JP2010234209A - Ultraviolet ray oxidation treatment apparatus and ultraviolet ray oxidation treatment method for water - Google Patents

Ultraviolet ray oxidation treatment apparatus and ultraviolet ray oxidation treatment method for water Download PDF

Info

Publication number
JP2010234209A
JP2010234209A JP2009083376A JP2009083376A JP2010234209A JP 2010234209 A JP2010234209 A JP 2010234209A JP 2009083376 A JP2009083376 A JP 2009083376A JP 2009083376 A JP2009083376 A JP 2009083376A JP 2010234209 A JP2010234209 A JP 2010234209A
Authority
JP
Japan
Prior art keywords
ultraviolet
water
reflux plate
oxidation treatment
reflux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009083376A
Other languages
Japanese (ja)
Other versions
JP5354181B2 (en
Inventor
Yuuko Sumiya
祐公 角谷
Hiroto Tokoshima
裕人 床嶋
Hideki Kobayashi
秀樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2009083376A priority Critical patent/JP5354181B2/en
Publication of JP2010234209A publication Critical patent/JP2010234209A/en
Application granted granted Critical
Publication of JP5354181B2 publication Critical patent/JP5354181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultraviolet ray oxidation treatment apparatus capable of obtaining treated water with an extremely low TOC concentration while preventing a short pass of water to be treated in an ultraviolet ray oxidation treatment apparatus. <P>SOLUTION: A reflux plate 11 is composed of a ring-like reflux plate body part 12 and a seal member 13 disposed on the outer periphery of the reflux plate body part 12. The reflux plate body part 12 is open in the center, spaced from a quartz protective tube 6, and is formed with a recessed portion in the outer periphery by a small-diameter portion 12B of a middle portion thereof and a large-diameter portion 12A of each of both side face portions thereof. The seal member 13 is a ring-shaped body formed from a material such as a synthetic resin or an elastomer with small friction against stainless steel and has an outer diameter substantially equal to the inside diameter of a cylinder 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水中の有機物や難分解性物質を分解するための紫外線酸化処理装置に関し、特に分解処理能力が高く、かつ処理効率の高い紫外線酸化処理装置に関する。また、本発明は、水中の有機物や難分解性物質を分解するための紫外線酸化処理方法に関し、特に分解処理能力が高く、かつ処理効率の高い紫外線酸化処理方法に関する。   The present invention relates to an ultraviolet oxidation treatment apparatus for decomposing organic substances and hardly decomposable substances in water, and particularly to an ultraviolet oxidation treatment apparatus having a high decomposition treatment capacity and high treatment efficiency. The present invention also relates to an ultraviolet oxidation treatment method for decomposing organic substances and hardly decomposable substances in water, and more particularly to an ultraviolet oxidation treatment method having high decomposition treatment capacity and high treatment efficiency.

従来、水中の有機物や難分解性物質の分解や殺菌を目的として紫外線が用いられている。特に低圧紫外線放電灯は、主波長である254nmの波長の紫外線と、220nm以下の短波長の紫外線とを同時に放射するため、汎用的に用いられている。この低圧紫外線放電灯を用いた分解反応においては、220nm以下の短波長紫外線は強いエネルギーを有することから、水中の有機物分解に有効である。この短波長紫外線による有機物の分解のメカニズムは、まず、水分子が220nm以下の短波長紫外線のエネルギーで解離することで、ヒドロキシラジカルが生成される(反応式(1))。   Conventionally, ultraviolet rays are used for the purpose of decomposing and sterilizing organic substances and hardly decomposable substances in water. In particular, low-pressure ultraviolet discharge lamps are widely used because they emit ultraviolet light having a main wavelength of 254 nm and ultraviolet light having a short wavelength of 220 nm or less at the same time. In the decomposition reaction using this low-pressure ultraviolet discharge lamp, ultraviolet rays having a short wavelength of 220 nm or less have strong energy, and thus are effective for decomposing organic substances in water. The mechanism of decomposition of the organic matter by the short wavelength ultraviolet ray is that a water radical is first dissociated with the energy of the short wavelength ultraviolet ray of 220 nm or less to generate a hydroxy radical (reaction formula (1)).

Figure 2010234209
Figure 2010234209

ここで生成したヒドロキシラジカルは強力な酸化剤であるため、下記に示すように水中の有機物と連鎖的な酸化反応を経て二酸化炭素、水、反応中間体としての有機酸、及び副生物としての過酸化水素が生成されることが広く知られている(反応式(2))。   Since the hydroxy radicals generated here are strong oxidants, they undergo carbon dioxide, water, organic acids as reaction intermediates, and excess products as by-products through a chain oxidation reaction with organic substances in water as shown below. It is widely known that hydrogen oxide is produced (reaction formula (2)).

Figure 2010234209
Figure 2010234209

さらに、上記反応で副生される過酸化水素が、低圧紫外線放電灯の主波長である254nmの波長の紫外線で分解されると、ヒドロキシラジカルが生成される(反応式(3))。この反応は、AOP(促進酸化プロセス)として広く知られており、反応式(3)で生成されたヒドロキシラジカルは、上記反応式(1)の反応で水分子から生成するヒドロキシラジカルと同様に有機物の酸化分解反応を引き起こす。   Furthermore, when hydrogen peroxide produced as a by-product in the above reaction is decomposed by ultraviolet light having a wavelength of 254 nm, which is the main wavelength of a low-pressure ultraviolet discharge lamp, a hydroxy radical is generated (reaction formula (3)). This reaction is widely known as AOP (accelerated oxidation process), and the hydroxy radical generated in the reaction formula (3) is an organic substance similar to the hydroxy radical generated from water molecules in the reaction of the above reaction formula (1). Causes oxidative degradation reaction.

Figure 2010234209
Figure 2010234209

このような紫外線酸化による水中の有機物処理を効率的に行うためには、上記反応式(1)〜(3)の反応メカニズムにおいて、
(I)被処理水に波長220nm以下の短波長紫外線を照射する
(II)波長254nmの紫外線も活用できるように反応時間を確保する
という2条件が重要である。
In order to efficiently perform organic matter treatment in water by such ultraviolet oxidation, in the reaction mechanism of the above reaction formulas (1) to (3),
(I) Irradiation of water to be treated with short-wavelength ultraviolet light having a wavelength of 220 nm or less (II) Two conditions of ensuring reaction time so that ultraviolet light with a wavelength of 254 nm can also be utilized are important.

しかしながら、この2条件は、実際の装置化にあたっては相反する条件である。すなわち、波長220nm以下の紫外線と波長254nmの紫外線とを同時に、かつ経済的に得ることができるのは、一般的には低圧紫外線放電灯である。この低圧紫外線放電灯は、放射する主波長が254nmであり、同時に254nmの出力の20%程度の出力の波長185nmの紫外線を得ることが可能である。ところが、波長185nmの紫外線は、水による吸収が激しく、不純物をほとんど含まない超純水中であっても10mm以下の光路長でほぼ完全に吸収される。つまり、波長185nmの紫外線が届く範囲は、石英保護管の外表面から10mm以下であり、それより離れた位置を流通する水ではヒドロキシラジカルが生成しない。そこで、紫外線酸化処理装置の流路部分の水の厚みをすべて10mm以下に薄層化することが考えられるが、そうすると装置の内容量が小さくなり、照射装置内での滞留時間(反応時間)を極短時間しか確保できなくなる。   However, these two conditions are contradictory conditions in actual device implementation. That is, it is generally a low-pressure ultraviolet discharge lamp that can simultaneously and economically obtain ultraviolet light having a wavelength of 220 nm or less and ultraviolet light having a wavelength of 254 nm. In this low-pressure ultraviolet discharge lamp, the main wavelength to be emitted is 254 nm, and at the same time, it is possible to obtain ultraviolet light having a wavelength of 185 nm, which is about 20% of the output of 254 nm. However, ultraviolet rays with a wavelength of 185 nm are strongly absorbed by water, and are absorbed almost completely with an optical path length of 10 mm or less even in ultrapure water containing almost no impurities. That is, the range in which the ultraviolet ray having a wavelength of 185 nm reaches is 10 mm or less from the outer surface of the quartz protective tube, and no hydroxyl radical is generated in water flowing away from it. Therefore, it is conceivable to reduce the thickness of all the water in the flow path portion of the ultraviolet oxidation treatment apparatus to 10 mm or less, but this reduces the internal capacity of the apparatus, and the residence time (reaction time) in the irradiation apparatus is reduced. It can be secured only for an extremely short time.

このため、この相反する条件をできるだけ両立するように外筒体(シリンダ)内に還流板を設けた紫外線酸化処理装置が実用上は用いられている。このような還流板を設けた紫外線酸化処理装置の一例を図12及び図13に示す。紫外線酸化処理装置1は、給水部たる処理水流入口3を一側に、排水部たる処理水流出口4を他側にそれぞれ有する円筒状のステンレス鋼製シリンダ2と、石英保護管6内に収納することで液密状態に隔離した低圧紫外線放電灯5とからなる基本構造を有する。そして、このシリンダ2内に、一対のロッド7に所定の間隔で固定された複数枚の環状の還流板8a〜8eが配置されている。なお、9a,9bは図示しないOリングにより液密状態に固定されたエンドプレートである。   For this reason, an ultraviolet oxidation processing apparatus in which a reflux plate is provided in the outer cylinder (cylinder) so as to satisfy these conflicting conditions as much as possible is used in practice. An example of an ultraviolet oxidation treatment apparatus provided with such a reflux plate is shown in FIGS. The ultraviolet oxidation treatment apparatus 1 is accommodated in a cylindrical stainless steel cylinder 2 having a treated water inlet 3 serving as a water supply section on one side and a treated water outlet 4 serving as a drainage section on the other side, and a quartz protective tube 6. Thus, it has a basic structure consisting of a low-pressure ultraviolet discharge lamp 5 isolated in a liquid-tight state. In the cylinder 2, a plurality of annular reflux plates 8 a to 8 e fixed to the pair of rods 7 at a predetermined interval are arranged. Reference numerals 9a and 9b are end plates fixed in a liquid-tight state by an O-ring (not shown).

上述したような装置において、被処理水Wが処理水流入口3から導入されると、低圧紫外線放電灯5から紫外線が照射され、処理水流出口4に向かって流れる。このとき、途中に還流板8a〜8eが配置されているので、被処理水Wが処理水流入口3と処理水流出口4間をショートパスするのを防止して、低圧紫外線放電灯5の近傍を流れつつ、滞留時間を確保することが可能となっている。なお、紫外線酸化による水中の有機物除去処理においては、前述したとおり反応中間体としての有機酸と二酸化炭素とが生成するため、これらの除去を目的として後段にイオン交換処理装置を配置するのが普通である。   In the apparatus as described above, when the water to be treated W is introduced from the treated water inlet 3, ultraviolet light is irradiated from the low-pressure ultraviolet discharge lamp 5 and flows toward the treated water outlet 4. At this time, since the reflux plates 8a to 8e are arranged in the middle, the treated water W is prevented from short-passing between the treated water inlet 3 and the treated water outlet 4, and the vicinity of the low-pressure ultraviolet discharge lamp 5 is prevented. While flowing, it is possible to secure a residence time. In the removal of organic substances in water by ultraviolet oxidation, as described above, organic acid and carbon dioxide as reaction intermediates are generated, and therefore an ion exchange treatment apparatus is usually disposed downstream for the purpose of removing these. It is.

しかしながら、この紫外線酸化処理装置1では、円筒状のステンレス鋼製シリンダ2内に、一対のロッド7に固定された複数枚の環状の還流板8a〜8eを挿入することになるため、これらの還流板8a〜8eもまた、超純水処理装置等に適用するには、耐溶出性、耐紫外線性の観点からステンレス鋼等の金属製とすることが避けられない。このため、還流板8a〜8eの外縁とシリンダ2の内面との隙間(クリアランス)をぎりぎりに設定すると、ステンレス同士が接触してしまう。ステンレス同士は摩擦力が大きく、還流板8a〜8eをシリンダ2内に収めることができなくなってしまうため、還流板8a〜8eの外縁とシリンダ2の内面との間には、ある程度のクリアランスを確保せざるを得ない。   However, in this ultraviolet oxidation processing apparatus 1, a plurality of annular reflux plates 8 a to 8 e fixed to the pair of rods 7 are inserted into the cylindrical stainless steel cylinder 2. In order to apply the plates 8a to 8e to an ultrapure water treatment apparatus or the like, it is inevitable that the plates 8a to 8e are made of metal such as stainless steel from the viewpoint of elution resistance and ultraviolet resistance. For this reason, if the gap (clearance) between the outer edges of the reflux plates 8a to 8e and the inner surface of the cylinder 2 is set to the limit, the stainless steels come into contact with each other. Stainless steel has a large frictional force, and the return plates 8a to 8e cannot be stored in the cylinder 2. Therefore, a certain amount of clearance is secured between the outer edges of the return plates 8a to 8e and the inner surface of the cylinder 2. I have to.

そして、このような従来型の還流板を用いた紫外線酸化処理装置1では、処理水流量が多く高流速の場合には、シリンダ2内部の還流板8a〜8eで比較的大きな圧力損失が発生するため、被処理水Wの大部分は、前述した還流板8a〜8eとシリンダ2の間のクリアランス部分よりも間隙の大きい石英保護管6と還流板8a〜8eとの間の流路を多く通過することになり、問題が顕在化しない。しかしながら、非常にTOC濃度の低い処理水を得るときには、処理水流量を少なくして流速を低くするため、還流板8a〜8eで発生する圧力損失も小さくなる。このため、シリンダ2内を通過する被処理水Wは、還流板8a〜8e及びシリンダ2の間のクリアランスの面積と、還流板8a〜8e及び石英保護管6の間の流路面積との面積比に近似するように分流し、高流速で処理する場合に比べてショートパス分の割合が増加する。この還流板8a〜8eとシリンダ2の内面との間のクリアランスの箇所は、低圧紫外線放電灯5から最も離れているため、そこを通過する被処理水Wは、波長が短く最も酸化能力が高い185nmの紫外線の照射をほとんど受けることができない。このため還流板8a〜8eとシリンダ2の内面との間のクリアランス部分をショートパスする被処理水Wは、十分な紫外線酸化を受けることができず、TOC成分が除去されずに残留し、処理水全体のTOC濃度を十分に低下させることができないという問題点があった。   In the ultraviolet oxidation treatment apparatus 1 using such a conventional reflux plate, a relatively large pressure loss occurs in the reflux plates 8a to 8e inside the cylinder 2 when the flow rate of the treated water is large and the flow rate is high. Therefore, most of the water to be treated W passes through the flow path between the quartz protective tube 6 and the reflux plates 8a to 8e having a larger gap than the clearance portion between the reflux plates 8a to 8e and the cylinder 2 described above. The problem does not become obvious. However, when obtaining treated water with a very low TOC concentration, the flow rate is lowered by reducing the treated water flow rate, so that the pressure loss generated in the reflux plates 8a to 8e is also reduced. For this reason, the to-be-processed water W which passes the inside of the cylinder 2 is an area of the clearance area between the reflux plates 8a-8e and the cylinder 2, and the area of the flow path between the reflux plates 8a-8e and the quartz protective tube 6. The ratio of the short path is increased as compared with the case where the flow is divided so as to approximate the ratio and processing is performed at a high flow rate. Since the portion of the clearance between the reflux plates 8a to 8e and the inner surface of the cylinder 2 is farthest from the low-pressure ultraviolet discharge lamp 5, the water to be treated W passing there has the shortest wavelength and the highest oxidation ability. Almost no irradiation with ultraviolet rays of 185 nm is possible. For this reason, the to-be-processed water W which short-passes the clearance part between the recirculation | reflux plates 8a-8e and the inner surface of the cylinder 2 cannot receive sufficient ultraviolet-ray oxidation, but remains without removing a TOC component. There was a problem that the TOC concentration of the whole water could not be lowered sufficiently.

特に、近年、超純水処理装置に要求される処理水(超純水)のTOC濃度1μg/L未満を達成するためには、このショートパスの問題は重大である。   In particular, this short path problem is serious in order to achieve a TOC concentration of less than 1 μg / L of treated water (ultra pure water) required for an ultra pure water treatment apparatus in recent years.

このような問題点を解決することを目的として、種々の紫外線酸化処理装置が提案されている。例えば、特許文献1には、波長240nm以下の紫外線の出力の維持率を高めることを目的とする、合成石英ガラス製の発光管を有する放電灯を用いた紫外線酸化処理装置が開示されている。また、特許文献2には、被処理水を滞留させることを目的とする、シリンダの内面に堰板を固着した紫外線酸化処理装置が開示されている。特許文献3には、被処理水に旋回流を与えることを目的とする、シリンダの内面に攪拌板を固着した紫外線酸化処理装置が開示されている。さらに、特許文献4には、四角形断面で内部に多数の紫外線ランプを設け、被処理水が紫外線ランプに対して直角方向に流れるように混合板を設置した紫外線酸化処理装置が開示されている。   In order to solve such problems, various ultraviolet oxidation treatment apparatuses have been proposed. For example, Patent Document 1 discloses an ultraviolet oxidation processing apparatus using a discharge lamp having an arc tube made of synthetic quartz glass for the purpose of increasing the maintenance rate of the output of ultraviolet light having a wavelength of 240 nm or less. Patent Document 2 discloses an ultraviolet oxidation treatment apparatus in which a dam plate is fixed to the inner surface of a cylinder for the purpose of retaining water to be treated. Patent Document 3 discloses an ultraviolet oxidation treatment apparatus in which a stirring plate is fixed to the inner surface of a cylinder for the purpose of giving a swirl flow to water to be treated. Furthermore, Patent Document 4 discloses an ultraviolet oxidation treatment apparatus in which a large number of ultraviolet lamps are provided in a square cross section and a mixing plate is installed so that water to be treated flows in a direction perpendicular to the ultraviolet lamp.

特開2003−144912号公報JP 2003-144912 A 特開平10−43753号公報JP 10-43753 A 特開2003−24934号公報JP 2003-24934 A 特許第2696636号公報Japanese Patent No. 2696636

しかしながら、特許文献1に記載された紫外線酸化処理装置は、紫外線の出力の維持率を高めることはできるものの、被処理水Wの還流板8a〜8eとシリンダ2の内面との間のクリアランスにおけるショートパスを防止することができない、という問題点がある。   However, although the ultraviolet oxidation processing apparatus described in Patent Document 1 can increase the maintenance rate of the output of ultraviolet light, a short in the clearance between the reflux plates 8 a to 8 e of the water to be treated W and the inner surface of the cylinder 2. There is a problem that the path cannot be prevented.

また、特許文献2及び3に記載された紫外線酸化処理装置は、還流板をシリンダ本体内に溶接等で直接固定するものであり、装置、特にシリンダの製造が煩雑で高価になる、石英保護管が破損した場合にシリンダ内の破片除去が困難になる、という問題点がある。   In addition, the ultraviolet oxidation treatment apparatus described in Patent Documents 2 and 3 directly fixes the reflux plate to the cylinder body by welding or the like, and the quartz protective tube is complicated and expensive to manufacture. There is a problem in that it becomes difficult to remove the debris in the cylinder when it is damaged.

さらに、特許文献4に記載された紫外線酸化処理装置は、反応容器が角形であり、水処理装置で必要とされる耐圧性能に劣るものである。そこで、容器の肉厚を厚くすることが考えられるが、シリンダ(円筒)形状と同等の耐圧性を確保するためには、容器の肉厚が厚くなり、装置重量が増えるだけでなく、高価で取り扱いが難しくなる、という問題点がある。また、円筒形状では、被処理水が紫外線ランプに対して直角にかつ均一に流れるように混合板を設置すること自体が困難である。   Furthermore, the ultraviolet oxidation treatment apparatus described in Patent Document 4 has a rectangular reaction vessel, and is inferior in pressure resistance required for a water treatment apparatus. Therefore, it is conceivable to increase the thickness of the container, but in order to ensure the pressure resistance equivalent to that of the cylinder (cylindrical) shape, the thickness of the container increases, which not only increases the weight of the device but also increases the cost. There is a problem that handling becomes difficult. In addition, in the cylindrical shape, it is difficult to install the mixing plate itself so that the water to be treated flows uniformly at right angles to the ultraviolet lamp.

このように従来は、簡便かつ実用的な構造で、TOC濃度1μg/L未満の超純水を確実に得ることのできる紫外線酸化処理装置はなかった。   Thus, conventionally, there has been no ultraviolet oxidation treatment apparatus that can reliably obtain ultrapure water having a TOC concentration of less than 1 μg / L with a simple and practical structure.

本発明は、上記課題に鑑みてなされたものであり、紫外線酸化処理装置内での処理水のショートパスを防止し、極低濃度のTOC濃度の処理水を得ることの可能な紫外線酸化処理装置及び水の紫外線酸化処理方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an ultraviolet oxidation treatment apparatus capable of preventing a short pass of treated water in the ultraviolet oxidation treatment apparatus and obtaining treated water having an extremely low TOC concentration. And an ultraviolet oxidation treatment method for water.

上記課題を解決するために、第一に本発明は、管状の低圧紫外線放電灯が収容され、前記低圧紫外線放電灯の周囲に一端から他端側に向けて水が流通する外筒体と、前記外筒体内に、前記低圧紫外線放電灯の外周方向に当該低圧紫外線放電灯より離間して設けられてなる複数の還流板とを有する紫外線酸化処理装置において、前記還流板が、前記外筒体の内面との間をシールするシール部を有することを特徴とする紫外線酸化処理装置を提供する(請求項1)。   In order to solve the above problems, firstly, the present invention includes an outer cylindrical body in which a tubular low-pressure ultraviolet discharge lamp is accommodated, and water flows from one end to the other end around the low-pressure ultraviolet discharge lamp, In the ultraviolet oxidation processing apparatus having a plurality of reflux plates provided in the outer cylinder and spaced apart from the low-pressure ultraviolet discharge lamp in the outer circumferential direction of the low-pressure ultraviolet discharge lamp, the reflux plate includes the outer cylinder An ultraviolet oxidation processing apparatus characterized by having a seal portion that seals between the inner surface of the first and second inner surfaces (claim 1).

上記発明(請求項1)によれば、還流板と外筒体の内面との間をシールするシール部を有することで、還流板と外筒体との間のクリアランスが実質的になくなるため、外筒体の一端(給水部)から被処理水を供給し、他端(排水部)から排出する過程において、クリアランス部分を通ることで十分な紫外線照射を受けることなく被処理水が流出してしまう「漏洩流」を防止することができ、有機物濃度が極低濃度の超純水を得ることができる。また、この結果、被処理水が低圧紫外線放電灯の照射を十分に受けることになるため、難分解性物質の分解・除去においても高い効果が得られる。   According to the above invention (invention 1), by having the seal portion that seals between the reflux plate and the inner surface of the outer cylinder, the clearance between the reflux plate and the outer cylinder is substantially eliminated. In the process of supplying treated water from one end (water supply part) of the outer cylinder and discharging it from the other end (drainage part), the treated water flows out without being exposed to sufficient ultraviolet radiation through the clearance part. The “leakage flow” can be prevented, and ultrapure water having an extremely low organic substance concentration can be obtained. As a result, since the water to be treated is sufficiently irradiated with the low-pressure ultraviolet discharge lamp, a high effect can be obtained in the decomposition and removal of the hardly decomposable substance.

上記発明(請求項1)においては、前記シール部が、前記低圧紫外線放電灯からの紫外線の照射を直接受けない構造であるのが好ましい(請求項2)。   In the said invention (invention 1), it is preferable that the said seal part is a structure which does not receive the irradiation of the ultraviolet-ray from the said low voltage | pressure ultraviolet discharge lamp directly (invention 2).

上記発明(請求項2)によれば、シール部を合成樹脂、エラストマー等で構成したとしても、低圧紫外線放電灯からの紫外線照射による劣化を防止することができる。   According to the above invention (Invention 2), even if the sealing portion is made of a synthetic resin, an elastomer or the like, it is possible to prevent deterioration due to ultraviolet irradiation from the low-pressure ultraviolet discharge lamp.

特に、前記還流板が、円環状であり、前記還流板が、円環状の還流板本体部と当該還流板本体部の外周に配置されたシール部とからなるのが好ましい(請求項3,4)。   In particular, it is preferable that the reflux plate has an annular shape, and the reflux plate includes an annular reflux plate main body portion and a seal portion disposed on the outer periphery of the reflux plate main body portion. ).

上記発明(請求項3,4)によれば、シール部が円環状の還流板本体部の外周に配置されているので、還流板と外筒体との間のクリアランスをシール部が閉鎖するとともに、このシール部が低圧紫外線放電灯からの紫外線照射による劣化を防止することができる。   According to the above inventions (inventions 3 and 4), since the seal portion is disposed on the outer periphery of the annular reflux plate main body portion, the seal portion closes the clearance between the reflux plate and the outer cylindrical body. The seal portion can prevent deterioration due to ultraviolet irradiation from the low-pressure ultraviolet discharge lamp.

さらに、上記発明(請求項1〜4)においては、前記シール部が、前記低圧紫外線放電灯から照射された紫外線に対して耐性を有する材料からなるのが好ましい(請求項5)。これにより、低圧紫外線放電灯からの紫外線照射等によるシール部の劣化を完全に防止することができる。   Furthermore, in the said invention (invention 1-4), it is preferable that the said seal part consists of material which has tolerance with respect to the ultraviolet-ray irradiated from the said low pressure ultraviolet discharge lamp (invention 5). Thereby, it is possible to completely prevent the seal portion from being deteriorated due to ultraviolet irradiation or the like from the low-pressure ultraviolet discharge lamp.

そして、第二に本発明は、上記発明(請求項1〜5)に係る紫外線酸化処理装置を用いて水の紫外線酸化処理を行うことを特徴とする水の紫外線酸化処理方法を提供する(請求項6)。   Second, the present invention provides an ultraviolet oxidation treatment method for water, characterized in that the ultraviolet oxidation treatment of water is performed using the ultraviolet oxidation treatment apparatus according to the above inventions (inventions 1 to 5). Item 6).

上記発明(請求項6)によれば、還流板と外筒体の内面との間をシールするシール部を有することで、還流板と外筒体との間のクリアランスが実質的になくなるため、外筒体の一端(給水部)から被処理水を供給し他端(排水部)から排出する過程において、被処理水がクリアランス部分を通ることで十分な紫外線照射を受けることなく流出してしまう「漏洩流」を防止することができ、有機物濃度が極低濃度の超純水を得ることができる。また、この結果、被処理水が低圧紫外線放電灯からの紫外線照射を十分に受けることになるので、難分解性物質の分解・除去においても高い効果が得られる。   According to the above invention (invention 6), by having the seal portion that seals between the reflux plate and the inner surface of the outer cylinder, the clearance between the reflux plate and the outer cylinder is substantially eliminated. In the process of supplying water to be treated from one end (water supply part) of the outer cylinder and discharging from the other end (drainage part), the water to be treated will flow out without receiving sufficient ultraviolet radiation through the clearance part. “Leakage flow” can be prevented, and ultrapure water having an extremely low concentration of organic substances can be obtained. As a result, since the water to be treated is sufficiently irradiated with ultraviolet rays from the low-pressure ultraviolet discharge lamp, a high effect can be obtained in the decomposition and removal of the hardly decomposable substance.

本発明によれば、紫外線酸化処理装置の還流板に、シリンダ内面との間のクリアランス部分をなくすための充填物としてのシール部が設けられていることにより、被処理水がこのクリアランス部分を通過することで十分な紫外線照射を受けることなく紫外線酸化処理装置から流出してしまう「漏洩流」を防止することができるため、有機物濃度が極低濃度の超純水を得ることができる。また、難分解性物質の分解・除去においても高い効果を得ることができる。   According to the present invention, the water to be treated passes through the clearance portion of the reflux plate of the ultraviolet oxidation processing apparatus by providing the sealing portion as a filling for eliminating the clearance portion between the inner surface of the cylinder and the inner surface of the cylinder. By doing so, it is possible to prevent a “leakage flow” that flows out from the ultraviolet oxidation treatment apparatus without receiving sufficient ultraviolet irradiation, and thus ultrapure water having an extremely low organic substance concentration can be obtained. Moreover, a high effect can be obtained also in the decomposition and removal of the hardly decomposable substance.

本発明の第一の実施形態に係る紫外線酸化処理装置の還流板を示す平面図である。It is a top view which shows the reflux plate of the ultraviolet-ray oxidation processing apparatus which concerns on 1st embodiment of this invention. 前記第一の実施形態に係る紫外線酸化処理装置の還流板を示す側面図である。It is a side view which shows the reflux plate of the ultraviolet-ray oxidation processing apparatus which concerns on said 1st embodiment. 前記第一の実施形態に係る紫外線酸化処理装置を示す拡大断面図である。It is an expanded sectional view showing the ultraviolet oxidation treatment device concerning the first embodiment. 本発明の第二の実施形態に係る紫外線酸化処理装置の還流板を示す平面図である。It is a top view which shows the reflux plate of the ultraviolet-ray oxidation processing apparatus which concerns on 2nd embodiment of this invention. 前記第二の実施形態に係る紫外線酸化処理装置の還流板を示す側面図である。It is a side view which shows the reflux plate of the ultraviolet-ray oxidation processing apparatus which concerns on said 2nd embodiment. 前記第二の実施形態に係る紫外線酸化処理装置の還流板を示す縦断面図である。It is a longitudinal cross-sectional view which shows the reflux plate of the ultraviolet-ray oxidation processing apparatus which concerns on said 2nd embodiment. 前記第二の実施形態に係る紫外線酸化処理装置を示す拡大断面図である。It is an expanded sectional view which shows the ultraviolet-ray oxidation processing apparatus which concerns on said 2nd embodiment. 本発明の第三の実施形態に係る紫外線酸化処理装置の還流板を示す平面図である。It is a top view which shows the reflux plate of the ultraviolet-ray oxidation processing apparatus which concerns on 3rd embodiment of this invention. 前記第三の実施形態に係る紫外線酸化処理装置の還流板を示す断面図である。It is sectional drawing which shows the reflux plate of the ultraviolet-ray oxidation processing apparatus which concerns on said 3rd embodiment. 本発明の第四の実施形態に係る紫外線酸化処理装置を示す拡大断面図である。It is an expanded sectional view showing the ultraviolet oxidation processing device concerning a 4th embodiment of the present invention. 試験用の紫外線酸化処理システムを示すフロー図である。It is a flowchart which shows the ultraviolet-ray oxidation processing system for a test. 従来の紫外線酸化処理装置を概略的に示す断面図である。It is sectional drawing which shows the conventional ultraviolet-ray oxidation processing apparatus schematically. 従来の紫外線酸化処理装置の還流板を概略的に示す斜視図である。It is a perspective view which shows roughly the reflux plate of the conventional ultraviolet oxidation processing apparatus.

以下、本発明の紫外線酸化処理装置の第一の実施形態について図面に基づいて詳細に説明する。   Hereinafter, a first embodiment of an ultraviolet oxidation processing apparatus of the present invention will be described in detail with reference to the drawings.

本実施形態に係る紫外線酸化処理装置は、還流板以外は、基本的には前述した図12及び図13に示す従来の紫外線酸化処理装置1と同じ構成を有するものであり、同一の構成には同一の符号を付し、その詳細な説明を省略する。   The ultraviolet oxidation processing apparatus according to the present embodiment basically has the same configuration as the conventional ultraviolet oxidation processing apparatus 1 shown in FIGS. 12 and 13 described above except for the reflux plate. The same reference numerals are assigned and detailed description thereof is omitted.

図1〜3において、還流板11は、円環状の還流板本体部12と、この還流板本体部12の外周に配置されたシール部としてのシール部材13とから構成されている。なお、図1において、14は一対のロッド7が挿入される挿入孔である。   1 to 3, the reflux plate 11 includes an annular reflux plate main body 12 and a seal member 13 as a seal portion disposed on the outer periphery of the reflux plate main body 12. In FIG. 1, reference numeral 14 denotes an insertion hole into which the pair of rods 7 are inserted.

ここで、還流板本体部12は、ステンレス鋼製であって、ミシンのボビン又はVベルトのプーリーのような形状をしており、中央には石英保護管6から10mm以下程度、特に3〜10mm程度離間する径の開口部が形成されていて、軸方向では中間部の小径部12Bと両側面部の大径部12Aとにより外周の端部に凹部が形成されている。この還流板本体部12は小径部12Bと大径部12Aとが一体に成形されたものでもよく、またこれらが別々の成形体であってネジ等で一体に組み立てられたものでもよい。   Here, the reflux plate body 12 is made of stainless steel and has a shape like a bobbin of a sewing machine or a pulley of a V-belt, and has a center of about 10 mm or less from the quartz protective tube 6, particularly 3 to 10 mm. An opening having a diameter that is separated by a certain degree is formed, and in the axial direction, a concave portion is formed at an outer peripheral end portion by a small-diameter portion 12B in the middle portion and a large-diameter portion 12A in both side surface portions. The reflux plate main body 12 may be one in which the small-diameter portion 12B and the large-diameter portion 12A are integrally formed, or may be a separate molded body that is integrally assembled with screws or the like.

このような還流板本体部12の凹部(小径部12Bの外周面)にシール部材13が設けられる。シール部材13は、ステンレス鋼との摩擦の小さい合成樹脂又はエラストマー等からなり、外径がシリンダ2の内径とほぼ等しくリング状体であって、弾性を有するものであるのが好ましい。具体的には、Oリング、バックアップリング等を用いることができる。なお、シール部材13を構成する合成樹脂又はエラストマーとしては、耐水溶出性を備えていれば特に制限はないが、紫外線に対して不活性又は高耐久性を有するのが好ましい。また、表面に金属又はDLC(ダイヤモンドライクカーボン)のような紫外線に対して不活性又は高耐久性の材料による遮光層を備えたものも好適に用いることができる。   The seal member 13 is provided in the concave portion (the outer peripheral surface of the small diameter portion 12B) of the reflux plate main body portion 12 as described above. The seal member 13 is preferably made of a synthetic resin, an elastomer, or the like having a small friction with stainless steel, and has an outer diameter that is substantially equal to the inner diameter of the cylinder 2 and has elasticity. Specifically, an O ring, a backup ring, or the like can be used. The synthetic resin or elastomer constituting the seal member 13 is not particularly limited as long as it has water elution resistance, but preferably has inertness or high durability against ultraviolet rays. Moreover, what provided the light shielding layer by the material inactive or highly durable with respect to ultraviolet rays like a metal or DLC (diamond-like carbon) on the surface can also be used suitably.

上述したような還流板11は、挿入孔14,14にロッド7,7を挿入して、複数枚(本実施形態においては5枚)を所定の間隔で当該ロッド7,7に固定される。そして、エンドプレート9a,9b及び石英保護管6が未装着の状態で、シリンダ2内にロッド7ごと還流板11を押し入れて仮固定し、続いてエンドプレート9a,9bを装着することにより、ロッド7と還流板11とを固定し、その後石英保護管6を挿入するという順で紫外線酸化処理装置を組み立てればよい。   In the reflux plate 11 as described above, the rods 7 and 7 are inserted into the insertion holes 14 and 14, and a plurality of plates (5 in this embodiment) are fixed to the rods 7 and 7 at a predetermined interval. Then, with the end plates 9a and 9b and the quartz protective tube 6 not attached, the rod 7 and the reflux plate 11 are pushed into the cylinder 2 and temporarily fixed, and then the end plates 9a and 9b are attached, 7 and the reflux plate 11 are fixed, and then the ultraviolet oxidation treatment apparatus is assembled in the order of inserting the quartz protective tube 6.

ここで、シール部材13として、ステンレス鋼との摩擦を十分小さくできる材料が選択されているため、還流板本体部12とシール部材13との間、シール部材13とシリンダ2の内面間とのクリアランスがほとんどなくでも、シリンダ2内にロッド7で結合した複数の還流板11を装填することが可能であり、また必要に応じて取り出すことも可能となっている。   Here, since a material capable of sufficiently reducing the friction with the stainless steel is selected as the seal member 13, the clearance between the reflux plate main body 12 and the seal member 13 and between the seal member 13 and the inner surface of the cylinder 2 is selected. Can be loaded with a plurality of reflux plates 11 connected by rods 7 in the cylinder 2, and can be taken out as necessary.

前述したような還流板11を有する本実施形態の紫外線酸化処理装置の作用について説明する。図3に示すように、処理水流入口3から導入された被処理水Wは、石英保護管6と還流板11aとの間の流路を通過して、照射スペースSに流入する。この照射スペースSは、2枚の還流板11a,11bにより区画されているため、被処理水Wはここで滞留し、低圧紫外線放電灯5からの紫外線照射による十分な反応時間を確保した後、隣の照射スペースに向かって移動する。このとき、照射スペースSの石英保護管6から10mm以上離間した部分では、波長が短く最も酸化能力が高い波長185nmの紫外線の照射をほとんど受けることができないが、シール部材13の外径と、シリンダ2の内径とがほぼ等しく、還流板11a及び11bの外周縁とシリンダ2の内面とのクリアランス(隙間)が実質的にないため、被処理水Wは還流板11bと石英保護管6との間の流路を通過せざるを得ない。この結果、被処理水Wの全てが波長185nmの紫外線の照射を受けることになり、ヒドロキシラジカルが生成される。これを5枚の還流板により形成された4個の照射スペースSにおいて繰り返すことにより、十分にTOC成分を分解することができる。また、低圧紫外線放電灯からの紫外線照射を十分に受けることになるので、難分解性物質を高水準で分解することができる。   The operation of the ultraviolet oxidation processing apparatus according to this embodiment having the reflux plate 11 as described above will be described. As shown in FIG. 3, the to-be-treated water W introduced from the treated water inlet 3 passes through the flow path between the quartz protective tube 6 and the reflux plate 11a and flows into the irradiation space S. Since this irradiation space S is partitioned by the two reflux plates 11a and 11b, the water W to be treated stays here, and after securing a sufficient reaction time by the ultraviolet irradiation from the low-pressure ultraviolet discharge lamp 5, Move towards the next irradiation space. At this time, the portion of the irradiation space S that is 10 mm or more away from the quartz protective tube 6 is hardly irradiated with ultraviolet rays with a wavelength of 185 nm, which has the shortest wavelength and the highest oxidation ability, but the outer diameter of the seal member 13 and the cylinder 2 is substantially the same as the inner diameter of the reflux plates 11a and 11b and the inner surface of the cylinder 2 is substantially free of clearance (gap), so that the water W to be treated is between the reflux plate 11b and the quartz protective tube 6. It must pass through the flow path. As a result, all of the water to be treated W is irradiated with ultraviolet rays having a wavelength of 185 nm, and hydroxy radicals are generated. By repeating this in four irradiation spaces S formed by five reflux plates, the TOC component can be sufficiently decomposed. In addition, since the UV irradiation from the low-pressure UV discharge lamp is sufficiently received, the hardly decomposable substance can be decomposed at a high level.

次に、本発明の紫外線酸化処理装置の第二の実施形態について図4〜図7に基づいて詳細に説明する。
本実施形態に係る紫外線酸化処理装置1は、還流板の形状が異なる以外、前述した第一の実施形態と同じ構成を有する。還流板21は、円環状の還流板本体部22と、この還流板本体部22の外周に配置されたシール部材13とから構成されている。なお、図4において、23は一対のロッド7の挿入孔である。
Next, a second embodiment of the ultraviolet oxidation processing apparatus of the present invention will be described in detail based on FIGS.
The ultraviolet oxidation treatment apparatus 1 according to this embodiment has the same configuration as that of the first embodiment described above except that the shape of the reflux plate is different. The reflux plate 21 includes an annular reflux plate body 22 and a seal member 13 disposed on the outer periphery of the reflux plate body 22. In FIG. 4, reference numeral 23 denotes an insertion hole for the pair of rods 7.

ここで、還流板本体部22は、軸方向では中間部の小径部22Bと両側面部の大径部22Aとにより外周の端部に凹部24が形成されていて、大径部22Aの外縁部が軸方向に長く形成されている以外は前述した第一の実施形態と同じ構成を有する。   Here, in the axial direction, the reflux plate main body portion 22 has a recess 24 formed at the outer peripheral end by a small diameter portion 22B at the middle portion and a large diameter portion 22A at both side surfaces, and the outer edge portion of the large diameter portion 22A is The structure is the same as that of the first embodiment described above except that it is long in the axial direction.

前述したような還流板21を有する本実施形態に係る紫外線酸化処理装置の作用について説明する。図7に示すように、処理水流入口から導入された被処理水Wは、石英保護管6と還流板21aとの間の流路を通過して、照射スペースSに流入する。この照射スペースSは、2枚の還流板21a,21bにより区画されているため、被処理水Wはここで滞留し、低圧紫外線放電灯5からの紫外線照射による十分な反応時間を確保した後、隣の照射スペースに向かって移動する。このとき、照射スペースSの石英保護管6から10mm以上離間した部分では、波長が短く最も酸化能力が高い波長185nmの紫外線の照射をほとんど受けることができないが、シール部材13の外径と、シリンダ2の内径とがほぼ等しく、還流板21a及び21bの外周縁とシリンダ2の内面とのクリアランス(隙間)が実質的にないため、被処理水Wは還流板21bと石英保護管6との間の流路を通過せざるを得ない。この結果、被処理水Wの全てが十分な紫外線酸化を受けることになり、ヒドロキシラジカルが発生する。これを5枚の還流板により形成された4個の照射スペースSにおいて繰り返すことにより、十分にTOC成分を分解することができる。また、低圧紫外線放電灯の照射を十分に受けることになるので、難分解性物質を高水準で分解することができる。   The operation of the ultraviolet oxidation processing apparatus according to this embodiment having the reflux plate 21 as described above will be described. As shown in FIG. 7, the to-be-treated water W introduced from the treated water inlet passes through the flow path between the quartz protective tube 6 and the reflux plate 21a and flows into the irradiation space S. Since this irradiation space S is partitioned by the two reflux plates 21a and 21b, the water W to be treated stays here, and after securing a sufficient reaction time by the ultraviolet irradiation from the low-pressure ultraviolet discharge lamp 5, Move towards the next irradiation space. At this time, the portion of the irradiation space S that is 10 mm or more away from the quartz protective tube 6 is hardly irradiated with ultraviolet rays with a wavelength of 185 nm, which has the shortest wavelength and the highest oxidation ability, but the outer diameter of the seal member 13 and the cylinder 2 has substantially the same inner diameter and there is substantially no clearance (gap) between the outer peripheral edges of the reflux plates 21 a and 21 b and the inner surface of the cylinder 2, so that the water to be treated W is between the reflux plate 21 b and the quartz protective tube 6. It must pass through the flow path. As a result, all of the water to be treated W is subjected to sufficient ultraviolet oxidation, and hydroxy radicals are generated. By repeating this in four irradiation spaces S formed by five reflux plates, the TOC component can be sufficiently decomposed. In addition, since it is sufficiently irradiated with the low-pressure ultraviolet discharge lamp, the hardly decomposable substance can be decomposed at a high level.

さらに、本発明の紫外線酸化処理装置の第三の実施形態について、図8及び図9に基づいて詳細に説明する。本実施形態の紫外線酸化処理装置1は還流板の形状が異なる以外、前述した第一の実施形態と同じ構成を有する。   Furthermore, a third embodiment of the ultraviolet oxidation processing apparatus of the present invention will be described in detail based on FIGS. The ultraviolet oxidation treatment apparatus 1 of the present embodiment has the same configuration as that of the first embodiment described above except that the shape of the reflux plate is different.

同図において、還流板31は、中央には石英保護管6から10mm以下程度、特に3〜10mm程度離間する径の開口部が形成された円板状の還流板本体部32と、この還流板本体部32の外周に固着されたシール部材33とから構成されている。なお、図8において、34は一対のロッド7の挿入孔である。前述したようにシール部材33が紫外線照射による劣化を受けない構成からなるものである場合には、このような構成とすることができる。   In the figure, a reflux plate 31 includes a disc-shaped reflux plate main body 32 having an opening having a diameter of about 10 mm or less, particularly 3 to 10 mm apart from the quartz protective tube 6 at the center, and the reflux plate. The seal member 33 is fixed to the outer periphery of the main body 32. In FIG. 8, reference numeral 34 denotes an insertion hole for the pair of rods 7. As described above, when the seal member 33 is configured not to be deteriorated by ultraviolet irradiation, such a configuration can be adopted.

以上、本発明の実施形態について添付図面を参照して説明してきたが、シール部材は、リング状のものに限定されるものではなく、例えば、第一の実施形態において図10に示すように合成樹脂又はエラストマーをコイル状に巻いたシール部材13Aとしてもよい。また、紫外線酸化処理装置としては、図12及び図13に示す形態のものに限られず、種々の紫外線酸化処理装置における還流板として適用可能である。   As mentioned above, although embodiment of this invention has been described with reference to an accompanying drawing, a sealing member is not limited to a ring-shaped thing, For example, as shown in FIG. It is good also as the sealing member 13A which wound resin or elastomer in the shape of a coil. Further, the ultraviolet oxidation treatment apparatus is not limited to the one shown in FIGS. 12 and 13 and can be applied as a reflux plate in various ultraviolet oxidation treatment apparatuses.

以下、実施例によって本発明を具体的に説明するが、本発明は、下記の各実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to each following Example at all.

〔試験用紫外線酸化処理システムの準備〕
図12に示すような構造を有する紫外線酸化処理装置1を用い、図11に示す純水製造装置を準備した。この純水製造装置は、紫外線(UV)酸化装置41と、イオン交換樹脂カラム42とからなり、紫外線(UV)酸化装置41には、TOCタンク43から薬注ポンプ44によりTOCを添加した超純水を供給して処理を行い、TOC計45により紫外線(UV)酸化装置41の給水のTOC濃度と、イオン交換樹脂カラム42を通過した処理水のTOC濃度とをそれぞれ測定する、というものである。
[Preparation of test UV oxidation system]
Using the ultraviolet oxidation treatment apparatus 1 having the structure shown in FIG. 12, a pure water production apparatus shown in FIG. 11 was prepared. This pure water production apparatus includes an ultraviolet (UV) oxidizer 41 and an ion exchange resin column 42. The ultrapure water in which TOC is added from a TOC tank 43 by a chemical injection pump 44 is added to the ultraviolet (UV) oxidizer 41. Processing is performed by supplying water, and the TOC meter 45 measures the TOC concentration of the feed water of the ultraviolet (UV) oxidizer 41 and the TOC concentration of the treated water that has passed through the ion exchange resin column 42, respectively. .

なお、後述する各実施例及び比較例において、共通する装置としては以下のものを使用した。
低圧紫外線放電灯:低圧水銀ランプAZ−26(日本フォトサイエンス社製)
放電灯用安定器:電子安定器FM−10Kd(日本フォトサイエンス社製)
イオン交換樹脂カラム:「KR−UC1」2Lと「KR−UA1」3L(いずれも栗田工業社製)を混床で使用
TOC源:特級2−プロパノール及び特級尿素(いずれも関東化学社製)のそれぞれを超純水で希釈
TOC計:SieversPPT(Sievers社製)
評価試験時の処理水流量:7.5L/分
In addition, in each Example and Comparative Example described later, the following was used as a common apparatus.
Low pressure ultraviolet discharge lamp: Low pressure mercury lamp AZ-26 (manufactured by Nippon Photoscience)
Ballast for discharge lamp: Electronic ballast FM-10Kd (manufactured by Nippon Photoscience)
Ion exchange resin column: “KR-UC1” 2 L and “KR-UA1” 3 L (both manufactured by Kurita Kogyo Co., Ltd.) are used in a mixed bed. TOC source: Special grade 2-propanol and special grade urea (both manufactured by Kanto Chemical Co., Inc.) Each diluted with ultrapure water TOC meter: SieversPPT (manufactured by Sievers)
Treated water flow rate during evaluation test: 7.5 L / min

〔実施例1及び比較例1,2〕
シリンダ径50mmφのUV酸化装置41と、図1及び図2に示す還流板11(Aタイプ)とを使用して、TOC源として2−プロパノールを約10μg/Lの濃度で添加して処理を行った。この給水及び処理水のTOC濃度の測定結果を表1に示す。なお、還流板11は、還流板本体部12がステンレス製で、シール部材13がFEP(フッ素系樹脂)製のものを使用した。また、還流板11と石英保護管との間隔は約5mmとした。
[Example 1 and Comparative Examples 1 and 2]
Using a UV oxidizer 41 with a cylinder diameter of 50 mmφ and a reflux plate 11 (A type) shown in FIGS. 1 and 2, 2-propanol is added as a TOC source at a concentration of about 10 μg / L for processing. It was. Table 1 shows the measurement results of the TOC concentration of the feed water and treated water. The reflux plate 11 used was one in which the reflux plate body 12 was made of stainless steel and the seal member 13 was made of FEP (fluorine resin). The distance between the reflux plate 11 and the quartz protective tube was about 5 mm.

また、比較のために還流板を使用しなかった場合(比較例1)、及び従来の還流板11(シール部材13を有しないもの)を使用した場合(比較例2)についても同様に処理を行い、給水及び処理水のTOC濃度を測定した。結果を表1にあわせて示す。   In addition, the same treatment is performed for the case where the reflux plate is not used for comparison (Comparative Example 1) and the case where the conventional reflux plate 11 (without the seal member 13) is used (Comparative Example 2). The TOC concentration of feed water and treated water was measured. The results are shown in Table 1.

〔実施例2及び比較例3,4〕
シリンダ径80mmφのUV酸化装置41と、これに適合した大きさの図1及び図2に示す還流板11(Aタイプ)とを使用した以外は実施例1と同様にしてTOC源として2−プロパノールを約10μg/Lの濃度で添加した給水の処理を行った。この給水及び処理水のTOC濃度の測定結果を表1に示す。
[Example 2 and Comparative Examples 3 and 4]
2-Propanol as a TOC source in the same manner as in Example 1 except that a UV oxidation apparatus 41 having a cylinder diameter of 80 mmφ and a reflux plate 11 (A type) shown in FIGS. Was added at a concentration of about 10 μg / L. Table 1 shows the measurement results of the TOC concentration of the feed water and treated water.

また、比較のために還流板を使用しなかった場合(比較例3)、及び従来の還流板11(シール部材13を有しないもの)を使用した場合(比較例4)についても同様に処理を行い、給水及び処理水のTOC濃度を測定した。結果を表1にあわせて示す。   Further, the same treatment is performed for the case where the reflux plate is not used for comparison (Comparative Example 3) and the case where the conventional reflux plate 11 (without the seal member 13) is used (Comparative Example 4). The TOC concentration of feed water and treated water was measured. The results are shown in Table 1.

〔実施例3〕
シリンダ径80mmφのUV酸化装置41と、これに適合した大きさの図3〜図5に示す還流板21(Bタイプ)とを用いた以外は実施例1と同様にしてTOC源として2−プロパノールを約10μg/Lの濃度で添加した給水の処理を行った。この給水及び処理水のTOC濃度の測定結果を表1に示す。なお、還流板21は、還流板本体部22がステンレス製で、シール部材13がポリエチレン樹脂製成形体の表面にチタン薄膜処理を施したものを使用した。
Example 3
2-Propanol as the TOC source in the same manner as in Example 1 except that the UV oxidation apparatus 41 having a cylinder diameter of 80 mmφ and the reflux plate 21 (B type) shown in FIGS. Was added at a concentration of about 10 μg / L. Table 1 shows the measurement results of the TOC concentration of the feed water and treated water. In addition, the reflux plate 21 used the reflux plate body 22 made of stainless steel and the seal member 13 having a polyethylene resin molded body subjected to a titanium thin film treatment.

Figure 2010234209
Figure 2010234209

表1から明らかなとおり、TOC源として2−プロパノールを用いた実施例1〜3及び比較例1〜4において、実施例1〜3は処理水のTOC濃度が0.5μg/L以下であったのに対し、還流板を使用していない比較例1及び3は1.0μg/Lを超えるものであり、従来型の還流板を用いた比較例2及び4は0.5μg/Lを超えるものであった。この結果から、本発明の紫外線酸化処理装置によれば、TOC濃度が極低濃度の処理水を得られることが裏付けられた。   As apparent from Table 1, in Examples 1 to 3 and Comparative Examples 1 to 4 using 2-propanol as the TOC source, Examples 1 to 3 had a TOC concentration of treated water of 0.5 μg / L or less. On the other hand, Comparative Examples 1 and 3 in which no reflux plate was used exceeded 1.0 μg / L, and Comparative Examples 2 and 4 using a conventional reflux plate exceeded 0.5 μg / L. Met. From this result, according to the ultraviolet oxidation treatment apparatus of the present invention, it was proved that treated water having an extremely low TOC concentration can be obtained.

〔実施例4及び比較例5,6〕
シリンダ径50mmφのUV酸化装置41と、図1及び図2に示す還流板11(Aタイプ)とを使用し、TOC源として尿素を約5μg/Lの濃度で添加して処理を行った。この給水及び処理水のTOC濃度の測定結果を表2に示す。
[Example 4 and Comparative Examples 5 and 6]
Using a UV oxidation device 41 having a cylinder diameter of 50 mmφ and a reflux plate 11 (A type) shown in FIGS. 1 and 2, urea was added as a TOC source at a concentration of about 5 μg / L. Table 2 shows the measurement results of the TOC concentration of the feed water and treated water.

また、比較のために還流板を使用しなかった場合(比較例5)、及び従来の還流板11(シール部材13を有しないもの)を使用した場合(比較例6)についても同様に処理を行い、給水及び処理水のTOC濃度を測定した。結果を表2にあわせて示す。   In addition, the same treatment was performed for the case where the reflux plate was not used for comparison (Comparative Example 5) and the case where the conventional reflux plate 11 (without the seal member 13) was used (Comparative Example 6). The TOC concentration of feed water and treated water was measured. The results are shown in Table 2.

〔実施例5及び比較例7,8〕
シリンダ径80mmφのUV酸化装置41と、これに適合した大きさの図1及び図2に示す還流板11(Aタイプ)とを使用した以外は実施例4と同様にしてTOC源として尿素を約5μg/Lの濃度で添加した給水の処理を行った。この給水及び処理水のTOC濃度の測定結果を表2に示す。
[Example 5 and Comparative Examples 7 and 8]
In the same manner as in Example 4 except that the UV oxidation apparatus 41 having a cylinder diameter of 80 mmφ and the reflux plate 11 (A type) shown in FIGS. The feed water added at a concentration of 5 μg / L was treated. Table 2 shows the measurement results of the TOC concentration of the feed water and treated water.

また、比較のために還流板を使用しなかった場合(比較例7)、及び従来の還流板11(シール部材13を有しないもの)を使用した場合(比較例8)についても、同様に処理を行い、給水及び処理水のTOC濃度を測定した。結果を表2にあわせて示す。   Further, the same treatment is performed for the case where the reflux plate is not used for comparison (Comparative Example 7) and the case where the conventional reflux plate 11 (without the seal member 13) is used (Comparative Example 8). The TOC concentration of feed water and treated water was measured. The results are shown in Table 2.

〔実施例6〕
シリンダ径80mmφのUV酸化装置41と、これに適合した大きさの図3〜図5に示す還流板21(Bタイプ)とを使用した以外は実施例4と同様にしてTOC源として尿素を約5μg/Lの濃度で添加した給水の処理を行った。この給水及び処理水のTOC濃度の測定結果を表2に示す。
Example 6
In the same manner as in Example 4 except that a UV oxidation apparatus 41 having a cylinder diameter of 80 mmφ and a reflux plate 21 (B type) shown in FIGS. The feed water added at a concentration of 5 μg / L was treated. Table 2 shows the measurement results of the TOC concentration of the feed water and treated water.

Figure 2010234209
Figure 2010234209

表2から明らかなとおり、TOC源として尿素を用いた実施例4〜6及び比較例5〜8においては、実施例4〜6は処理水の尿素濃度が3.0μg/L以下と約半分にまで減少したのに対し、還流板を使用していない比較例5及び7は4.0μg/Lを超えるものであり、従来型の還流板を用いた比較例6及び8は3.0μg/Lを超えるものであり、その除去率は非常に低かった。この結果から、本発明の紫外線酸化処理装置によれば、難分解性物質である尿素の分解・除去においても、優れた効果が得られることが裏付けられた。   As is clear from Table 2, in Examples 4 to 6 and Comparative Examples 5 to 8 using urea as the TOC source, Examples 4 to 6 had a urea concentration of treated water of about 30 μg / L or less, about half. In contrast, Comparative Examples 5 and 7 in which no reflux plate was used exceeded 4.0 μg / L, and Comparative Examples 6 and 8 using a conventional reflux plate were 3.0 μg / L. The removal rate was very low. From these results, it was confirmed that the ultraviolet oxidation treatment apparatus of the present invention can provide excellent effects even in the decomposition and removal of urea, which is a hardly decomposable substance.

1…紫外線酸化処理装置
2…シリンダ(外筒体)
3…処理水流入口(給水部)
4…処理水流出口(排水部)
5…低圧紫外線放電灯
6…石英保護管
11,11a,11b,21,21a,21b,31…還流板
12,22,32…還流板本体部
13,13A,33…シール部材
41…紫外線(UV)酸化装置
W…被処理水
DESCRIPTION OF SYMBOLS 1 ... Ultraviolet oxidation apparatus 2 ... Cylinder (outer cylinder body)
3 ... treated water inlet (water supply section)
4 ... treated water outlet (drainage)
5 ... Low-pressure ultraviolet discharge lamp 6 ... Quartz protective tube 11, 11a, 11b, 21, 21a, 21b, 31 ... Reflux plate 12, 22, 32 ... Reflux plate body 13, 13A, 33 ... Seal member 41 ... Ultraviolet (UV ) Oxidizer W ... treated water

Claims (6)

管状の低圧紫外線放電灯が収容され、前記低圧紫外線放電灯の周囲に一端から他端側に向けて水が流通する外筒体と、前記外筒体内に、前記低圧紫外線放電灯の外周方向に当該低圧紫外線放電灯より離間して設けられてなる複数の還流板とを有する紫外線酸化処理装置において、
前記還流板が、前記外筒体の内面との間をシールするシール部を有することを特徴とする紫外線酸化処理装置。
A tubular low-pressure ultraviolet discharge lamp is accommodated, and an outer cylinder in which water flows from one end to the other end around the low-pressure ultraviolet discharge lamp, and in the outer cylinder, in the outer circumferential direction of the low-pressure ultraviolet discharge lamp In the ultraviolet oxidation processing apparatus having a plurality of reflux plates provided apart from the low-pressure ultraviolet discharge lamp,
The ultraviolet ray oxidation processing apparatus, wherein the reflux plate has a seal portion that seals between the inner surface of the outer cylindrical body.
前記シール部が、前記低圧紫外線放電灯からの紫外線の照射を直接受けないことを特徴とする請求項1に記載の紫外線酸化処理装置。   The ultraviolet oxidation processing apparatus according to claim 1, wherein the seal portion is not directly irradiated with ultraviolet rays from the low-pressure ultraviolet discharge lamp. 前記還流板が、円環状であることを特徴とする請求項1又は2に記載の紫外線酸化処理装置。   The ultraviolet oxidation treatment apparatus according to claim 1, wherein the reflux plate has an annular shape. 前記還流板が、円環状の還流板本体部と当該還流板本体部の外周に配置されたシール部とからなることを特徴とする請求項3に記載の紫外線酸化処理装置。   4. The ultraviolet oxidation processing apparatus according to claim 3, wherein the reflux plate includes an annular reflux plate main body portion and a seal portion disposed on an outer periphery of the reflux plate main body portion. 前記シール部が、前記低圧紫外線放電灯から照射された紫外線に対して耐性を有する材料からなることを特徴とする請求項1〜4のいずれかに記載の紫外線酸化処理装置。   5. The ultraviolet oxidation treatment apparatus according to claim 1, wherein the seal portion is made of a material resistant to ultraviolet rays irradiated from the low-pressure ultraviolet discharge lamp. 請求項1〜5のいずれかに記載の紫外線酸化処理装置を用いて水の紫外線酸化処理を行うことを特徴とする水の紫外線酸化処理方法。   An ultraviolet oxidation treatment method of water, wherein the ultraviolet oxidation treatment of water is performed using the ultraviolet oxidation treatment apparatus according to any one of claims 1 to 5.
JP2009083376A 2009-03-30 2009-03-30 Ultraviolet oxidation treatment apparatus and water ultraviolet oxidation treatment method Expired - Fee Related JP5354181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009083376A JP5354181B2 (en) 2009-03-30 2009-03-30 Ultraviolet oxidation treatment apparatus and water ultraviolet oxidation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009083376A JP5354181B2 (en) 2009-03-30 2009-03-30 Ultraviolet oxidation treatment apparatus and water ultraviolet oxidation treatment method

Publications (2)

Publication Number Publication Date
JP2010234209A true JP2010234209A (en) 2010-10-21
JP5354181B2 JP5354181B2 (en) 2013-11-27

Family

ID=43089088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009083376A Expired - Fee Related JP5354181B2 (en) 2009-03-30 2009-03-30 Ultraviolet oxidation treatment apparatus and water ultraviolet oxidation treatment method

Country Status (1)

Country Link
JP (1) JP5354181B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5469281B2 (en) * 2011-12-06 2014-04-16 株式会社Leap Ozonizer
WO2023127238A1 (en) * 2021-12-27 2023-07-06 ウシオ電機株式会社 Fluid treatment device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061459A (en) * 1993-09-13 2000-02-29 Nomura Micro Sci Co Ltd Treating device of low concentration organic waste water
JP2007136372A (en) * 2005-11-18 2007-06-07 Nomura Micro Sci Co Ltd Ultrapure water production device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061459A (en) * 1993-09-13 2000-02-29 Nomura Micro Sci Co Ltd Treating device of low concentration organic waste water
JP2007136372A (en) * 2005-11-18 2007-06-07 Nomura Micro Sci Co Ltd Ultrapure water production device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5469281B2 (en) * 2011-12-06 2014-04-16 株式会社Leap Ozonizer
WO2023127238A1 (en) * 2021-12-27 2023-07-06 ウシオ電機株式会社 Fluid treatment device

Also Published As

Publication number Publication date
JP5354181B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
KR101440406B1 (en) Fluid depurator and fluid depuration method
JP4690872B2 (en) UV irradiation water treatment equipment
US6991735B2 (en) Free radical generator and method
US7247244B2 (en) Water treatment processes and devices utilizing hydrodynamic cavitation
US20110318237A1 (en) Ultraviolet reactor baffle design for advanced oxidation process and ultraviolet disinfection
JP4090241B2 (en) Apparatus and method for irradiating liquid with electromagnetic wave
US20190092653A1 (en) System for treating liquids by applying ultra-violet radiation
Nippatlapalli et al. Enhanced degradation of complex organic compounds in wastewater using different novel continuous flow non–thermal pulsed corona plasma discharge reactors
JP2008093549A (en) Water purification device
KR102479229B1 (en) UV treatment device and light-shielding component therefor
JP5354181B2 (en) Ultraviolet oxidation treatment apparatus and water ultraviolet oxidation treatment method
JP2009220042A (en) Ultraviolet disinfection device
JP3797552B2 (en) Ultraviolet irradiation treatment method and apparatus
JP6610384B2 (en) Water treatment equipment
JP2009045517A (en) Ultraviolet irradiation water treatment device
JP2007275825A (en) Ultraviolet irradiation device
JP2008142593A (en) Inactivation treatment method by ultraviolet light
JP2011189282A (en) Ultraviolet irradiation device and method for measuring temperature
KR102461524B1 (en) Ultraviolet advanced oxidation treatment device of high performance
KR101709644B1 (en) Water Treating Apparatus for generating hydrogen peroxide
CN106219839A (en) The method for treating water of molecular structure in water removed by a kind of ultraviolet light
Karthikeyan et al. EFFECT OF MICROWAVES ON PHOTOCATALYTIC DEGRADATION OF PHENOL AND CRESOLS IN A MICROWAVE-ULTRAVIOLET REACTOR.
JP2003334547A (en) Ultraviolet radiation apparatus
JP2020049408A (en) Water treatment device, and device of detecting degradation of ultraviolet lamp for water treatment device
KR102564850B1 (en) Ultraviolet oxidation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130813

R150 Certificate of patent or registration of utility model

Ref document number: 5354181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees