JP2010230491A - Electronic component - Google Patents

Electronic component Download PDF

Info

Publication number
JP2010230491A
JP2010230491A JP2009078419A JP2009078419A JP2010230491A JP 2010230491 A JP2010230491 A JP 2010230491A JP 2009078419 A JP2009078419 A JP 2009078419A JP 2009078419 A JP2009078419 A JP 2009078419A JP 2010230491 A JP2010230491 A JP 2010230491A
Authority
JP
Japan
Prior art keywords
output
circuit
signal
signal processing
processing circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009078419A
Other languages
Japanese (ja)
Other versions
JP5251667B2 (en
Inventor
Maki Nakamura
真樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009078419A priority Critical patent/JP5251667B2/en
Publication of JP2010230491A publication Critical patent/JP2010230491A/en
Application granted granted Critical
Publication of JP5251667B2 publication Critical patent/JP5251667B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve miniaturization and electric power saving for an electronic component as well as reduction of peripheral circuits, for the electronic component forming an output signal by converting an analog electric signal output from an electronic conversion device, which is a machine for converting an electromechanical vibration to an electric signal, to a digital electric signal and by performing a predetermined signal processing. <P>SOLUTION: A failure diagnostic circuit 22 is provided between the outputs of a temperature detection circuit 17 and a signal processing circuit 14 composing the electronic component, and it is configured to determine whether the differential data between a first output result obtained as the standard voltage which is a control voltage 15 for controlling a driving control circuit 13 to the temperature detection circuit 17 by this failure diagnostic circuit 22 and a second output result obtained as the standard voltage which is a control voltage 16 for controlling the signal processing circuit 14 is within a predetermined range, and this determination result is added to the output signal of the signal processing circuit 14. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、機械的振動を電気信号に変換する機械−電気変換素子から出力されるアナログ電気信号をデジタル電気信号に変換し所定の信号処理を施し出力信号を形成する電子部品に関する。   The present invention relates to an electronic component that converts an analog electrical signal output from a mechanical-electrical conversion element that converts mechanical vibration into an electrical signal into a digital electrical signal, performs predetermined signal processing, and forms an output signal.

機械的振動を電気信号に変換する機械−電気変換素子、例えばカーナビゲーションシステムに用いられる角速度センサのように、素子を振動させて角速度により生じるコリオリ力による撓み振動を圧電膜により検出し所定の信号処理を施すことで角速度情報を出力するといった機械−電気変換素子を用いた電子部品は、素子自体の温度特性を考慮する必要があり、電子部品の内部に温度検出回路を設け、この温度検出回路から出力される温度情報を信号処理回路にフィードバックさせる構成となっている。また、温度検出回路は信号処理回路へのフィードバック経路とは別に温度情報を出力し、電子部品の外部に設けられたプルダウン回路などの周辺回路にて故障診断を行っていた。   A mechanical-electrical conversion element that converts mechanical vibration into an electrical signal, for example, an angular velocity sensor used in a car navigation system, detects bending vibration due to Coriolis force caused by the angular velocity by vibrating the element and detects a predetermined signal. An electronic component using a mechanical-electrical conversion element that outputs angular velocity information by performing processing needs to consider the temperature characteristics of the element itself, and a temperature detection circuit is provided inside the electronic component. The temperature information output from is fed back to the signal processing circuit. In addition, the temperature detection circuit outputs temperature information separately from the feedback path to the signal processing circuit, and performs fault diagnosis in a peripheral circuit such as a pull-down circuit provided outside the electronic component.

そして、このような機械−電気変換素子を含む電子部品の小型化及び省電力化を検討した場合、機械−電気変換素子の駆動電圧を小さくし、これに伴い機械−電気変換素子からの出力信号のデジタル処理化が検討されるようになってきた。   Then, when considering miniaturization and power saving of electronic parts including such a mechanical-electrical conversion element, the drive voltage of the mechanical-electrical conversion element is reduced, and the output signal from the mechanical-electrical conversion element is accordingly accompanied. Digital processing has been studied.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2008−128859号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
JP 2008-128859 A

しかしながら、電子部品から出力される温度センサの故障診断用の温度情報が温度検出回路により形成されたアナログ電気信号の状態で出力していれば、例え電子部品を小型化したとしても後段のプルダウン回路などの周辺回路まで削減することが出来ず、この電子部品に纏わる周辺回路部分までの小型化が困難なものとなっていた。   However, if the temperature information for failure diagnosis of the temperature sensor output from the electronic component is output in the state of an analog electric signal formed by the temperature detection circuit, even if the electronic component is downsized, a pull-down circuit at the subsequent stage As a result, it has been difficult to reduce the size of the peripheral circuit portion of the electronic component.

そこで、本発明はこのような課題を解決し、機械−電気変換素子を含む電子部品の小型且つ省電力化に加え周辺回路の削減を目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve such problems and to reduce the number of peripheral circuits in addition to reducing the size and power consumption of electronic components including a mechanical-electrical conversion element.

この目的を達成するために本発明は、機械的振動を電気信号に変換する機械−電気変換素子から出力されるアナログ電気信号をデジタル電気信号に変換し所定の信号処理を施し出力信号を形成する電子部品において、動作環境温度を検出する温度検出回路と信号処理回路の出力間に温度検出回路の故障診断を行う故障診断回路を設け、この故障診断回路により温度検出回路に対して機械−電気変換素子を制御する第1の制御電圧を基準電圧として得た第1の出力結果と、信号処理回路を制御する第2の制御電圧を基準電圧として得た第2の出力結果との差分データを予め定められた所定の範囲内にあるかどうかを判断し、この判断結果を前記信号処理回路の出力信号に付加する構成としたのである。   In order to achieve this object, the present invention converts an analog electrical signal output from a mechanical-electrical conversion element that converts mechanical vibration into an electrical signal into a digital electrical signal, and performs predetermined signal processing to form an output signal. In an electronic component, a failure diagnosis circuit for diagnosing a failure of the temperature detection circuit is provided between the temperature detection circuit for detecting the operating environment temperature and the output of the signal processing circuit, and this failure diagnosis circuit performs mechanical-electrical conversion on the temperature detection circuit The difference data between the first output result obtained using the first control voltage for controlling the element as the reference voltage and the second output result obtained using the second control voltage for controlling the signal processing circuit as the reference voltage is stored in advance. It is determined whether it is within a predetermined range, and this determination result is added to the output signal of the signal processing circuit.

この構成により本発明は、機械−電気変換素子を含む電子部品の小型且つ省電力化に加え周辺回路の削減が出来る。   With this configuration, the present invention can reduce the number of peripheral circuits in addition to reducing the size and power consumption of electronic components including a mechanical-electrical conversion element.

以下、本発明の一実施形態について図を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は機械的振動を電気信号に変換する機械−電気変換素子から出力されるアナログ電気信号をデジタル電気信号に変換し所定の信号処理を施し出力信号を形成する電子部品の一例である角速度センサユニット1を示したものであり、その基本構造はパッケージ2の内部に角速度センサ素子3および角速度センサ素子3を制御するIC4が配置され、パッケージ2の開口部をリッド5で封口した構造となっている。   FIG. 1 shows an angular velocity sensor that is an example of an electronic component that converts an analog electrical signal output from a mechanical-electrical conversion element that converts mechanical vibration into an electrical signal into a digital electrical signal and performs predetermined signal processing to form an output signal. The unit 1 is shown, and its basic structure is a structure in which an angular velocity sensor element 3 and an IC 4 for controlling the angular velocity sensor element 3 are arranged inside the package 2 and the opening of the package 2 is sealed with a lid 5. Yes.

また、角速度センサ素子3は、図2に示されるごとく音叉型に形成されたシリコンからなる基板6の振動アーム7にそれぞれ駆動電極8、検知電極9を設けた構成であり、各電極の構造は図3に示すようにAuからなる上部電極10とPtからなる下部電極11と、これらの間に配置されたPZTからなる圧電体層12により形成され、下部電極11をグランド接続した状態で上部電極10に正電圧を印加すると電極の積層方向に対して圧縮力が働き、この圧縮力により電極パターンが延びる方向に応力が発生し、上部電極10に負電圧を印加すると電極に引張力が働き、この引張力により電極パターンが縮む方向に応力が発生するものである。また、これとは逆に振動アーム7の撓みにより検知電極9が縮めば負電圧が生じ、検知電極9が延びれば正電圧が生じる。   Further, the angular velocity sensor element 3 has a configuration in which a drive electrode 8 and a detection electrode 9 are provided on a vibrating arm 7 of a substrate 6 made of silicon formed in a tuning fork shape as shown in FIG. As shown in FIG. 3, the upper electrode 10 is made of Au, the lower electrode 11 made of Pt, and the piezoelectric layer 12 made of PZT disposed between them, and the upper electrode is connected with the lower electrode 11 connected to the ground. When a positive voltage is applied to the electrode 10, a compressive force is exerted in the electrode stacking direction, a stress is generated in the direction in which the electrode pattern extends due to the compressive force. This tensile force generates stress in the direction in which the electrode pattern shrinks. On the contrary, if the detection electrode 9 is contracted due to the bending of the vibration arm 7, a negative voltage is generated, and if the detection electrode 9 is extended, a positive voltage is generated.

従って、角速度センサ素子3の駆動電極8に駆動信号を印加することで振動アーム7を矢印で示すよう並設方向に駆動振動させ、角速度が加わり振動アーム7にコリオリ力が働くことで振動アーム7が並設方向と直交する方向に撓み振動が生じ、この撓み振動を検知電極9で電気信号に変換し出力するものである。つまり、角速度センサ素子3はコリオリ力による振動アーム7の撓み振動つまり機械的振動を検知電極9により電気信号に変換する機械−電気変換素子を構成したものである。   Accordingly, by applying a drive signal to the drive electrode 8 of the angular velocity sensor element 3, the vibration arm 7 is driven and vibrated in the parallel direction as indicated by the arrow, and the angular velocity is applied and the Coriolis force is applied to the vibration arm 7, thereby causing the vibration arm 7. Are bent in a direction perpendicular to the juxtaposed direction, and the bending vibration is converted into an electrical signal by the detection electrode 9 and output. That is, the angular velocity sensor element 3 constitutes a mechanical-electrical conversion element that converts the bending vibration of the vibrating arm 7 caused by the Coriolis force, that is, mechanical vibration, into an electric signal by the detection electrode 9.

また、IC4は図4に示す如く、角速度センサ素子3の駆動振動を制御する駆動制御回路13と、角速度センサ素子3により出力された検出信号の信号処理を行う信号処理回路14から構成されており、駆動制御回路13は一対の振動アーム7が一定の振幅で駆動振動するよう、駆動電極8に印加する駆動電圧を制御する回路であり、信号処理回路14は角速度センサ素子3の検知電極9から出力される検出信号から不要信号の除去など所定の信号処理を施し出力信号を形成する回路である。なお、駆動制御回路13は制御電圧15により駆動され、信号処理回路14は制御電圧15とは異なる電圧の制御電圧16により駆動させている。   Further, as shown in FIG. 4, the IC 4 includes a drive control circuit 13 that controls driving vibration of the angular velocity sensor element 3 and a signal processing circuit 14 that performs signal processing of the detection signal output from the angular velocity sensor element 3. The drive control circuit 13 is a circuit for controlling the drive voltage applied to the drive electrode 8 so that the pair of vibration arms 7 are driven to vibrate with a constant amplitude, and the signal processing circuit 14 is connected to the detection electrode 9 of the angular velocity sensor element 3. This is a circuit that performs predetermined signal processing such as removal of unnecessary signals from an output detection signal to form an output signal. The drive control circuit 13 is driven by a control voltage 15, and the signal processing circuit 14 is driven by a control voltage 16 having a voltage different from the control voltage 15.

また、信号処理回路14においては、角速度センサ素子3を構成する基板6が有する温度特性の影響を低減するため、温度変化に応じた補正情報を予めEEPROMなどの記憶媒体(特に図示せず)に記憶させておき、この補正情報と温度検出回路17から得る温度情報を信号処理回路14にて統合し温度保証を行っている。   Further, in the signal processing circuit 14, in order to reduce the influence of the temperature characteristics of the substrate 6 constituting the angular velocity sensor element 3, correction information corresponding to the temperature change is previously stored in a storage medium (not shown) such as an EEPROM. The correction information and the temperature information obtained from the temperature detection circuit 17 are integrated by the signal processing circuit 14 to guarantee the temperature.

なお、温度検出回路17は図5に示すように、抵抗素子18とサーミスタ素子19を基準電位とグランドとの間に直列接続し、抵抗素子18とサーミスタ素子19の間から信号を取り出す構成とし、温度変化に伴うサーミスタ素子19の抵抗値変化による出力信号における電圧降下を温度情報として出力するといった一般的な回路を用いている。   As shown in FIG. 5, the temperature detection circuit 17 has a configuration in which a resistance element 18 and a thermistor element 19 are connected in series between a reference potential and the ground, and a signal is taken out between the resistance element 18 and the thermistor element 19. A general circuit is used in which a voltage drop in an output signal due to a change in resistance value of the thermistor element 19 due to a temperature change is output as temperature information.

また、この角速度センサユニット1においては、小型化及び省電力化のため信号処理回路14がデジタル回路で構成されており、図4に示すように信号処理回路14に入力される角速度センサ素子3からの出力信号及び温度検出回路17からの出力信号はそれぞれA/D変換器20,21によりデジタル電気信号に変換し信号処理回路14に入力している。   Further, in this angular velocity sensor unit 1, the signal processing circuit 14 is constituted by a digital circuit for miniaturization and power saving. From the angular velocity sensor element 3 input to the signal processing circuit 14 as shown in FIG. And the output signal from the temperature detection circuit 17 are converted into digital electric signals by the A / D converters 20 and 21, respectively, and input to the signal processing circuit 14.

そして、この角速度センサユニット1においては、温度検出回路17の故障診断を行い、この診断情報を信号処理回路14からの出力信号に加算する故障診断回路22を設けている。   The angular velocity sensor unit 1 is provided with a failure diagnosis circuit 22 that performs failure diagnosis of the temperature detection circuit 17 and adds this diagnosis information to an output signal from the signal processing circuit 14.

この故障診断回路22は、温度検出回路17に対して電位の異なる二つのチェック電圧23,24を用い、それぞれのチェック電圧23,24における温度検出回路17の出力値をA/D変換器21によりデジタル信号化しそれぞれの出力結果をチェック電圧23,24に応じたバッファ25,26に格納する。次にそれぞれのバッファ25,26に格納された出力結果を演算器27により差分データを形成し、この差分データと判定値28を比較器29で比較し予め定められた範囲内にあるかどうかを判定し、その判定結果を信号処理回路14から出力される出力信号に加算する構成としている。   The fault diagnosis circuit 22 uses two check voltages 23 and 24 having different potentials with respect to the temperature detection circuit 17, and outputs the output values of the temperature detection circuit 17 at the check voltages 23 and 24 by the A / D converter 21. Digital signals are converted and the respective output results are stored in buffers 25 and 26 corresponding to check voltages 23 and 24, respectively. Next, difference data is formed from the output results stored in the respective buffers 25 and 26 by the arithmetic unit 27, and the difference data and the determination value 28 are compared by the comparator 29 to determine whether they are within a predetermined range. The determination is made, and the determination result is added to the output signal output from the signal processing circuit 14.

なお、このような温度検出回路17は断線故障が発生した場合、通常の温度情報に関する出力信号は断線前の電位から徐々に低下し不特定な個別値に収束してしまうもので、この出力だけを監視していては故障診断が出来ない。   Note that when a disconnection failure occurs in such a temperature detection circuit 17, the output signal related to normal temperature information gradually decreases from the potential before disconnection and converges to an unspecified individual value. Failure monitoring cannot be performed while monitoring

そこで、異なる2つのチッェク電圧23,24を用いそれぞれの電圧に応じた出力を検出しその差分データを監視することとしたのである。この手法によれば、図6に示すように断線のない正常状態においては単位時間Δtの間隔で交互に温度検出回路17から出力される出力電圧をサンプリングし、それらの差分を取るので、この差分データの値V1はチェック電圧23と24の差で概ね一定値を示すことになるが、温度検出回路17に断線故障が発生した場合、断線後に出力される情報はチェック電圧を切り換えたとしても断線前に接続されていたチェック電圧(図中、チェック電圧23)に対する電圧低下していく信号からサンプリングするため、その差分データの値V2はV1に比べて遙かに小さい値となってしまう。   Therefore, two different check voltages 23 and 24 are used to detect the output corresponding to each voltage, and the difference data is monitored. According to this method, as shown in FIG. 6, in the normal state without disconnection, the output voltage output from the temperature detection circuit 17 is sampled alternately at intervals of the unit time Δt, and the difference between them is taken. The data value V1 shows a substantially constant value due to the difference between the check voltages 23 and 24. However, when a disconnection failure occurs in the temperature detection circuit 17, the information output after the disconnection is disconnected even if the check voltage is switched. Since sampling is performed from a signal whose voltage decreases with respect to the previously connected check voltage (check voltage 23 in the figure), the value V2 of the difference data is much smaller than V1.

従って、正常時の異なるチェック電圧23,24から得た出力結果の差分データの値V1と、断線後の低下していく一方の信号だけから得た出力結果の差分データの値V2の差が大きく、この間に閾値を設けることが可能となり故障診断が出来るのである。   Therefore, the difference between the difference data value V1 of the output result obtained from the different check voltages 23 and 24 at the normal time and the difference data value V2 of the output result obtained from only one of the decreasing signals after the disconnection is large. Therefore, it is possible to set a threshold value between them, and failure diagnosis can be performed.

例えばチェック電圧23,24をそれぞれ2.3V,1.5V、チェック電圧23を基準としたA/D変換器21の分解能を10bit、温度検出回路17において25℃で中点出力とすると、正常時にはバッファ25に512LSB、バッファ26に333LSBが格納されることになるため、演算器27の結果は179LSBとなる。一方断線時にはバッファ25に512LSB格納されるとチェック電圧を切り換えたとしてもバッファ26にバッファ25とほぼ同じ値である512LSBが格納されることとなり演算器27の結果は0LSBとなる。そのため閾値を設けることにより故障診断が出来るのである。   For example, if the check voltages 23 and 24 are 2.3 V and 1.5 V, respectively, and the resolution of the A / D converter 21 is 10 bits based on the check voltage 23 and the temperature detection circuit 17 outputs a midpoint at 25 ° C. Since 512 LSB is stored in the buffer 25 and 333 LSB is stored in the buffer 26, the result of the computing unit 27 is 179LSB. On the other hand, when 512 LSB is stored in the buffer 25 at the time of disconnection, even if the check voltage is switched, 512 LSB which is substantially the same value as the buffer 25 is stored in the buffer 26 and the result of the arithmetic unit 27 becomes 0 LSB. Therefore, failure diagnosis can be performed by providing a threshold value.

なお、異なる2つのチェック電圧23,24としては駆動制御回路13に印加する制御電圧15と、信号処理回路14に印加する制御電圧16を用いることで、別途で故障診断用の専用電圧端子を設ける必要がなくなる。   In addition, as the two different check voltages 23 and 24, the control voltage 15 applied to the drive control circuit 13 and the control voltage 16 applied to the signal processing circuit 14 are used, so that a dedicated voltage terminal for fault diagnosis is provided separately. There is no need.

また、このように故障診断情報をデジタル電気信号により形成したことにより、信号処理回路14で形成した出力信号に加算できるため、従来のような故障診断用の専用出力端子を設ける必要が無く、温度検出回路17の故障診断情報を信号処理回路14からの出力信号に加算できるため、角速度センサユニット1の外部端子数が削減できるのである。   Further, since the failure diagnosis information is formed by the digital electric signal in this way, it can be added to the output signal formed by the signal processing circuit 14, so that there is no need to provide a dedicated output terminal for failure diagnosis as in the prior art. Since the failure diagnosis information of the detection circuit 17 can be added to the output signal from the signal processing circuit 14, the number of external terminals of the angular velocity sensor unit 1 can be reduced.

つまり、この角速度センサユニット1は、信号処理回路14及び故障診断回路22をデジタル化することで省電力化が図れるとともに、デジタル化による回路配置の小スペース化及び故障診断用端子の削減ができ、さらには角速度センサユニット1の後段に設けられていた故障診断用のプルダウン回路などの周辺回路を設ける必要が無くなるので、角速度センサユニット1の小型且つ省電力化に加え周辺回路の削減が出来るのである。   That is, the angular velocity sensor unit 1 can save power by digitizing the signal processing circuit 14 and the failure diagnosis circuit 22, and can reduce the circuit layout space and failure diagnosis terminals by digitization. Furthermore, it is not necessary to provide a peripheral circuit such as a pull-down circuit for failure diagnosis provided at the subsequent stage of the angular velocity sensor unit 1, so that the peripheral circuit can be reduced in addition to miniaturization and power saving of the angular velocity sensor unit 1. .

なお、上述した一実施形態においては機械的振動を電気信号に変換する機械−電気変換素子から出力されるアナログ電気信号をデジタル電気信号に変換し所定の信号処理を施し出力信号を形成する電子部品の一例として角速度センサユニット1をあげて説明したが、本発明はこの構成に限定されるものではなく、温度依存性を有する機械−電気変換素子、例えば加速度や衝撃といった慣性力を検出する電子部品に対しても同様の効果を奏するものである。   In the above-described embodiment, an electronic component that converts an analog electric signal output from a mechanical-electrical conversion element that converts mechanical vibration into an electric signal into a digital electric signal, performs predetermined signal processing, and forms an output signal. Although the angular velocity sensor unit 1 has been described as an example of the present invention, the present invention is not limited to this configuration, and a temperature-dependent mechanical-electrical conversion element, for example, an electronic component that detects an inertial force such as acceleration or impact This also has the same effect.

また、温度検出回路17として抵抗素子18とサーミスタ素子19を基準電位とグランドとの間に直列接続した構成をあげて説明したが、基準電位に対して温度変化情報を形成し出力する形態の回路で有れば同様の効果を得ることが出来る。   Further, the temperature detection circuit 17 has been described with the configuration in which the resistance element 18 and the thermistor element 19 are connected in series between the reference potential and the ground. However, the circuit is configured to form and output temperature change information with respect to the reference potential. If it is, the same effect can be obtained.

本発明は、機械的振動を電気信号に変換する機械−電気変換素子から出力されるアナログ電気信号をデジタル電気信号に変換し所定の信号処理を施し出力信号を形成する電子部品に関して電子部品の小型且つ省電力化に加え周辺回路の削減が出来るという効果を有し、特に小型で且つ省電力性が求められる車載機器用途や携帯機器用途の電子部品に有用である。   The present invention relates to an electronic component that converts an analog electrical signal output from a mechanical-electrical conversion element that converts mechanical vibration into an electrical signal into a digital electrical signal and performs predetermined signal processing to form an output signal. In addition to power saving, it has the effect of reducing peripheral circuits, and is particularly useful for electronic components for in-vehicle equipment and portable equipment that are small and require power saving.

本発明の一実施形態における角速度センサユニットの分解斜視図The exploded perspective view of the angular velocity sensor unit in one embodiment of the present invention 同角速度センサユニットを構成する角速度センサ素子の構成図Configuration diagram of angular velocity sensor elements constituting the angular velocity sensor unit 同角速度センサ素子に設けられる電極の構成図Configuration diagram of electrodes provided in the same angular velocity sensor element 同角速度センサユニットの回路ブロック図Circuit block diagram of the same angular velocity sensor unit 同角速度センサユニットを構成する温度検出回路の回路ブロック図Circuit block diagram of the temperature detection circuit that constitutes the angular velocity sensor unit 同温度検出回路の故障診断フローを示す図The figure which shows the failure diagnosis flow of the same temperature detection circuit

1 角速度センサユニット(電子部品)
3 角速度センサ素子(機械−電気変換素子)
14 信号処理回路
15 (第1の)制御電圧
16 (第2の)制御電圧
17 温度検出回路
20 (第1の)A/D変換器
21 (第2の)A/D変換器
22 故障診断回路
23、24 チェック電圧
1 Angular velocity sensor unit (electronic parts)
3 Angular velocity sensor element (mechanical-electrical conversion element)
Reference Signs List 14 Signal Processing Circuit 15 (First) Control Voltage 16 (Second) Control Voltage 17 Temperature Detection Circuit 20 (First) A / D Converter 21 (Second) A / D Converter 22 Fault Diagnosis Circuit 23, 24 Check voltage

Claims (1)

機械的振動を電気信号に変換する機械−電気変換素子と、この機械−電気変換素子を制御する駆動制御回路と、この駆動制御回路を駆動する第1の制御電圧と、前記機械−電気変換素子から出力されるアナログ電気信号をデジタル電気信号に変換する第1のA/D変換器と、この第1のA/D変換器から出力されたデジタル電気信号に所定の信号処理を施し出力信号を形成する信号処理回路と、この信号処理回路を駆動する第2の制御電圧と、前記信号処理回路に温度情報を提供する温度検出回路と、この温度検出回路から出力されるアナログ電気信号をデジタル電気信号に変換し前記信号処理回路に伝達する第2のA/D変換器と、前記第2のA/D変換器の出力と前記信号処理回路の出力間に設けられ、前記温度検出回路の故障診断を行う故障診断回路を備え、前記故障診断回路は前記温度検出回路に対して前記第1の制御電圧を印加することで得る第1の出力結果と前記第2の制御電圧を印加することで得る第2の出力結果との差分データが予め定められた所定の範囲内にあるかどうか判定し、この判断結果を前記信号処理回路の出力信号に加算し出力することを特徴とした電子部品。 A mechanical-electrical conversion element that converts mechanical vibration into an electrical signal, a drive control circuit that controls the mechanical-electrical conversion element, a first control voltage that drives the drive control circuit, and the mechanical-electrical conversion element A first A / D converter that converts an analog electric signal output from the digital electric signal, and a predetermined electric signal processing is performed on the digital electric signal output from the first A / D converter to output an output signal. A signal processing circuit to be formed; a second control voltage for driving the signal processing circuit; a temperature detection circuit for providing temperature information to the signal processing circuit; and an analog electric signal output from the temperature detection circuit as a digital electric signal. A second A / D converter that converts the signal into a signal processing circuit, and is provided between the output of the second A / D converter and the output of the signal processing circuit; Make a diagnosis A fault diagnosis circuit, wherein the fault diagnosis circuit obtains a first output result obtained by applying the first control voltage to the temperature detection circuit and a second output obtained by applying the second control voltage; An electronic component characterized in that it is determined whether or not difference data from the output result is within a predetermined range, and the determination result is added to the output signal of the signal processing circuit and output.
JP2009078419A 2009-03-27 2009-03-27 Electronic components Expired - Fee Related JP5251667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078419A JP5251667B2 (en) 2009-03-27 2009-03-27 Electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078419A JP5251667B2 (en) 2009-03-27 2009-03-27 Electronic components

Publications (2)

Publication Number Publication Date
JP2010230491A true JP2010230491A (en) 2010-10-14
JP5251667B2 JP5251667B2 (en) 2013-07-31

Family

ID=43046469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078419A Expired - Fee Related JP5251667B2 (en) 2009-03-27 2009-03-27 Electronic components

Country Status (1)

Country Link
JP (1) JP5251667B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186018A (en) * 2010-03-05 2011-09-22 Casio Electronics Co Ltd Abnormal state detector for fixing device
JP2013214110A (en) * 2013-07-19 2013-10-17 Casio Electronics Co Ltd Printer and fixing device thereof
CN104655116A (en) * 2013-11-25 2015-05-27 精工爱普生株式会社 Detection device, sensor, electronic apparatus, and moving object
WO2015163142A1 (en) * 2014-04-25 2015-10-29 日立オートモティブシステムズ株式会社 Angular speed detection device
CN108664347A (en) * 2017-03-28 2018-10-16 精工爱普生株式会社 Failure determinating circuit, measuring physical, electronic equipment and moving body
CN113252020A (en) * 2020-01-24 2021-08-13 精工爱普生株式会社 Physical quantity detection circuit, physical quantity sensor, and failure diagnosis method for physical quantity sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05233078A (en) * 1992-02-25 1993-09-10 Matsushita Electric Ind Co Ltd Temperature controller
JP2000111348A (en) * 1998-10-07 2000-04-18 Kenwood Corp Zero point output correction equipment of angular velocity detecting means for moving body
JP2008090110A (en) * 2006-10-04 2008-04-17 Brother Ind Ltd Fixing control device and image forming apparatus
JP2008128859A (en) * 2006-11-22 2008-06-05 Matsushita Electric Ind Co Ltd Inertial force sensor
JP2008170294A (en) * 2007-01-12 2008-07-24 Matsushita Electric Ind Co Ltd Angular velocity sensor
JP2009020034A (en) * 2007-07-13 2009-01-29 Panasonic Corp Angular velocity sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05233078A (en) * 1992-02-25 1993-09-10 Matsushita Electric Ind Co Ltd Temperature controller
JP2000111348A (en) * 1998-10-07 2000-04-18 Kenwood Corp Zero point output correction equipment of angular velocity detecting means for moving body
JP2008090110A (en) * 2006-10-04 2008-04-17 Brother Ind Ltd Fixing control device and image forming apparatus
JP2008128859A (en) * 2006-11-22 2008-06-05 Matsushita Electric Ind Co Ltd Inertial force sensor
JP2008170294A (en) * 2007-01-12 2008-07-24 Matsushita Electric Ind Co Ltd Angular velocity sensor
JP2009020034A (en) * 2007-07-13 2009-01-29 Panasonic Corp Angular velocity sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186018A (en) * 2010-03-05 2011-09-22 Casio Electronics Co Ltd Abnormal state detector for fixing device
JP2013214110A (en) * 2013-07-19 2013-10-17 Casio Electronics Co Ltd Printer and fixing device thereof
CN104655116A (en) * 2013-11-25 2015-05-27 精工爱普生株式会社 Detection device, sensor, electronic apparatus, and moving object
WO2015163142A1 (en) * 2014-04-25 2015-10-29 日立オートモティブシステムズ株式会社 Angular speed detection device
JP2015210137A (en) * 2014-04-25 2015-11-24 日立オートモティブシステムズ株式会社 Angular velocity detector
US9939267B2 (en) 2014-04-25 2018-04-10 Hitachi Automotive Systems, Ltd. Angular speed detection device
CN108664347A (en) * 2017-03-28 2018-10-16 精工爱普生株式会社 Failure determinating circuit, measuring physical, electronic equipment and moving body
CN108664347B (en) * 2017-03-28 2023-09-15 精工爱普生株式会社 Fault determination circuit, physical quantity detection device, electronic device, and moving object
CN113252020A (en) * 2020-01-24 2021-08-13 精工爱普生株式会社 Physical quantity detection circuit, physical quantity sensor, and failure diagnosis method for physical quantity sensor
CN113252020B (en) * 2020-01-24 2023-12-22 精工爱普生株式会社 Physical quantity detection circuit, physical quantity sensor, and fault diagnosis method for physical quantity sensor

Also Published As

Publication number Publication date
JP5251667B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5251667B2 (en) Electronic components
JP5206409B2 (en) Angular velocity sensor
JP4899781B2 (en) Capacitive mechanical quantity detector
US8001840B2 (en) Oscillation type gyro sensor, control circuit, electronic apparatus, and method of manufacturing an oscillation type gyro sensor
JP2009075097A (en) Capacitive physical quantity detector
US8136398B2 (en) Vibration gyro sensor, control circuit, and electronic apparatus
CN104949666A (en) Physical quantity detecting device, electronic apparatus, and moving object
JP2017090208A (en) Physical quantity detection circuit, electronic apparatus, and mobile body
WO2009125589A1 (en) Inertia force sensor
JP6788962B2 (en) Diagnostic circuits, electronic circuits, electronic devices and mobiles
CN111490788B (en) Physical quantity detection circuit, physical quantity sensor, electronic device, and physical quantity detection method
US10352700B2 (en) Gyro sensor and electronic apparatus
JP2009250744A (en) Inertial sensor
JP6222423B2 (en) Physical quantity sensor, electronic device and moving object
JP5245246B2 (en) Inertial force sensor
JP5245247B2 (en) Inertial force sensor
JP6731235B2 (en) Composite switch circuit, physical quantity detection device, electronic device and mobile unit
KR20160061814A (en) Inertial sensor module
JP2006345237A (en) Sensor signal processing circuit
WO2010073576A1 (en) Angular velocity sensor
JP5671699B2 (en) Angular velocity sensor device
JP2017090209A (en) Physical quantity detection circuit, electronic apparatus, and mobile body
CN108351210B (en) Physical quantity detection device, electronic apparatus, and moving object
JPWO2016035277A1 (en) Angular velocity sensor element
JP6471467B2 (en) Mechanical quantity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20120313

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R151 Written notification of patent or utility model registration

Ref document number: 5251667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees