JP2012148916A - Reforming unit - Google Patents

Reforming unit Download PDF

Info

Publication number
JP2012148916A
JP2012148916A JP2011008149A JP2011008149A JP2012148916A JP 2012148916 A JP2012148916 A JP 2012148916A JP 2011008149 A JP2011008149 A JP 2011008149A JP 2011008149 A JP2011008149 A JP 2011008149A JP 2012148916 A JP2012148916 A JP 2012148916A
Authority
JP
Japan
Prior art keywords
flat dish
specific side
partition plate
shaped container
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011008149A
Other languages
Japanese (ja)
Inventor
Norihisa Kamiya
規寿 神家
Akio Inaya
章雄 稲家
Yukio Yasuda
征雄 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2011008149A priority Critical patent/JP2012148916A/en
Publication of JP2012148916A publication Critical patent/JP2012148916A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reforming unit capable of reducing strain accumulation caused by stress deformation in the case of repeating start-up and shut-down of a reforming apparatus to extend fatigue life until reaching fatigue breaking.SOLUTION: First and second flat dish-shaped containers each having a rectangular form by front view are fixed together by butting the whole circumferences of the peripheral collar parts of the vessels interposing a flat partition plate having a rectangular form by front view. A reforming material is placed in a first space between the first flat dish-shaped container and the partition plate, and a burner is extended along a specific side Ft of a second space between the second flat dish-shaped vessel and the partition plate at the side of the specific side Ft. In the reforming unit F having the construction, a specific side Fb3 is connected to crossing sides Fs1, Fs2 perpendicularly extending from the ends of the specific side in such a manner that the specific side Fb3 is connected to the crossing sides Fs1, Fs2 through a plurality of blunt corner parts Fa1 to Fa4 forming blunt angles at the crossing corners.

Description

本発明は、それぞれ正面視にて長方形状の第1扁平皿形容器、第2扁平皿形容器と、正面視にて長方形状で、平板状の仕切り板とから構成され、前記第1扁平皿形容器、第2扁平皿形容器の周縁に設けられた鍔部の全周が、前記仕切り板を介して重ね合わされて固着された構成で、改質材が、前記第1扁平皿形容器と前記仕切り板との間に形成される第1空間に、改質材が収納されるとともに、前記第2扁平皿形容器と前記仕切り板との間に形成される第2空間の特定辺側に、当該特定辺に沿ってバーナを延設して備えた改質器に関する。   The present invention includes a first flat dish container and a second flat dish container each having a rectangular shape in front view, and a rectangular and flat partition plate in a front view, and the first flat dish. A shape container and a configuration in which the entire circumference of the flange provided on the periphery of the second flat dish-shaped container is overlapped and fixed via the partition plate, and the modifying material is the same as the first flat dish-shaped container The modifying material is stored in the first space formed between the partition plate and on the specific side of the second space formed between the second flat dish container and the partition plate. The present invention relates to a reformer provided with a burner extending along the specific side.

燃料電池の燃料となる水素を主成分とする改質ガスは、天然ガス等の炭化水素を含む原燃料を水蒸気改質して得るのが一般的である。原燃料の水蒸気改質によって水素を主成分とする改質ガスを生成する燃料改質装置において、その水蒸気改質反応は吸熱反応であるため、水蒸気改質反応に必要な熱を何らかの形で供給する必要がある。   The reformed gas containing hydrogen as a main component as a fuel for a fuel cell is generally obtained by steam reforming a raw fuel containing a hydrocarbon such as natural gas. In a fuel reformer that generates reformed gas mainly composed of hydrogen by steam reforming of the raw fuel, the steam reforming reaction is an endothermic reaction, so some form of heat required for the steam reforming reaction is supplied. There is a need to.

このために、従来、原料を改質材で改質する改質器を、正面視にて長方形状の第1扁平皿形容器、第2扁平皿形容器と、正面視にて長方形状で且つ平板状の仕切り板とを、第1扁平皿形容器、第2扁平皿形容器の周縁に設けられた鍔部の全周を仕切り板を介して重ね合わせて固着し、第1扁平皿形容器と仕切り板との間に形成される第1空間に改質材を収納し、第2扁平皿形容器と前記仕切り板との間に形成される第2空間の特定辺側に沿って備えられるバーナの燃焼により、第1空間を加熱するように構成されたものがあった(例えば、特許文献1参照)。   For this purpose, a reformer for reforming a raw material with a reforming material is conventionally formed into a rectangular shape in a front view and a rectangular shape in a front view, a first flat dish-shaped container having a rectangular shape in a front view, and A flat partition plate is fixed to the first flat dish-shaped container by superimposing the entire periphery of the collar provided on the periphery of the first flat dish-shaped container and the second flat dish-shaped container via the partition plate. The reformer is stored in a first space formed between the partition plate and the partition plate, and is provided along a specific side of the second space formed between the second flat dish container and the partition plate. There existed what was constituted so that the 1st space might be heated by combustion of a burner (for example, refer to patent documents 1).

また、他の例として、改質器として、正面視にて長方形状の第1扁平皿形容器、第2扁平皿形容器と、正面視にて長方形状で且つ平板状の仕切り板とを、第1扁平皿形容器、第2扁平皿形容器の周縁に設けられた鍔部の全周を仕切り板を介して重ね合わせて固着し、第1扁平皿形容器と仕切り板との間に形成される第1空間、及び、第2扁平皿形容器と前記仕切り板との間に形成される第2空間の双方に改質材を収納するとともに、そのように形成される改質器が複数並置して設けられて、互いに隣り合う改質器の間に改質材加熱用のヒータを備えて前記第1空間及び第2空間を加熱するように構成されたものがあった(例えば、特許文献2参照)。   As another example, as a reformer, a first flat dish container and a second flat dish container that are rectangular in front view, and a rectangular and flat partition plate in front view, The entire circumference of the collar provided on the periphery of the first flat dish container and the second flat dish container is overlapped and fixed via a partition plate, and formed between the first flat dish container and the partition plate. The reformer is stored in both the first space and the second space formed between the second flat dish-shaped container and the partition plate, and a plurality of reformers formed in that manner are provided. There is one that is provided in parallel and includes a heater for heating a reforming material between adjacent reformers to heat the first space and the second space (for example, a patent) Reference 2).

特開2010−235426号公報JP 2010-235426 A 特開2010−140726号公報JP 2010-140726 A

上記のような改質器は、通常運転時の温度と停止時の温度の差が大きいとともに、比較的頻繁に起動と停止とを繰返すため、当該温度差に起因する部材の熱膨張・収縮が頻繁に起こり、熱疲労を受ける。具体的には、改質器は、扁平皿形容器形状の第1扁平皿形容器及び第2扁平皿形容器と、両者間に介挿される平板状の仕切り板とに関して、周縁部を固着した構造とされるため、温度変化に伴って発生する両扁平皿形容器と仕切り板との変形形態が異なることに起因して、熱ひずみが扁平皿形容器の各端辺に沿った方向(図4(a)におけるX方向及びY方向)において顕著に起こり、長方形状の各角部(特に特定辺であるバーナ配設側の角部)にひずみが集中し、仕切り板から扁平皿形容器が当該角部で外れてしまう等の問題が発生する場合あった。
このような破壊は、起動開始、起動停止を繰返すことによる、熱ひずみ起因の疲労破壊と考えられる。
The reformer as described above has a large difference between the temperature at the normal operation and the temperature at the stop and repeats the start and stop relatively frequently, so that the thermal expansion / contraction of the member due to the temperature difference occurs. It occurs frequently and suffers from thermal fatigue. Specifically, the reformer fixed the peripheral portion with respect to the first flat dish-shaped container and the second flat dish-shaped container in the shape of a flat dish-shaped container, and the flat partition plate interposed therebetween. Due to the difference in deformation between the two flat dish-shaped containers and the partition plate that occur with temperature changes, the thermal strain is in the direction along each edge of the flat dish-shaped container (Fig. 4 (a) in the X and Y directions), the strain concentrates on each rectangular corner (particularly, the corner on the burner arrangement side which is a specific side), and the flat dish-shaped container is separated from the partition plate. In some cases, a problem such as detachment occurs at the corner.
Such a fracture is considered to be a fatigue fracture caused by thermal strain due to repeated start-up and start-stop.

本発明は、かかる課題に鑑みてなされたものであって、その目的は、改質装置の起動及び停止を繰り返した場合における熱ひずみ起因の疲労の蓄積を低減し、疲労破壊が発生するまでの寿命(疲労寿命)を長くすることが可能な改質器を提供することにある。   The present invention has been made in view of such problems, and its purpose is to reduce the accumulation of fatigue due to thermal strain when the reformer is repeatedly started and stopped, and until fatigue failure occurs. An object of the present invention is to provide a reformer capable of extending the life (fatigue life).

上記目的を達成するための本発明に係る改質器は、それぞれ正面視にて長方形状の第1扁平皿形容器、第2扁平皿形容器と、正面視にて長方形状で、平板状の仕切り板とから構成され、前記第1扁平皿形容器、第2扁平皿形容器の周縁に設けられた鍔部の全周が、前記仕切り板を介して重ね合わされて固着された構成で、前記第1扁平皿形容器と前記仕切り板との間に形成される第1空間に、改質材が収納されるとともに、前記第2扁平皿形容器と前記仕切り板との間に形成される第2空間の特定辺側に、当該特定辺に沿ってバーナを延設して備えるものであって、その第1特徴構成は、前記特定辺と、当該特定辺の端部から直交して延出される直交側辺との交差部に関して、正面視にて、前記特定辺と前記直交側辺とを、角部の交差角が鈍角を成す、複数の鈍角角部で接続した点にある。   The reformer according to the present invention for achieving the above object includes a first flat dish container and a second flat dish container each having a rectangular shape in a front view, and a rectangular plate shape in a front view. A partition plate, and the entire circumference of the collar provided on the periphery of the first flat dish-shaped container and the second flat dish-shaped container is overlapped and fixed via the partition plate, A modifying material is stored in a first space formed between the first flat dish-shaped container and the partition plate, and a second space is formed between the second flat dish-shaped container and the partition plate. A burner is provided to extend along the specific side on the specific side of the two spaces, and the first characteristic configuration extends perpendicularly from the specific side and an end of the specific side. As for the intersecting portion with the orthogonal side edge, the crossing angle of the corner portion between the specific side and the orthogonal side edge is obtuse in front view. The form, lies in the connection of a plurality of obtuse angle portion.

すなわち、特定辺と、当該特定辺の端部から直交して延出される直交側辺との交差部に関して、正面視にて、前記特定辺と前記直交側辺とを、角部の交差角が鈍角を成す、複数の鈍角角部で接続することによって、特定辺に沿って延設して備えられるバーナの燃焼熱による第1扁平皿形容器、第2扁平皿形容器及び仕切り板の変形に伴う熱ひずみを、複数の鈍角角部にて分散させることが可能となる。   That is, with respect to the intersection between the specific side and the orthogonal side extending orthogonally from the end of the specific side, the front side and the specific side and the orthogonal side are By connecting at a plurality of obtuse corners forming an obtuse angle, the first flat dish container, the second flat dish container and the partition plate are deformed by the combustion heat of the burner provided extending along a specific side. The accompanying thermal strain can be dispersed at a plurality of obtuse angle portions.

説明を加えると、本願に係る改質器は、第1扁平皿形容器及び第2扁平皿形容器と、仕切り板とで構成され、当該仕切り板が、第1扁平皿形容器及び第2扁平皿形容器に介挿された構造を取る。さらに、第1扁平皿形容器及び第2扁平皿形容器の裏底部は、その内部に第1空間及び第2空間を形成されるように構成される。そして、先にも示したように、熱の影響による第1扁平皿形容器及び第2扁平皿形容器の変形形態と仕切り板の変形形態とが異なり、さらに、両者間はその周縁部がその全周に亘って固着・拘束されているため、変形形態の差に起因する両者間で熱ひずみが発生しやすい構造となっている。
しかしながら、本願発明によれば、特定辺と、当該特定辺の端部から直交して延出される直交側辺との交差部に関して、正面視にて、特定辺と直交側辺とを、角部の交差角が鈍角を成す、複数の鈍角角部で接続することによって、バーナによる加熱に伴う変形を分散するものであるから、仕切り板と第1扁平皿形容器又は第2扁平皿形容器との固着部分に発生する熱応力を低減させることができる。
When the explanation is added, the reformer according to the present application includes a first flat dish container, a second flat dish container, and a partition plate, and the partition plate includes the first flat dish container and the second flat plate container. Takes a structure inserted in a dish-shaped container. Furthermore, the back bottom part of a 1st flat dish-shaped container and a 2nd flat dish-shaped container is comprised so that the 1st space and the 2nd space may be formed in the inside. And as previously indicated, the deformation form of the first flat dish container and the second flat dish container due to the influence of heat is different from the deformation form of the partition plate. Since it is fixed and restrained over the entire circumference, it has a structure in which thermal strain is likely to occur between the two due to the difference in deformation form.
However, according to the present invention, with respect to the intersection between the specific side and the orthogonal side extending orthogonally from the end of the specific side, the specific side and the orthogonal side are By connecting at a plurality of obtuse angle portions where the crossing angles of the above are obtuse angles, the deformation caused by the heating by the burner is dispersed. Therefore, the partition plate and the first flat dish container or the second flat dish container It is possible to reduce the thermal stress generated in the fixed portion.

つまり、上記のように特定辺と、当該特定辺の端部から直交して延出される直交側辺との交差部に関して、正面視にて、特定辺と直交側辺とを、角部の交差角が鈍角を成す、複数の鈍角角部で接続することによって、仕切り板と第1扁平皿形容器又は第2扁平皿形容器との固着部分に発生する熱応力が小さいものとなるから、改質装置の起動及び停止を繰り返した場合における疲労の蓄積を低減させることができるものとなり、改質器における第1扁平皿形容器又は第2扁平皿形容器が疲労破壊に至るまでの疲労寿命を長くすることが可能となる。   That is, as described above, with respect to the intersection of the specific side and the orthogonal side extending orthogonally from the end of the specific side, the specific side and the orthogonal side are intersected at the corner in front view. By connecting at a plurality of obtuse corners where the corners are obtuse, the thermal stress generated at the fixed part between the partition plate and the first flat dish container or the second flat dish container is reduced. It is possible to reduce the accumulation of fatigue when the starting and stopping of the quality device is repeated, and the fatigue life until the first flat dish-shaped container or the second flat dish-shaped container in the reformer reaches fatigue failure is reduced. It can be made longer.

要するに、本発明に係る改質器の第1特徴構成によれば、改質装置の起動及び停止を繰り返した場合における疲労の蓄積を低減し、疲労破壊に至るまでの寿命(疲労寿命)を長くすることが可能な改質器を提供できる。   In short, according to the first characteristic configuration of the reformer according to the present invention, the accumulation of fatigue in the case of repeatedly starting and stopping the reformer is reduced, and the life until fatigue failure (fatigue life) is increased. The reformer which can do is provided.

本発明に係る改質器の第2特徴構成は、上記第1特徴構成に加えて、前記特定辺と前記直交側辺との間に傾斜辺を備え、前記複数の鈍角角部として、前記特定辺と傾斜辺との間の特定辺側角部と、前記傾斜辺と前記直交側辺との間の側辺側角部とを備え、前記特定辺側角部の交差角と、前記側辺側角部の交差角が等しい点にある。   In addition to the first characteristic configuration, the second characteristic configuration of the reformer according to the present invention includes an inclined side between the specific side and the orthogonal side side, and the specific obtuse angle portion includes the specific side A specific side-side corner between the side and the inclined side, and a side-side corner between the inclined side and the orthogonal side, the intersection angle of the specific side-side corner, and the side The intersection angle of the side corners is at the same point.

すなわち、特定辺と直交側辺との間に傾斜辺を備え、複数の鈍角角部として、特定辺と傾斜辺との間の特定辺側角部と、傾斜辺と前記直交側辺との間の側辺側角部とを備え、特定辺側角部の交差角と、側辺側角部の交差角とが等しくなるように構成することによって、第1扁平皿形容器、仕切り板、第2扁平皿形容器の変形を、角部周辺において、各部材の端縁に沿う方向において略均等に分散することができるものとなり、第1扁平皿形容器、又は、第2扁平皿形容器の疲労の蓄積を適切に低減させることができるものとなる。   That is, an inclined side is provided between the specific side and the orthogonal side, and as a plurality of obtuse angle corners, the specific side-side corner between the specific side and the inclined side, and between the inclined side and the orthogonal side And the first flat dish container, the partition plate, the second flat plate-shaped container, the crossing angle of the specific side side corner and the crossing angle of the side side corner. 2 The deformation of the flat dish container can be distributed substantially uniformly in the direction along the edge of each member around the corner, and the first flat dish container or the second flat dish container Accumulation of fatigue can be appropriately reduced.

要するに、本発明に係る改質器の第2特徴構成によれば、上記第1特徴構成による作用効果に加えて、第1扁平皿形容器、又は、第2扁平皿形容器の熱ひずみ起因の疲労の蓄積を適切に低減させることが可能な改質器を提供できる。   In short, according to the second characteristic configuration of the reformer according to the present invention, in addition to the function and effect of the first characteristic configuration, the first flat dish container or the second flat dish container may be caused by thermal strain. A reformer capable of appropriately reducing fatigue accumulation can be provided.

本発明に係る改質器の第3特徴構成は、上記第2特徴構成に加えて、前記第1扁平皿形容器、第2扁平皿形容器及び仕切り板が、鉛直上下方向に広がる縦姿勢で使用され、前記縦姿勢における下側に前記特定辺が位置されるとともに、前記特定辺の両端部位に、前記傾斜辺部を設けた点にある。   A third characteristic configuration of the reformer according to the present invention is a vertical posture in which the first flat dish-shaped container, the second flat dish-shaped container, and the partition plate extend vertically in the vertical direction in addition to the second characteristic structure. It is used in that the specific side is positioned on the lower side in the vertical posture and the inclined side portions are provided at both end portions of the specific side.

すなわち、第1扁平皿形容器、第2扁平皿形容器及び仕切り板が、鉛直上下方向に広がる縦姿勢で使用され、縦姿勢における下側に特定辺が位置されるとともに、特定辺の両端部位に、傾斜辺部を設けられるものであるから、第2空間においてバーナに燃焼に伴って発生する燃焼ガスを鉛直情報に導いて、改質材が収納された第1空間を良好に加熱することができる。また、燃料改質装置をコンパクトな構造とできる。   That is, the first flat dish-shaped container, the second flat dish-shaped container, and the partition plate are used in a vertical posture that spreads in the vertical vertical direction, the specific side is located on the lower side in the vertical posture, and both end portions of the specific side In addition, since the inclined side portion is provided, the combustion gas generated by the burner in the second space in the second space is guided to the vertical information, and the first space in which the reformer is stored is favorably heated. Can do. In addition, the fuel reformer can have a compact structure.

説明を加えると、バーナは、鉛直上下方向に広がる縦姿勢で使用される第1扁平皿形容器、第2扁平皿形容器及び仕切り板における下側に位置する特定辺の近傍に備えられ、上昇する燃焼排ガスによって、その大部分がバーナよりも上方に位置することになる第1空間及び第2空間を加熱することになる。したがって、鉛直上下方向に広がる縦姿勢で使用される第1扁平皿形容器、第2扁平皿形容器及び仕切り板は、その下方に位置するバーナに近接する特定辺の近傍が最も高温になる。そこで、この特定辺の両端部位に、傾斜辺部を設けることにより、第1扁平皿形容器又は第2扁平皿形容器の熱膨張が最も大きい部分の膨張変形を分散することができるものとなり、第1扁平皿形容器、又は、第2扁平皿形容器の応力変形による歪みの蓄積を適切に低減させることができるものとなる。   In other words, the burner is provided in the vicinity of a specific side located on the lower side of the first flat dish container, the second flat dish container, and the partition plate, which are used in a vertical posture extending vertically. The combustion exhaust gas that heats the first space and the second space, most of which are located above the burner. Therefore, in the first flat dish container, the second flat dish container, and the partition plate used in a vertical posture extending in the vertical vertical direction, the vicinity of a specific side close to the burner positioned below the hot plate becomes the highest temperature. Therefore, by providing inclined side portions at both end portions of the specific side, it becomes possible to disperse the expansion deformation of the portion having the largest thermal expansion of the first flat dish-shaped container or the second flat dish-shaped container, Accumulation of strain due to stress deformation of the first flat dish-shaped container or the second flat dish-shaped container can be appropriately reduced.

要するに、本発明に係る改質器の第3特徴構成によれば、上記第2特徴構成による作用効果に加えて、第1扁平皿形容器又は第2扁平皿形容器の疲労の蓄積を適切に低減させることができるものとなる。   In short, according to the third characteristic configuration of the reformer according to the present invention, in addition to the operational effects of the second characteristic configuration, the accumulation of fatigue in the first flat dish-shaped container or the second flat dish-shaped container can be appropriately performed. It can be reduced.

本発明に係る改質器の第4特徴構成は、上記第3特徴構成に加えて、前記バーナを、前記傾斜辺より上で、前記直交側辺の前記傾斜辺側下部領域に設けた点にある。   A fourth characteristic configuration of the reformer according to the present invention is that, in addition to the third characteristic configuration, the burner is provided in the lower side region of the inclined side above the inclined side. is there.

すなわち、傾斜辺より上で、直交側辺の前記傾斜辺側下部領域にバーナを設けるものであるから、一対の傾斜辺を設けることにより、特定辺に沿った方向の長さが減少し、空間容積が減少する、傾斜辺より下の第2空間内ではなく、傾斜辺より上で、直交側辺の傾斜辺側下部領域にバーナを位置させることで、バーナの特定辺に沿った長さを充分確保できる。結果、第2空間、仕切り板、第1空間に対して、特定辺に沿った方向で、均等且つ安定した加熱を適切に行うことが可能となる。   That is, since the burner is provided in the lower side region of the inclined side above the inclined side, the length in the direction along the specific side is reduced by providing the pair of inclined sides, and the space The length along the specific side of the burner is reduced by positioning the burner in the lower part of the inclined side of the orthogonal side, not in the second space below the inclined side, but in the second space where the volume decreases. Enough can be secured. As a result, uniform and stable heating can be appropriately performed in the direction along the specific side with respect to the second space, the partition plate, and the first space.

本発明に係る燃料改質装置の構成を説明する図The figure explaining the structure of the fuel reformer which concerns on this invention 本発明に係る燃料改質装置における改質器の分解斜視図並びに全体斜視図1 is an exploded perspective view and an overall perspective view of a reformer in a fuel reformer according to the present invention. 本発明に係る燃料改質装置における改質器の平面図The top view of the reformer in the fuel reformer concerning the present invention 平面視において2つ以上の角部が鈍角となる多角形状に形成されていない場合と形成されている場合とにおける歪蓄積量の解析結果を示す図The figure which shows the analysis result of the strain accumulation amount in the case where it is formed in the case where two or more corner parts are not formed in the polygonal shape which becomes an obtuse angle in planar view

〔第1実施形態〕
以下に、図面を参照して、炭化水素系の原燃料を改質して、水素を主成分とする改質ガスを生成する燃料改質装置の構成について説明する。
以下の実施形態では、発電出力700W級の家庭用燃料電池システムにおいて、燃料改質装置で生成した水素を燃料電池の燃料として供給する例を説明するが、生成した水素を別の用途に供給してもよい。
図1は、燃料改質装置の構成を説明する図である。図1に示すように、燃料改質装置Rが備える装置本体Aは、改質ガスを生成するための複数の反応器(脱硫処理部1、水蒸気生成部2、燃焼部4、水蒸気改質部3、変成処理部5、選択酸化部6)を有する。図1において、装置本体Aは断面図で示す。
[First Embodiment]
Hereinafter, a configuration of a fuel reformer that reforms a hydrocarbon-based raw fuel to generate a reformed gas mainly containing hydrogen will be described with reference to the drawings.
In the following embodiment, an example will be described in which hydrogen generated by a fuel reformer is supplied as fuel for a fuel cell in a household fuel cell system with a power generation output of 700 W, but the generated hydrogen is supplied to another application. May be.
FIG. 1 is a diagram illustrating the configuration of a fuel reformer. As shown in FIG. 1, the apparatus main body A included in the fuel reformer R includes a plurality of reactors (desulfurization treatment unit 1, steam generation unit 2, combustion unit 4, steam reforming unit) for generating reformed gas. 3. It has a modification treatment unit 5 and a selective oxidation unit 6). In FIG. 1, the apparatus main body A is shown in a sectional view.

まず、脱硫処理部1から選択酸化部6に至るガスの流路について説明する。
図1に示すように、原燃料ガス用熱交換器Eaの原燃料ガス通流部16に原燃料ガス供給路21を接続して、そこから原燃料ガスを供給する。そして、原燃料ガス通流部16、脱硫処理部1、被改質ガス用熱交換器Epの被改質ガス通流部13、水蒸気改質部3、保温用通流部7、被改質ガス用熱交換器Epの上流側改質処理ガス通流部12、原燃料ガス用熱交換器Eaの下流側改質処理ガス通流部15、変成処理部5、選択酸化部6の順に流れるガス処理経路を形成するように、それらをガス処理用流路22で接続している。
First, the gas flow path from the desulfurization processing unit 1 to the selective oxidation unit 6 will be described.
As shown in FIG. 1, a raw fuel gas supply path 21 is connected to the raw fuel gas flow passage 16 of the raw fuel gas heat exchanger Ea, and the raw fuel gas is supplied therefrom. The raw fuel gas flow section 16, the desulfurization processing section 1, the reformed gas flow section 13 of the reformed gas heat exchanger Ep, the steam reforming section 3, the heat retaining flow section 7, the reformed target It flows in order of the upstream reforming process gas flow part 12 of the gas heat exchanger Ep, the downstream reforming process gas flow part 15 of the raw fuel gas heat exchanger Ea, the shift treatment part 5 and the selective oxidation part 6. They are connected by a gas processing flow path 22 so as to form a gas processing path.

脱硫処理部1は、供給される都市ガスなどの炭化水素系の原燃料ガス(炭化水素系の原燃料)を脱硫処理する。水蒸気生成部2は、燃焼部4から排出された燃焼ガスを通流させる水蒸気生成用加熱通流部11と、供給される原料水を水蒸気生成用加熱通流部11による加熱にて蒸発させる蒸発部Vとを有する。燃焼部4は、燃焼用ガスを燃焼して燃焼熱を発生させる。燃焼用ガスとしては、燃料電池(図示せず)から排出された排燃料ガス(発電反応に用いられなかった水素を含むガス)を用いることができ、原燃料ガスを燃焼用ガスとして用いることもできる。水蒸気改質部3は、燃焼部4で発生された燃焼熱を利用して原燃料ガスを水蒸気改質して上記改質ガスを生成する。具体的には、水蒸気改質部3には、ルテニウム、ニッケル、白金などの改質触媒を保持したセラミック製の多孔質粒状体の多数が通気可能な状態で充填される。水蒸気改質部3には、改質処理温度(即ち、反応器の温度)を検出する温度センサ38が設けられている。また、別の反応器の温度を検出する温度センサを設けてもよい。そして、水蒸気改質部3に被改質ガス(後述する脱硫原燃料ガスと水蒸気との混合ガス)を通流させて、原燃料ガスを水素と一酸化炭素と二酸化炭素とを含む改質ガスに改質する。原燃料ガスが、メタンを主成分とする天然ガスである場合、水蒸気改質部3では、燃焼部4によって例えば650℃〜750℃程度の加熱下でメタンと水蒸気とが下記の反応式にて改質反応して、水素と一酸化炭素と二酸化炭素を含むガスに改質処理される。   The desulfurization processing unit 1 desulfurizes a hydrocarbon-based raw fuel gas (hydrocarbon-based raw fuel) such as city gas to be supplied. The steam generation unit 2 is a steam generation heating flow-through unit 11 that allows the combustion gas discharged from the combustion unit 4 to flow, and an evaporation that evaporates the supplied raw water by heating by the steam generation heating flow-through unit 11. Part V. The combustion unit 4 burns combustion gas and generates combustion heat. As the combustion gas, exhaust fuel gas (a gas containing hydrogen that has not been used in the power generation reaction) discharged from a fuel cell (not shown) can be used, and the raw fuel gas can also be used as the combustion gas. it can. The steam reforming unit 3 uses the combustion heat generated in the combustion unit 4 to steam reform the raw fuel gas to generate the reformed gas. Specifically, the steam reforming unit 3 is filled with a large number of ceramic porous particles holding a reforming catalyst such as ruthenium, nickel, or platinum in a state in which it can be vented. The steam reforming unit 3 is provided with a temperature sensor 38 for detecting the reforming treatment temperature (that is, the temperature of the reactor). Moreover, you may provide the temperature sensor which detects the temperature of another reactor. Then, the gas to be reformed (a mixed gas of desulfurized raw fuel gas and water vapor, which will be described later) is passed through the steam reforming section 3, and the raw fuel gas is reformed gas containing hydrogen, carbon monoxide, and carbon dioxide. To reform. When the raw fuel gas is a natural gas mainly composed of methane, in the steam reforming unit 3, methane and steam are heated by the combustion unit 4, for example, about 650 ° C. to 750 ° C. according to the following reaction formula. The reforming reaction is performed to reform the gas containing hydrogen, carbon monoxide, and carbon dioxide.

〔化1〕
CH4+H2O→CO+3H2
〔化2〕
CH4+2H2O→CO2+4H2
[Chemical formula 1]
CH 4 + H 2 O → CO + 3H 2
[Chemical 2]
CH 4 + 2H 2 O → CO 2 + 4H 2

選択酸化部6は、変成処理部5から排出される変成処理ガス中に残留している一酸化炭素を除去する。具体的には、選択酸化部6においては、ルテニウムや白金、パラジウム、ロジウム等の触媒作用によって、100℃〜200℃程度の反応温度で変成処理ガス中に残っている一酸化炭素が、添加された空気中の酸素によって酸化される。その結果、一酸化炭素濃度の低い(例えば10ppm以下)、水素リッチな燃料ガスが生成される。
生成された燃料ガスは、燃料ガス路23を通じて燃料電池に供給される。本実施形態では、選択酸化部6から排出された選択酸化処理ガス(燃料電池に供給される燃料ガス)の温度は100℃〜200℃程度であり、例えば固体高分子型の燃料電池の動作温度は70℃〜80℃程度であるので、燃料ガス路23には、選択酸化部6から排出された選択酸化処理ガスを、燃料電池の動作温度付近にまで冷却する燃料ガス冷却用熱交換器(図示せず)が設けられている。
また、上述したように、燃料電池から排出される排燃料ガス(発電反応に用いられなかった水素を含むガス)は、排燃料ガス路24を通じて一対のパイプバーナ44に燃焼用ガスとして供給される。
The selective oxidation unit 6 removes carbon monoxide remaining in the shift treatment gas discharged from the shift treatment unit 5. Specifically, in the selective oxidation unit 6, carbon monoxide remaining in the shift gas at a reaction temperature of about 100 ° C. to 200 ° C. is added by a catalytic action of ruthenium, platinum, palladium, rhodium or the like. Oxidized by oxygen in the air. As a result, a hydrogen-rich fuel gas having a low carbon monoxide concentration (for example, 10 ppm or less) is generated.
The generated fuel gas is supplied to the fuel cell through the fuel gas passage 23. In this embodiment, the temperature of the selective oxidation treatment gas (fuel gas supplied to the fuel cell) discharged from the selective oxidation unit 6 is about 100 ° C. to 200 ° C., for example, the operating temperature of a solid polymer fuel cell Is about 70 ° C. to 80 ° C. Therefore, in the fuel gas passage 23, a fuel gas cooling heat exchanger (cooling gas) that cools the selective oxidation treatment gas discharged from the selective oxidation unit 6 to near the operating temperature of the fuel cell ( (Not shown) is provided.
Further, as described above, the exhaust fuel gas discharged from the fuel cell (a gas containing hydrogen that has not been used in the power generation reaction) is supplied as a combustion gas to the pair of pipe burners 44 through the exhaust fuel gas passage 24. .

(水蒸気生成部への原料水の供給経路)
次に、水蒸気生成部2の蒸発部Vへの原料水の供給経路について説明する。
変成処理部5と選択酸化部6とを接続するガス処理用流路22には、原料水供給路25を流れる原料水を変成処理ガスにて予熱する原料水予熱用熱交換器17と、更に、もう1つの水冷熱交換器(図示せず)と、変成処理ガスから凝縮水を除去するドレントラップ34とが順に設けられている。
更に、原料水供給路25における原料水予熱用熱交換器17よりも下流側の箇所には、原料水を蛇行状に流す蛇行状通流部18が設けられている。蛇行状通流部18は、装置本体Mの外壁部のうちの、燃焼部4を覆う箇所に熱伝導可能に当て付けて設けられる。その結果、装置本体Aの外壁部からの伝導熱および輻射熱により、蛇行状通流部18を通流する原料水が予熱される。
以上のようにして、水蒸気生成部2の蒸発部Vに供給する原料水を、原料水予熱用熱交換器17及び蛇行状通流部18を用いて予熱する。
(Raw water supply path to the steam generator)
Next, the supply path of the raw material water to the evaporation part V of the water vapor generation part 2 will be described.
In the gas processing flow path 22 that connects the shift treatment section 5 and the selective oxidation section 6, a raw material water preheating heat exchanger 17 that preheats the raw water flowing in the raw water supply path 25 with the shift treatment gas, and further Another water-cooled heat exchanger (not shown) and a drain trap 34 for removing condensed water from the shift treatment gas are provided in this order.
Further, a meandering flow portion 18 for flowing the raw water in a meandering manner is provided at a location downstream of the raw material water preheating heat exchanger 17 in the raw water supply path 25. The meandering flow portion 18 is provided so as to be capable of conducting heat to a portion of the outer wall portion of the apparatus main body M that covers the combustion portion 4. As a result, the raw material water flowing through the meandering flow portion 18 is preheated by the conduction heat and radiant heat from the outer wall portion of the apparatus main body A.
As described above, the raw water supplied to the evaporation section V of the water vapor generating section 2 is preheated using the raw water preheating heat exchanger 17 and the meandering flow section 18.

(改質器の装置構成)
燃焼部4は、燃焼用ガス(排燃料ガス)を火炎を形成する状態で燃焼させる有炎燃焼部4Fと、その有炎燃焼部4Fに対して、その有炎燃焼部4Fの火炎形成方向下流側に配置されて、有炎燃焼部4Fにて燃焼しなかった燃焼用ガスを燃焼触媒4cにて燃焼させる触媒燃焼部4Cを備える。有炎燃焼部4Fには、改質装置用の加熱バーナとしての一対のパイプバーナ44が設けられる。パイプバーナ44にはイグナイタ4iを用いて点火される。燃焼部4の外表面の最高温度は例えば600℃〜700℃である。
(Apparatus configuration of reformer)
The combustion unit 4 combusts the combustion gas (exhaust fuel gas) in a state of forming a flame, and the flame formation unit 4F is downstream in the flame formation direction with respect to the flame combustion unit 4F. The catalyst combustion part 4C which is arrange | positioned at the side and burns the combustion gas which was not burned in the flammable combustion part 4F by the combustion catalyst 4c is provided. A pair of pipe burners 44 as a heating burner for the reformer is provided in the flammable combustion section 4F. The pipe burner 44 is ignited using an igniter 4i. The maximum temperature of the outer surface of the combustion unit 4 is, for example, 600 ° C to 700 ° C.

図1において一点鎖線矢印にて示すように、燃焼用空気が、燃焼用ブロア28から燃焼用空気路29を通って一対のパイプバーナ44に供給される。
更に、燃焼用ブロア28に接続した酸化用空気供給路31が、変成処理部5と選択酸化部6とを接続するガス処理用流路22に接続される。それにより、燃焼用ブロア28からの空気は酸化用空気として選択酸化部6に供給される。但し、酸化用空気供給路31には開閉弁35が設けられており、開閉弁35を閉止作動させることで選択酸化部6への空気の供給を遮断可能である。
As indicated by a one-dot chain line arrow in FIG. 1, combustion air is supplied from the combustion blower 28 through the combustion air passage 29 to the pair of pipe burners 44.
Further, an oxidizing air supply path 31 connected to the combustion blower 28 is connected to a gas processing flow path 22 that connects the shift treatment section 5 and the selective oxidation section 6. Thereby, the air from the combustion blower 28 is supplied to the selective oxidation unit 6 as oxidizing air. However, the on-off valve 35 is provided in the oxidation air supply path 31, and the supply of air to the selective oxidation unit 6 can be shut off by closing the on-off valve 35.

(装置本体Aを通流するガスの熱交換)
次に、装置本体Aを通流するガスの熱交換について説明する。
燃料改質装置の装置本体Aには、水蒸気改質部3から排出された高温の改質処理ガスを通流させて、水蒸気改質部3を保温する保温用通流部7と、高温の改質処理ガスにより水蒸気改質部3に供給される被改質ガスを加熱する被改質ガス用熱交換器Epと、高温の改質処理ガスにより脱硫処理部1に供給される原燃料ガスを加熱する原燃料ガス用熱交換器Eaと、変成処理部5を冷却するために冷却用流体を通流させる変成部冷却用通流部8と、変成処理部5および選択酸化部6を冷却する冷却用ファン10とが設けられている。
(Heat exchange of gas flowing through the device body A)
Next, heat exchange of gas flowing through the apparatus main body A will be described.
A high temperature reforming gas discharged from the steam reforming unit 3 is passed through the apparatus main body A of the fuel reformer to keep the steam reforming unit 3 warm; A heat exchanger Ep for the gas to be reformed that heats the gas to be reformed that is supplied to the steam reforming unit 3 by the reforming process gas, and a raw fuel gas that is supplied to the desulfurization processing unit 1 by the high-temperature reforming process gas The raw fuel gas heat exchanger Ea that heats the gas, the metamorphic part cooling flow part 8 that allows the cooling fluid to flow in order to cool the metamorphic part 5, and the metamorphic treatment part 5 and the selective oxidation part 6 are cooled. And a cooling fan 10 is provided.

被改質ガス用熱交換器Epでは、保温用通流部7から排出された改質処理ガスを通流させる上流側改質処理ガス通流部12と、水蒸気改質部3に供給する被改質ガスを通流させる被改質ガス通流部13との熱交換が行われる。
原燃料ガス用熱交換器Eaでは、上流側改質処理ガス通流部12から排出された改質処理ガスを通流させる下流側改質処理ガス通流部15と、脱硫処理部1に供給する原燃料ガスを通流させる原燃料ガス通流部16との熱交換が行われる。
In the to-be-reformed gas heat exchanger Ep, the reforming gas to be supplied to the upstream reforming process gas flow section 12 and the steam reforming section 3 through which the reforming process gas discharged from the heat retaining flow section 7 flows. Heat exchange is performed with the reformed gas flow section 13 through which the reformed gas flows.
In the raw fuel gas heat exchanger Ea, the downstream reforming process gas flow section 15 for flowing the reforming process gas discharged from the upstream reforming process gas flow section 12 and the desulfurization processing section 1 are supplied. Heat exchange is performed with the raw fuel gas flow section 16 through which the raw fuel gas flows.

(水蒸気と原燃料ガスとの混合)
原燃料ガス供給路21から供給される原燃料ガスを脱硫処理部1で脱硫処理し、その脱硫原燃料ガスと水蒸気路26からの水蒸気とを混合する。具体的には、図1に示すように、装置本体Aにおいて、水蒸気生成用の原料水を供給する原料水供給路25を水蒸気生成部Sの蒸発部Vに接続し、蒸発部Vにて生成された水蒸気を送出する水蒸気路26を、脱硫処理部1と被改質ガス通流部13とを接続するガス処理用流路22に接続する。その結果、ガス処理用流路22を通流する脱硫原燃料ガスに改質用の水蒸気が混合される。
(Mixing of water vapor and raw fuel gas)
The raw fuel gas supplied from the raw fuel gas supply path 21 is desulfurized in the desulfurization processing unit 1, and the desulfurized raw fuel gas and the water vapor from the water vapor path 26 are mixed. Specifically, as shown in FIG. 1, in the apparatus main body A, the raw material water supply path 25 for supplying raw water for steam generation is connected to the evaporation section V of the steam generation section S and is generated by the evaporation section V. The steam passage 26 for delivering the steam is connected to a gas processing flow path 22 that connects the desulfurization processing section 1 and the reformed gas flow section 13. As a result, the reforming steam is mixed with the desulfurized raw fuel gas flowing through the gas processing flow path 22.

(燃焼部から排出される燃焼ガスの利用形態)
図1において、破線矢印にて示すように、燃焼部4から排出された燃焼ガスを、水蒸気生成用加熱通流部11、変成部冷却用通流部8の順に流すように、それら燃焼部4、水蒸気生成用加熱通流部11、変成部冷却用通流部8が燃焼ガス路27により接続されている。そして、水蒸気生成用加熱通流部11においては、燃焼ガスによって蒸発部Vを加熱し、変成部冷却用通流部8においては、燃焼ガスによって、発熱反応である変成反応が行われる変成処理部5を冷却する。
(Usage form of combustion gas discharged from the combustion section)
In FIG. 1, as indicated by broken line arrows, the combustion gas discharged from the combustion part 4 flows through the steam generation heating heating part 11 and the metamorphic part cooling communication part 8 in this order. The steam generating heating flow passage 11 and the metamorphic portion cooling flow passage 8 are connected by a combustion gas passage 27. In the steam generation heating flow-through portion 11, the evaporation portion V is heated by the combustion gas, and in the shift-flow cooling flow portion 8, a shift treatment portion in which a shift reaction that is an exothermic reaction is performed by the combustion gas. 5 is cooled.

(燃料改質装置の装置本体の構成)
燃料改質装置Rが備える複数の反応器(脱硫処理部1、水蒸気生成部2、改質器Fを構成する燃焼部4、改質器Fを構成する水蒸気改質部3、変成処理部5、選択酸化部6)は、上記改質ガスの生成処理工程で用いられる処理空間を内部に備えた平板型モジュールとしての容器Bを用いて形成される。それら複数の容器B(複数の反応器:平板型モジュール)は、並列に密着して並べられた状態で装置本体Aを構成する。複数の容器Bを並べるに当たっては、上述したような伝熱させる必要のあるもの同士は互いに密着させた状態で並べ、且つ、伝熱量を調節する必要のあるもの同士の間に伝熱量調節用の断熱材19a、19b、19d、19eを介在させた状態で並べてある。また、容器Bは、皿形状の容器形成用部材を、それらの間に板状の仕切り部材を位置させた状態で溶接接続して、二つの処理空間を備えるように構成されている。尚、図1に示すように、燃焼部4を直接覆うように設けられている断熱材19は、後述する皿形状の容器形成用部材としての第2扁平皿形容器Nで覆われる状態で収納されている。
更に、変成処理部5と選択酸化部6との間や、変成処理部5を構成する複数の容器Bの間には容器B(反応器)を加熱するための板状のヒータHが設けられている。
(Configuration of the main body of the fuel reformer)
A plurality of reactors (desulfurization treatment unit 1, steam generation unit 2, combustion unit 4 constituting reformer F, steam reforming unit 3 constituting reformer F, shift treatment unit 5 provided in fuel reformer R The selective oxidation unit 6) is formed by using a container B as a flat module having a processing space used in the reformed gas generation processing step. The plurality of containers B (a plurality of reactors: flat plate modules) constitute the apparatus main body A in a state of being in close contact with each other in parallel. When arranging a plurality of containers B, the above-mentioned items that need to be heat-transferred are arranged in close contact with each other, and the heat-transfer amount adjustment between those that need to adjust the heat-transfer amount It arranges in the state which interposed the heat insulating material 19a, 19b, 19d, 19e. The container B is configured to have two processing spaces by welding and connecting a dish-shaped container forming member with a plate-shaped partition member positioned therebetween. In addition, as shown in FIG. 1, the heat insulating material 19 provided so that the combustion part 4 may be covered directly is accommodated in the state covered with the 2nd flat dish-shaped container N as a plate-shaped container formation member mentioned later. Has been.
Further, a plate-like heater H for heating the container B (reactor) is provided between the shift treatment unit 5 and the selective oxidation unit 6 or between the plurality of containers B constituting the shift treatment unit 5. ing.

(改質器の構成)
改質器Fは、図2に示すように、それぞれ正面視にて長方形状の第1扁平皿形容器K、第2扁平皿形容器Nと、正面視にて長方形状で、平板状の仕切り板Dとから構成され、第1扁平皿形容器K、第2扁平皿形容器Nの周縁に設けられた鍔部KE、鍔部NEの全周が、仕切り板Dを介して重ね合わされて固着されている。
(Configuration of reformer)
As shown in FIG. 2, the reformer F includes a first flat dish-shaped container K and a second flat dish-shaped container N that are rectangular in front view, and a rectangular partition that is rectangular in front view and has a flat plate shape. It is composed of a plate D, and the entire circumference of the flange KE and the flange NE provided on the peripheral edges of the first flat dish container K and the second flat dish container N is overlapped and fixed via the partition plate D. Has been.

そして第1扁平皿形容器Kと仕切り板Dとの間に形成される第1空間KRに、改質材(図示なし)が収納されるとともに、第2扁平皿形容器Nと仕切り板Dとの間に形成される第2空間NRの特定辺Ft側に、当該特定辺Ftに沿ってバーナ44を延設して備えている。
尚、第1扁平皿形容器Kには、水蒸気改質部3と保温用通流部7とが、水蒸気改質部3が仕切り板D側となり、保温用通流部7が裏底部KB側となる状態で設けられている。そして、この実施形態においては、水蒸気改質部3が第1空間KRに相当する。
And in the 1st space KR formed between the 1st flat dish-shaped container K and the partition plate D, while a modifier (not shown) is accommodated, the 2nd flat dish-shaped container N and the partition plate D, A burner 44 is provided so as to extend along the specific side Ft on the specific side Ft side of the second space NR formed therebetween.
In the first flat dish-shaped container K, the steam reforming section 3 and the heat retaining flow section 7 are located on the partition plate D side, and the heat retaining flow section 7 is on the back bottom KB side. It is provided in the state. In this embodiment, the steam reforming unit 3 corresponds to the first space KR.

図3に示すように、特定辺Ftと、当該特定辺Ftの端部から直交して延出される直交側辺Fs1、Fs2との交差部に関して、特定辺Ftと直交側辺Fs1、Fs2との間に傾斜辺Fb1、Fb2を備え、正面視にて、特定辺Ftと直交側辺Fs1、Fs2とを、角部の交差角が鈍角である角度α、βを成す複数の鈍角角部Fa1〜Fa4によって接続するように構成されている。
つまり、鈍角角部Fa1〜Fa4は、特定辺Ft(Fb3)と傾斜辺Fb1、Fb2との間の特定辺側角部Fa2、Fa3と、傾斜辺Fb1、Fb2と直交側辺Fs1、Fs2との間の側辺側角部Fa1、Fa4とを備えている。
そして、図3に示すように、特定辺側角部Fa2とFa3とは、等しい交差角βを成すように構成され、側辺側角部Fa1とFa4とは、等しい交差角αを成すように構成されている。ここで、図示する例では、α=βである。
As shown in FIG. 3, with respect to the intersection of the specific side Ft and the orthogonal side sides Fs1 and Fs2 extending orthogonally from the end of the specific side Ft, the specific side Ft and the orthogonal side sides Fs1 and Fs2 A plurality of obtuse angle portions Fa1 having inclined sides Fb1 and Fb2 between the specific side Ft and the orthogonal side sides Fs1 and Fs2 and having angles α and β whose obtuse angles are obtuse angles. The connection is made by Fa4.
In other words, the obtuse corners Fa1 to Fa4 are defined between the specific side-side corners Fa2 and Fa3 between the specific side Ft (Fb3) and the inclined sides Fb1 and Fb2, and the inclined sides Fb1 and Fb2 and the orthogonal side sides Fs1 and Fs2. It has side side corners Fa1 and Fa4 between them.
As shown in FIG. 3, the specific side corners Fa2 and Fa3 are configured to form an equal crossing angle β, and the side side corners Fa1 and Fa4 are configured to form an equal crossing angle α. It is configured. Here, in the illustrated example, α = β.

本発明の燃料改質装置Rにおいては、第1扁平皿形容器K、第2扁平皿形容器N及び仕切り板Dが、図1及び図3に示すように、鉛直上下方向に広がる縦姿勢で使用され、縦姿勢における下側に特定辺Ftが位置する状態となる。
そして、特定辺Ftの両端部位に、傾斜辺部Fb1、Fb2が設けられ、バーナ44は、図2及び図3に示すように、傾斜辺部Fb1、Fb2より上で、直交側辺Fs1、Fs2の傾斜辺側下部領域に設けられている。
In the fuel reformer R of the present invention, the first flat dish-shaped container K, the second flat dish-shaped container N, and the partition plate D have a vertical posture that extends vertically in the vertical direction as shown in FIGS. Used, the specific side Ft is positioned on the lower side in the vertical posture.
In addition, inclined side portions Fb1 and Fb2 are provided at both end portions of the specific side Ft, and the burner 44 is above the inclined side portions Fb1 and Fb2, as shown in FIGS. Are provided in the lower region of the inclined side.

(改質器の使用態様)
燃料改質装置Rの使用において、改質器Fは、バーナ44の燃焼により第1空間KRを加熱するとともに、第1空間KRに供給される原料を改質材で改質する。
このとき、第1扁平皿形容器K及び第2扁平皿形容器Nは、バーナによる加熱に伴って、例えば650℃〜750℃程度にまで温度が上昇するため、その加熱に伴い変形することになる。具体的には、図4(a)に示すように、第1扁平皿形容器Kの裏底部KB及び第2扁平皿形容器Nの裏底部NBは、変形に伴って特定辺Ftに沿うX方向及び特定辺Ftに直交するY方向を含むX−Y面に沿って膨張する。
本発明は、特定辺Ftと、当該特定辺Ftの端部から直交して延出される直交側辺Fs1、Fs2との交差部に関して、特定辺Ftと直交側辺Fs1、Fs2との間に傾斜辺Fb1、Fb2を備え、正面視にて、特定辺Ftと直交側辺Fs1、Fs2とを、角部の交差角が鈍角である角度α、βを成す複数の鈍角角部Fa1〜Fa4によって接続するように構成することにより、バーナ44による加熱に伴う熱ひずみ変形であって裏底部KB、NBの面方向の膨張、すなわち、X−Y平面に沿う変位を分散することにより、改質装置Rの起動及び停止を繰り返した場合における疲労の蓄積を低減し、疲労破壊が発生するまでの寿命(疲労寿命)を長くすることが可能な改質器Fを提供することができる。
(Usage of reformer)
In the use of the fuel reformer R, the reformer F heats the first space KR by combustion of the burner 44 and reforms the raw material supplied to the first space KR with a reformer.
At this time, the temperature of the first flat dish-shaped container K and the second flat dish-shaped container N rises to, for example, about 650 ° C. to 750 ° C. along with the heating by the burner. Become. Specifically, as shown in FIG. 4 (a), the back bottom KB of the first flat dish-shaped container K and the back bottom NB of the second flat dish-shaped container N are X along the specific side Ft with deformation. It expands along the XY plane including the Y direction perpendicular to the direction and the specific side Ft.
The present invention is inclined between the specific side Ft and the orthogonal side sides Fs1 and Fs2 with respect to the intersection of the specific side Ft and the orthogonal side sides Fs1 and Fs2 extending orthogonally from the end of the specific side Ft. Sides Fb1 and Fb2 are provided, and in a front view, the specific side Ft and the orthogonal side sides Fs1 and Fs2 are connected by a plurality of obtuse angle portions Fa1 to Fa4 that form angles α and β whose obtuse angles are the obtuse angles. By configuring so, the reformer R can be obtained by dispersing thermal strain deformation accompanying heating by the burner 44 and expansion in the surface direction of the back bottoms KB and NB, that is, displacement along the XY plane. Thus, it is possible to provide a reformer F that can reduce the accumulation of fatigue when the start and stop of the above are repeated, and can extend the life until fatigue failure occurs (fatigue life).

(熱応力解析の結果)
以下に、上記複数の鈍角角部Fa1〜Fa4を設けることの効果を確認すべく行った熱応力解析の結果を示す。この解析結果は、複数の鈍角角部Fa1〜Fa4を設けることの効果を示すものであるが、この解析にて得られた数値は、本発明を限定するものではない。
(Results of thermal stress analysis)
Below, the result of the thermal-stress analysis performed in order to confirm the effect of providing the said some obtuse angle part Fa1-Fa4 is shown. This analysis result shows the effect of providing a plurality of obtuse angle portions Fa1 to Fa4, but the numerical values obtained by this analysis do not limit the present invention.

熱応力解析は、改質器Fをその設置姿勢において上下に二分割し、さらに、バーナ44が設けられる特定辺側端部をさらに特定辺に直交する状態で二分割した解析対象部分Fiに対して行った(図4参照)。
すなわち、図4におけるFi1は、改質器Fの特定辺Ftにおける一方側の端部であり、同Fi2は、改質器Fの特定辺Ftに沿う方向における中央部を示すものである。
なお、解析は、常温(室温)状態から加熱状態(例えば650℃)への加熱、及び、加熱状態から常温状態への自然冷却を1サイクルとして、このサイクルをnサイクル(nは一定数)繰り返し行なった。そして、この場合における、解析終了後の歪蓄積量(無次元量)を求めた。
In the thermal stress analysis, the reformer F is divided into two in the vertical direction in the installation posture, and the specific side end provided with the burner 44 is further divided into two in a state orthogonal to the specific side. (See FIG. 4).
That is, Fi1 in FIG. 4 is an end portion on one side of the specific side Ft of the reformer F, and Fi2 indicates a central portion in the direction along the specific side Ft of the reformer F.
In the analysis, heating from a normal temperature (room temperature) state to a heating state (for example, 650 ° C.) and natural cooling from the heating state to the normal temperature state is one cycle, and this cycle is repeated n cycles (n is a fixed number). I did it. In this case, the strain accumulation amount (dimensionalless amount) after the analysis was completed was obtained.

図4(a)は、複数の鈍角角部Fa1〜Fa4を設けていない(すなわち、全ての角の角度が直角である)場合の解析対象部分Fiを示す図であり、図4(b)は、複数の鈍角角部Fa1〜Fa4を設けた場合の解析対象部分Fiを示す図である。
第1扁平皿形容器Kの裏底部KBにおいて、その平面視における特定辺側の一端側の角部Fi1、及び、特定辺の中央部分Fi2の歪蓄積量を比較した。
その結果、角部Fi1における歪蓄積量は、複数の鈍角角部Fa1〜Fa4を設けていない場合(図4(a))に対して、複数の鈍角角部Fa1〜Fa4を設けた場合(図4(b))は約85%(108k/126k:kは定数)に低下していることが分かる。
また、中央部分Fi2における歪蓄積量は、複数の鈍角角部Fa1〜Fa4を設けていない場合(図4(a))に対して、複数の鈍角角部Fa1〜Fa4を設けた場合(図4(b))は約11%(16k/146k:kは定数)に低下していることが分かる。
FIG. 4A is a diagram showing an analysis target portion Fi when a plurality of obtuse angle portions Fa1 to Fa4 are not provided (that is, all corner angles are right angles), and FIG. It is a figure which shows the analysis object part Fi at the time of providing the several obtuse angle part Fa1-Fa4.
In the back bottom portion KB of the first flat dish-shaped container K, the strain accumulation amounts of the corner portion Fi1 on one end side on the specific side and the central portion Fi2 on the specific side in the plan view were compared.
As a result, the strain accumulation amount in the corner portion Fi1 is a case where a plurality of obtuse angle portions Fa1 to Fa4 are provided (FIG. 4A), compared to a case where the plurality of obtuse angle portions Fa1 to Fa4 are not provided (FIG. 4A). 4 (b)) is reduced to about 85% (108k / 126k: k is a constant).
Further, the strain accumulation amount in the central portion Fi2 is a case where a plurality of obtuse angle portions Fa1 to Fa4 are provided (FIG. 4A) as compared to a case where a plurality of obtuse angle portions Fa1 to Fa4 are not provided (FIG. 4A). It can be seen that (b)) is reduced to about 11% (16k / 146k: k is a constant).

このように、複数の鈍角角部Fa1〜Fa4を設けた場合は、複数の鈍角角部Fa1〜Fa4を設けていない場合と較べて明らかに歪蓄積量が低下していることが判明した。   Thus, it has been found that when the plurality of obtuse angle portions Fa1 to Fa4 are provided, the strain accumulation amount is clearly reduced as compared with the case where the plurality of obtuse angle portions Fa1 to Fa4 are not provided.

〔別実施形態〕
次に本発明の別実施形態を説明する。
(1)上記実施形態においては、特定辺側角部Fa2、Fa3の交差角βと、側辺側角部Fa1、Fa4の交差角αとを、等しく構成したが、側辺側角部Fa1、Fa4及び特定辺側角部Fa2、Fa3の全てが、鈍角となっていればよい。
また、Fa1〜Fa4の角度を、夫々全て異ならせるように構成してもよい。
つまり、それらの角度の全てが鈍角である条件において、Fa1〜Fa4の角度は任意に選択可能である。
[Another embodiment]
Next, another embodiment of the present invention will be described.
(1) In the above embodiment, the intersection angle β of the specific side corner portions Fa2 and Fa3 and the intersection angle α of the side side corner portions Fa1 and Fa4 are configured to be equal, but the side side corner portion Fa1, All of Fa4 and specific side-side corners Fa2 and Fa3 only need to be obtuse.
Moreover, you may comprise so that the angles of Fa1-Fa4 may each differ.
That is, under the condition that all of these angles are obtuse, the angles Fa1 to Fa4 can be arbitrarily selected.

(2)上記実施形態においては、特定辺Ftと直交側辺Fs1、Fs2との間に傾斜辺Fb1、Fb2を備えるように構成したが、傾斜辺Fb1、Fb2と直交側辺Fs1、Fs2との間にさらに傾斜辺を備えるように構成してもよい。 (2) In the above embodiment, the inclined sides Fb1 and Fb2 are provided between the specific side Ft and the orthogonal side sides Fs1 and Fs2, but the inclined sides Fb1 and Fb2 and the orthogonal side sides Fs1 and Fs2 You may comprise so that an inclination side may be further provided in between.

本発明によれば、改質装置の起動及び停止を繰り返した場合における応力変形による歪みの蓄積を低減し、疲労破壊に至るまでの疲労寿命を長くすることが可能な改質器を提供することができる。   According to the present invention, there is provided a reformer capable of reducing the accumulation of strain due to stress deformation when the reforming apparatus is repeatedly started and stopped, and extending the fatigue life until fatigue failure. Can do.

F 改質器
Ft(Fb3) 特定辺
Fd 下側
Fs1、Fs2 直交側辺
Fa1、Fa4 側辺側角部
Fa2、Fa3 特定辺側角部
Fb1、Fb2 傾斜辺
α、β 交差角
F reformer Ft (Fb3) specific side Fd lower side Fs1, Fs2 orthogonal side side Fa1, Fa4 side side side corner Fa2, Fa3 specific side side corner Fb1, Fb2 inclined side α, β crossing angle

Claims (4)

それぞれ正面視にて長方形状の第1扁平皿形容器、第2扁平皿形容器と、正面視にて長方形状で、平板状の仕切り板とから構成され、前記第1扁平皿形容器、第2扁平皿形容器の周縁に設けられた鍔部の全周が、前記仕切り板を介して重ね合わされて固着された構成で、
前記第1扁平皿形容器と前記仕切り板との間に形成される第1空間に、改質材が収納されるとともに、前記第2扁平皿形容器と前記仕切り板との間に形成される第2空間の特定辺側に、当該特定辺に沿ってバーナを延設して備えた改質器であって、
前記特定辺と、当該特定辺の端部から直交して延出される直交側辺との交差部に関して、
正面視にて、前記特定辺と前記直交側辺とを、角部の交差角が鈍角を成す、複数の鈍角角部で接続した改質器。
Each of the first flat dish-shaped container and the second flat dish-shaped container having a rectangular shape when viewed from the front, and a rectangular partition plate having a rectangular shape when viewed from the front, the first flat dish-shaped container, 2 The entire circumference of the collar provided on the peripheral edge of the flat dish-shaped container is overlaid and fixed via the partition plate,
A modifying material is housed in a first space formed between the first flat dish container and the partition plate, and is formed between the second flat dish container and the partition plate. A reformer provided with a burner extending along the specific side on the specific side of the second space,
Regarding the intersection of the specific side and the orthogonal side extending orthogonally from the end of the specific side,
A reformer in which the specific side and the orthogonal side side are connected to each other at a plurality of obtuse angle corners in which the crossing angle of the corners forms an obtuse angle when viewed from the front.
前記特定辺と前記直交側辺との間に傾斜辺を備え、
前記複数の鈍角角部として、前記特定辺と傾斜辺との間の特定辺側角部と、前記傾斜辺と前記直交側辺との間の側辺側角部とを備え、
前記特定辺側角部の交差角と、前記側辺側角部の交差角が等しい請求項1記載の改質器。
An inclined side is provided between the specific side and the orthogonal side side,
As the plurality of obtuse angle corners, a specific side side corner between the specific side and the inclined side, and a side side corner between the inclined side and the orthogonal side,
The reformer according to claim 1, wherein an intersection angle of the specific side corner and an intersection angle of the side corner are equal.
前記第1扁平皿形容器、第2扁平皿形容器及び仕切り板が、鉛直上下方向に広がる縦姿勢で使用され、
前記縦姿勢における下側に前記特定辺が位置されるとともに、
前記特定辺の両端部位に、前記傾斜辺を設けた請求項2記載の改質器。
The first flat dish-shaped container, the second flat dish-shaped container, and the partition plate are used in a vertical posture spreading in the vertical vertical direction,
The specific side is located on the lower side in the vertical posture,
The reformer according to claim 2, wherein the inclined sides are provided at both end portions of the specific side.
前記バーナを、前記傾斜辺より上で、前記直交側辺における前記傾斜辺側の下部領域に設けた請求項3記載の改質器。   The reformer according to claim 3, wherein the burner is provided in a lower region on the inclined side of the orthogonal side above the inclined side.
JP2011008149A 2011-01-18 2011-01-18 Reforming unit Pending JP2012148916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011008149A JP2012148916A (en) 2011-01-18 2011-01-18 Reforming unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011008149A JP2012148916A (en) 2011-01-18 2011-01-18 Reforming unit

Publications (1)

Publication Number Publication Date
JP2012148916A true JP2012148916A (en) 2012-08-09

Family

ID=46791587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011008149A Pending JP2012148916A (en) 2011-01-18 2011-01-18 Reforming unit

Country Status (1)

Country Link
JP (1) JP2012148916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069856A (en) * 2013-09-30 2015-04-13 Toto株式会社 Solid oxide-type fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069856A (en) * 2013-09-30 2015-04-13 Toto株式会社 Solid oxide-type fuel cell

Similar Documents

Publication Publication Date Title
JP6283269B2 (en) Fuel cell module
JP4063430B2 (en) Fluid processing equipment
JP7263212B2 (en) Fuel cell module and fluid supply device used therefor
JP6280431B2 (en) Fuel cell module
JP2009096705A (en) Reforming apparatus for fuel cell
JP2001155756A (en) Vapor-reforming reactor for fuel cell
JP2003148881A (en) Three-fluid heat exchanger
JP5368854B2 (en) Fuel reformer and manufacturing method thereof
JP2012148916A (en) Reforming unit
JP5324752B2 (en) Hydrogen-containing gas generator
JP5336696B2 (en) Fluid processing apparatus and manufacturing method thereof
TW201145663A (en) Reforming unit and fuel cell system
JP4646527B2 (en) Reformer
JP2011210631A (en) Fuel cell module
JP2012148917A (en) Reforming unit
JP2009104846A (en) Fuel battery module, fuel battery equipped with it, and operation method of fuel battery
KR20100093942A (en) Fuel processor of fuel cell system
JP2021068617A (en) Water evaporator
JP5643706B2 (en) Hydrogen-containing gas generator
JP4847772B2 (en) Hydrogen-containing gas generator
JP2005281097A (en) Reforming apparatus
JP2004115320A (en) Reforming apparatus
JP6450202B2 (en) Fuel cell module
JP2007265946A (en) Burner for reformer for fuel cell
JP5111040B2 (en) Fuel cell reformer