JP2010228440A - Low elasticity resin film, and method and apparatus for manufacturing the same - Google Patents

Low elasticity resin film, and method and apparatus for manufacturing the same Download PDF

Info

Publication number
JP2010228440A
JP2010228440A JP2010029102A JP2010029102A JP2010228440A JP 2010228440 A JP2010228440 A JP 2010228440A JP 2010029102 A JP2010029102 A JP 2010029102A JP 2010029102 A JP2010029102 A JP 2010029102A JP 2010228440 A JP2010228440 A JP 2010228440A
Authority
JP
Japan
Prior art keywords
resin film
conveyor belt
film
resin material
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010029102A
Other languages
Japanese (ja)
Other versions
JP5410324B2 (en
Inventor
Atsushi Kaneko
篤 金子
Keisuke Sawada
啓介 澤田
Yukihisa Ohi
幸久 大朏
Hitoshi Sugiyama
斉 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CI Kasei Co Ltd
Original Assignee
CI Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CI Kasei Co Ltd filed Critical CI Kasei Co Ltd
Priority to JP2010029102A priority Critical patent/JP5410324B2/en
Priority to CN201010125557.XA priority patent/CN101826568B/en
Publication of JP2010228440A publication Critical patent/JP2010228440A/en
Application granted granted Critical
Publication of JP5410324B2 publication Critical patent/JP5410324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low elasticity resin film which substantially does not expand and contract even by reheating when sticking to other raw material when a solar cell is manufactured. <P>SOLUTION: In the low elasticity resin film 100 which is to be subjected to both sides embossing, one side 15a is embossed by heating a resin raw material 15 extruded in a film-shape on a conveyance belt 11 where embossment is formed, together with the conveyance belt 11, and another side 15b is embossed by pressurizing the resin raw material 15 with a cooling roller 21 where embossment is formed. Thus, both side embossing is carried out. The low elasticity resin film 100 can be obtained by delivering the conveyance belt 11 with embossing performed, extruding the resin raw material 15 onto the conveyance belt 11, heating the film-shaped resin raw material 15 together with the conveyance belt 11, subjecting the film to embossing together with the one side 15a while pressurizing the film from another side 15b with the cooling roller 21, separating the film from the conveyance belt 11 after finish of cooling and then separately winding up only the low elasticity resin film 100 with both sides embossed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、低伸縮性樹脂フィルム及びその製造方法並びに製造装置に関する。   The present invention relates to a low stretch resin film, a manufacturing method thereof, and a manufacturing apparatus.

光学フィルムや機能性フィルム等の樹脂フィルムを製作するには、加熱溶融された樹脂材料を、金型(ダイ)より押し出すとともに、テンションをかけて引っ張り、巻き取って製品とするのが一般的である。T−ダイ成形法では、剥離紙上に溶融樹脂をT−ダイより押し出し、加圧ローラにて剥離紙とともに引っ張り、成形時の押し出しスピードを早めることで所望の厚さに成形し同時に冷却も行って、その後剥離紙から剥がしながら巻き取る(例えば、特許文献1参照)。   In order to produce resin films such as optical films and functional films, it is common to extrude the heat-melted resin material from a die (die), pull it under tension and wind it up to make a product. is there. In the T-die molding method, the molten resin is extruded onto the release paper from the T-die, pulled together with the release paper with a pressure roller, and formed into a desired thickness by increasing the extrusion speed at the time of molding, and simultaneously cooled. Then, it is wound up while being peeled off from the release paper (see, for example, Patent Document 1).

このようにして得られる樹脂フィルムの一つには、例えば太陽電池の封止膜用EVAフィルムがある。太陽電池は、一般に、表面側透明保護部材としてのガラス基板と裏面側保護部材(バックカバー)との間にEVAフィルムの封止膜により、シリコン発電素子等の太陽電池用セルを封止した構成とされる。すなわち、ガラス基板、封止膜用EVAフィルム、シリコン発電素子、封止膜用EVAフィルム及びバックカバーをこの順で積層し、加熱加圧して、EVAを架橋硬化させて接着一体化することにより製造される。封止膜用EVAフィルムは、溶融樹脂を、口金である直線状スリットを有するダイから押し出し、冷却ロール等で急冷固化して得られる。この種の樹脂フィルムでは、太陽電池製造時などのハンドリング性の改良やエア逃げを向上させることによる加熱接着性の改良を目的とし、エンボス加工を施し、表面に凹凸を付与することが行われる。   One example of the resin film thus obtained is an EVA film for a sealing film of a solar cell, for example. In general, a solar cell has a configuration in which solar cell cells such as silicon power generation elements are sealed between a glass substrate as a front surface side transparent protective member and a back surface side protective member (back cover) with an EVA film sealing film. It is said. In other words, a glass substrate, an EVA film for sealing film, a silicon power generation element, an EVA film for sealing film, and a back cover are laminated in this order, heated and pressurized, and EVA is crosslinked and cured to be bonded and integrated. Is done. The EVA film for sealing film is obtained by extruding a molten resin from a die having a linear slit as a die and rapidly cooling and solidifying with a cooling roll or the like. In this type of resin film, embossing is performed to give unevenness to the surface for the purpose of improving handling properties at the time of manufacturing solar cells and improving heat adhesion by improving air escape.

樹脂フィルムとして、エンボス加工を施す場合、特に、両面エンボスの樹脂フィルムを製作する一つの方法として、剥離紙にエンボスが施されており、これにフィルム素材が重ねられて加圧ローラに通される。また、加圧ローラの片側にもエンボスが施されており、これらによって、両面にエンボスが形成され、冷却された後に巻き取られる。エンボス加工の施された樹脂フィルムは、ガラス面などに積層状に貼着される際、エアが抜けやすく、加熱接着性を向上させることができた。   When embossing is performed as a resin film, in particular, as one method for producing a double-sided embossed resin film, the release paper is embossed, and the film material is superimposed on this and passed through a pressure roller. . In addition, embossing is also performed on one side of the pressure roller, whereby embossing is formed on both sides, and the film is wound after being cooled. When the embossed resin film was laminated on a glass surface or the like, air was easily removed and the heat adhesiveness could be improved.

特公平1−52428号公報Japanese Patent Publication No. 1-52428

しかしながら、樹脂フィルムをガラス基板等と一体化する貼着は、一般的に、加熱して接着する工程であり、この加熱によって、樹脂フィルムが製作時に有している歪み、すなわちテンションを加えて巻き取ったことによる巻き取り方向の伸びに起因する内部歪みにより、縮む(収縮する)方向へ変形が起こる。なお、樹脂フィルムの形成方向とは直交する幅方向である巻き取り軸方向では樹脂フィルム製作時に縮む内部歪みを受けているので、再加熱時には伸びる方向に働くが、その値は小さいことから略無視できる。
太陽電池製造などに際しての従来の貼着工程では、成形不良を回避するため、収縮率を考えて加熱接着が行われていた。このため、ガラス基板と樹脂フィルムを重ねたときに、ガラスの表面積よりも、樹脂フィルムを巻取方向に長くカットし、縮むことを考慮した煩雑な接着工程が必要となった。また、上記した太陽電池のように通電構成を備える場合、回路形成層と樹脂フィルムが重ねられることから、収縮量が大きいと回路を切断し、製品に欠陥を生じさせる虞があった。
However, bonding to integrate a resin film with a glass substrate or the like is generally a process of heating and bonding, and this heating causes the resin film to have a distortion at the time of production, that is, to apply a tension to be wound. Deformation occurs in the shrinking (shrinking) direction due to internal strain caused by the elongation in the winding direction. In addition, the winding axis direction, which is the width direction orthogonal to the resin film forming direction, is subjected to an internal strain that shrinks during the production of the resin film. it can.
In a conventional sticking process for manufacturing a solar cell or the like, heat bonding is performed in consideration of a shrinkage rate in order to avoid molding defects. For this reason, when the glass substrate and the resin film are overlapped, a complicated bonding process is required in consideration of cutting and shrinking the resin film longer in the winding direction than the surface area of the glass. Further, when the energization structure is provided as in the above-described solar cell, the circuit forming layer and the resin film are overlapped, so that there is a possibility that the circuit is cut when the contraction amount is large, thereby causing a defect in the product.

本発明は上記状況に鑑みてなされたもので、太陽電池製造などに際しての貼着時の加熱接着によっても実質的に寸法変化しない低伸縮性樹脂フィルム及びその製造方法並びに製造装置を提供することを目的とする。   The present invention has been made in view of the above situation, and provides a low-stretch resin film that does not substantially change in dimensions even by heat-adhesion at the time of sticking when manufacturing a solar cell, a manufacturing method thereof, and a manufacturing apparatus. Objective.

次に、上記の課題を解決するための手段を、実施の形態に対応する図面を参照して説明する。
本発明の請求項1記載の低伸縮性樹脂フィルムは、少なくとも片面にエンボス加工の施される低伸縮性樹脂フィルム100であって、
無端ベルトよりなる搬送ベルト11上にフィルム状となって押し出された樹脂素材15を前記搬送ベルト11と共に加熱して溶融状態とし、エンボスの形成された冷却ローラ21にて加圧されてエンボス加工されたことを特徴とする。
Next, means for solving the above problems will be described with reference to the drawings corresponding to the embodiments.
The low stretch resin film according to claim 1 of the present invention is a low stretch resin film 100 embossed on at least one side,
The resin material 15 extruded in the form of a film on the conveying belt 11 made of an endless belt is heated together with the conveying belt 11 to be in a molten state, and is pressed by the cooling roller 21 on which embossing is formed and embossed. It is characterized by that.

この低伸縮性樹脂フィルムでは、樹脂素材15の搬送ベルト11上での溶融が可能となり、押し出されたフィルム状の樹脂素材の内部歪みを除去でき、また搬送ベルト11に加えられた巻架張力での搬送が行え、製造時に樹脂素材15に加わるテンションが大幅に低減される。これらにより巻き取り方向の伸びに起因する内部歪み(応力)が蓄積されなくなる。   With this low stretch resin film, the resin material 15 can be melted on the transport belt 11, the internal distortion of the extruded film-shaped resin material can be removed, and the winding tension applied to the transport belt 11 can be removed. The tension applied to the resin material 15 during manufacturing can be greatly reduced. As a result, internal strain (stress) caused by elongation in the winding direction is not accumulated.

請求項2記載の低伸縮性樹脂フィルムは、請求項1記載の低伸縮性樹脂フィルムにおいて、前記搬送ベルト11に、エンボスが形成されていることを特徴とする。   The low stretchable resin film according to claim 2 is the low stretchable resin film according to claim 1, wherein an emboss is formed on the transport belt 11.

この低伸縮性樹脂フィルムによれば、搬送ベルト11と冷却ローラ21とで両面にエンボス加工が施されることとなる。   According to this low stretchable resin film, both sides are embossed by the conveyor belt 11 and the cooling roller 21.

請求項3記載の低伸縮性樹脂フィルムは、太陽電池封止用であることを特徴とする。   The low stretchable resin film according to claim 3 is for sealing solar cells.

請求項4記載の低伸縮性樹脂フィルムの製造方法は、少なくとも片面にエンボス加工の施される低伸縮性樹脂フィルムの製造方法であって、
無端ベルトよりなる搬送ベルト11を巻回駆動し、
樹脂素材15をダイ39よりフィルム状にして該搬送ベルト11上に押し出し、
フィルム状樹脂素材15を搬送ベルト11ごと加熱し該搬送ベルト11上で溶融状態とし、
前記フィルム状樹脂素材15をエンボスの形成された冷却ローラ21にて加圧することで、該冷却ローラ21のエンボスにてエンボス加工を施し、
前記搬送ベルト11による搬送とともに前記フィルム状樹脂素材15を冷却し、
冷却完了後となる前記搬送ベルト11による搬送終端部11bにて、該搬送ベルト11から搬出され離間したエンボス加工済みの低伸縮性樹脂フィルム100のみを巻き取ることを特徴とする。
The method for producing a low stretch resin film according to claim 4 is a method for producing a low stretch resin film that is embossed on at least one side,
The conveyor belt 11 made of an endless belt is wound and driven,
The resin material 15 is formed into a film from the die 39 and extruded onto the conveyor belt 11,
The film-like resin material 15 is heated together with the conveyor belt 11 to be in a molten state on the conveyor belt 11,
By pressing the film-like resin material 15 with the cooling roller 21 on which the emboss is formed, embossing is performed with the embossing of the cooling roller 21,
The film-like resin material 15 is cooled along with the conveyance by the conveyance belt 11,
Only the embossed low-stretch resin film 100 unloaded and separated from the conveyor belt 11 is taken up at the conveyance terminal end 11b of the conveyor belt 11 after the cooling is completed.

この低伸縮性樹脂フィルムの製造方法では、所定張力により巻回駆動される搬送ベルト11が利用され、その上面でテンションが作用しないようにして樹脂素材15を溶融状態とし、エンボス加工が施される。搬送ベルト11に載置状態のままで成形が完了し、成形後、すなわち軟化状態における伸びが生じなくなった後に搬送ベルト11から離間され、製品のみが別途巻き取られる。   In this method of manufacturing a low stretchable resin film, a conveyor belt 11 that is wound and driven by a predetermined tension is used, and the resin material 15 is melted and embossed so that no tension acts on the upper surface thereof. . Molding is completed while being placed on the conveyor belt 11, and after molding, that is, after elongation in the softened state does not occur, the molding is separated from the conveyor belt 11 and only the product is separately wound.

請求項5記載の低伸縮性樹脂フィルムの製造方法は、請求項4記載の低伸縮性樹脂フィルムの製造方法であって、
前記搬送ベルト11は、エンボスが形成されており、
該エンボス上に前記樹脂素材を押し出すことを特徴とする。
The method for producing a low stretch resin film according to claim 5 is a method for producing a low stretch resin film according to claim 4,
The conveyor belt 11 is formed with an emboss.
The resin material is extruded onto the emboss.

この低伸縮性樹脂フィルムの製造方法では、搬送ベルト11のエンボスにより、冷却ローラ21のエンボスとともに、両面にエンボスが形成される低伸縮性樹脂フィルムが得られる。   In this method for producing a low-stretch resin film, a low-stretch resin film in which embosses are formed on both surfaces together with the emboss of the cooling roller 21 is obtained by embossing the conveyor belt 11.

請求項6記載の低伸縮性樹脂フィルムの製造方法は、請求項4又は5記載の低伸縮性樹脂フィルムの製造方法であって、前記搬送ベルト11上に樹脂素材を押し出す以前に、前記搬送ベルト11に対して加熱処理を行うことを特徴とする。   The method for producing a low stretchable resin film according to claim 6 is the method for producing a low stretchable resin film according to claim 4 or 5, wherein before the resin material is extruded onto the carry belt 11, the carry belt. 11 is heat-treated.

この低伸縮性樹脂フィルムの製造方法では、搬送ベルト11上に樹脂素材が押し出される以前に、搬送ベルト11を予め加熱しておくことができ、押し出された直後の樹脂素材が搬送ベルト11によって冷却されないようになる。   In this low stretch resin film manufacturing method, the transport belt 11 can be heated in advance before the resin material is extruded onto the transport belt 11, and the resin material immediately after being extruded is cooled by the transport belt 11. Will not be.

請求項7記載の低伸縮性樹脂フィルムの製造装置は、低伸縮性樹脂フィルムの製造装置200であって、
無端ベルトよりなる搬送ベルト11を巻回駆動する搬送ベルト駆動部13と、
前記搬送ベルト11上に樹脂素材15をフィルム状に押し出す押し出し成形部17と、
該押し出し成形部17の後段に設けられ前記搬送ベルト11上の樹脂素材15を溶融状態とする加熱部19と、
該加熱部19の後段に設けられ樹脂素材15の面にエンボスの形成された冷却ローラ21を加圧する加圧ローラ成形部23と、
前記搬送ベルト11とともに該搬送ベルト11上に成形されたフィルム状の樹脂素材を冷却する冷却部25と、
前記搬送ベルト11から搬出され該搬送ベルト11から剥離されて離間したエンボス加工済みの低伸縮性樹脂フィルム100のみを巻き取る製品巻き取り部29と、
を具備したことを特徴とする。
The apparatus for producing a low stretch resin film according to claim 7 is a production apparatus 200 for a low stretch resin film,
A conveyance belt drive unit 13 for winding and driving a conveyance belt 11 made of an endless belt;
An extrusion molding part 17 for extruding the resin material 15 into a film on the conveyor belt 11;
A heating unit 19 provided in a subsequent stage of the extrusion molding unit 17 to bring the resin material 15 on the conveyor belt 11 into a molten state;
A pressure roller molding unit 23 that pressurizes a cooling roller 21 that is provided at a subsequent stage of the heating unit 19 and has an emboss formed on the surface of the resin material 15;
A cooling unit 25 that cools the film-shaped resin material formed on the conveyor belt 11 together with the conveyor belt 11;
A product take-up unit 29 for taking up only the embossed low-stretch resin film 100 unloaded from the transport belt 11 and separated from the transport belt 11;
It is characterized by comprising.

この低伸縮性樹脂フィルムの製造装置では、搬送ベルト駆動部13によって巻回駆動される搬送ベルト11上に、樹脂素材15が載置され、搬送ベルト11とともに樹脂素材15が加熱溶融され、加圧ローラ成形部23及び冷却部25にて製品とされて、軟化状態における伸びが生じなくなった後に、搬送ベルト11は搬送方向が切り換えられることとなり、製品である樹脂フィルム100のみが巻き取られる。   In this low stretchable resin film manufacturing apparatus, a resin material 15 is placed on a conveyor belt 11 that is wound and driven by a conveyor belt drive unit 13, and the resin material 15 is heated and melted together with the conveyor belt 11 to be pressurized. After being made into a product in the roller molding part 23 and the cooling part 25 and no longer being stretched in the softened state, the transporting direction of the transport belt 11 is switched, and only the resin film 100 that is the product is wound.

請求項8記載の低伸縮性樹脂フィルムの製造装置は、請求項7記載の低伸縮性樹脂フィルムの製造装置200であって、
前記搬送ベルト11にはエンボスが形成され、該エンボス上に樹脂素材を押し出すことを特徴とする。
The low stretch resin film manufacturing apparatus according to claim 8 is the low stretch resin film manufacturing apparatus 200 according to claim 7,
The conveyor belt 11 is formed with embossing, and a resin material is extruded onto the embossing.

この低伸縮性樹脂フィルムの製造装置では、搬送ベルト11上に載置された樹脂素材15が、搬送ベルト11に形成されたエンボスによってエンボス面を形成されることとなり、冷却ローラ21とで、両面にエンボスが形成されることとなる。   In this low stretchable resin film manufacturing apparatus, the resin material 15 placed on the conveyor belt 11 is formed with an embossed surface by the embossing formed on the conveyor belt 11, and the cooling roller 21 and the embossed surface are both surfaces. An emboss is formed on the surface.

請求項9記載の低伸縮性樹脂フィルムの製造装置は、請求項7又は8記載の低伸縮性樹脂フィルムの製造装置200であって、
前記押し出し成形部17に向かう前記搬送ベルト11に対し前記押し出し成形部17の前段にて加熱処理を行う加熱処理部33を具備することを特徴とする。
The low stretch resin film manufacturing apparatus according to claim 9 is the low stretch resin film manufacturing apparatus 200 according to claim 7 or 8,
The heat treatment part 33 which heat-processes in the front | former stage of the said extrusion part 17 with respect to the said conveyance belt 11 which goes to the said extrusion part 17 is characterized by the above-mentioned.

この低伸縮性樹脂フィルムの製造装置では、搬送ベルト11上に樹脂素材が押し出される以前に、搬送ベルト11を予め加熱処理部33にて加熱しておくことができ、押し出し成形部17から押し出された直後の樹脂素材が搬送ベルト11上にて冷却されることがない。   In this low stretchable resin film manufacturing apparatus, before the resin material is extruded onto the conveyor belt 11, the conveyor belt 11 can be heated in advance by the heat treatment unit 33 and is extruded from the extrusion molding unit 17. The resin material immediately after is not cooled on the conveyor belt 11.

請求項10記載の低伸縮性樹脂フィルムの製造装置は、請求項7,8,9のいずれか1つに記載の低伸縮性樹脂フィルムの製造装置200Aであって、
前記搬送ベルト11は、前記樹脂素材15を前記押し出し成形部17から前記加圧ローラ成形部23へ搬送させる加熱側搬送ベルト11Aと、エンボス加工後の前記樹脂素材15を搬送する冷却側搬送ベルト11Bとで構成されることを特徴とする。
The low stretch resin film manufacturing apparatus according to claim 10 is the low stretch resin film manufacturing apparatus 200A according to any one of claims 7, 8, and 9, wherein
The transport belt 11 includes a heating-side transport belt 11A that transports the resin material 15 from the extrusion molding unit 17 to the pressure roller molding unit 23, and a cooling-side transport belt 11B that transports the resin material 15 after embossing. It is comprised by these.

この低伸縮性樹脂フィルムの製造装置では、加熱される個所においては加熱側搬送ベルト11Aにて搬送され、冷却される個所においては冷却側搬送ベルト11Bにて搬送されることとなる。そして、各処理に適応した材質よりなるベルトを選択構成できる。   In this low stretchable resin film manufacturing apparatus, the heated part is transported by the heating-side transport belt 11A and the cooled part is transported by the cooling-side transport belt 11B. A belt made of a material suitable for each process can be selected and configured.

本発明に係る請求項1記載の低伸縮性樹脂フィルムによれば、搬送ベルト上にフィルム状となって押し出された樹脂素材を、搬送ベルト上で溶融状態とし、エンボスの形成された冷却ローラにて加圧してエンボス加工されるので、樹脂素材が搬送ベルト上で溶融状態とされ、押し出されたフィルム状の樹脂素材の内部歪みを除去でき、この搬送ベルトによる巻回駆動によって内部歪みが加えられない状態で、搬送することができ、製造時に樹脂素材に加わるテンションが低減可能となる。この結果、成形された樹脂フィルムは内部歪みが非常に小さい製品となり、太陽電池製造の際などで、再加熱による収縮は実質的になくなり、寸法精度を向上させることができる。ここで、実質的に収縮がないとは、再加熱したときの当該樹脂フィルムの収縮率が10%以下であることを意味する。好ましくは、樹脂フィルムの収縮率が8%以下であり、6%以下であれば、さらに好ましい。   According to the low stretchable resin film of the first aspect of the present invention, the resin material extruded in the form of a film on the transport belt is melted on the transport belt, and the embossed cooling roller is formed. Since the resin material is melted on the conveyor belt and the internal distortion of the extruded film-like resin material can be removed, the internal distortion is applied by the winding drive by the conveyor belt. It can be transported in the absence of tension, and the tension applied to the resin material during manufacturing can be reduced. As a result, the molded resin film becomes a product with very small internal strain, and shrinkage due to reheating is substantially eliminated during the production of solar cells, and dimensional accuracy can be improved. Here, “substantially no shrinkage” means that the shrinkage rate of the resin film when reheated is 10% or less. Preferably, the shrinkage rate of the resin film is 8% or less, and more preferably 6% or less.

請求項2記載の低伸縮性樹脂フィルムによれば、搬送ベルトにエンボス加工が施されていることで、この搬送ベルトと冷却ローラのエンボスとで、両面にエンボス加工が施された低伸縮性樹脂フィルムが得られる。   According to the low stretchable resin film according to claim 2, the embossing is applied to the transport belt, and the low stretchable resin is embossed on both sides by the transport belt and the embossing of the cooling roller. A film is obtained.

請求項3記載の低伸縮性樹脂フィルムによれば、太陽電池封止用として有用である。   According to the low stretchable resin film of Claim 3, it is useful for solar cell sealing.

請求項4記載の低伸縮性樹脂フィルムの製造方法によれば、所定張力により巻回駆動される搬送ベルトが利用され、この搬送ベルト上に樹脂素材を押し出して、フィルム状樹脂素材を搬送ベルトごと加熱し、搬送ベルト上で樹脂素材を溶融状態とすることにより、押し出されたフィルム状の樹脂素材の内部歪みを除去でき、また、冷却ローラにて加圧しながらエンボス加工を施し、冷却完了後に搬送ベルトから離間してエンボス加工済み低伸縮性樹脂フィルムのみを巻き取るので、巻回駆動する搬送ベルトを利用し、その上面でテンションが直接作用しないようにして樹脂素材を引取ることができる。すなわち、搬送ベルトに載置したままの状態で成形が完了し、成形後は搬送ベルトは方向が切り替わって反転し、フィルム状となった製品のみが別途巻き取られる。これにより、従来の製造方法によるような押し出されたフィルム状の樹脂素材の内部歪み、或いは、テンションを加えて巻き取ることによる巻き取り方向の伸びに起因する内部歪みの発生が低減され、すなわち低伸縮率の樹脂フィルムを得ることができる。   According to the method for producing a low-stretch resin film according to claim 4, a conveyor belt that is wound and driven by a predetermined tension is used, and the resin material is extruded onto the conveyor belt, so that the film-shaped resin material is transferred to the conveyor belt. By heating and making the resin material in a molten state on the conveyor belt, the internal distortion of the extruded film-like resin material can be removed. Since only the embossed low-stretch resin film is taken up apart from the belt, the resin material can be taken up by using a conveying belt driven by winding so that the tension does not act directly on the upper surface. In other words, the molding is completed while being placed on the conveyor belt, and after the molding, the direction of the conveyor belt is switched and reversed, and only the film-like product is separately wound. This reduces the occurrence of internal distortion of the extruded film-like resin material as in the conventional manufacturing method, or internal distortion due to elongation in the winding direction due to winding by applying tension, that is, low A stretchable resin film can be obtained.

請求項5記載の低伸縮性樹脂フィルムの製造方法によれば、搬送ベルトに形成されたエンボスにより、冷却ローラのエンボスとともに、両面にエンボスが形成される低伸縮性樹脂フィルムを得ることが可能となる。   According to the method for producing a low stretchable resin film according to claim 5, it is possible to obtain a low stretchable resin film in which embossing is formed on both sides together with embossing of the cooling roller by embossing formed on the conveyor belt. Become.

請求項6記載の低伸縮性樹脂フィルムの製造方法によれば、搬送ベルト上に樹脂素材が押し出される以前に、搬送ベルトを予め加熱しておくことができ、押し出された直後の樹脂素材が搬送ベルトにて冷却されてしまうことがなくなる。   According to the method for producing a low stretchable resin film according to claim 6, the conveyor belt can be heated in advance before the resin material is extruded onto the conveyor belt, and the resin material immediately after being extruded is conveyed. It is no longer cooled by the belt.

請求項7記載の低伸縮性樹脂フィルムの製造装置によれば、搬送ベルトを巻回駆動する搬送ベルト駆動部と、搬送ベルト上に樹脂素材をフィルム状に押し出す押し出し成形部と、押し出し成形部の後段に設けられ搬送ベルト上の樹脂素材を加熱する加熱部と、加熱部の後段に設けられ樹脂素材の面に冷却ローラを加圧する加圧ローラ成形部と、成形されるフィルム状樹脂素材を冷却する冷却部と、エンボス加工済みの低伸縮性樹脂フィルムを巻き取る製品巻き取り部とを備えたので、巻回駆動する搬送ベルト上に、樹脂素材を載置して加熱状態を維持し、加圧ローラ成形部にて製品とした後、搬送ベルトから剥がして、製品である樹脂フィルムのみを巻き取ることができ、すなわち、搬送ベルトは押し出し成形部から製品巻き取り部までの間で樹脂フィルムの搬送を行うこととなって、樹脂素材から樹脂フィルムへと成形される過程において、溶融状態で押し出されたフィルム状の樹脂素材の内部歪みを除去でき、また、樹脂フィルム自体に張力がほとんど加わらず巻き取れるので、これにより、内部歪みの発生を低減させ、低伸縮率の樹脂フィルムを製造できる。   According to the low stretch resin film manufacturing apparatus according to claim 7, a conveyor belt drive unit that winds and drives the conveyor belt, an extrusion molding unit that extrudes a resin material in a film shape on the conveyor belt, and an extrusion molding unit A heating unit that is provided in the subsequent stage and heats the resin material on the conveyor belt, a pressure roller molding unit that is provided in the subsequent stage of the heating unit and presses the cooling roller against the surface of the resin material, and cools the film-like resin material to be molded A cooling part to be wound and a product take-up part to wind up the embossed low-stretch resin film, so that the resin material is placed on the conveyor belt to be wound and maintained in a heated state. After making the product in the pressure roller molding part, it can be peeled off from the conveyor belt, and only the resin film that is the product can be taken up, that is, the conveyor belt is between the extrusion part and the product take-up part. In the process of forming the resin film from the resin material, the internal distortion of the film-like resin material extruded in a molten state can be removed, and the resin film itself has a tension. Since it can be wound up with almost no application, it is possible to reduce the occurrence of internal strain and to produce a resin film with a low expansion / contraction rate.

請求項8記載の低伸縮性樹脂フィルムの製造装置によれば、搬送ベルトに、エンボスが形成されているので、この搬送ベルト上に載置された樹脂素材にエンボスを転写成形でき、冷却ローラとで、両面にエンボスが形成される樹脂フィルムを得ることが可能となる。   According to the apparatus for producing a low stretchable resin film according to claim 8, since the emboss is formed on the conveyor belt, the emboss can be transferred and molded on the resin material placed on the conveyor belt, Thus, it is possible to obtain a resin film in which embossing is formed on both sides.

請求項9記載の低伸縮性樹脂フィルムの製造装置によれば、搬送ベルト上に樹脂素材が押し出される以前に、搬送ベルトを予め加熱処理部にて加熱しておくことができ、押し出し成形部から押し出された直後の樹脂素材が、搬送ベルト上にて冷却されることがない。   According to the apparatus for producing a low stretch resin film according to claim 9, before the resin material is extruded onto the conveyor belt, the conveyor belt can be preheated in the heat treatment unit, and the extrusion molding unit can The resin material immediately after being extruded is not cooled on the conveyor belt.

請求項10記載の低伸縮性樹脂フィルムの製造装置によれば、搬送ベルトを、加熱側搬送ベルトと冷却側搬送ベルトとで別体構成としたので、加熱処理が行われる加熱部においては加熱に対応するベルトで構成でき、冷却処理される冷却部においては冷却に対して良好なベルトで構成することが可能となる。   According to the apparatus for producing a low-stretch resin film according to claim 10, since the transport belt is configured as a separate body for the heating-side transport belt and the cooling-side transport belt, heating is performed in the heating section where the heat treatment is performed. It can be configured with a corresponding belt, and a cooling part to be cooled can be configured with a belt that is good for cooling.

本発明に係る低伸縮性樹脂フィルムの製造装置を概念的に表した構成図である。It is the block diagram which represented notionally the manufacturing apparatus of the low elastic resin film which concerns on this invention. 本発明に係る他の実施の形態の低伸縮性樹脂フィルムの製造装置を概念的に表した構成図である。It is the block diagram which represented notionally the manufacturing apparatus of the low stretchable resin film of other embodiment which concerns on this invention. 本発明に係る他の実施の形態の低伸縮性樹脂フィルムの製造装置を概念的に表した構成図である。It is the block diagram which represented notionally the manufacturing apparatus of the low stretchable resin film of other embodiment which concerns on this invention. 本発明に係る他の実施の形態の低伸縮性樹脂フィルムの製造装置を概念的に表した構成図である。It is the block diagram which represented notionally the manufacturing apparatus of the low stretchable resin film of other embodiment which concerns on this invention.

以下、本発明に係る低伸縮性樹脂フィルム及びその製造方法並びに製造装置の好適な実施の形態について図面を参照して詳細に説明する。
図1は、本発明に係る低伸縮性樹脂フィルムの製造装置を概念的に表した構成図である。
低伸縮性樹脂フィルム100は、少なくとも片面にエンボス加工の施される樹脂フィルムであって、搬送ベルト上にフィルム状となって押し出された樹脂素材を搬送ベルトと共に加熱して溶融状とし、エンボスの形成された冷却ローラにて加圧されてエンボス加工されて成る。なお、本実施の形態による低伸縮性樹脂フィルム100は、両面にエンボスが形成されており、すなわち、一方の面は、エンボスの形成された搬送ベルトにより形成され、他方の面は、冷却ローラに形成されたエンボスによって形成され、これら搬送ベルトと冷却ローラとによって加圧によりエンボス加工されて成る。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a low stretch resin film, a production method thereof, and a production apparatus according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration diagram conceptually showing a low stretch resin film manufacturing apparatus according to the present invention.
The low stretchable resin film 100 is a resin film that is embossed on at least one surface, and the resin material extruded in a film shape on the transport belt is heated together with the transport belt to form a melted state. It is pressed and embossed by the formed cooling roller. The low stretch resin film 100 according to the present embodiment has embossed on both sides, that is, one surface is formed by a conveyor belt on which emboss is formed, and the other surface is on a cooling roller. It is formed by the formed embossing, and is embossed by pressurization with these conveying belts and cooling rollers.

樹脂素材は、搬送ベルトに貼着することが条件であり、例えば、エチレン酢酸ビニル共重合体(EVA)の他、ポリビニルブチラール、エチレン−アクリル酸エステル共重合体、ポリ塩化ビニル(PVC)である軟質塩ビ等を好適に用いることができる。低伸縮性樹脂フィルム100は、例えば、太陽電池の封止膜として用いられる。上記のように、太陽電池は、ガラス基板とバックカバーとの間に封止膜により太陽電池用セルを封止した構成とされる。本低伸縮性樹脂フィルム100を用いた太陽電池は、ガラス基板、低伸縮性樹脂フィルム100、シリコン発電素子、低伸縮性樹脂フィルム100及びバックカバーをこの順で積層し、加熱加圧して、EVAを架橋硬化させて接着一体化することにより製造される。   The resin material is required to be adhered to the conveyor belt, and is, for example, polyvinyl butyral, ethylene-acrylate copolymer, polyvinyl chloride (PVC) in addition to ethylene vinyl acetate copolymer (EVA). Soft vinyl chloride etc. can be used conveniently. The low stretchable resin film 100 is used, for example, as a sealing film for solar cells. As described above, the solar cell has a configuration in which the solar cell is sealed with the sealing film between the glass substrate and the back cover. The solar cell using the low stretchable resin film 100 includes a glass substrate, a low stretchable resin film 100, a silicon power generation element, a low stretchable resin film 100, and a back cover which are laminated in this order, heated and pressurized, and EVA. It is manufactured by cross-linking and curing and integrating.

例えば、太陽電池の封止材として使用される低伸縮性樹脂フィルム100の厚みは200μm〜1,000μmであるのが一般的であり、この場合、太陽電池製造時のハンドリング性改良とエア逃げが良好となることにより、接着性を向上させる目的でエンボス加工が施され、表面に凹凸が付与されている。エンボス加工による深さ(凹凸間の高低差)は、15μm以上、500μm以下とするのが好ましい。深さが過度に大きいと封止時に空気を巻き込み、積層物間に空気が残留し易くなるためである。エンボス加工はフィルムの片面にのみ施しても、両面に施しても良い。フィルムの両面にエンボス加工を行う場合には、片面のエンボス加工の深さが15〜300μmで、両面の合計が30〜600μmであることが好ましい。また、低伸縮性樹脂フィルムの厚さに対するエンボス加工による深さの割合は、5〜50%であることが好ましい。当該割合が10%以上であれば、低伸縮性樹脂フィルムがブロッキングを起こしにくく、太陽電池製造時のエア逃げが良好である。当該割合が50%以下であれば、低伸縮性樹脂フィルムの強度を保持することができる。   For example, the thickness of the low stretchable resin film 100 used as a sealing material for solar cells is generally 200 μm to 1,000 μm. In this case, improvement in handling property and air escape during solar cell production are achieved. By being good, it is embossed for the purpose of improving adhesiveness, and unevenness is imparted to the surface. The depth by embossing (the difference in height between the irregularities) is preferably 15 μm or more and 500 μm or less. This is because if the depth is excessively large, air is entrained during sealing, and air tends to remain between the laminates. Embossing may be performed only on one side of the film or on both sides. When embossing is performed on both sides of the film, the embossing depth on one side is preferably 15 to 300 μm, and the total on both sides is preferably 30 to 600 μm. Moreover, it is preferable that the ratio of the depth by the embossing with respect to the thickness of a low elastic resin film is 5 to 50%. If the ratio is 10% or more, the low stretchable resin film is less likely to cause blocking, and air escape during solar cell production is good. If the said ratio is 50% or less, the intensity | strength of a low-stretchable resin film can be hold | maintained.

本発明で用いられる太陽電池用封止材としてのEVA樹脂組成物は、ラミネート後の物性向上のために架橋剤を配合して架橋構造を持たせるのが望ましい。この架橋剤としては、一般に、1時間半減期温度(分解温度)がEVA樹脂の融点よりも高い、100℃以上の有機過酸化物が用いられる。   The EVA resin composition as a solar cell encapsulant used in the present invention preferably has a crosslinked structure by blending a crosslinking agent in order to improve physical properties after lamination. As this crosslinking agent, generally, an organic peroxide having a one-hour half-life temperature (decomposition temperature) higher than the melting point of EVA resin and 100 ° C. or higher is used.

低伸縮性樹脂フィルム100によれば、一方の面が、エンボスの形成された搬送ベルト上にフィルム状となって押し出された樹脂素材を溶融状態とし押し出されたフィルム状の樹脂素材の内部歪みを除去した後、前記エンボスにてエンボス加工され、他方の面が、エンボスの形成された冷却ローラにて加圧してエンボス加工されるので、樹脂素材を搬送ベルト上で搬送ベルトに加えた張力で搬送でき、製造時に樹脂素材に加わるテンションを低減できる。この結果、内部歪みを少なくし、太陽電池製造時などの再加熱による収縮率を小さくし、寸法安定性を向上させることができる。また、収縮率が小さいので、加熱貼着時の成形不良が減少する。回路などと積層形成する際に、回路を破損することがない。さらに、従来のような収縮歪みを考慮して大きめにカット成形しセットする必要がなく、材料コストを大幅に低減できる。   According to the low-stretchable resin film 100, one surface has an internal distortion of the extruded film-like resin material in a molten state with the resin material extruded as a film on the embossed conveyor belt. After removal, it is embossed with the emboss, and the other surface is embossed with pressure applied by the cooling roller on which the emboss is formed, so the resin material is transported on the transport belt with the tension applied to the transport belt. The tension applied to the resin material during manufacturing can be reduced. As a result, it is possible to reduce the internal strain, reduce the shrinkage rate due to reheating such as when manufacturing a solar cell, and improve the dimensional stability. Moreover, since the shrinkage rate is small, molding defects at the time of heat sticking are reduced. When stacking with a circuit or the like, the circuit is not damaged. Furthermore, it is not necessary to cut and set in a large size in consideration of shrinkage distortion as in the conventional case, and the material cost can be greatly reduced.

次に、上記低伸縮性樹脂フィルム100を製造するための製造装置200について説明する。
低伸縮性樹脂フィルム100の製造装置200は、無端ベルトよりなる搬送ベルト11を所定の張力にて巻回駆動する搬送ベルト駆動部13と、搬送ベルト11上に樹脂素材15をフィルム状に押し出す押し出し成形部17と、押し出し成形部17の後段に設けられ搬送ベルト11上の樹脂素材15を溶融状態とする加熱部19と、加熱部19の後段に設けられ樹脂素材15の他方の面に冷却ローラ21を加圧する加圧ローラ成形部23と、搬送ベルト11とともにこの搬送ベルト11上に成形されたフィルム状の樹脂素材15を冷却する冷却部25と、搬送ベルト11から搬出されこの搬送ベルト11から剥離されて離間し、製品となった低伸縮性樹脂フィルム100を巻き取る製品巻き取り部29と、を主要な構成要件として備える。
Next, the manufacturing apparatus 200 for manufacturing the low stretchable resin film 100 will be described.
The manufacturing apparatus 200 for the low stretchable resin film 100 includes a conveyor belt drive unit 13 that winds and drives the conveyor belt 11 made of an endless belt with a predetermined tension, and an extrusion that extrudes the resin material 15 onto the conveyor belt 11 in a film shape. A molding unit 17, a heating unit 19 that is provided downstream of the extrusion molding unit 17 and that melts the resin material 15 on the transport belt 11, and a cooling roller provided on the other surface of the resin material 15 provided downstream of the heating unit 19 A pressure roller molding unit 23 that pressurizes the sheet 21, a cooling unit 25 that cools the film-shaped resin material 15 molded on the conveyance belt 11 together with the conveyance belt 11, and a conveyance belt 11 that is unloaded from the conveyance belt 11. A product take-up portion 29 that takes up the low-stretchable resin film 100 that has been peeled and separated to become a product is provided as a main component.

搬送ベルト駆動部13は図示しない駆動源にて回転駆動する主ローラ37及び搬送ローラ38を複数備え、無端ベルトよりなる搬送ベルト11を巻回駆動するようになっている。なお、この駆動源は、加圧ローラ成形部23に対しても駆動力を伝えることとしてもよい。後段の加熱部19にて、搬送ベルト11上に載置された樹脂素材15は加熱され溶融状態とされる。樹脂素材15の一方の面、本実施の形態では下面15aは、搬送ベルト11のエンボスによって後段の加圧工程でエンボスが転写成形されるようになっている。押し出し成形部17の前段には、この押し出し成形部17に向かう搬送ベルト11に対して加熱処理を行う加熱処理部33を構成するヒータが配設される。この加熱処理部33は、搬送ベルト11を表裏から挟んだ一対のヒータ33a,33bで構成され、例えば赤外線ヒータ33a,33bにて構成されており、赤外線ヒータ33a,33bは搬送ベルト11を表裏から加熱する。この加熱処理部33においては、搬送ベルト11を、この搬送ベルト11上に押し出される樹脂の温度と同程度とされる。加熱部19での加熱される樹脂素材15の温度は、押し出し成形部17から押し出される樹脂素材の融点に対して+60〜−0℃で設定され、好ましくは、融点に対して+60〜+30℃の範囲とされ、この範囲であれば、押し出しされたフィルム状の樹脂素材の内部応力を除去でき、これより高温であると、架橋剤である有機過酸化物の分解が進み過ぎるので好ましくなく、またこれより低温であると内部応力の除去が不十分となるので好ましくない。   The conveyor belt drive unit 13 includes a plurality of main rollers 37 and conveyor rollers 38 that are rotationally driven by a drive source (not shown), and winds and drives the conveyor belt 11 formed of an endless belt. The driving source may transmit a driving force to the pressure roller molding unit 23. In the subsequent heating unit 19, the resin material 15 placed on the transport belt 11 is heated to a molten state. On one surface of the resin material 15, in this embodiment, the lower surface 15 a is embossed and transferred in a subsequent pressurizing step by embossing of the conveyor belt 11. In front of the extrusion molding unit 17, a heater that constitutes a heating processing unit 33 that performs a heating process on the transport belt 11 that is directed to the extrusion molding unit 17 is disposed. The heat processing unit 33 is composed of a pair of heaters 33a and 33b sandwiching the conveyor belt 11 from the front and back, and is composed of, for example, infrared heaters 33a and 33b. The infrared heaters 33a and 33b hold the conveyor belt 11 from the front and back. Heat. In the heat treatment unit 33, the conveyor belt 11 is set to the same temperature as the resin extruded onto the conveyor belt 11. The temperature of the resin material 15 to be heated in the heating unit 19 is set at +60 to −0 ° C. with respect to the melting point of the resin material extruded from the extrusion molding unit 17, and preferably +60 to + 30 ° C. with respect to the melting point. If it is within this range, the internal stress of the extruded film-like resin material can be removed, and if the temperature is higher than this, the decomposition of the organic peroxide that is a crosslinking agent is not preferable, If the temperature is lower than this, removal of internal stress becomes insufficient, such being undesirable.

なお、この搬送ベルト11は、素材として、ガラス繊維、耐熱樹脂繊維等の織布・不織布に、シリコーン樹脂やフッ素樹脂をコーティングしたベルトや、スチール、ステンレス等の金属製ベルトなどが挙げられる。   In addition, as the material of the transport belt 11, a belt obtained by coating a woven fabric / nonwoven fabric such as glass fiber or heat-resistant resin fiber with a silicone resin or a fluororesin, or a metal belt such as steel or stainless steel may be used.

押し出し成形部17には主ローラ37が設けられ、搬送ベルト11を所定の張力で搬送ベルト駆動部13から繰り出させながら、スリット形状のダイ39から押し出された樹脂素材15を搬送ベルト11上に載置して搬送する。なお、この押し出し成形部17からの樹脂素材15の押し出し速度と、主ローラ37の回転速度で樹脂素材の厚みを決定することとなる。   The extrusion molding unit 17 is provided with a main roller 37, and the resin material 15 extruded from the slit-shaped die 39 is placed on the conveyance belt 11 while the conveyance belt 11 is fed from the conveyance belt drive unit 13 with a predetermined tension. Place and transport. The thickness of the resin material is determined by the extrusion speed of the resin material 15 from the extrusion molding portion 17 and the rotation speed of the main roller 37.

加熱部19には樹脂素材15を上面に載置した搬送ベルト11を、下面から支持しながら搬送する複数の搬送ローラ41が設けられる。加熱部19には搬送ベルト11を挟む上下面側に赤外線ヒータ、ハロゲンヒータ、或いは電気ヒータ等の加熱手段が設けられ、加熱手段は搬送ベルト11上の樹脂素材15を溶融状態とする。上記のように、加熱部19にて、搬送ベルト11上に載置された樹脂素材15を溶融状態とすることで、一方の面15aに搬送ベルト11のエンボスが後段の加圧によって転写成形可能となる。   The heating unit 19 is provided with a plurality of conveyance rollers 41 that convey the conveyance belt 11 on which the resin material 15 is placed on the upper surface while supporting it from the lower surface. The heating unit 19 is provided with heating means such as an infrared heater, a halogen heater, or an electric heater on the upper and lower surfaces sandwiching the conveyance belt 11. The heating means brings the resin material 15 on the conveyance belt 11 into a molten state. As described above, the embossing of the conveyor belt 11 can be transferred and molded on the one surface 15a by the subsequent pressure by bringing the resin material 15 placed on the conveyor belt 11 into a molten state in the heating unit 19. It becomes.

加熱部19の後段に設けられた加圧ローラ成形部23には冷却ローラ21が備えられ、冷却ローラ21はエンボスを外周面に形成している。加熱部19から送られてきた軟化状態の樹脂素材15は、一方の面15aが押圧ローラ43にて押圧されて冷却ローラ21に加圧される。これにより、一方の面15aは搬送ベルト11のエンボスが転写され、加熱部19を通過した軟質状態の樹脂素材15の他方の面、本実施の形態では上面15bに、冷却ローラ21のエンボスが加圧転写される。   The pressure roller molding unit 23 provided at the rear stage of the heating unit 19 is provided with a cooling roller 21, and the cooling roller 21 has an embossed surface on the outer peripheral surface. In the softened resin material 15 sent from the heating unit 19, one surface 15 a is pressed by the pressing roller 43 and pressed by the cooling roller 21. As a result, the emboss of the conveyor belt 11 is transferred to the one surface 15a, and the emboss of the cooling roller 21 is added to the other surface of the soft resin material 15 that has passed through the heating unit 19, that is, the upper surface 15b in this embodiment. Pressure transferred.

冷却部25にはエンボスが形成された冷却ローラ21の接触による冷却に引き続いて樹脂素材15を冷却搬送する複数の搬送ローラ45が設けられている。冷却部25には不図示の冷却ファンを設けてもよく、これら冷却手段によって樹脂素材15が冷却される。   The cooling unit 25 is provided with a plurality of transport rollers 45 for cooling and transporting the resin material 15 following the cooling due to the contact of the cooling roller 21 with the embosses formed thereon. A cooling fan (not shown) may be provided in the cooling unit 25, and the resin material 15 is cooled by these cooling means.

冷却部25の後段となる搬送終端部には一対のピンチローラ47,47が設けられ、搬送ベルト11はピンチローラ47,47から反転、駆動部13方向に逆行し、周回となって再び押し出し成形部17に戻る。ピンチローラ47,47の配置位置より上流側の樹脂素材15は、搬送ベルト11上に載置された状態であり、実質搬送ベルト11のみにテンションが加えられて搬送が行われることになる。したがって、樹脂素材15に物理的な力すなわち張力を加えないため高分子の配向が起こらず、内部歪みが発生しにくい。   A pair of pinch rollers 47, 47 are provided at the conveyance end portion, which is the subsequent stage of the cooling unit 25, and the conveyance belt 11 reverses from the pinch rollers 47, 47, travels backward in the direction of the drive unit 13, and turns to be extruded again. Return to part 17. The resin material 15 on the upstream side from the arrangement position of the pinch rollers 47 and 47 is in a state of being placed on the conveyance belt 11, and the tension is applied only to the substantial conveyance belt 11 and the conveyance is performed. Therefore, since no physical force, i.e., tension, is applied to the resin material 15, the orientation of the polymer does not occur, and internal distortion hardly occurs.

製品巻き取り部29には製品巻き取りローラ51が設けられ、製品巻き取りローラ51は搬送ベルト11が離間された製品としての低伸縮性樹脂フィルム100のみを巻き取る。   A product take-up roller 51 is provided in the product take-up unit 29, and the product take-up roller 51 takes up only the low stretchable resin film 100 as a product from which the transport belt 11 is separated.

このように、製造装置200では、搬送ベルト駆動部13から所定の張力で繰り出される搬送ベルト11上に、樹脂素材15が載置されて加熱溶融され、加圧ローラ成形部23にて製品とされた後、すなわち軟化状態における伸びが生じなくなった後、搬送ベルト11が離間して戻り、製品である低伸縮性樹脂フィルム100のみが巻き取られることになる。したがって、低伸縮性樹脂フィルム100の製造段階では、押し出し成形部17から搬送終端部(ピンチローラ47)11bの間では搬送ベルト11上に載置状態となり、ピンチローラ47と製品巻き取り部29の間でのみ、テンションが加わることとなる。   As described above, in the manufacturing apparatus 200, the resin material 15 is placed on the conveyor belt 11 that is fed with a predetermined tension from the conveyor belt drive unit 13, is heated and melted, and is made into a product by the pressure roller molding unit 23. After that, that is, after the elongation in the softened state does not occur, the conveyor belt 11 is separated and returned, and only the low stretch resin film 100 as a product is wound. Therefore, in the manufacturing stage of the low stretchable resin film 100, it is placed on the transport belt 11 between the extrusion molding portion 17 and the transport end portion (pinch roller 47) 11 b, and the pinch roller 47 and the product take-up portion 29 are placed. Tension will be applied only in between.

次に、上記製造装置を用いた低伸縮性樹脂フィルムの製造方法について説明する。
製造装置200を用いた低伸縮性樹脂フィルム100の製造では、エンボス加工を施した無端ベルトよりなる搬送ベルト11を所定の張力にて巻回駆動し、溶融した樹脂素材15を、ダイ39よりフィルム状にして搬送ベルト11上に押し出しする。フィルム状樹脂素材15を搬送ベルト11ごと加熱し、溶融状態とすることにより、樹脂素材15の内部歪み(内部応力)が消去される。なお、樹脂素材15の温度は、融点に対し+60〜−0℃で設定され、好ましくは、融点の+60〜+30℃の範囲とされる。樹脂素材15の温度が融点以上であれば、樹脂素材15を溶融状態とすることができる。また、樹脂素材15の温度が融点+60℃以下であれば、該樹脂素材15に架橋剤を配合したとき、架橋が進みすぎることがない。
Next, the manufacturing method of the low stretchable resin film using the said manufacturing apparatus is demonstrated.
In the manufacture of the low stretch resin film 100 using the manufacturing apparatus 200, the transport belt 11 made of an endless belt subjected to embossing is wound and driven with a predetermined tension, and the molten resin material 15 is transferred from the die 39 to the film. And is extruded onto the conveyor belt 11. By heating the film-shaped resin material 15 together with the transport belt 11 to a molten state, the internal strain (internal stress) of the resin material 15 is eliminated. The temperature of the resin material 15 is set at +60 to −0 ° C. with respect to the melting point, and preferably within the range of +60 to + 30 ° C. of the melting point. If the temperature of the resin material 15 is equal to or higher than the melting point, the resin material 15 can be in a molten state. Moreover, if the temperature of the resin material 15 is melting | fusing point +60 degrees C or less, when a crosslinking agent is mix | blended with this resin material 15, crosslinking will not advance too much.

エンボスの形成された冷却ローラ21にて他方の面15bを加圧しながら冷却してエンボス加工を施す。同時に搬送ベルト11のエンボスが一方の面15aにエンボス加工を施す。冷却完了後に、搬送ベルト11は反転し、搬送ベルト11から離間した両面エンボス加工済みの低伸縮性樹脂フィルム100のみを別途巻き取って製造を終了する。   The other surface 15b is cooled while being pressed by the cooling roller 21 on which the emboss is formed, and embossing is performed. At the same time, the embossing of the conveyor belt 11 embosses one surface 15a. After the cooling is completed, the conveyor belt 11 is reversed, and only the low-stretch resin film 100 that has been embossed on both sides and is separated from the conveyor belt 11 is separately wound to complete the manufacture.

この低伸縮性樹脂フィルムの製造方法では、所定張力により巻回駆動する搬送ベルト11が利用され、その上面で樹脂素材15を加熱し溶融状態とすることにより、押し出されたフィルム状の樹脂素材の内部歪みを除去した後、エンボス加工が施される。搬送ベルト11に載置したままの状態で成形が完了し、テンションが作用しないようにして引取られ、成形後、軟化状態における伸びが生じなくなった後に搬送ベルト11から離間され、製品のみが別途巻き取られることになる。   In this method for producing a low stretchable resin film, a conveyor belt 11 that is wound and driven by a predetermined tension is used, and the resin material 15 is heated on its upper surface to be in a molten state. After removing the internal distortion, embossing is performed. Molding is completed in a state where it is placed on the conveyor belt 11, and it is taken out without applying tension, and after molding, it is separated from the conveyor belt 11 after no longer stretched in the softened state, and only the product is separately wound. Will be taken.

したがって、上記の製造装置200によれば、搬送ベルト11を巻回駆動する搬送ベルト駆動部13と、搬送ベルト11上に樹脂素材15をフィルム状に押し出す押し出し成形部17と、押し出し成形部17の後段に設けられ搬送ベルト11上の樹脂素材15を加熱溶融する加熱部19と、加熱部19の後段に設けられ樹脂素材15の他方の面15bの面に冷却ローラ21を加圧する加圧ローラ成形部23と、搬送ベルト11から剥離されて離間した低伸縮性樹脂フィルム100のみを巻き取る製品巻き取り部29とを備えたので、巻回駆動する搬送ベルト11上に、樹脂素材15を載置して加熱溶融し、加圧ローラ成形部23にて製品とした後、搬送ベルト11から製品である樹脂フィルム100のみを巻き取ることができ、この樹脂フィルム100が、冷却固化後ピンチロール47,47の位置から製品巻き取り部29の間でのみ張力がかかるだけで、内部歪みの発生を低減させ、低伸縮率の樹脂フィルムを製造できる。   Therefore, according to the manufacturing apparatus 200 described above, the conveyance belt drive unit 13 that drives the conveyance belt 11 to wind, the extrusion molding unit 17 that extrudes the resin material 15 on the conveyance belt 11 in a film shape, and the extrusion molding unit 17. A heating unit 19 provided in the subsequent stage for heating and melting the resin material 15 on the conveyor belt 11 and a pressure roller molding for pressing the cooling roller 21 on the other surface 15b of the resin material 15 provided in the subsequent stage of the heating unit 19 Section 23 and a product take-up portion 29 for winding only the low-stretchable resin film 100 that is separated from and separated from the conveyor belt 11, the resin material 15 is placed on the conveyor belt 11 that is driven to wind. After being heated and melted and made into a product by the pressure roller molding unit 23, only the resin film 100 as a product can be wound up from the conveyor belt 11, and this resin film can be wound. Beam 100, from the position of the cooling and solidifying after the pinch rolls 47 and 47 only tensioned only between the product take-up portion 29, to reduce the occurrence of internal strain, capable of producing a resin film of a low expansion ratio.

また、低伸縮性樹脂フィルム100の製造方法によれば、エンボス加工を施した搬送ベルト11を繰り出し、この搬送ベルト11上に樹脂素材15を押し出し、フィルム状樹脂素材15を搬送ベルト11ごと加熱し溶融状態とされることにより押し出されたフィルム状の樹脂素材の内部歪みが除去することができ、また、搬送ベルト11のエンボスにて一方の面15aにエンボス加工を施し、冷却ローラ21にて他方の面15bを加圧しながらエンボス加工を施し、冷却完了後、搬送ベルト11はその搬送終端部11bにて方向が切り替わり、搬送ベルト11から離間した両面エンボス加工済み低伸縮性樹脂フィルム100のみを別途巻き取るので、所定張力により巻回駆動される搬送ベルト11を利用し、その上面でテンションが作用しないようにしてフィルム状の樹脂素材を引取ることができる。すなわち、搬送ベルト11に載置したままの状態で成形が完了し、成形後に搬送ベルト11から製品のみが別途巻き取られる。これにより、テンションを加えて巻き取ることによる巻き取り方向の伸びに起因する内部歪みを発生させずに済み、これらにより低伸縮率の樹脂フィルムを得ることができる。   Further, according to the method for producing the low stretchable resin film 100, the embossed transport belt 11 is fed out, the resin material 15 is extruded onto the transport belt 11, and the film-shaped resin material 15 is heated together with the transport belt 11. The internal distortion of the extruded film-like resin material can be removed by being in a molten state, and the embossing of the conveyor belt 11 is embossed on one surface 15a, and the other is cooled by the cooling roller 21. After the cooling is completed, the direction of the conveyor belt 11 is switched at the conveyance terminal end 11b, and only the low-stretch resin film 100 that has been embossed on both sides and separated from the conveyor belt 11 is separately provided. Since it is wound up, the conveyor belt 11 driven by winding with a predetermined tension is used, and the tension does not act on the upper surface thereof. The film-like resin material so as to be able 引取Ru. That is, the molding is completed while being placed on the conveyor belt 11, and only the product is separately wound up from the conveyor belt 11 after the molding. Thereby, it is not necessary to generate an internal distortion due to elongation in the winding direction by winding by applying tension, and a resin film having a low expansion / contraction rate can be obtained by these.

なお、上述した製造装置200では、搬送ベルト11を押し出し成形部17の位置から製品巻き取り部29の位置までを連続して搬送可能な構成とし、搬送ベルト11上に、樹脂素材15から樹脂フィルム100という製品になるまでを載置状態としている例として示したが、搬送路の処理工程で区分し、すなわち、樹脂素材15に対して、加熱処理を行う部分と、冷却処理を行う部分とで別体となるよう搬送ベルト11を構成して、加熱処理を行う部分では加熱側搬送ベルト11Aとし、エンボス加工処理後の冷却処理を行う部分では冷却側搬送ベルト11Bとする構成としてもよい。   In addition, in the manufacturing apparatus 200 mentioned above, it is set as the structure which can convey continuously the conveyance belt 11 from the position of the extrusion molding part 17 to the position of the product winding-up part 29, and on the conveyance belt 11, it is the resin raw material 15 to the resin film. Although it has been shown as an example in which the product is placed up to 100 products, it is divided by the processing process of the conveyance path, that is, the resin material 15 is subjected to a heat treatment part and a cooling treatment part. The conveyor belt 11 may be configured as a separate body, and may be configured as a heating-side conveyor belt 11A in a portion where heat treatment is performed, and as a cooling-side conveyor belt 11B in a portion where cooling processing after embossing is performed.

また、上述した実施の形態では、押し出し成形部17を主ローラ37の真上に配置して、ダイ39から真下に押し出される樹脂素材15を搬送ベルト11上に落した後に、主ローラ37で搬送ベルト11とともに樹脂素材15を後段の加熱部19へ送るような構成としているが、この樹脂素材15の搬入側11aの構成としては、このような構成の他に、図2に示すように、ダイ39を横向きとし、主ローラ37上の搬送ベルト11上に樹脂素材15を押し出し、搬送ベルト11とともに直ちに加熱部19に入る構成としてもよい。このような搬入側11aの構成により、ダイ39から押し出される樹脂素材15が加熱部19へ送られる際に、樹脂素材15の温度を下げ過ぎないように構成されることが好ましい。なお主ローラ37等と直接接触せず、加熱部19までの距離が短く設定されることで、樹脂素材15は押し出し直後から加熱部19までの間の温度低下が最小限とされており、後段の加熱部19での処理が行われる。また、ダイ39から押し出された樹脂素材15と搬送ベルト11との間に吸引装置(図示せず)を配置することによって、樹脂素材15と搬送ベルト11との密着性を向上させることが可能である。   Further, in the above-described embodiment, the extrusion molding unit 17 is disposed directly above the main roller 37, and the resin material 15 extruded right below from the die 39 is dropped onto the transport belt 11 and then transported by the main roller 37. The resin material 15 is sent together with the belt 11 to the heating unit 19 at the subsequent stage. However, as a configuration of the carry-in side 11a of the resin material 15, in addition to such a configuration, as shown in FIG. It is also possible to adopt a configuration in which 39 is set sideways, the resin material 15 is extruded onto the conveying belt 11 on the main roller 37, and immediately enters the heating unit 19 together with the conveying belt 11. With such a configuration of the carry-in side 11a, it is preferable that the temperature of the resin material 15 is not excessively lowered when the resin material 15 pushed out from the die 39 is sent to the heating unit 19. It should be noted that the resin material 15 is not in direct contact with the main roller 37 or the like and the distance to the heating unit 19 is set short, so that the temperature drop between the resin material 15 and the heating unit 19 is minimized. The process in the heating unit 19 is performed. In addition, by arranging a suction device (not shown) between the resin material 15 extruded from the die 39 and the conveyor belt 11, it is possible to improve the adhesion between the resin material 15 and the conveyor belt 11. is there.

図3は、本発明に係る他の実施の形態における低伸縮性樹脂フィルムの製造装置200Aを概念的に表した構成図である。
加熱側搬送ベルト11Aは、押し出し成形部17の位置から加圧ローラ成形部23の位置までとされ、樹脂素材15を加熱部19にて溶融状態とする際に、搬送ベルト11A上に載置状態とするもので、エンボス加工が施され、耐熱性を備える素材よりなる無端ベルトで構成される。
FIG. 3 is a configuration diagram conceptually showing a low stretch resin film manufacturing apparatus 200 </ b> A according to another embodiment of the present invention.
The heating-side conveyance belt 11A extends from the position of the extrusion molding unit 17 to the position of the pressure roller molding unit 23, and is placed on the conveyance belt 11A when the resin material 15 is melted by the heating unit 19. It is made up of an endless belt made of a material that is embossed and has heat resistance.

また冷却側搬送ベルト11Bは、加圧ローラ成形部23の位置から搬送終端部となるピンチローラ47,47の位置までとされ、表裏面にエンボス加工を施した後の樹脂素材を冷却部25にて冷却する工程での樹脂素材15を支持するもので、冷却を効率的に行えるようスチールやステンレスなど熱伝導性の良好な金属ベルトなどを素材とした無端ベルトで構成される。   The cooling side conveyor belt 11B extends from the position of the pressure roller molding part 23 to the position of the pinch rollers 47 and 47 which are the conveyance end parts, and the resin material after embossing the front and back surfaces is supplied to the cooling part 25. It supports the resin material 15 in the cooling process, and is composed of an endless belt made of a metal belt having a good thermal conductivity such as steel or stainless steel so that the cooling can be performed efficiently.

そして、図3に示すように、加圧ローラ成形部23の位置で、加熱側搬送ベルト11Aと冷却側搬送ベルト11Bとで、樹脂素材15を受け渡すように配置構成する。
このような構成とすることで、加熱側搬送ベルト11Aでは樹脂素材15の加熱に耐えられる耐熱性を有する素材で構成し、冷却側搬送ベルト11Bではエンボス加工後のフィルム状となった樹脂素材の冷却及び搬送を主目的として素材を構成するという各構成に応じた材質を選択することが可能となる。
Then, as shown in FIG. 3, the resin material 15 is disposed and configured to be delivered by the heating side conveyance belt 11 </ b> A and the cooling side conveyance belt 11 </ b> B at the position of the pressure roller molding portion 23.
With such a configuration, the heating-side transport belt 11A is made of a heat-resistant material that can withstand the heating of the resin material 15, and the cooling-side transport belt 11B is made of a resin material that has become a film after embossing. It is possible to select a material corresponding to each configuration in which the material is configured mainly for cooling and conveyance.

図4は、本発明に係るさらに他の実施の形態における低伸縮性樹脂フィルムの製造装置200Bを概念的に表した構成図である。
低伸縮性樹脂フィルムの製造装置200Bとしては、搬送ベルトの構成が、加熱側搬送ベルト11Aが少なくとも構成されていれば良く、すなわち、冷却側では複数のローラ45にて支持する構成とされてもよい。
図4に示すように、加熱側搬送ベルト11Aは、押し出し成形部17の位置から加圧ローラ成形部23の位置までとされ、樹脂素材15を加熱部19にて溶融状態とする際に、搬送ベルト11A上に載置状態とするもので、耐熱性を備える素材よりなる無端ベルトで構成される。この搬送ベルト11Aの材質としては、金属やゴムなど、表面に剥離性、機能性を付加させるためのエンボスが施されることとしてもよい。
FIG. 4 is a configuration diagram conceptually showing a low stretch resin film manufacturing apparatus 200 </ b> B according to still another embodiment of the present invention.
In the low stretchable resin film manufacturing apparatus 200 </ b> B, the configuration of the conveyance belt is not limited as long as the heating-side conveyance belt 11 </ b> A is configured, that is, the cooling side is supported by a plurality of rollers 45. Good.
As shown in FIG. 4, the heating side conveyance belt 11 </ b> A is formed from the position of the extrusion molding unit 17 to the position of the pressure roller molding unit 23, and is conveyed when the resin material 15 is melted by the heating unit 19. The belt is placed on the belt 11A and is composed of an endless belt made of a material having heat resistance. As a material of the conveyor belt 11A, embossing for adding peelability and functionality to the surface, such as metal and rubber, may be performed.

この実施の形態では、主ローラ37と、これに併設されるローラ34が加熱ローラにて構成されており、これらローラ34,37にて加熱処理部33とされ、搬送ベルト11Aの加熱を行い、押し出し成形部17からの押出し樹脂温度が低下しないように構成される。また、エア噛み防止用ローラとされるタッチローラ36が主ローラ37に対向して配設される。そして、主ローラ37とタッチローラ36に近接して加熱部19が配設されている。   In this embodiment, the main roller 37 and the roller 34 attached to the main roller 37 are constituted by heating rollers, and these rollers 34 and 37 serve as a heat processing unit 33 to heat the transport belt 11A. It is comprised so that the extrusion resin temperature from the extrusion molding part 17 may not fall. In addition, a touch roller 36 serving as an air biting prevention roller is disposed to face the main roller 37. A heating unit 19 is disposed adjacent to the main roller 37 and the touch roller 36.

また、加熱部19の後段には、冷却ローラ20とエンボス冷却ローラ21とが対向配置される加圧ローラ成形部23が配設され、加熱部19を通過した軟化状態の樹脂素材15に対してエンボス加工を施す。すなわち、搬送ベルト11Aのエンボスが一方の面15aに、エンボス冷却ローラ21のエンボスが他方の面(上面)15bに、それぞれ加圧転写される。また、冷却ローラ20には、テイクオフローラ22が配設されて、このテイクオフローラ22にて両面エンボス加工済み低伸縮性樹脂フィルム100はベルトから剥離されて、この後段にて冷却及び巻き取りとなる。   In addition, a pressure roller molding unit 23 in which the cooling roller 20 and the embossing cooling roller 21 are arranged to face each other is disposed at the subsequent stage of the heating unit 19, and the softened resin material 15 that has passed through the heating unit 19 is disposed. Embossed. That is, the emboss of the conveyor belt 11A is pressure-transferred to one surface 15a, and the emboss of the emboss cooling roller 21 is pressure-transferred to the other surface (upper surface) 15b. Further, the cooling roller 20 is provided with a take-off roller 22, and the low-stretch resin film 100 that has been embossed on both sides is peeled off from the belt by the take-off roller 22, and cooling and winding are performed at the subsequent stage. .

このような構成とすることで、加熱側では加熱側搬送ベルト11Aを樹脂素材15の加熱に耐えられる耐熱性素材で構成するとともに、エンボス加工を施す構成とし、冷却側ではエンボス加工後のフィルム状となった樹脂素材の冷却及び搬送を主目的として構成するという各構成部分に応じた材質、構造を選択することが可能となり、特に加熱及びエンボス加工の工程部分で樹脂素材に対しての内部歪み(内部応力)が消去されるように、ベルトにて加熱溶融状態の樹脂素材を支え、成形し、テイクオフローラ22以降では冷却及び巻き取りのみの工程となり、製品巻取部29での張力がかかるのみで、内部歪みの発生を低減させることができ、低伸縮率の樹脂フィルムが得ることが可能となる。   By adopting such a configuration, the heating side conveyor belt 11A is made of a heat resistant material that can withstand the heating of the resin material 15 and is embossed on the heating side, and the embossed film shape on the cooling side. It becomes possible to select the material and structure according to each component that is mainly configured to cool and convey the resin material, and internal distortion to the resin material especially in the process part of heating and embossing The resin material in a heated and melted state is supported and molded by a belt so that (internal stress) is eliminated, and after the take-off roller 22, only the cooling and winding processes are performed, and the tension at the product winding unit 29 is applied. Thus, the occurrence of internal strain can be reduced, and a resin film having a low expansion / contraction rate can be obtained.

次に、上記実施の形態による構成と同一構成の製造装置を用い、同一の製造方法にて製造した実施例に係る低伸縮性樹脂フィルムを、含有する酢酸ビニルの量を33%と28%とで2例とし、比較例に係る樹脂フィルムを1例と、従来の樹脂フィルム2例とで、加熱による収縮を比較した結果を説明する。これら比較例と従来例とは、押し出し成形後の樹脂素材に対してエンボス加工を施した後に冷却のみであり、比較例では搬送ベルトを用いた製法、各従来例はベルトを用いない旧来の製法である。   Next, the amount of vinyl acetate contained in the low stretch resin film according to the example manufactured by the same manufacturing method using the manufacturing apparatus having the same configuration as that of the above embodiment is 33% and 28%. The results of comparing shrinkage due to heating in one example of a resin film according to a comparative example and two conventional resin films will be described. These comparative examples and conventional examples are only cooled after embossing the resin material after extrusion molding. In the comparative examples, a manufacturing method using a conveyor belt, each conventional example is an old manufacturing method that does not use a belt. It is.

以下、実施例において用いた樹脂は次のとおり。
EVA1:エチレン酢酸ビニル共重合体(The Polyolefin Company社製、商品名「Cosmothene MA−10」、酢酸ビニル含有量33質量%、融点:60℃)
EVA2:エチレン酢酸ビニル共重合体(The Polyolefin Company社製、商品名「Cosmothene VF−023」、酢酸ビニル含有量28質量%、融点:69℃)
Hereinafter, the resins used in the examples are as follows.
EVA1: ethylene vinyl acetate copolymer (manufactured by The Polyolefin Company, trade name “Cosmothene MA-10”, vinyl acetate content 33 mass%, melting point: 60 ° C.)
EVA2: ethylene vinyl acetate copolymer (manufactured by The Polyolefin Company, trade name “Cosmothene VF-023”, vinyl acetate content 28 mass%, melting point: 69 ° C.)

[実施例1]
EVA1:100質量部、架橋剤(日油製、商品名「パーブチルE」、t−ブチルパーオキシ2−エチルへキシルモノカーボネート、1時間半減期温度119.3℃)1.0質量部、紫外線吸収剤(BASF社製、商品名「Uvinul 3008」、2−ヒドロキシ−4オクトオキシベンゾフェノン)0.2質量部をリボンブレンダーでドライブレンドし、押出機(一軸、口径90mm)で溶融混練し、スリット形状のダイ(T−ダイ)39を用いて樹脂素材15を図1の製造装置を用いて、搬送ベルト11上に押し出した。ダイ39の温度は90℃でスクリュー回転数は20rpmであった。押し出された樹脂素材15は搬送ベルト11によって搬送しながら、120℃のオーブンによって樹脂素材15を搬送ベルト11と共に30秒間加熱した。このとき、オーブン出口における樹脂素材15の温度は100℃であった。その後、樹脂素材15は、加圧ローラ成形部23でエンボス加工を施し、冷却部25を経て、ピンチローラ47,47までは搬送ベルト11と共に搬送し、その後搬送ベルト11と分離し、製品巻き取りローラ51に巻き取って、低伸縮性樹脂フィルム100を得た。樹脂フィルムの厚さは600μm、エンボス加工は砂目模様で、エンボスの深さの算術平均は80μmである。
[Example 1]
EVA1: 100 parts by mass, cross-linking agent (manufactured by NOF, trade name “Perbutyl E”, t-butylperoxy 2-ethylhexyl monocarbonate, 1 hour half-life temperature 119.3 ° C.) 1.0 part by mass, ultraviolet ray Absorbent (BASF, trade name “Uvinul 3008”, 2-hydroxy-4 octoxybenzophenone) 0.2 parts by mass is dry blended with a ribbon blender, melt kneaded with an extruder (uniaxial, caliber 90 mm), slit The resin material 15 was extruded onto the conveyor belt 11 using the manufacturing apparatus shown in FIG. 1 using a shape die (T-die) 39. The temperature of the die 39 was 90 ° C., and the screw rotation speed was 20 rpm. While the extruded resin material 15 was transported by the transport belt 11, the resin material 15 was heated together with the transport belt 11 by a 120 ° C. oven for 30 seconds. At this time, the temperature of the resin material 15 at the outlet of the oven was 100 ° C. Thereafter, the resin material 15 is embossed by the pressure roller molding unit 23, passes through the cooling unit 25, and is transported to the pinch rollers 47 and 47 together with the transport belt 11, and then separated from the transport belt 11 to take up the product. The film was wound around a roller 51 to obtain a low stretch resin film 100. The thickness of the resin film is 600 μm, the embossing is a grained pattern, and the arithmetic average of the emboss depth is 80 μm.

[実施例2]
樹脂をEVA2に変えた以外は実施例1と同様に低伸縮性樹脂フィルム100を得た。
[Example 2]
A low stretch resin film 100 was obtained in the same manner as in Example 1 except that the resin was changed to EVA2.

[比較例]
加熱部19を省略した製造装置を使用した以外は、実施例1と同様に樹脂フィルムを得た。フィルムの温度は加圧ローラ成形部23の直前で測定した。
[Comparative example]
A resin film was obtained in the same manner as in Example 1 except that a manufacturing apparatus in which the heating unit 19 was omitted was used. The temperature of the film was measured immediately before the pressure roller molding part 23.

[従来例1]
T−ダイ押出法により、ダイから押出された樹脂素材を、表面にエンボスを形成したキャストロールにて冷却し、製品巻き取りローラ51に巻き取って樹脂フィルムを得た。フィルム温度はキャストロールの後で測定した。
[Conventional example 1]
The resin material extruded from the die was cooled by a cast roll having an embossed surface formed by a T-die extrusion method, and wound around a product winding roller 51 to obtain a resin film. The film temperature was measured after the cast roll.

[従来例2]
加熱部19を省略した製造装置を使用し、搬送ベルト11の代わりに剥離紙(王子特殊紙製、商品名「N−73GS」)を使用したこと以外は、実施例2と同様に樹脂フィルムを得た。フィルム温度は加圧ローラ成形部23の直前で測定した。
[Conventional example 2]
A resin film was used in the same manner as in Example 2 except that a manufacturing apparatus in which the heating unit 19 was omitted was used and release paper (made by Oji Specialty Paper, trade name “N-73GS”) was used instead of the conveyor belt 11. Obtained. The film temperature was measured immediately before the pressure roller molding part 23.

試験方法は、それぞれ、12cm四方に切ったフィルムに、巻き取り方向、すなわち成形方向で10cmの印を入れ、90℃のオーブンで1時間加熱し、収縮率を測定した。
オーブン内のフィルムは、自由に収縮できるようにタルクを引いたアルミ板上で加熱した。
測定の結果を表1に示す。
In the test method, a film cut into a 12 cm square was marked with 10 cm in the winding direction, that is, the molding direction, heated in an oven at 90 ° C. for 1 hour, and the shrinkage was measured.
The film in the oven was heated on an aluminum plate with talc so that it could shrink freely.
The measurement results are shown in Table 1.

Figure 2010228440
Figure 2010228440

所定の張力で繰り出され巻回駆動する搬送ベルト上に、樹脂素材を載置して加熱し、溶融状態を維持させた両実施例ではいずれも収縮率が3〜5となり、比較例の16.0に比べ1/3以下となることが確認された。また、現行品である従来例1,2と比較した場合には、1/10〜1/5まで収縮率の小さくなることが確認された。   In both examples in which the resin material was placed on a conveyor belt that was drawn out with a predetermined tension and driven to heat and heated to maintain a molten state, the shrinkage ratio was 3 to 5, and the comparative example 16. It was confirmed that it was 1/3 or less than 0. Moreover, when compared with the conventional examples 1 and 2 which are the current products, it was confirmed that the shrinkage ratio was reduced to 1/10 to 1/5.

11…搬送ベルト
13…搬送ベルト駆動部
15…樹脂素材
15a…一方の面
15b…他方の面
17…押し出し成形部
19…加熱部
21…冷却ローラ
23…加圧ローラ成形部
25…冷却部
29…製品巻き取り部
33…加熱処理部
39…ダイ
100…低伸縮性樹脂フィルム
200…低伸縮性樹脂フィルムの製造装置
DESCRIPTION OF SYMBOLS 11 ... Conveyance belt 13 ... Conveyance belt drive part 15 ... Resin raw material 15a ... One side 15b ... Other side 17 ... Extrusion molding part 19 ... Heating part 21 ... Cooling roller 23 ... Pressure roller molding part 25 ... Cooling part 29 ... Product winding unit 33 ... Heat treatment unit 39 ... Die 100 ... Low stretch resin film 200 ... Low stretch resin film manufacturing apparatus

Claims (10)

少なくとも片面にエンボス加工の施される低伸縮性樹脂フィルムであって、
無端ベルトよりなる搬送ベルト上にフィルム状となって押し出された樹脂素材を前記搬送ベルトと共に加熱して溶融状態とし、エンボスの形成された冷却ローラにて加圧されてエンボス加工されたことを特徴とする低伸縮性樹脂フィルム。
A low stretch resin film embossed on at least one side,
The resin material extruded in the form of a film on a conveyance belt made of an endless belt is heated together with the conveyance belt to be in a molten state, and is embossed by being pressed by a cooling roller having an emboss formed thereon. A low stretch resin film.
前記搬送ベルトに、エンボスが形成されていることを特徴とする請求項1記載の低伸縮性樹脂フィルム。   2. The low stretchable resin film according to claim 1, wherein an emboss is formed on the conveyor belt. 太陽電池封止用である請求項1又は2記載の低伸縮性樹脂フィルム。   The low stretchable resin film according to claim 1 or 2, which is used for sealing a solar cell. 少なくとも片面にエンボス加工の施される低伸縮性樹脂フィルムの製造方法であって、
無端ベルトよりなる搬送ベルトを巻回駆動し、
樹脂素材をダイよりフィルム状にして該搬送ベルト上に押し出し、
フィルム状樹脂素材を搬送ベルトごと加熱し該搬送ベルト上で溶融状態とし、
前記フィルム状樹脂素材をエンボスの形成された冷却ローラにて加圧することで、該冷却ローラのエンボスにてエンボス加工を施し、
前記搬送ベルトによる搬送とともに前記フィルム状樹脂素材を冷却し、
冷却完了後となる前記搬送ベルトによる搬送終端部にて、該搬送ベルトから搬出され離間したエンボス加工済みの低伸縮性樹脂フィルムのみを別途巻き取ることを特徴とする低伸縮性樹脂フィルムの製造方法。
A method for producing a low stretch resin film embossed on at least one side,
The conveyor belt consisting of an endless belt is wound and driven.
A resin material is formed into a film from a die and extruded onto the conveyor belt,
The film-like resin material is heated together with the conveyor belt to be in a molten state on the conveyor belt,
By pressing the film-like resin material with a cooling roller on which embossing is formed, embossing is performed on the embossing of the cooling roller,
The film-like resin material is cooled along with the conveyance by the conveyance belt,
A method for producing a low-stretch resin film, wherein only the embossed low-stretch resin film unloaded from and separated from the transport belt is separately wound at the transport end portion of the transport belt after cooling is completed. .
前記搬送ベルトは、エンボスが形成されており、
該エンボス上に前記樹脂素材を押し出すことを特徴とする請求項4記載の低伸縮性樹脂フィルムの製造方法。
The conveyor belt is formed with embossing,
The method for producing a low stretch resin film according to claim 4, wherein the resin material is extruded onto the emboss.
前記搬送ベルト上に樹脂素材を押し出す以前に、前記搬送ベルトに対して加熱処理を行うことを特徴とする請求項4又は5記載の低伸縮性樹脂フィルムの製造方法。   The method for producing a low stretchable resin film according to claim 4 or 5, wherein a heat treatment is performed on the conveyor belt before extruding the resin material onto the conveyor belt. 低伸縮性樹脂フィルムの製造装置であって、
無端ベルトよりなる搬送ベルトを巻回駆動する搬送ベルト駆動部と、
前記搬送ベルト上に樹脂素材をフィルム状に押し出す押し出し成形部と、
該押し出し成形部の後段に設けられ前記搬送ベルト上の樹脂素材を溶融する加熱部と、
該加熱部の後段に設けられ樹脂素材の面にエンボスの形成された冷却ローラを加圧する加圧ローラ成形部と、
前記搬送ベルトとともに該搬送ベルト上に成形されたフィルム状の樹脂素材を冷却する冷却部と、
前記搬送ベルトから搬出され該搬送ベルトから剥離されて離間したエンボス加工済みの低伸縮性樹脂フィルムのみを巻き取る製品巻き取り部と、
を具備したことを特徴とする低伸縮性樹脂フィルムの製造装置。
An apparatus for producing a low stretch resin film,
A conveyor belt drive unit for winding and driving a conveyor belt made of an endless belt;
An extrusion molding section for extruding a resin material into a film on the conveyor belt;
A heating unit provided at a subsequent stage of the extrusion molding unit to melt the resin material on the conveyor belt;
A pressure roller molding section that is provided in a subsequent stage of the heating section and pressurizes a cooling roller having an emboss formed on the surface of the resin material;
A cooling unit that cools the film-shaped resin material formed on the conveyor belt together with the conveyor belt;
A product take-up portion that takes up only the embossed low-stretch resin film that is unloaded from the conveyor belt and separated from the conveyor belt;
An apparatus for producing a low-stretch resin film, comprising:
請求項7記載の低伸縮性樹脂フィルムの製造装置であって、
前記搬送ベルトにはエンボスが形成され、該エンボス上に樹脂素材を押し出すことを特徴とする低伸縮性樹脂フィルムの製造装置。
An apparatus for producing a low stretch resin film according to claim 7,
Embossing is formed in the said conveyance belt, The resin raw material is extruded on this embossing, The manufacturing apparatus of the low elastic resin film characterized by the above-mentioned.
請求項7又は8記載の低伸縮性樹脂フィルムの製造装置であって、
前記押し出し成形部に向かう前記搬送ベルトに対し前記押し出し成形部の前段にて加熱処理を行う加熱処理部を具備することを特徴とする低伸縮性樹脂フィルムの製造装置。
An apparatus for producing a low stretchable resin film according to claim 7 or 8,
An apparatus for producing a low-stretch resin film, comprising: a heat treatment unit that performs heat treatment on the conveyor belt toward the extrusion molding unit at a stage preceding the extrusion molding unit.
請求項7,8,9のいずれか1つに記載の低伸縮性樹脂フィルムの製造装置であって、
前記搬送ベルトは、前記樹脂素材を前記押し出し成形部から前記加圧ローラ成形部へ搬送させる加熱側搬送ベルトと、エンボス加工後の前記樹脂素材を搬送する冷却側搬送ベルトとで構成されることを特徴とする低伸縮性樹脂フィルムの製造装置。
An apparatus for producing a low stretch resin film according to any one of claims 7, 8, and 9,
The conveyance belt is configured by a heating-side conveyance belt that conveys the resin material from the extrusion molding unit to the pressure roller molding unit, and a cooling-side conveyance belt that conveys the resin material after embossing. An apparatus for producing a low stretch resin film.
JP2010029102A 2009-03-03 2010-02-12 Low stretchable resin film, manufacturing method thereof and manufacturing apparatus Expired - Fee Related JP5410324B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010029102A JP5410324B2 (en) 2009-03-03 2010-02-12 Low stretchable resin film, manufacturing method thereof and manufacturing apparatus
CN201010125557.XA CN101826568B (en) 2009-03-03 2010-03-02 Low elasticity resin film and manufacture method thereof and manufacture device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009049491 2009-03-03
JP2009049491 2009-03-03
JP2010029102A JP5410324B2 (en) 2009-03-03 2010-02-12 Low stretchable resin film, manufacturing method thereof and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2010228440A true JP2010228440A (en) 2010-10-14
JP5410324B2 JP5410324B2 (en) 2014-02-05

Family

ID=43044724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010029102A Expired - Fee Related JP5410324B2 (en) 2009-03-03 2010-02-12 Low stretchable resin film, manufacturing method thereof and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5410324B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056842A (en) * 2009-09-11 2011-03-24 Toppan Printing Co Ltd Apparatus for manufacturing optical sheet, optical sheet, backlight unit, display device, and optical sheet manufacturing method
JP2012153030A (en) * 2011-01-27 2012-08-16 Hitachi Zosen Corp Method of molding eva resin sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985805A (en) * 1995-09-21 1997-03-31 Sekisui Chem Co Ltd Production of low distortion extrusion sheet
JPH09164592A (en) * 1995-10-09 1997-06-24 Sekisui Chem Co Ltd Manufacture of embossed sheet
JP2001031778A (en) * 1999-07-23 2001-02-06 Teijin Ltd Polyester film for magnetic recording medium
JP2010100032A (en) * 2008-09-25 2010-05-06 Sekisui Chem Co Ltd Method for manufacturing adhesive sheet for solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985805A (en) * 1995-09-21 1997-03-31 Sekisui Chem Co Ltd Production of low distortion extrusion sheet
JPH09164592A (en) * 1995-10-09 1997-06-24 Sekisui Chem Co Ltd Manufacture of embossed sheet
JP2001031778A (en) * 1999-07-23 2001-02-06 Teijin Ltd Polyester film for magnetic recording medium
JP2010100032A (en) * 2008-09-25 2010-05-06 Sekisui Chem Co Ltd Method for manufacturing adhesive sheet for solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056842A (en) * 2009-09-11 2011-03-24 Toppan Printing Co Ltd Apparatus for manufacturing optical sheet, optical sheet, backlight unit, display device, and optical sheet manufacturing method
JP2012153030A (en) * 2011-01-27 2012-08-16 Hitachi Zosen Corp Method of molding eva resin sheet

Also Published As

Publication number Publication date
JP5410324B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5612283B2 (en) Method for producing low shrinkage resin film
CN100430200C (en) Apparatus and method for producing continuous laminated sheet of thermoplastic resin
JP2012071502A (en) Method of manufacturing ethylene-vinyl acetate copolymer (eva) sheet for solar cell sealing materials
CN101826568B (en) Low elasticity resin film and manufacture method thereof and manufacture device
WO2013084734A1 (en) Method and device for manufacturing laminated sheet
CN101954739A (en) Texturizing machine and texturizing method thereof
JP5410324B2 (en) Low stretchable resin film, manufacturing method thereof and manufacturing apparatus
JP5421138B2 (en) Sealing film for solar cell module and manufacturing method thereof
KR101529905B1 (en) A process for annealing photovoltaic polymer encapsulation film and method for manufacturing photovoltaic module
JP5741775B2 (en) Sheet heat treatment method and sheet heat treatment apparatus
JP5684582B2 (en) Manufacturing method of resin foam molded product and resin foam molded product manufacturing equipment
JP2011519750A (en) Continuous lamination of polymethyl methacrylate (PMMA) films in the manufacture of Fresnel lenses
JP2010228353A (en) Resin sheet with protective sheet, manufacturing method thereof, and apparatus for manufacturing
JP4048283B2 (en) Equipment for manufacturing thermoplastic resin continuous laminated sheet
CN104822508A (en) Method for manufacturing stretched film
CN1891440B (en) Manufacturing method for biaxial stretched film and manufacturing equipment for biaxial stretched film
JP2015150688A (en) Method for molding encapsulation material sheet for solar cell
JP2009274387A (en) Resin sheet with protective film, and method for manufacturing the same
JP2011161729A (en) Method of manufacturing uneven-thickness resin sheet
JP5993728B2 (en) Method for producing sealing sheet for solar cell
JP2012153030A (en) Method of molding eva resin sheet
JP7471702B1 (en) Method and manufacturing method for straightening a resin sheet, and apparatus for straightening a resin sheet
JP2006264017A (en) Lamination method of laminate and laminator therefor
JP2012253051A (en) Solar cell module manufacturing apparatus
EP4214052A1 (en) Knurled multilayer polyolefin films for use as antiadhesive interleaves, as well as process and technological line for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131106

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees