350 kg / m 3 can be used.

図7は、外装容器の一部を構成する側面部材を下部容器に組み付けた状態を示す図である。図8は、粒状断熱材を側面部材の内側に充填した後、外装容器の一部を構成する上面部材を側面部材に組み付けて外装容器に蓋をする工程を説明する図である。
図7に示すように、装置本体Mが設置された下部容器C1に対して、外装容器Cの一部を構成する側面部材C2を組み付けて装置本体Mの側面を取り囲む。そして、装置本体Mの側面を側面部材C2で取り囲んだ状態で、図8に示すように、粒状断熱材Kを側面部材C2の内側に充填する。本実施形態では、下部容器C1に装着される側面部材C2の一部は切欠かれており、下部容器C1の切欠き部分と側面部材C2の切欠き部分とは対応する。上述したように、その切欠き部分には装置本体Mが外装容器Cの内側から密着するため、粒状断熱材Kが側面部材C2の切欠き部分から外部に流出することはない。また、その切欠き部分に対応する装置本体Mには、冷却用ファン10が装着されている。
その後、外装容器Cの一部を構成する上面部材C3を側面部材C2に組み付けて外装容器Cに蓋をすることで、図2及び図3に示した燃料改質装置Rが得られる。また、図2及び図3に示すように、下部容器C1及び側面部材C2が切欠かれて装置本体Mが外部に露出している部分を、セラミック断熱材CTで覆っている。
FIG. 7 is a view showing a state in which a side member constituting a part of the exterior container is assembled to the lower container. FIG. 8 is a diagram for explaining a process of attaching a top surface member constituting a part of the outer container to the side member and covering the outer container after the granular heat insulating material is filled inside the side member.
As shown in FIG. 7, a side member C <b> 2 constituting a part of the outer container C is assembled to the lower container C <b> 1 in which the apparatus main body M is installed to surround the side surface of the apparatus main body M. And in the state which surrounded the side surface of the apparatus main body M with the side member C2, as shown in FIG. 8, the granular heat insulating material K is filled inside the side member C2. In the present embodiment, a part of the side member C2 attached to the lower container C1 is notched, and the notched part of the lower container C1 corresponds to the notched part of the side member C2. As described above, since the apparatus main body M is in close contact with the cutout portion from the inside of the outer container C, the granular heat insulating material K does not flow out of the cutout portion of the side member C2. A cooling fan 10 is mounted on the apparatus main body M corresponding to the notch.
Then, the fuel reformer R shown in FIGS. 2 and 3 is obtained by assembling the upper surface member C3 constituting a part of the outer container C to the side member C2 and covering the outer container C. Moreover, as shown in FIGS. 2 and 3, the lower container C1 and the side member C2 are notched and the portion where the apparatus main body M is exposed to the outside is covered with a ceramic heat insulating material CT.

本実施形態では、粒状断熱材Kを充填するときに外装容器C(下部容器C1、側面部材C2)に振動を加えている。振動を加えることで粒状断熱材K同士の隙間を小さくして粒状断熱材Kの充填率を上げることができ、その結果、装置本体Mの断熱を更に確実に行える。   In the present embodiment, when the granular heat insulating material K is filled, vibration is applied to the exterior container C (lower container C1, side member C2). By applying vibration, the gap between the granular heat insulating materials K can be reduced and the filling rate of the granular heat insulating material K can be increased. As a result, the heat insulation of the apparatus main body M can be performed more reliably.

以上のように、外装容器Cに収容された、並列に密着して並べられた状態の複数の反応器の断熱は、外装容器Cの内部に充填される粒状断熱材Kによって確実に行われる。つまり、粒状断熱材Kを用いることで、断熱材の加工コストや断熱材を含めた組み立てコストがほとんど不要になる。また、燃料改質装置Rを製造するに際して複数の反応器を互いに密着して並べればよいため、多重円筒管型の燃料改質装置に比べて構造は単純になり且つ製造コストを低くできる。   As described above, the heat insulation of the plurality of reactors stored in the outer container C and arranged in close contact in parallel is reliably performed by the granular heat insulating material K filled in the outer container C. That is, by using the granular heat insulating material K, the processing cost of the heat insulating material and the assembly cost including the heat insulating material become almost unnecessary. Further, since a plurality of reactors may be arranged in close contact with each other when manufacturing the fuel reformer R, the structure is simpler and the manufacturing cost can be reduced as compared with the fuel reformer of the multi-cylindrical tube type.

<別実施形態>
<1>
上記実施形態では、発電出力700W級の家庭用燃料電池システムに用いる燃料改質装置について説明したが、システムのサイズは発電出力700W級に制限されることは無く、その他の発電出力の家庭用燃料電池システム用の燃料改質装置にも用いることができる。本発明は、このような断熱作業スペースが確保しにくい家庭用などの小型の燃料改質装置に特に好適であるが、大型の燃料改質装置にも適用できる。
<Another embodiment>
<1>
In the above embodiment, the fuel reformer used in the household fuel cell system with a power generation output of 700 W has been described. However, the size of the system is not limited to the power generation output of 700 W, and other types of household fuel with a power generation output are used. It can also be used in a fuel reformer for battery systems. The present invention is particularly suitable for a small-sized fuel reformer for home use where it is difficult to secure such a heat insulating work space, but can also be applied to a large-sized fuel reformer.

<2>
上記実施形態では、外装容器Cの側面部材C2に、原燃料ガス供給路21や燃料ガス路23、排燃料ガス路24、原料水供給路25、燃焼用空気路29などを形成する配管径とほぼ同様の孔をあけて、その孔を通して、それらの配管が燃料改質装置Rの外側に張り出しており、燃料改質装置Rの外部にある原燃料供給設備や原料水供給設備、燃焼用ブロア28、燃料電池などと接続されている場合や、装置本体Mに取付られている複数の温度センサ(例えば、熱電対、サーミスタなど)や電気ヒータなどのケーブル類を通す孔があけられている場合について説明した。これらの側面部材C2にあけた孔と配管との隙間や、側面部材C2にあけた孔とケーブル類の隙間から粒状断熱材Kが流出する場合には、樹脂等で塞いでも良い。
<2>
In the above-described embodiment, the pipe diameter that forms the raw fuel gas supply path 21, the fuel gas path 23, the exhaust fuel gas path 24, the raw water supply path 25, the combustion air path 29, and the like on the side member C2 of the outer container C A substantially similar hole is formed, and through these holes, the piping projects outside the fuel reformer R. The raw fuel supply facility, the raw water supply facility, and the combustion blower outside the fuel reformer R are formed. 28. When connected to a fuel cell or the like, or when a plurality of temperature sensors (for example, thermocouples, thermistors, etc.) attached to the apparatus main body M and holes for passing cables such as electric heaters are opened. Explained. In the case where the granular heat insulating material K flows out from the gap between the hole formed in the side member C2 and the pipe or the gap formed between the hole formed in the side member C2 and the cables, it may be blocked with a resin or the like.

本発明は、構造が単純であり且つ断熱施工のコストも低くできる燃料改質装置を製造するために利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used to manufacture a fuel reformer that has a simple structure and can reduce the cost of heat insulation work.

3 水蒸気改質部
4 燃焼部
B 容器(反応器、平板型モジュール)
b1 容器形成用部材
b2 仕切り部材
C 外装容器
C1 下部容器
C2 側面部材
C3 上面部材
K 粒状断熱材
M 装置本体
P 配管
R 燃料改質装置
3 Steam reforming section 4 Combustion section B Container (reactor, flat module)
b1 container forming member b2 partition member C outer container C1 lower container C2 side member C3 upper surface member K granular heat insulating material M apparatus main body P pipe R fuel reformer

Claims (6)

炭化水素系の原燃料を改質して燃料電池の燃料となる水素を主成分とする改質ガスを生成するための複数の反応器と、前記複数の反応器を内部に収容する外装容器とを備え、
前記反応器は、前記改質ガスの生成処理工程で用いられる処理空間を内部に備えた平板型モジュールとして構成され、
複数の前記反応器は、並列に密着して並べられた状態で前記外装容器の内部に収容され、
前記外装容器の内部に充填された粒状断熱材により前記複数の反応器が前記外装容器から断熱されている燃料改質装置。
A plurality of reactors for reforming a hydrocarbon-based raw fuel to generate reformed gas mainly composed of hydrogen to be used as fuel for a fuel cell, and an outer container containing the plurality of reactors inside With
The reactor is configured as a flat module with a processing space used in the reformed gas generation processing step inside,
The plurality of reactors are housed inside the outer container in a state of being closely arranged in parallel,
A fuel reformer in which the plurality of reactors are thermally insulated from the outer container by a granular heat insulating material filled in the outer container.
前記複数の反応器の前記処理空間は、前記反応器の外部で配管により互いに接続されている請求項1記載の燃料改質装置。   The fuel reformer according to claim 1, wherein the processing spaces of the plurality of reactors are connected to each other by piping outside the reactor. 前記反応器は、二つの皿形状の容器形成用部材を、それらの間に板状の仕切り部材を位置させた状態で溶接接続して、二つの処理空間を備えるように構成されている請求項1又は2記載の燃料改質装置。   The reactor is configured to have two processing spaces by welding and connecting two dish-shaped container forming members with a plate-shaped partition member positioned therebetween. 3. The fuel reformer according to 1 or 2. 前記外装容器が、金属、樹脂及びセラミックスの何れかで構成される請求項1〜3の何れか一項に記載の燃料改質装置。   The fuel reformer according to any one of claims 1 to 3, wherein the outer container is made of any one of metal, resin, and ceramics. 請求項1〜4の何れか一項に記載の燃料改質装置の製造方法であって、
並列に密着して並べられ、前記反応器の外部で配管により前記処理空間が互いに接続された状態の前記複数の反応器で構成される装置本体を、前記外装容器の一部を構成する下部容器に設置した状態で前記粒状断熱材を前記下部容器に充填する工程と、
前記外装容器の一部を構成する側面部材を前記下部容器に組み付けて前記装置本体の側面を取り囲んだ状態で前記粒状断熱材を前記側面部材の内側に充填する工程と、
前記外装容器の一部を構成する上面部材を前記側面部材に組み付けて前記外装容器に蓋をする工程と、を有する燃料改質装置の製造方法。
It is a manufacturing method of the fuel reformer according to any one of claims 1 to 4,
An apparatus main body composed of the plurality of reactors arranged in close contact in parallel and connected to each other by piping outside the reactor, and a lower container constituting a part of the outer container Filling the lower container with the granular heat insulating material in a state installed in
A step of assembling a side surface member constituting a part of the outer container to the lower container and surrounding the side surface of the apparatus main body with the granular heat insulating material inside the side surface member;
Assembling an upper surface member constituting a part of the outer container to the side member and covering the outer container.
前記粒状断熱材を充填するときに前記外装容器に振動を加える請求項5記載の燃料改質装置の製造方法。   The method for manufacturing a fuel reformer according to claim 5, wherein vibration is applied to the outer container when the granular heat insulating material is filled.
JP2009088346A 2009-03-31 2009-03-31 Fuel reformer and method for manufacturing the same Pending JP2010235427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009088346A JP2010235427A (en) 2009-03-31 2009-03-31 Fuel reformer and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009088346A JP2010235427A (en) 2009-03-31 2009-03-31 Fuel reformer and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010235427A true JP2010235427A (en) 2010-10-21

Family

ID=43090128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009088346A Pending JP2010235427A (en) 2009-03-31 2009-03-31 Fuel reformer and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010235427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212936A (en) * 2012-03-30 2013-10-17 Toshiba Fuel Cell Power Systems Corp Reformer and fuel cell power generation equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352956U (en) * 1989-09-29 1991-05-22
JPH06163070A (en) * 1992-11-25 1994-06-10 Hitachi Ltd Method for keeping warm and heat insulating fuel cell generator
JPH084981A (en) * 1994-06-24 1996-01-12 Nippon Sanso Kk Method of device for charging granular heat-insulating material into heat-insulating space
JP2000178003A (en) * 1998-12-15 2000-06-27 Osaka Gas Co Ltd Liquid treating device
JP2002160903A (en) * 2000-11-22 2002-06-04 Toyota Motor Corp Hydrogen generating system with insulating structure
JP2003252604A (en) * 2001-12-25 2003-09-10 Matsushita Electric Ind Co Ltd Apparatus for generating hydrogen and fuel cell system equipped with it
JP2007326764A (en) * 2006-06-09 2007-12-20 Chofu Seisakusho Co Ltd Element case of reformer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352956U (en) * 1989-09-29 1991-05-22
JPH06163070A (en) * 1992-11-25 1994-06-10 Hitachi Ltd Method for keeping warm and heat insulating fuel cell generator
JPH084981A (en) * 1994-06-24 1996-01-12 Nippon Sanso Kk Method of device for charging granular heat-insulating material into heat-insulating space
JP2000178003A (en) * 1998-12-15 2000-06-27 Osaka Gas Co Ltd Liquid treating device
JP2002160903A (en) * 2000-11-22 2002-06-04 Toyota Motor Corp Hydrogen generating system with insulating structure
JP2003252604A (en) * 2001-12-25 2003-09-10 Matsushita Electric Ind Co Ltd Apparatus for generating hydrogen and fuel cell system equipped with it
JP2007326764A (en) * 2006-06-09 2007-12-20 Chofu Seisakusho Co Ltd Element case of reformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212936A (en) * 2012-03-30 2013-10-17 Toshiba Fuel Cell Power Systems Corp Reformer and fuel cell power generation equipment

Similar Documents

Publication Publication Date Title
US5366819A (en) Thermally integrated reformer for solid oxide fuel cells
TWI465392B (en) Hydrogen generation assemblies and hydrogen purification devices
JP4461439B2 (en) Fuel cell system reformer
JP2008034205A (en) Fuel battery
KR100848047B1 (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
CA2521275A1 (en) Anode tailgas oxidizer
JP5368854B2 (en) Fuel reformer and manufacturing method thereof
JP4614515B2 (en) Fuel cell reformer
JP3780782B2 (en) Reformer
KR101870026B1 (en) Reactor reforming for liquid hydrocarbon fuel
JP2010235427A (en) Fuel reformer and method for manufacturing the same
JP4480486B2 (en) Fuel cell reformer
JP5244488B2 (en) Fuel cell reformer
JP4646527B2 (en) Reformer
JP5643706B2 (en) Hydrogen-containing gas generator
KR20100093942A (en) Fuel processor of fuel cell system
JP3966831B2 (en) Heating burner for reformer
JPH04322739A (en) Fuel reformer for fuel cell
JP2005281097A (en) Reforming apparatus
JP3763092B2 (en) Hydrogen production equipment for fuel cells
JP2004115320A (en) Reforming apparatus
JP2012148916A (en) Reforming unit
JP2012206905A (en) Hydrogen-containing gas producing apparatus
JP2012148917A (en) Reforming unit
JP4268005B2 (en) Reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130516