JP2010232420A - Wafer for rear surface irradiation type solid-state image pickup element, manufacturing method thereof, and rear surface irradiation type solid-state image pickup element - Google Patents

Wafer for rear surface irradiation type solid-state image pickup element, manufacturing method thereof, and rear surface irradiation type solid-state image pickup element Download PDF

Info

Publication number
JP2010232420A
JP2010232420A JP2009078306A JP2009078306A JP2010232420A JP 2010232420 A JP2010232420 A JP 2010232420A JP 2009078306 A JP2009078306 A JP 2009078306A JP 2009078306 A JP2009078306 A JP 2009078306A JP 2010232420 A JP2010232420 A JP 2010232420A
Authority
JP
Japan
Prior art keywords
wafer
type solid
manufacturing
state image
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009078306A
Other languages
Japanese (ja)
Inventor
Kazunari Kurita
一成 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2009078306A priority Critical patent/JP2010232420A/en
Publication of JP2010232420A publication Critical patent/JP2010232420A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a wafer for a solid-state image pickup element capable of enormously increasing a yield by reducing thickness variations in a simple and easy way, thereby improving working accuracy, and to provide a wafer for a solid-state image pickup element manufactured by the method and a solid-state image pickup element. <P>SOLUTION: The manufacturing method of the rear surface irradiation type solid-state image pickup element is characterized by a process to form the wafer for the rear surface irradiation type solid-state image pickup element as indicated below. From the rear surface on the side of the material wafer of an epitaxial wafer that has been formed by growing a first epitaxial layer and a second epitaxial layer on the material wafer, and at least 80% of the thickness of the material wafer is removed by grinding. Then, the remaining material wafer after being ground is removed by etching using a predetermined etchant, and the first epitaxial layer is removed by grinding. Meanwhile, the manufacturing method is also characterized in that the first epitaxial layer is a high-concentration boron doped silicon layer, and that the etchant is an alkali etching liquid. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、裏面照射型固体撮像素子用ウェーハおよびその製造方法ならびに裏面照射型固体撮像素子に関し、特に、携帯電話やデジタルビデオカメラ等に用いられる裏面照射型の固体撮像素子用ウェーハの製造方法に関する。   The present invention relates to a back-illuminated solid-state image sensor wafer, a method for manufacturing the same, and a back-illuminated solid-state image sensor, and more particularly to a method for manufacturing a back-illuminated solid-state image sensor wafer used for a mobile phone, a digital video camera, and the like. .

近年、携帯電話やデジタルビデオカメラには、半導体を用いた高性能固体撮像素子が搭載されている。この固体撮像素子に要求される性能としては、高画素であることおよび動画の撮像が可能であること等が挙げられるが、この動画の撮像を実現するためには、高速演算素子およびメモリ素子との結合が必要となることから、System on Chip(SoC)が容易なCMOSイメージセンサが用いられ、このCMOSイメージセンサの微細化が伸展している。   In recent years, high-performance solid-state imaging devices using semiconductors are mounted on mobile phones and digital video cameras. The performance required for this solid-state imaging device includes high pixels and the ability to capture moving images. In order to realize the capturing of moving images, a high-speed arithmetic element and a memory element are used. Therefore, a CMOS image sensor with easy system on chip (SoC) is used, and the miniaturization of this CMOS image sensor has been extended.

しかしながら、前記CMOSイメージセンサの微細化に伴って、必然的に、光電変換素子であるフォトダイオードの開口率が減少する結果、光電変換素子の量子効率が低下し、撮像データのS/N比の向上が困難になるという問題がある。このため、光電変換素子表面側にインナーレンズを挿入し入射光量を増加させる方法等が試みられているが、現在、顕著なS/N比の改善は実現できていない。   However, with the miniaturization of the CMOS image sensor, the aperture ratio of the photodiode, which is a photoelectric conversion element, inevitably decreases. As a result, the quantum efficiency of the photoelectric conversion element decreases, and the S / N ratio of the imaging data decreases. There is a problem that improvement is difficult. For this reason, a method of increasing the amount of incident light by inserting an inner lens on the surface side of the photoelectric conversion element has been tried, but a remarkable improvement in the S / N ratio has not been realized at present.

そのため、入射光量を増加させることで、画像データのS/N比を向上させるべく、前記光電変換素子の裏面から光を入射する試みがなされている。前記素子の裏面からの光入射は、表面からの入射と比較して、前記素子表面での反射及び回折や、前記素子の受光面積による制約がないことが最大のメリットである。一方、裏面から光を入射する場合、前記光電変換素子の基板である、シリコンウェーハの光吸収を抑制しなければならず、固体撮像素子全体としての厚みを50μm未満にする必要がある。その結果、固体撮像素子の加工及びハンドリングが困難であることから生産性が極めて悪いことが問題となる。   Therefore, an attempt is made to make light incident from the back surface of the photoelectric conversion element in order to improve the S / N ratio of image data by increasing the amount of incident light. The greatest merit of light incidence from the back surface of the element is that there are no restrictions due to reflection and diffraction on the surface of the element and the light receiving area of the element, compared to incidence from the front surface. On the other hand, when light is incident from the back surface, light absorption of the silicon wafer, which is the substrate of the photoelectric conversion element, must be suppressed, and the thickness of the entire solid-state imaging element needs to be less than 50 μm. As a result, it is difficult to process and handle the solid-state imaging device, so that the productivity is extremely bad.

上記の技術課題を克服することを目的として、例えば特許文献1および特許文献2に開示されているような、裏面照射型固体撮像素子が挙げられる。   For the purpose of overcoming the above technical problem, for example, back-illuminated solid-state imaging devices as disclosed in Patent Document 1 and Patent Document 2 are cited.

特開2007−13089号公報JP 2007-13089 A 特開2007−59755号公報JP 2007-59755 A

特許文献1には、支持基板を張り合わせて強度を確保してから半導体基板を薄膜化し、また、支持基板を薄膜化して貫通配線を形成するので、簡便、容易に、照射面の反対側の面から電極を取り出す構成の裏面照射型のCMOS固体撮像素子を製造することができる固体撮像素子の製造方法が開示されている。   In Patent Document 1, a support substrate is bonded to ensure strength, and then the semiconductor substrate is thinned, and the support substrate is thinned to form a through wiring, so that the surface opposite to the irradiation surface can be easily and easily formed. A method of manufacturing a solid-state imaging device capable of manufacturing a back-illuminated CMOS solid-state imaging device having a configuration in which an electrode is extracted from the same is disclosed.

また、特許文献2には、半導体基板の内部応力及び歪を小さくできるとともに、薄膜化された半導体基板表面への色フィルタやマイクロレンズなどのプロセス加工を高精度になし得るようにした固体撮像装置およびその製造方法が開示されている。   Further, Patent Document 2 discloses a solid-state imaging device that can reduce internal stress and strain of a semiconductor substrate and can perform process processing such as color filters and microlenses on a thinned semiconductor substrate surface with high accuracy. And a method of manufacturing the same.

ところで、裏面照射型固体撮像素子用ウェーハに要求される特性として、その厚さばらつきが小さいことが挙げられる。上述したような薄厚の裏面照射型固体撮像素子用ウェーハにおいて、この厚さばらつきは、固体撮像素子特性に顕著な影響を与え、厚さばらつきが大きいと、量子効率が低下し、製造歩留まりが悪くなるためコストが高くなってしまうという問題があった。   By the way, as a characteristic requested | required of the wafer for back irradiation type solid-state image sensors, the thickness dispersion | variation is mentioned. In the thin backside illumination type solid-state imaging device wafer as described above, this thickness variation significantly affects the characteristics of the solid-state imaging device. If the thickness variation is large, the quantum efficiency is lowered and the manufacturing yield is poor. Therefore, there is a problem that the cost becomes high.

本発明の目的は、簡便かつ容易に、厚さばらつきを減少させて加工精度を向上させることにより、歩留まりを飛躍的に向上させることができる裏面照射型固体撮像素子用ウェーハの製造方法および該方法により製造された裏面照射型固体撮像素子用ウェーハならびに裏面照射型固体撮像素子を提供することにある。   An object of the present invention is to provide a method for manufacturing a wafer for backside illumination type solid-state imaging device capable of dramatically improving yield by reducing thickness variation and improving processing accuracy simply and easily. The object of the present invention is to provide a wafer for backside illumination type solid-state imaging device and a backside illumination type solid-state imaging device manufactured by the above.

上記目的を達成するため、本発明の要旨構成は以下の通りである。
(1)表面側に光電変換素子および電荷転送トランジスタを含む複数の画素を有し、裏面を受光面とする、裏面照射型固体撮像素子用ウェーハの製造方法であって、素材ウェーハ上に第1エピタキシャル層および第2エピタキシャル層を順次成長形成してなるエピタキシャルウェーハの前記素材ウェーハ側の裏面から、前記素材ウェーハの厚みにして少なくとも80%の部分を研削により除去し、前記研削により残った素材ウェーハを、所定のエッチング液を用いて、前記第1エピタキシャル層をストッパー層としてエッチングにより除去し、前記第1エピタキシャル層を研磨により除去して裏面照射型固体撮像素子用ウェーハを形成する工程を有し、前記第1エピタキシャル層が高濃度ボロン添加シリコン層であり、かつ前記エッチング液がアルカリエッチング液であることを特徴とする裏面照射型固体撮像素子用ウェーハの製造方法。
In order to achieve the above object, the gist of the present invention is as follows.
(1) A method for manufacturing a wafer for backside illumination type solid-state imaging device having a plurality of pixels including a photoelectric conversion element and a charge transfer transistor on the front surface side and having a back surface as a light-receiving surface, At least 80% of the thickness of the material wafer is removed by grinding from the back side of the material wafer side of the epitaxial wafer formed by sequentially growing the epitaxial layer and the second epitaxial layer, and the material wafer remaining by the grinding is removed. Using a predetermined etching solution to remove the first epitaxial layer as a stopper layer by etching, and removing the first epitaxial layer by polishing to form a back-illuminated solid-state imaging device wafer. The first epitaxial layer is a high-concentration boron-added silicon layer, and the etching solution Wafer for backside illumination type solid imaging device manufacturing method characterized in that an alkaline etching solution.

(2)前記第1エピタキシャル層を成長させる工程の前に、前記素材ウェーハの、前記第1エピタキシャル層を成長させる面とは反対側の面全体に、ポリシリコン膜を形成する工程をさらに具える上記(1)に記載の裏面照射型固体撮像素子用ウェーハの製造方法。   (2) Before the step of growing the first epitaxial layer, the method further includes a step of forming a polysilicon film on the entire surface of the material wafer opposite to the surface on which the first epitaxial layer is grown. The manufacturing method of the wafer for back irradiation type solid-state image sensors as described in said (1).

(3)前記高濃度ボロン添加シリコン層のボロン濃度は、1018〜1019atoms/cmである上記(1)または(2)に記載の裏面照射型固体撮像素子用ウェーハの製造方法。 (3) The method for manufacturing a wafer for backside illumination type solid-state imaging device according to (1) or (2), wherein the boron concentration of the high-concentration boron-added silicon layer is 10 18 to 10 19 atoms / cm 3 .

(4)前記素材ウェーハは、炭素添加シリコンウェーハである上記(1)、(2)または(3)に記載の裏面照射型固体撮像素子用ウェーハの製造方法。   (4) The said raw material wafer is a manufacturing method of the wafer for back irradiation type solid-state image sensors as described in said (1), (2) or (3) which is a carbon addition silicon wafer.

(5)前記炭素添加シリコンウェーハの炭素濃度は、0.5×1016〜1.0×1017atoms/cmである上記(4)に記載の裏面照射型固体撮像素子用ウェーハの製造方法。 (5) The method for producing a wafer for backside irradiation type solid-state imaging device according to (4), wherein the carbon concentration of the carbon-added silicon wafer is 0.5 × 10 16 to 1.0 × 10 17 atoms / cm 3. .

(6)前記素材ウェーハの厚さは、100〜800μmである上記(1)〜(5)のいずれか一に記載の裏面照射型固体撮像素子用ウェーハの製造方法。   (6) The thickness of the said raw material wafer is a manufacturing method of the wafer for backside illumination type solid-state image sensors as described in any one of said (1)-(5) which is 100-800 micrometers.

(7)前記第1エピタキシャル層の厚さは、0.1〜10.0μmである上記(1)〜(6)のいずれか一に記載の裏面照射型固体撮像素子用ウェーハの製造方法。   (7) The method of manufacturing a wafer for backside illumination type solid-state imaging device according to any one of (1) to (6), wherein the thickness of the first epitaxial layer is 0.1 to 10.0 μm.

(8)前記第2エピタキシャル層の厚さは、1〜10μmである上記(1)〜(7)のいずれか一に記載の裏面照射型固体撮像素子用ウェーハの製造方法。   (8) The method for manufacturing a wafer for backside illumination type solid-state imaging device according to any one of (1) to (7), wherein the thickness of the second epitaxial layer is 1 to 10 μm.

(9)前記炭素添加シリコンウェーハは、あらかじめ600〜700℃の熱処理が施される請求項4〜8のいずれか一に記載の裏面照射型固体撮像素子用ウェーハの製造方法。   (9) The method for producing a wafer for backside illumination type solid-state imaging device according to any one of claims 4 to 8, wherein the carbon-added silicon wafer is preliminarily subjected to heat treatment at 600 to 700 ° C.

(10)上記(1)〜(9)のいずれか一に記載の方法により製造される裏面照射型固体撮像素子用ウェーハであって、厚さバラツキが0.1〜0.5μmであり、かつ量子効率が30〜80%であることを特徴とする裏面照射型固体撮像素子用ウェーハ。   (10) A wafer for backside illumination type solid-state imaging device manufactured by the method according to any one of (1) to (9), wherein the thickness variation is 0.1 to 0.5 μm, and A wafer for backside illumination type solid-state imaging device, wherein the quantum efficiency is 30 to 80%.

(11)前記裏面照射型固体撮像素子用ウェーハの厚さは、2〜50μmである上記(10)に記載の裏面照射型固体撮像素子用ウェーハ。   (11) The wafer for backside illumination type solid imaging device according to (10) above, wherein the thickness of the wafer for backside illumination type solid imaging device is 2 to 50 μm.

(12)上記(10)または(11)に記載の裏面照射型固体撮像素子用ウェーハの前記画素に、画像データを転送するための埋め込み電極を接続してなる裏面照射型固体撮像素子。   (12) A back-illuminated solid-state imaging device comprising a buried electrode for transferring image data connected to the pixels of the wafer for back-illuminated solid-state imaging device according to (10) or (11).

本発明の裏面照射型固体撮像素子用ウェーハの製造方法によれば、簡便かつ容易に、厚さばらつきを減少させて加工精度を向上させることにより、歩留まりを飛躍的に向上させることができる裏面照射型固体撮像素子用ウェーハおよび裏面照射型固体撮像素子を提供することができる。   According to the method for manufacturing a wafer for backside illumination type solid-state imaging device of the present invention, the backside illumination capable of dramatically improving the yield by reducing the thickness variation and improving the processing accuracy simply and easily. A solid-state imaging device wafer and a back-illuminated solid-state imaging device can be provided.

本発明に従う裏面照射型固体撮像素子用ウェーハの製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the wafer for backside illumination type solid-state image sensors according to this invention.

次に、本発明の実施形態について図面を参照しながら説明する。図1は、本発明に従う裏面照射型固体撮像素子用ウェーハの製造工程における断面図を模式的に示したものである。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 schematically shows a cross-sectional view in a manufacturing process of a wafer for backside illumination type solid-state imaging device according to the present invention.

本発明の裏面照射型固体撮像素子用ウェーハ100の製造方法は、図1(a)に示すように、素材ウェーハ101上に第1エピタキシャル層102および第2エピタキシャル層103を順次成長形成してなるエピタキシャルウェーハ104の前記素材ウェーハ101側の裏面104bから、図1(b)に示すように、前記素材ウェーハ101の厚みにして少なくとも80%の部分を、研削により除去する。この研削が素材ウェーハ101の厚みにして80%未満だと、その後行われるエッチングに時間がかかり、製造効率が低下するためである。なお、図1(a)中、前記エピタキシャルウェーハ104の表面104aは固体撮像素子形成面を示し、また、図1(b)は、研削等の加工時に前記エピタキシャルウェーハの表面104aが損傷するのを防止するため、このエピタキシャルウェーハの表面104a上にBG(バックグラインド)テープ105を貼り付けた例を示す。   The method for manufacturing a backside illumination type solid-state imaging device wafer 100 according to the present invention is formed by sequentially growing and forming a first epitaxial layer 102 and a second epitaxial layer 103 on a material wafer 101 as shown in FIG. As shown in FIG. 1B, at least 80% of the thickness of the material wafer 101 is removed by grinding from the back surface 104b of the epitaxial wafer 104 on the material wafer 101 side. This is because if the grinding is less than 80% of the thickness of the material wafer 101, the etching performed thereafter takes time and the production efficiency is lowered. In FIG. 1 (a), the surface 104a of the epitaxial wafer 104 shows a solid-state imaging element forming surface, and FIG. 1 (b) shows that the surface 104a of the epitaxial wafer is damaged during processing such as grinding. In order to prevent this, an example in which a BG (back grind) tape 105 is pasted on the surface 104a of this epitaxial wafer is shown.

その後、図1(c)に示すように、前記研削により残った素材ウェーハ101を所定のエッチング液を用いて、前記第1エピタキシャル層102をストッパー層としてエッチングにより除去し、図1(d)に示すように、前記第1エピタキシャル層102をタッチ研磨により除去し、その後、図1(e)に示すようにBGテープをはがすことにより裏面照射型固体撮像素子用ウェーハ100を形成する。   Thereafter, as shown in FIG. 1 (c), the material wafer 101 remaining after the grinding is removed by etching using the first epitaxial layer 102 as a stopper layer by using a predetermined etching solution. As shown, the first epitaxial layer 102 is removed by touch polishing, and then the back-illuminated solid-state imaging device wafer 100 is formed by removing the BG tape as shown in FIG.

本発明の裏面照射型固体撮像素子用ウェーハ100は、前記第1エピタキシャル層102が高濃度ボロン添加シリコン層であり、かつ前記エッチング液がアルカリエッチング液であり、かかる構成を有することにより、簡便かつ容易に、厚さばらつきを減少させて加工精度を向上させることにより、歩留まりを飛躍的に向上させることができるものである。   The wafer 100 for backside illumination type solid-state imaging device according to the present invention is simple and easy because the first epitaxial layer 102 is a high-concentration boron-added silicon layer and the etching solution is an alkaline etching solution. The yield can be dramatically improved by easily reducing the thickness variation and improving the processing accuracy.

また、図には示されていないが、前記第1エピタキシャル層102を成長させる工程の前に、前記素材ウェーハ101の、前記第1エピタキシャル層102を成長させる面とは反対側の面全体、すなわち、エピタキシャルウェーハ104の裏面104bに、ポリシリコン膜106を形成する工程をさらに具えるのが好ましい。前記ポリシリコン膜106は、前記第1エピタキシャル層102および前記第2エピタキシャル層103の成長の際、ゲッタリングシンクとして働き、ゲッタリング効果を向上させることができるためである。   Although not shown in the figure, before the step of growing the first epitaxial layer 102, the entire surface of the material wafer 101 opposite to the surface on which the first epitaxial layer 102 is grown, Preferably, the method further includes a step of forming a polysilicon film 106 on the back surface 104b of the epitaxial wafer 104. This is because the polysilicon film 106 functions as a gettering sink during the growth of the first epitaxial layer 102 and the second epitaxial layer 103, and can improve the gettering effect.

前記高濃度ボロン添加シリコン層102のボロン濃度は、1018〜1019atoms/cmであるのが好ましい。前記濃度が1018atoms/cm未満だと、エッチング速度が高まりエッチング量の制御が困難となるおそれがあり、前記濃度が1019atoms/cmを超えると、エッチング速度が極端に低下し生産性が犠牲となるおそれがあるためである。なお、前記第1エピタキシャル層102に所定量のボロンを含有させるための方法としては、例えば前記1エピタキシャル層102中にボロン原子をドーピングする方法や、イオン注入の方法等が挙げられる。 The boron concentration of the high-concentration boron-added silicon layer 102 is preferably 10 18 to 10 19 atoms / cm 3 . If the concentration is less than 10 18 atoms / cm 3 , the etching rate may increase and it may be difficult to control the etching amount. If the concentration exceeds 10 19 atoms / cm 3 , the etching rate will extremely decrease and production may be difficult. This is because sex may be sacrificed. Examples of a method for causing the first epitaxial layer 102 to contain a predetermined amount of boron include a method of doping boron atoms into the first epitaxial layer 102 and an ion implantation method.

前記素材ウェーハ101は、炭素添加シリコンウェーハ101とするのが好ましい。炭素原子が素材ウェーハ101中のシリコン格子間位置に取り込まれ、その後のウェーハの熱処理工程において、酸素含有物質の析出を促進し、酸素析出物がゲッタリングサイトとして作用することができる結果、このウェーハを裏面照射型固体撮像素子に用いた場合に、従来の撮像素子に比べて、白傷欠陥の発生および重金属汚染を有効に抑制することができるためである。前記素材ウェーハ101は、特に限定されるものではないが、比較的容易に得ることができる点から、例えばシリコン材料からなる基板を用いることができる。   The material wafer 101 is preferably a carbon-added silicon wafer 101. As a result of the carbon atoms being taken into the silicon interstitial positions in the material wafer 101 and the subsequent heat treatment of the wafer promoting the precipitation of the oxygen-containing material, the oxygen precipitates can act as gettering sites. This is because generation of white flaw defects and heavy metal contamination can be effectively suppressed as compared with a conventional image sensor when the is used for a back-illuminated solid-state image sensor. The material wafer 101 is not particularly limited, but a substrate made of, for example, a silicon material can be used because it can be obtained relatively easily.

前記炭素添加シリコンウェーハ101の炭素濃度は、0.5×1016〜1.0×1017atoms/cmであるのが好ましい。前記濃度が0.5×1016atoms/cm未満だと、ゲッタリング能力を十分に発揮できないため、白傷欠陥および重金属汚染の抑制を十分にできないおそれがあるためであり、1.0×1017atoms/cmを超えると、酸素析出物のサイズが50nm未満となり、重金属をゲッタリング可能な歪みエネルギーを保持できないためである。なお、前記ウェーハ101に所定量の炭素を含有させるための方法としては、例えばシリコン基板中に炭素原子をドーピングする方法や、イオン注入の方法等が挙げられる。 The carbon concentration of the carbon-added silicon wafer 101 is preferably 0.5 × 10 16 to 1.0 × 10 17 atoms / cm 3 . This is because if the concentration is less than 0.5 × 10 16 atoms / cm 3 , the gettering ability cannot be sufficiently exerted, and white scratch defects and heavy metal contamination may not be sufficiently suppressed. This is because if it exceeds 10 17 atoms / cm 3 , the size of the oxygen precipitate becomes less than 50 nm, and strain energy that can getter heavy metals cannot be maintained. Examples of a method for causing the wafer 101 to contain a predetermined amount of carbon include a method of doping carbon atoms in a silicon substrate, an ion implantation method, and the like.

また、前記素材ウェーハ101の厚さは、100〜800μmであるのが好ましい。100μm未満だと、ウェーハの抗折強度の維持が困難となるおそれがあり、800μmを超えると、研削量が増大し生産コストが増大する可能性があるためである。   The thickness of the material wafer 101 is preferably 100 to 800 μm. If the thickness is less than 100 μm, it may be difficult to maintain the bending strength of the wafer. If the thickness exceeds 800 μm, the grinding amount increases and the production cost may increase.

前記第1エピタキシャル層102の厚さは、0.1〜10.0μmであるのが好ましい。0.1μm未満だと、抵抗率の制御が問題となるおそれがあり、10.0μmを超えると、可視光線の透過率の減衰が問題となるためである。   The thickness of the first epitaxial layer 102 is preferably 0.1 to 10.0 μm. If the thickness is less than 0.1 μm, the control of the resistivity may be a problem, and if it exceeds 10.0 μm, the attenuation of the visible light transmittance becomes a problem.

前記第2エピタキシャル層103の厚さは、1〜10μmであるのが好ましい。1μm未満だと、オートドープの影響で抵抗率の精度が困難となるおそれがあり、10μmを超えると、エッチング時間が増大し生産性が低下するためである。   The thickness of the second epitaxial layer 103 is preferably 1 to 10 μm. If the thickness is less than 1 μm, the accuracy of resistivity may be difficult due to the effect of auto-doping, and if it exceeds 10 μm, the etching time increases and the productivity decreases.

前記素材ウェーハ101が炭素添加シリコンウェーハである場合には、あらかじめ600〜700℃の熱処理が施されるのが好ましい。この熱処理によれば、酸素析出が促進されるため、高密度な酸素析出物の形成が可能になるためである。   When the material wafer 101 is a carbon-added silicon wafer, it is preferable to perform heat treatment at 600 to 700 ° C. in advance. This is because oxygen precipitation is promoted according to this heat treatment, so that high-density oxygen precipitates can be formed.

本発明は、上述した方法により製造される裏面照射型固体撮像素子用ウェーハにも関し、この裏面照射型固体撮像素子用ウェーハは、厚さばらつきが0.1〜0.5μmであり、かつ量子効率が30〜80%であることを特徴とする。前記厚さばらつきは、赤外吸収により測定したものであり、前記量子効率は、フォトダイオードにより測定したものである。前記厚さバラツキが0.5μmを超えると、空間電荷層幅のバラツキが増加し撮像特性を劣化させるためであり、前記量子効率が30%未満だと、撮像特性が劣化するためである。   The present invention also relates to a back-illuminated solid-state image sensor wafer manufactured by the above-described method. The back-illuminated solid-state image sensor wafer has a thickness variation of 0.1 to 0.5 μm and a quantum The efficiency is 30 to 80%. The thickness variation is measured by infrared absorption, and the quantum efficiency is measured by a photodiode. This is because if the thickness variation exceeds 0.5 μm, the variation in the space charge layer width increases and deteriorates the imaging characteristics, and if the quantum efficiency is less than 30%, the imaging characteristics deteriorate.

前記裏面照射型固体撮像素子用ウェーハの厚さは、2〜50μmであるのが好ましい。2μm未満だと、400nm以下の短波長の分光感度が低下するおそれがあり、50μmを超えると、フォトダイオードの周辺部から拡散してくるキャリアが増加し信号ノイズが増大するおそれがあるためである。   The thickness of the back-illuminated solid-state imaging device wafer is preferably 2 to 50 μm. If it is less than 2 μm, the spectral sensitivity of a short wavelength of 400 nm or less may be reduced, and if it exceeds 50 μm, carriers diffusing from the peripheral portion of the photodiode may increase and signal noise may increase. .

また、本発明は、上記裏面照射型固体撮像素子用ウェーハの前記画素に、画像データを転送するための埋め込み電極を接続してなる裏面照射型固体撮像素子にも関する。   The present invention also relates to a back-illuminated solid-state image pickup device in which a buried electrode for transferring image data is connected to the pixels of the back-illuminated solid-state image sensor wafer.

なお、図1は、代表的な実施形態の例を示したものであって、本発明はこの実施形態に限定されるものではない。   FIG. 1 shows an example of a typical embodiment, and the present invention is not limited to this embodiment.

(実施例1)
素材ウェーハ上に第1エピタキシャル層および第2エピタキシャル層を順次成長形成してなるエピタキシャルウェーハの前記素材ウェーハ側の裏面から、前記素材ウェーハの厚みにして80%の部分を、研削により除去し、この研削により残った素材ウェーハを所定のエッチング液を用いて、前記第1エピタキシャル層をストッパー層としてエッチングにより除去し、前記第1エピタキシャル層を研磨により除去して裏面照射型固体撮像素子用ウェーハを製造した。
Example 1
80% of the thickness of the material wafer is removed by grinding from the back side of the material wafer side of the epitaxial wafer formed by sequentially growing and forming the first epitaxial layer and the second epitaxial layer on the material wafer. The material wafer remaining after grinding is removed by etching using a predetermined etching solution with the first epitaxial layer as a stopper layer, and the first epitaxial layer is removed by polishing to produce a wafer for backside illumination type solid-state imaging device. did.

素材ウェーハは炭素添加シリコンウェーハ(1.0×1016atoms/cm)とし、第1エピタキシャル層は高濃度ボロン添加シリコン層(5.0×1018atoms/cm)とした。また、エッチング液は水酸化カリウム水溶液を用いた。 The material wafer was a carbon-added silicon wafer (1.0 × 10 16 atoms / cm 3 ), and the first epitaxial layer was a high-concentration boron-added silicon layer (5.0 × 10 18 atoms / cm 3 ). Further, an aqueous potassium hydroxide solution was used as the etching solution.

(比較例1)
前記第1エピタキシャル層として、燐添加エピタキシャルシリコン層(1.0×1019atoms/cm)を用いたこと以外は、実施例1と同様の方法により裏面照射型固体撮像素子用ウェーハを製造した。
(Comparative Example 1)
A wafer for backside illumination type solid-state imaging device was manufactured by the same method as in Example 1 except that a phosphorus-doped epitaxial silicon layer (1.0 × 10 19 atoms / cm 3 ) was used as the first epitaxial layer. .

(評価)
実施例1および比較例1について、裏面照射型固体撮像素子用ウェーハの厚さばらつきおよび量子効率を測定した。前記厚さばらつきは、赤外吸収を用いて測定し、前記量子効率は、フォトダイオードにより測定を行った。これら測定結果および裏面照射型固体撮像素子用ウェーハの厚さを表1に示す。
(Evaluation)
About Example 1 and Comparative Example 1, thickness variation and quantum efficiency of the wafer for backside illumination type solid-state imaging device were measured. The thickness variation was measured using infrared absorption, and the quantum efficiency was measured using a photodiode. Table 1 shows the measurement results and the thickness of the wafer for backside illumination type solid-state imaging device.

Figure 2010232420
Figure 2010232420

表1に示すとおり、実施例1は、比較例1と比較して、厚さばらつきが小さく、量子効率は向上していることがわかる。   As shown in Table 1, it can be seen that Example 1 has a smaller thickness variation and a higher quantum efficiency than Comparative Example 1.

本発明の固体撮像素子用ウェーハの製造方法によれば、簡便かつ容易に、厚さばらつきを減少させて加工精度を向上させることにより、歩留まりを飛躍的に向上させることができる固体撮像素子用ウェーハおよび固体撮像素子を提供することができる。   According to the method for manufacturing a wafer for solid-state imaging device of the present invention, the wafer for solid-state imaging device capable of dramatically improving the yield by reducing the thickness variation and improving the processing accuracy simply and easily. And a solid-state image sensor can be provided.

100 裏面照射型固体撮像素子用ウェーハ
101 素材ウェーハ
102 第1エピタキシャル層
103 第2エピタキシャル層
104 エピタキシャルウェーハ
104a 表面
104b 裏面
105 BGテープ
106 ポリシリコン膜
DESCRIPTION OF SYMBOLS 100 Backside irradiation type solid-state image sensor wafer 101 Material wafer 102 1st epitaxial layer 103 2nd epitaxial layer 104 Epitaxial wafer 104a Front surface 104b Back surface 105 BG tape 106 Polysilicon film

Claims (12)

表面側に光電変換素子および電荷転送トランジスタを含む複数の画素を有し、裏面を受光面とする、裏面照射型固体撮像素子用ウェーハの製造方法であって、
素材ウェーハ上に第1エピタキシャル層および第2エピタキシャル層を順次成長形成してなるエピタキシャルウェーハの前記素材ウェーハ側の裏面から、前記素材ウェーハの厚みにして少なくとも80%の部分を、研削により除去し、
前記研削により残った素材ウェーハを所定のエッチング液を用いて、前記第1エピタキシャル層をストッパー層としてエッチングにより除去し、
前記第1エピタキシャル層を研磨により除去して裏面照射型固体撮像素子用ウェーハを形成する工程を有し、
前記第1エピタキシャル層が高濃度ボロン添加シリコン層であり、かつ前記エッチング液がアルカリエッチング液であることを特徴とする裏面照射型固体撮像素子用ウェーハの製造方法。
It has a plurality of pixels including a photoelectric conversion element and a charge transfer transistor on the front surface side, and the back surface is a light receiving surface.
At least 80% of the thickness of the material wafer is removed by grinding from the back surface of the material wafer side of the epitaxial wafer formed by sequentially growing and forming the first epitaxial layer and the second epitaxial layer on the material wafer,
The material wafer remaining by grinding is removed by etching using the first epitaxial layer as a stopper layer, using a predetermined etching solution,
Removing the first epitaxial layer by polishing to form a back-illuminated solid-state imaging device wafer;
The method for manufacturing a wafer for backside illumination type solid-state imaging device, wherein the first epitaxial layer is a high-concentration boron-added silicon layer, and the etching solution is an alkaline etching solution.
前記第1エピタキシャル層を成長させる工程の前に、前記素材ウェーハの、前記第1エピタキシャル層を成長させる面とは反対側の面全体に、ポリシリコン膜を形成する工程をさらに具える請求項1に記載の裏面照射型固体撮像素子用ウェーハの製造方法。   2. The method of claim 1, further comprising a step of forming a polysilicon film on the entire surface of the material wafer opposite to the surface on which the first epitaxial layer is grown before the step of growing the first epitaxial layer. The manufacturing method of the wafer for backside illumination type solid-state image sensors as described in 1 .. 前記高濃度ボロン添加シリコン層のボロン濃度は、1018〜1019atoms/cmである請求項1または2に記載の裏面照射型固体撮像素子用ウェーハの製造方法。 3. The method for manufacturing a wafer for backside illumination type solid-state imaging device according to claim 1, wherein the boron concentration of the high-concentration boron-added silicon layer is 10 18 to 10 19 atoms / cm 3 . 前記素材ウェーハは、炭素添加シリコンウェーハである請求項1、2または3に記載の裏面照射型固体撮像素子用ウェーハの製造方法。   The method of manufacturing a wafer for backside illumination type solid-state imaging device according to claim 1, wherein the material wafer is a carbon-added silicon wafer. 前記炭素添加シリコンウェーハの炭素濃度は、0.5×1016〜1.0×1017atoms/cmである請求項4に記載の裏面照射型固体撮像素子用ウェーハの製造方法。 5. The method for manufacturing a wafer for backside illumination type solid-state imaging device according to claim 4, wherein the carbon concentration of the carbon-added silicon wafer is 0.5 × 10 16 to 1.0 × 10 17 atoms / cm 3 . 前記素材ウェーハの厚さは、100〜800μmである請求項1〜5のいずれか一項に記載の裏面照射型固体撮像素子用ウェーハの製造方法。   The thickness of the said raw material wafer is 100-800 micrometers, The manufacturing method of the wafer for backside illumination type solid-state image sensors as described in any one of Claims 1-5. 前記第1エピタキシャル層の厚さは、0.1〜10.0μmである請求項1〜6のいずれか一項に記載の裏面照射型固体撮像素子用ウェーハの製造方法。   The thickness of the said 1st epitaxial layer is 0.1-10.0 micrometers, The manufacturing method of the wafer for backside illumination type solid-state image sensors as described in any one of Claims 1-6. 前記第2エピタキシャル層の厚さは、1〜10μmである請求項1〜7のいずれか一項に記載の裏面照射型固体撮像素子用ウェーハの製造方法。   The thickness of the said 2nd epitaxial layer is 1-10 micrometers, The manufacturing method of the wafer for backside illumination type solid-state image sensors as described in any one of Claims 1-7. 前記炭素添加シリコンウェーハは、あらかじめ600〜700℃の熱処理が施される請求項4〜8のいずれか一項に記載の裏面照射型固体撮像素子用ウェーハの製造方法。   The said carbon addition silicon wafer is a manufacturing method of the wafer for backside illumination type solid-state image sensors as described in any one of Claims 4-8 to which the heat processing of 600-700 degreeC is performed previously. 請求項1〜9のいずれか一項に記載の方法により製造される裏面照射型固体撮像素子用ウェーハであって、
厚さバラツキが0.1〜0.5μmであり、かつ量子効率が30〜80%であることを特徴とする裏面照射型固体撮像素子用ウェーハ。
It is a wafer for back irradiation type solid-state image sensing devices manufactured by the method according to any one of claims 1 to 9,
A wafer for backside illumination type solid-state imaging device, having a thickness variation of 0.1 to 0.5 μm and a quantum efficiency of 30 to 80%.
前記裏面照射型固体撮像素子用ウェーハの厚さは、2〜50μmである請求項10に記載の裏面照射型固体撮像素子用ウェーハ。   The wafer for backside illumination type solid imaging device according to claim 10, wherein the thickness of the wafer for backside illumination type solid imaging device is 2 to 50 μm. 請求項10または11に記載の裏面照射型固体撮像素子用ウェーハの前記画素に、画像データを転送するための埋め込み電極を接続してなる裏面照射型固体撮像素子。   The back irradiation type solid-state image sensor formed by connecting the embedded electrode for transferring image data to the said pixel of the wafer for back surface irradiation type solid-state image sensors of Claim 10 or 11.
JP2009078306A 2009-03-27 2009-03-27 Wafer for rear surface irradiation type solid-state image pickup element, manufacturing method thereof, and rear surface irradiation type solid-state image pickup element Withdrawn JP2010232420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078306A JP2010232420A (en) 2009-03-27 2009-03-27 Wafer for rear surface irradiation type solid-state image pickup element, manufacturing method thereof, and rear surface irradiation type solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078306A JP2010232420A (en) 2009-03-27 2009-03-27 Wafer for rear surface irradiation type solid-state image pickup element, manufacturing method thereof, and rear surface irradiation type solid-state image pickup element

Publications (1)

Publication Number Publication Date
JP2010232420A true JP2010232420A (en) 2010-10-14

Family

ID=43047971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078306A Withdrawn JP2010232420A (en) 2009-03-27 2009-03-27 Wafer for rear surface irradiation type solid-state image pickup element, manufacturing method thereof, and rear surface irradiation type solid-state image pickup element

Country Status (1)

Country Link
JP (1) JP2010232420A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119620A (en) * 2009-12-07 2011-06-16 Canon Inc Method for manufacturing solid-state imaging apparatus
KR101341132B1 (en) * 2010-12-09 2013-12-13 가부시키가이샤 사무코 Epitaxial substrate for back illuminated solid-state imaging device and manufacturing method thereof
CN112530798A (en) * 2020-12-04 2021-03-19 广东省科学院半导体研究所 Semiconductor structure and manufacturing and thinning method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08512175A (en) * 1993-06-30 1996-12-17 ハネウエル・インコーポレーテッド Manufacturing of SOI substrates
WO2006025409A1 (en) * 2004-08-31 2006-03-09 Sumco Corporation Silicon epitaxial wafer and method for manufacturing the same
JP2007013089A (en) * 2005-06-02 2007-01-18 Sony Corp Solid imaging element and its manufacturing method
JP2009507392A (en) * 2005-09-07 2009-02-19 サイプレス セミコンダクター コーポレイション Backside thinned image sensor with integrated lens stack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08512175A (en) * 1993-06-30 1996-12-17 ハネウエル・インコーポレーテッド Manufacturing of SOI substrates
WO2006025409A1 (en) * 2004-08-31 2006-03-09 Sumco Corporation Silicon epitaxial wafer and method for manufacturing the same
JP2007013089A (en) * 2005-06-02 2007-01-18 Sony Corp Solid imaging element and its manufacturing method
JP2009507392A (en) * 2005-09-07 2009-02-19 サイプレス セミコンダクター コーポレイション Backside thinned image sensor with integrated lens stack

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119620A (en) * 2009-12-07 2011-06-16 Canon Inc Method for manufacturing solid-state imaging apparatus
KR101341132B1 (en) * 2010-12-09 2013-12-13 가부시키가이샤 사무코 Epitaxial substrate for back illuminated solid-state imaging device and manufacturing method thereof
CN112530798A (en) * 2020-12-04 2021-03-19 广东省科学院半导体研究所 Semiconductor structure and manufacturing and thinning method thereof

Similar Documents

Publication Publication Date Title
TWI281252B (en) Solid-state imaging device, camera and method of producing the solid-state imaging device
TWI477146B (en) Solid state camera and camera
US20150115388A1 (en) Solid-state imaging device and manufacturing method of solid-state imaging device
CN101783321A (en) Method for manufacturing solid-state image device
US11581349B2 (en) Backside refraction layer for backside illuminated image sensor and methods of forming the same
JP5696349B2 (en) Manufacturing method of wafer for back irradiation type solid-state imaging device
CN109411490A (en) For reducing the projected electrode of dark current
US20160247844A1 (en) Image sensor and method for fabricating the same
JP5481419B2 (en) Manufacturing method of semiconductor device
JP4610586B2 (en) Manufacturing method of semiconductor device
JP2010232420A (en) Wafer for rear surface irradiation type solid-state image pickup element, manufacturing method thereof, and rear surface irradiation type solid-state image pickup element
KR102150546B1 (en) Process of preparing backside illuminated image sensor using etching stopper layer
US20220328538A1 (en) Epitaxial semiconductor liner for enhancing uniformity of a charged layer in a deep trench and methods of forming the same
KR101176333B1 (en) Wafer for backside illumination type solid imaging device, production method thereof and backside illumination type solid imaging device
EP2105954B1 (en) Method of manufacturing a backside illumination solid imaging device
CN104078472A (en) CMOS (Complementary Metal Oxide Semiconductor) image sensor and manufacturing method thereof
US20100047953A1 (en) Method for producing wafer for backside illumination type solid imaging device
KR102113041B1 (en) Backside illuminated image sensor with reduced noises, and preparing process of the same
JP2009231706A (en) Wafer for backside illuminated solid-state imaging device, method of manufacturing the same, and backside illuminated solid-state imaging device
WO2011148434A1 (en) Semiconductor substrate, and process for production of solid-state imaging device using same
JP2015510275A (en) Image sensor and manufacturing method thereof
US20100025799A1 (en) Wafer for backside illumination type solid imaging device, production method thereof and backside illumination type solid imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130806