JP2010228279A - Precoated aluminum alloy sheet for casing of electric and electronic equipment - Google Patents

Precoated aluminum alloy sheet for casing of electric and electronic equipment Download PDF

Info

Publication number
JP2010228279A
JP2010228279A JP2009077912A JP2009077912A JP2010228279A JP 2010228279 A JP2010228279 A JP 2010228279A JP 2009077912 A JP2009077912 A JP 2009077912A JP 2009077912 A JP2009077912 A JP 2009077912A JP 2010228279 A JP2010228279 A JP 2010228279A
Authority
JP
Japan
Prior art keywords
aluminum alloy
resin
resin film
value
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009077912A
Other languages
Japanese (ja)
Inventor
Takehiro Ozawa
武廣 小澤
Masaji Saito
正次 斉藤
Yasunori Ito
康範 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2009077912A priority Critical patent/JP2010228279A/en
Publication of JP2010228279A publication Critical patent/JP2010228279A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a precoated aluminum alloy sheet suitable for use as a casing of electric and electronic equipment such as a notebook computer. <P>SOLUTION: The precoated aluminum alloy sheet comprises: a chemical conversion coating formed on an aluminum alloy sheet whose Vickers hardness is in the range of 60 to 120; and a resin coating on the chemical conversion coating. The outermost layer of the precoated aluminum alloy sheet is a resin coating A formed by adding an inorganic aggregate to one or more kinds of base resin selected from epoxy resins, fluorine resins, acrylic resins, urethane resins and polyester resins. Ra in the direction of application on the surface of the resin coating is 0.6-3.0 μm. A value obtained when the minimum value of Ra measured at certain ten positions is subtracted from its maximum value is not more than 1.0 μm. Sm in a direction perpendicular to the direction of application on the surface of the resin coating is not less than 70 μm nor more than 180 μm. A value obtained when the minimum value of Sm measured at certain ten positions is subtracted from its maximum value is not more than 40 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はノートパソコン等の電気電子機器筐体に用いられるプレコートアルミニウム合金板に関する。   The present invention relates to a precoated aluminum alloy plate used for an electric / electronic equipment casing such as a notebook computer.

従来から半導体装置のような電子機器を収納する外殻筐体としては、熱可塑性樹脂を射出成形で製造したものが多く使用されてきた。
最近、携帯型ノートパソコンのような電子機器の市場が拡大しつつあるが、このような用途においては、小型化・軽量化・薄型化が飛躍的に進んでおり、従来の成形樹脂筐体では対応できなくなってきている。何故なら、従来の樹脂筐体では、肉厚を薄くすると、強度が弱いからである。そこで、電磁シールド性や放熱性等の要求を満足することが可能なマグネシウムやアルミニウム等の金属製筐体が増えている。又、金属製筐体はリサイクルが容易である。
2. Description of the Related Art Conventionally, as an outer shell housing for storing an electronic device such as a semiconductor device, a thermoplastic resin manufactured by injection molding has been often used.
Recently, the market for electronic devices such as portable notebook PCs is expanding, but in such applications, miniaturization, weight reduction, and thinning have progressed dramatically. It has become impossible to support. This is because the strength of the conventional resin casing is weak when the wall thickness is reduced. Therefore, metal housings such as magnesium and aluminum capable of satisfying requirements such as electromagnetic shielding and heat dissipation are increasing. Also, the metal casing is easy to recycle.

金属製筐体にアルミニウムを用いる場合、アルミニウム板をプレス成形により成形するが、その外面にアルマイトまたは鉛筆引っかき値で2H〜7Hの塗料で被覆する方法が開示されている(特許文献1)。
これらの皮膜は硬質なものであり、皮膜に傷が付き難くすることを意図したものである。通常、これらの皮膜はプレス成形後に形成されるが、生産性が低いために、コストが高くなるという問題があった。これに対し、プレス成形前に塗装する方法、すなわち、プレコートを用いる方法が望まれている。プレコートの場合、塗膜厚さのバラツキがポストコートと比較して著しく小さく、塗膜性能を安定化させる事が可能である。又、部品単体で塗装するポストコートと比較して、コイルで塗装できるので、生産性を向上させる事が可能である。
When aluminum is used for a metal casing, an aluminum plate is formed by press molding, and a method is disclosed in which the outer surface is coated with an alumite or pencil scratch paint of 2H to 7H (Patent Document 1).
These films are hard and are intended to make the film difficult to scratch. Usually, these films are formed after press molding, but there is a problem that the cost is increased due to low productivity. On the other hand, a method of coating before press molding, that is, a method using a precoat is desired. In the case of pre-coating, the coating thickness variation is significantly smaller than that of post-coating, and the coating performance can be stabilized. In addition, since it can be coated with a coil as compared with post-coating in which a single component is coated, productivity can be improved.

ノートパソコン等の電気電子機器筐体外面には鉛筆引っかき値の他に耐摩耗性が要求される。ノートパソコンは通常、様々な場所に持ち運ばれる。又、机上においても、場所を移動して使用される場合がある。その為、特に底面は様々なものと接触する事から、表面が摩耗されやすいと、外観が劣化するという問題がある。
プレコート金属板の耐摩耗性を向上させる為に、シリカやセラミック繊維等の無機系骨材を添加したものが開示されている(特許文献2及び特許文献3)。
In addition to the pencil scratch value, wear resistance is required on the outer surface of an electric / electronic equipment housing such as a notebook computer. Laptops are usually carried around in various places. In addition, there are cases where it is used on a desk by moving from place to place. For this reason, the bottom surface comes into contact with various objects, and therefore, when the surface is easily worn, there is a problem that the appearance deteriorates.
In order to improve the wear resistance of the pre-coated metal plate, there has been disclosed one added with an inorganic aggregate such as silica or ceramic fiber (Patent Document 2 and Patent Document 3).

特開2004−335644号JP 2004-335644 A 特開平7−136585JP 7-136585 A 特開2001−234359JP 2001-234359 A

特許文献2や特許文献3に開示されたプレコート金属板では、電気電子機器筐体外面に要求される耐摩耗性を十分に満足できないという不都合が残った。本発明は電気電子機器筐体用として好適に用いることができるプレコートアルミニウム合金板の提供を目的とする。   The pre-coated metal plate disclosed in Patent Document 2 and Patent Document 3 still has the inconvenience that it cannot sufficiently satisfy the wear resistance required for the outer surface of the electrical / electronic equipment casing. An object of this invention is to provide the precoat aluminum alloy plate which can be used suitably for an electric and electronic equipment housing | casing.

ビッカース硬さが60〜120の範囲にあるアルミニウム合金板の両面に形成した化成皮膜と、前記化成皮膜の少なくとも一方の上に樹脂皮膜を有するプレコートアルミニウム合金板において、最外層はエポキシ系樹脂、フッ素系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂の中から成る群から選択される1種以上のベース樹脂に無機系骨材を添加した樹脂皮膜Aであり、樹脂皮膜表面における塗装方向のRaが0.6μm以上3.0μm以下であり、かつ任意の10箇所のRaを測定したときの最大値から最小値を引いた値が1.0μm以下であり、かつ、樹脂皮膜表面における塗装方向に対して垂直方向のSmが70μm以上180μm以下であり、かつ任意の10箇所のSmを測定したときの最大値から最小値を引いた値が40μm以下であることを特徴とする電気電子機器筐体用プレコートアルミニウム合金板とした。   In a conversion coating formed on both surfaces of an aluminum alloy plate having a Vickers hardness in the range of 60 to 120, and a precoated aluminum alloy plate having a resin coating on at least one of the conversion coating, the outermost layer is an epoxy resin, fluorine A resin film A in which an inorganic aggregate is added to one or more base resins selected from the group consisting of a resin, an acrylic resin, a urethane resin, and a polyester resin. Ra is 0.6 μm or more and 3.0 μm or less, and the value obtained by subtracting the minimum value from the maximum value when measuring Ra at any 10 locations is 1.0 μm or less, and the coating direction on the resin film surface Is the value obtained by subtracting the minimum value from the maximum value when the Sm in the vertical direction is 70 μm or more and 180 μm or less and the Sm at any 10 locations is measured Was a pre-coated aluminum alloy plate for an electric and electronic equipment casing.

前記無機系骨材がセラミック繊維又はシリカであることを特徴とする電気電子機器筐体用プレコートアルミニウム合金板とした。   A pre-coated aluminum alloy plate for an electric / electronic equipment casing is characterized in that the inorganic aggregate is ceramic fiber or silica.

前記シリカの平均粒径が1μm以上25μm以下であることを特徴とする電気電子機器筐体用プレコートアルミニウム合金板とした。   An average particle diameter of the silica is 1 μm or more and 25 μm or less.

本発明のプレコートアルミニウム合金板は樹脂皮膜中に硬質の無機系骨材を添加している為、樹脂皮膜が摩耗されにくく、かつ、樹脂皮膜自身に傷がつき難くすることができる。さらに、樹脂皮膜表面の表面粗度を特定の範囲とした事により、ノートパソコン等の電気電子機器筐体用として要求される耐摩耗性と鉛筆引っかき値、加工性を兼備させることができる。   In the precoated aluminum alloy plate of the present invention, since a hard inorganic aggregate is added to the resin film, the resin film is hardly worn and the resin film itself can be hardly damaged. Furthermore, by setting the surface roughness of the resin film surface to a specific range, it is possible to combine wear resistance, pencil scratch value, and workability required for electrical and electronic equipment casings such as notebook personal computers.

本発明におけるRa及びSmをあらわす模式図Schematic diagram showing Ra and Sm in the present invention 本発明におけるRaが小さい場合の模式図Schematic diagram when Ra in the present invention is small 本発明におけるRaが大きい場合の模式図Schematic diagram when Ra in the present invention is large 本発明におけるSmが小さい場合の模式図Schematic diagram when Sm is small in the present invention 本発明におけるSmが大きい場合の模式図Schematic diagram when Sm is large in the present invention

A.アルミニウム合金板
本発明において用いるアルミニウム合金は、耐デント性が良好で、ノートパソコン筐体を形成するのに十分な成形加工性を有するものであれば、特に限定されるものではない。ここで、耐デント性とは、材料に局所的な力が加えられたときのくぼみ(圧痕)の残留しにくさのことである。特に、JIS 5000系アルミニウム合金が好ましい。ビッカース硬さHV5(49.03N)が60〜120の範囲である。アルミニウム合金板の硬さは耐摩耗性に影響し、柔らかい材料では、摩耗試験中に樹脂皮膜側から押し込まれ、材料が変形し、樹脂皮膜が破壊されやすい。ビッカース硬さが60未満では、耐摩耗性が劣る。逆に硬すぎると、加工時に割れが発生しやすい。ビッカース硬さが120を超えると、加工性が劣る。アルミニウム合金板の表面粗さは0.2〜0.6μmの範囲にあることが好ましい。
A. Aluminum alloy plate The aluminum alloy used in the present invention is not particularly limited as long as it has good dent resistance and has sufficient moldability to form a notebook computer casing. Here, the dent resistance is the difficulty of leaving a dent (indentation) when a local force is applied to the material. In particular, JIS 5000 series aluminum alloy is preferable. Vickers hardness HV5 (49.03N) is in the range of 60-120. The hardness of the aluminum alloy plate affects the wear resistance. With a soft material, it is pushed from the resin film side during the wear test, the material is deformed, and the resin film is easily broken. When the Vickers hardness is less than 60, the wear resistance is inferior. Conversely, if it is too hard, cracks are likely to occur during processing. When the Vickers hardness exceeds 120, workability is inferior. The surface roughness of the aluminum alloy plate is preferably in the range of 0.2 to 0.6 μm.

B.化成皮膜
化成皮膜は、アルミニウム合金板の表面と樹脂皮膜との間に介在して両者の密着性を高めるものであれば特に限定されるものでない。例えば、アルミニウム合金には、安価で浴液管理が容易なリン酸クロメート処理液で形成される化成皮膜や、処理液成分の変化が無く水洗を必要としない塗布型ジルコニウム処理で形成される化成皮膜を用いることができる。
このような化成処理は、アルミニウム合金板に所定の化成処理液をスプレーしたり、アルミニウム合金板を処理液中に所定の温度で所定時間浸漬したりすることによって施される。
なお、化成処理を行なう前に、アルミニウム合金板表面の汚れを除去したり表面性状を調整したりするために、アルミニウム合金板を、硫酸、硝酸、リン酸等による酸処理(洗浄)、或いは、カセイソーダ、リン酸ソーダ、ケイ酸ソーダ等によるアルカリ処理(洗浄)を行なうのが望ましい。このような洗浄による表面処理も、アルミニウム合金板に所定の表面処理液をスプレーしたり、アルミニウム合金板を処理液中に所定温度で所定時間浸漬したりすることによって施される。
B. Chemical conversion film The chemical conversion film is not particularly limited as long as it is interposed between the surface of the aluminum alloy plate and the resin film to enhance the adhesion between them. For example, for aluminum alloys, a chemical conversion film formed with a phosphoric acid chromate treatment solution that is inexpensive and easy to manage the bath solution, or a chemical conversion coating formed by a coating-type zirconium treatment that does not require changes in the treatment solution components and does not require washing with water. Can be used.
Such a chemical conversion treatment is performed by spraying a predetermined chemical conversion treatment solution on the aluminum alloy plate or immersing the aluminum alloy plate in the treatment solution at a predetermined temperature for a predetermined time.
Before the chemical conversion treatment, in order to remove dirt on the surface of the aluminum alloy plate or to adjust the surface properties, the aluminum alloy plate is acid-treated (washed) with sulfuric acid, nitric acid, phosphoric acid, or the like, or It is desirable to perform alkali treatment (cleaning) with caustic soda, sodium phosphate, sodium silicate, or the like. Surface treatment by such cleaning is also performed by spraying a predetermined surface treatment liquid on the aluminum alloy plate or immersing the aluminum alloy plate in the treatment liquid at a predetermined temperature for a predetermined time.

C.樹脂皮膜
次いで、前記化成皮膜上に樹脂皮膜が形成される。樹脂皮膜は単層であっても、多層でも良いが、最外層に樹脂皮膜Aが形成される。樹脂皮膜Aはベース樹脂に無機系骨材を添加し、適当な溶剤に溶解又は分散した塗料を焼付け塗装して形成される。
C. Resin film Next, a resin film is formed on the chemical conversion film. The resin film may be a single layer or multiple layers, but the resin film A is formed on the outermost layer. The resin film A is formed by adding an inorganic aggregate to a base resin and baking and painting a paint dissolved or dispersed in an appropriate solvent.

C−1.樹脂皮膜表面の表面粗度
樹脂皮膜表面における塗装方向のRaが0.6μm以上3.0μm以下であり、かつ任意の10箇所のRaを測定したときの最大値から最小値を引いた値が1.0μm以下であり、かつ、樹脂皮膜表面における塗装方向に対して垂直方向のSmが70μm以上180μm以下であり、かつ任意の10箇所のSmを測定したときの最大値から最小値を引いた値が40μm以下である。
耐摩耗性や加工性は塗装方向のRaの影響を受ける。無機系骨材は種類や粒径、塗装条件等にもよるが、塗装方向に縦筋が発生しやすい。Raは図1に示す通り、輪郭曲線の算術平均高さをあらわす。塗装方向のRaは測定位置によりバラツキが発生しやすく、Raが0.6μm未満の場合、図2に示す通り、樹脂皮膜表層における無機系骨材の突出量が少なく、樹脂皮膜が破壊されやすく、耐摩耗性が劣る。逆に、Raが3.0μmを超えると、実際の表面においては、凸部の平均高さが大きいことから、図3に示す通り、樹脂皮膜表層における無機系骨材の突出量が多くなり皮膜自体に硬さが付与されて、耐摩耗性に優れるが、樹脂分が少なくなる為に樹脂皮膜が変形しにくくなり、加工性が劣る。さらに、任意の10箇所のRaを測定したときの最大値から最小値を引いた値が1.0μmを超えると、耐摩耗性が劣る。これは無機系骨材の突出の仕方にバラツキがあり、Raの小さいところに負荷がかかり、樹脂皮膜が破壊されやすいからである。
鉛筆引っかき値や加工性は塗装方向に対して垂直方向のSmの影響を受ける。Smは図1に示す通り、輪郭曲線要素(山とそれに隣り合う谷からなる曲線部分)の平均長さをあらわす。本発明で用いられる鉛筆引っかき値は塗装方向を測定したものである。Smの値が小さい程、実際の表面においては、凸部間の間隔が狭くなり、塗装方向に対する垂直方向の山の間隔(平均値)は狭く、Smの値が大きい程、塗装方向に対する垂直方向の山の間隔(平均値)は広い。Smの値が70μm未満では、図4に示す通り、無機系骨材の分布が密であり、鉛筆引っかき値は優れるが、加工性が劣る。一方、Smの値が180μmを超えると、図5に示す通り、無機系骨材がまばらに分布しており、無機系骨材が存在しない部分における強度は弱く、鉛筆引っかき値が小さくなる。さらに、任意の10箇所のSmを測定したときの最大値から最小値を引いた値が40μmを超えると、鉛筆引っかき値が劣る。
C-1. Surface roughness of the resin film surface Ra in the coating direction on the resin film surface is 0.6 μm or more and 3.0 μm or less, and a value obtained by subtracting the minimum value from the maximum value when measuring Ra at any 10 locations is 1. 0.0 μm or less, Sm in the direction perpendicular to the coating direction on the resin film surface is 70 μm or more and 180 μm or less, and a value obtained by subtracting the minimum value from the maximum value when measuring Sm at any 10 locations Is 40 μm or less.
Abrasion resistance and workability are affected by Ra in the coating direction. Depending on the type, particle size, and coating conditions of inorganic aggregates, vertical streaks are likely to occur in the coating direction. As shown in FIG. 1, Ra represents the arithmetic average height of the contour curve. Ra in the coating direction is likely to vary depending on the measurement position. When Ra is less than 0.6 μm, as shown in FIG. 2, the amount of protrusion of the inorganic aggregate on the surface of the resin film is small, and the resin film is easily destroyed. Wear resistance is poor. On the other hand, if Ra exceeds 3.0 μm, the average height of the protrusions is large on the actual surface, and as shown in FIG. Hardness is given to itself and it is excellent in abrasion resistance, but since the resin content is reduced, the resin film becomes difficult to be deformed and workability is inferior. Furthermore, if the value obtained by subtracting the minimum value from the maximum value when measuring Ra at any 10 locations exceeds 1.0 μm, the wear resistance is poor. This is because there are variations in the manner in which the inorganic aggregate protrudes, a load is applied where Ra is small, and the resin film is easily destroyed.
Pencil scratch value and workability are affected by Sm perpendicular to the coating direction. As shown in FIG. 1, Sm represents the average length of the contour curve element (curved portion composed of a mountain and a valley adjacent to the mountain). The pencil scratch value used in the present invention is obtained by measuring the coating direction. The smaller the value of Sm, the narrower the interval between the convex portions on the actual surface, the narrower the interval (average value) in the vertical direction with respect to the painting direction, and the larger the value of Sm, the perpendicular direction to the painting direction. The mountain interval (average value) is wide. When the value of Sm is less than 70 μm, as shown in FIG. 4, the inorganic aggregate is densely distributed and the pencil scratch value is excellent, but the processability is inferior. On the other hand, when the value of Sm exceeds 180 μm, as shown in FIG. 5, the inorganic aggregate is sparsely distributed, the strength in the portion where the inorganic aggregate is not present is weak, and the pencil scratch value becomes small. Furthermore, if the value obtained by subtracting the minimum value from the maximum value when measuring Sm at any 10 locations exceeds 40 μm, the pencil scratch value is inferior.

C−2.樹脂皮膜Aの皮膜厚さ
樹脂皮膜Aの皮膜厚さは5〜30μmが好ましい。皮膜厚さが5μm未満であると、樹脂皮膜Aのクッション効果が発揮されず、耐摩耗性が劣る。皮膜厚さが30μmを超えると、樹脂皮膜が加工の変形に追随できず、樹脂皮膜が破壊しやすく、加工性が劣る。
C-2. The film thickness of the resin film A The film thickness of the resin film A is preferably 5 to 30 μm. When the film thickness is less than 5 μm, the cushion effect of the resin film A is not exhibited and the wear resistance is inferior. When the film thickness exceeds 30 μm, the resin film cannot follow the deformation of the processing, the resin film is easily broken, and the workability is inferior.

C−3.樹脂皮膜Aに使用するベース樹脂
樹脂皮膜Aに使用するベース樹脂はエポキシ系樹脂、フッ素系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂の中から成る群から選択される1種以上を用いることができる。中でも、プレス加工等の加工時に塗膜割れが起こり難く、塗装時の作業性が良好で、コスト的にも有利なポリエステル系樹脂を用いることが好ましい。
ポリエステル樹脂はジカルボン酸とジオールを化合させた樹脂である。
ジカルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸等の炭素数2〜22の脂肪酸ジカルボン酸、フタル酸、イソフタル酸、テレフタル酸等の芳香族ジカルボン酸等を挙げることができる。これらのジカルボン酸は1種類のみを用いても2種類以上を組み合わせて用いても良い。
ジオールとしては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、ジエチレングリコール、ペンタンジオール等の炭素数2〜22の脂肪酸ジオール等を挙げることができる。これらのジオールは1種類のみを用いても2種類以上を組み合わせて用いても良い。
ジカルボン酸とジオールの構成単位からなる線状ポリエステル樹脂としては、ジカルボン酸とジオールを重縮合することにより得られる線状ポリエステル樹脂、ジカルボン酸無水和物とジオールの付加反応により得られる線状ポリエステル樹脂、さらにエステル交換反応により得られる線状ポリエステル樹脂等を挙げることができ、原料がジカルボン酸とジオールである線状ポリエステル樹脂のみをいうのでははく、線状ポリエステル樹脂における構成単位がジカルボン酸から誘導される構成単位とジオールから誘導される構成単位と同じ構造であるものも含まれる。
ポリエステル樹脂の数平均分子量は5000以上25000以下である事が好ましい。数平均分子量はゲル浸透クロマトグラフィー(GPC)で測定し、標準ポリスチレンで換算したものを用いる。数平均分子量が5000未満では、低分子量成分の含有量が多くなり、樹脂皮膜の凝集力が不足するために、加工性が劣る。25000を超えると、塗料粘度が高くなり、塗料を十分に希釈しても、塗装外観が劣る。
硬化剤は特に制限はないが、メチル化メラミン樹脂、ブチル化メラミン樹脂、イソシアネート樹脂を用いることが好ましい。
ポリエステル樹脂、硬化剤の他にエポキシ樹脂やアクリル樹脂を混合させても良い。
C-3. Base resin used for resin film A The base resin used for resin film A uses at least one selected from the group consisting of epoxy resins, fluorine resins, acrylic resins, urethane resins, and polyester resins. be able to. Among them, it is preferable to use a polyester resin that is less likely to cause coating film cracking during processing such as press processing, has good workability during coating, and is advantageous in terms of cost.
The polyester resin is a resin obtained by combining dicarboxylic acid and diol.
Examples of the dicarboxylic acid include fatty acid dicarboxylic acids having 2 to 22 carbon atoms such as succinic acid, adipic acid, azelaic acid, and sebacic acid, and aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, and terephthalic acid. These dicarboxylic acids may be used alone or in combination of two or more.
Examples of the diol include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, neopentyl glycol, 1,6- Examples thereof include fatty acid diols having 2 to 22 carbon atoms such as hexanediol, diethylene glycol, and pentanediol. These diols may be used alone or in combination of two or more.
Examples of linear polyester resins composed of dicarboxylic acid and diol structural units include linear polyester resins obtained by polycondensation of dicarboxylic acid and diol, and linear polyester resins obtained by addition reaction of dicarboxylic acid anhydride and diol. Furthermore, linear polyester resins obtained by transesterification can be mentioned, and not only linear polyester resins whose raw materials are dicarboxylic acid and diol, but the structural units in the linear polyester resin are from dicarboxylic acid. Those having the same structure as the structural unit derived from diol and the structural unit derived from diol are also included.
The number average molecular weight of the polyester resin is preferably 5000 or more and 25000 or less. The number average molecular weight is measured by gel permeation chromatography (GPC) and used in terms of standard polystyrene. When the number average molecular weight is less than 5,000, the content of the low molecular weight component is increased and the cohesive force of the resin film is insufficient, so that the workability is inferior. If it exceeds 25000, the viscosity of the paint increases, and even if the paint is sufficiently diluted, the appearance of the paint is poor.
Although there is no restriction | limiting in particular in a hardening | curing agent, It is preferable to use methylated melamine resin, butylated melamine resin, and isocyanate resin.
In addition to the polyester resin and the curing agent, an epoxy resin or an acrylic resin may be mixed.

C−4.樹脂皮膜Aに用いる無機系骨材
樹脂皮膜Aに無機系骨材を添加する。無機系骨材は硬質な材料である為、樹脂皮膜の耐摩耗性や鉛筆引っかき値を高めることができる。無機系骨材はシリカ、セラミック繊維、球状ガラスビーズ、鱗片状ガラスフレーク、球状セラミック等を用いることができる。特に、シリカ又はセラミック繊維を用いることが好ましい。樹脂皮膜の加工性の低下を抑えて、耐摩耗性と鉛筆引っかき値を高めることができる為である。
シリカは二酸化ケイ素や無水ケイ酸とも呼ばれる。結晶は共有結合結晶であり、ケイ素原子を中心とする正四面体構造が酸素原子を介して無数に連なる構造を有している。多様な結晶相(結晶多形)の中で代表的なものとして、石英、鱗珪石、クリストバライト、コーサイト、スティショバイト、衝撃石英などがある。シリカの平均粒径は1μm以上25μm以下である事が好ましい。シリカの平均粒径が1μm未満では、樹脂皮膜表面の凸部が小さくなり、耐摩耗性や鉛筆引っかき値が劣る。一方、25μmを超えると、樹脂皮膜表面の凸部が大きくなり、加工性が劣る。シリカの平均粒径と前述した樹脂皮膜Aの皮膜厚さとの比は0.4〜3.0の範囲にあることが好ましい。なお、シリカの平均粒径はレーザー回折・散乱法等で測定することができる。レーザー回折・散乱法は粒子と光の相互作用が、粒子の大きさや光の波長に依存することを利用したものである。粒子に照射した光の前方から側方の角度領域に散乱される光の強度分布が、粒子の大きさの関数であることを利用して粒子径を検出する。
セラミック繊維はアルミナ・シリカを主成分とした人造繊維であり、無機繊維に分類される。化学組成はアルミナが30〜60%であり、シリカが40〜60%である。さらに、ジルコニア、酸化クロム等を添加することもある。セラミック繊維は樹脂皮膜中で重なり合う為に、樹脂皮膜の強度を高めて、耐摩耗性や鉛筆引っかき値を高めることができる。繊維径は平均2μm以上10μm以下で、長さが繊維径の100倍以下である事が好ましい。なお、セラミック繊維の繊維径や長さは画像解析法等によって測定することができる。比重は約2.6でモース硬度が約7である。 繊維径が2μm未満であると、樹脂皮膜表面の凸部が小さくなり、耐磨耗性や鉛筆引っかき値が劣る。一方、10μmを超えると、樹脂皮膜表面の凸部が大きくなり、加工性が劣る。長さが繊維径の100倍を超えると、樹脂皮膜表面の凹凸の分布が疎になり、耐磨耗性や鉛筆引っかき値が劣る。
無機系骨材の配合量は樹脂固形分に対して1以上60重量%が好ましい。樹脂固形分に対して1重量%未満では、樹脂皮膜表面の凸部の分布も疎になり、耐摩耗性や鉛筆引っかき値が劣る。一方、60重量%を超えると、樹脂皮膜表面の凸部の分布が密になり、加工性が劣る。
C-4. Inorganic aggregate used for resin film A An inorganic aggregate is added to the resin film A. Since the inorganic aggregate is a hard material, the wear resistance of the resin film and the pencil scratch value can be increased. As the inorganic aggregate, silica, ceramic fibers, spherical glass beads, scaly glass flakes, spherical ceramics and the like can be used. In particular, it is preferable to use silica or ceramic fiber. This is because the wear resistance and the pencil scratch value can be increased by suppressing the deterioration of the processability of the resin film.
Silica is also called silicon dioxide or silicic anhydride. The crystal is a covalent bond crystal and has a structure in which a regular tetrahedral structure centered on a silicon atom is innumerably connected through oxygen atoms. Typical examples of the various crystal phases (crystal polymorphs) include quartz, scale silica, cristobalite, cosite, stishovite, and impact quartz. The average particle diameter of silica is preferably 1 μm or more and 25 μm or less. When the average particle diameter of silica is less than 1 μm, the convex portion on the surface of the resin film becomes small, and the wear resistance and the pencil scratch value are inferior. On the other hand, if it exceeds 25 μm, the convex portion on the surface of the resin film becomes large, and the workability is inferior. The ratio between the average particle diameter of silica and the film thickness of the resin film A described above is preferably in the range of 0.4 to 3.0. The average particle diameter of silica can be measured by a laser diffraction / scattering method or the like. The laser diffraction / scattering method utilizes the fact that the interaction between particles and light depends on the size of the particles and the wavelength of light. The particle diameter is detected by utilizing the fact that the intensity distribution of the light scattered from the front to the side angular region of the light irradiated on the particles is a function of the size of the particles.
Ceramic fibers are artificial fibers mainly composed of alumina and silica, and are classified as inorganic fibers. The chemical composition is 30-60% for alumina and 40-60% for silica. Furthermore, zirconia, chromium oxide, etc. may be added. Since the ceramic fibers overlap in the resin film, it is possible to increase the strength of the resin film and increase the abrasion resistance and the pencil scratch value. The fiber diameter is preferably 2 μm or more and 10 μm or less on average, and the length is preferably 100 times or less of the fiber diameter. The fiber diameter and length of the ceramic fiber can be measured by an image analysis method or the like. The specific gravity is about 2.6 and the Mohs hardness is about 7. When the fiber diameter is less than 2 μm, the convex portion on the surface of the resin film becomes small, and the abrasion resistance and the pencil scratch value are inferior. On the other hand, if it exceeds 10 μm, the convex portion on the surface of the resin film becomes large, and the workability is inferior. If the length exceeds 100 times the fiber diameter, the uneven distribution on the surface of the resin film becomes sparse, resulting in poor wear resistance and pencil scratch value.
The amount of the inorganic aggregate is preferably 1 to 60% by weight based on the resin solid content. If it is less than 1% by weight based on the solid content of the resin, the distribution of the convex portions on the surface of the resin film becomes sparse, and the wear resistance and the pencil scratch value are inferior. On the other hand, when it exceeds 60% by weight, the distribution of convex portions on the surface of the resin film becomes dense, and the workability is inferior.

C−5.下塗り層
樹脂皮膜Aと化成皮膜の密着性を高めたり、耐摩耗性を向上させたりするために、下塗り層をもうけても良い。下塗り層に用いられるベース樹脂、添加剤は樹脂皮膜Aに用いられるものから選べば良い。無機系骨材は添加しても良い。
C-5. Undercoat layer An undercoat layer may be provided in order to increase the adhesion between the resin film A and the chemical conversion film or to improve the wear resistance. The base resin and additive used for the undercoat layer may be selected from those used for the resin film A. Inorganic aggregates may be added.

D.樹脂皮膜表面の表面粗度の調整方法
D−1.樹脂皮膜の形成方法
樹脂皮膜表面における塗装方向のRaが0.6μm以上3.0μm以下であり、かつ任意の10箇所のRaを測定したときの最大値から最小値を引いた値が1.0μm以下であり、かつ、樹脂皮膜表面における塗装方向に対して垂直方向のSmが70μm以上180μm以下であり、かつ任意の10箇所のSmを測定したときの最大値から最小値を引いた値が40μm以下となるように、予め無機系骨材の大きさ、配合量を調節して、塗料に添加する。具体的には、前述した通りである。
又、樹脂皮膜Aの皮膜厚さは前述した通りに調整する。さらに、以下に説明する方法にて焼き付けることによって、本発明の樹脂皮膜表面の表面粗度を得ることができる。
但し、皮膜厚さに対して粒径の大きい無機系骨材を添加する場合には、表面粗度に及ぼす塗装後焼付けの影響は少ない。無機系骨材の中でも、皮膜厚さに対して粒径の小さい無機系骨材を添加する場合やセラミック繊維を添加する場合に、塗装後焼付けの影響が大きくなる。
樹脂皮膜Aを形成させるための塗料はベース樹脂、無機系骨材を必須成分として含有し、これに潤滑剤、顔料、顔料分散剤、流動性調節剤、レベリング剤、ワキ防止剤、防腐剤、安定化剤等を適宜加え、溶剤にこれらを溶解又は分散したものを用いる。塗料を化成皮膜上又は下塗り層上に直接塗布し、焼付乾燥する。
D. Method for adjusting surface roughness of resin film surface D-1. Forming method of resin film Ra in the coating direction on the surface of the resin film is 0.6 μm or more and 3.0 μm or less, and the value obtained by subtracting the minimum value from the maximum value when measuring Ra at any 10 locations is 1.0 μm. The Sm in the direction perpendicular to the coating direction on the surface of the resin film is 70 μm or more and 180 μm or less, and the value obtained by subtracting the minimum value from the maximum value when measuring Sm at any 10 locations is 40 μm. The size and amount of the inorganic aggregate are adjusted in advance so as to become the following, and added to the paint. Specifically, it is as described above.
The film thickness of the resin film A is adjusted as described above. Furthermore, the surface roughness of the resin film surface of the present invention can be obtained by baking by the method described below.
However, when an inorganic aggregate having a large particle size with respect to the coating thickness is added, the influence of post-paint baking on the surface roughness is small. Among inorganic aggregates, when an inorganic aggregate having a small particle size with respect to the coating thickness is added or when ceramic fibers are added, the influence of baking after painting becomes large.
The paint for forming the resin film A contains a base resin and an inorganic aggregate as essential components, and includes a lubricant, a pigment, a pigment dispersant, a fluidity regulator, a leveling agent, an anti-skid agent, an antiseptic, A stabilizer or the like is added as appropriate, and these are dissolved or dispersed in a solvent. The paint is directly applied on the chemical conversion film or the undercoat layer and baked and dried.

D−2.塗装後焼き付け
塗料は加熱されると対流しながら温度が上昇する。無機系骨材は比重が大きいことから沈降しやすい。溶剤の揮発によって、塗料粘度が上昇すると、その沈降は抑えられる。さらに温度が上昇し、ベース樹脂の硬化反応が開始すると、無機系骨材の分布が固定される。
従って、本発明の樹脂皮膜表面の表面粗度を得るには、100℃までは昇温速度5℃/秒以上25℃/秒以下で上昇させることが好ましい。5℃/秒未満であると、溶剤の揮発が遅く、塗料粘度の上昇に時間がかかり、無機系骨材が沈降しやすい。その為、皮膜厚さよりも粒径の小さい無機系骨材を添加する場合やセラミック繊維を添加する場合、無機系骨材が沈降するので、本発明の樹脂皮膜表面の表面粗度を得ることができない。一方、25℃/秒を超えると、樹脂皮膜の深さ方向における無機系骨材の分布が不均一となるので、樹脂皮膜表面の表面粗度のバラツキが大きくなり、本発明の樹脂皮膜表面の表面粗度を得ることができない。
D-2. Baking after painting When the paint is heated, the temperature rises with convection. Inorganic aggregates tend to settle due to their large specific gravity. When the paint viscosity increases due to the volatilization of the solvent, the sedimentation is suppressed. When the temperature further rises and the curing reaction of the base resin starts, the distribution of the inorganic aggregate is fixed.
Therefore, in order to obtain the surface roughness of the resin film surface of the present invention, it is preferable to increase the temperature up to 100 ° C. at a temperature rising rate of 5 ° C./second or more and 25 ° C./second or less. If it is less than 5 ° C./second, the volatilization of the solvent is slow, it takes time to increase the viscosity of the paint, and the inorganic aggregate tends to settle. Therefore, when adding an inorganic aggregate having a particle size smaller than the film thickness or adding ceramic fibers, the inorganic aggregate settles, so that the surface roughness of the resin film surface of the present invention can be obtained. Can not. On the other hand, if the temperature exceeds 25 ° C./second, the distribution of the inorganic aggregate in the depth direction of the resin film becomes non-uniform, resulting in large variations in the surface roughness of the resin film surface. The surface roughness cannot be obtained.

以下に、本発明を実施例により詳細に説明する。
番号1〜6(本発明例)
アルミニウム合金板(材質:JIS A5052、板厚:0.8mm、ビッカース硬さHV5(49.03N):78)の両面を、市販のアルミニウム用脱脂剤にて脱脂処理を行い、水洗後に、市販のリン酸クロメート処理液により両面を化成処理した。次いで、一方の化成処理面にポリエステル系樹脂の塗料を10μmとなるようにバーコーターで塗装し、焼付けした。その上に、表1に示す塗料aをバーコーターで塗装し、焼付けした。焼付け温度は最高到達温度(PMT)230℃であった。

番号7〜14(本発明例)
アルミニウム合金板(材質:JIS A5182、板厚:0.8mm、ビッカース硬さHV5(49.03N):99)の両面を市販のアルミニウム用脱脂剤にて脱脂処理を行い、水洗後に、希硫酸で酸洗処理し、水洗後に、市販のジルコニウム処理液にて化成処理した。次いで、一方の化成処理面にエポキシ系樹脂の塗料を10μmとなるようにバーコーターで塗装し、焼付けした。その上に、表1に示す塗料aをバーコーターで塗装し、焼付けした。焼付け温度は最高到達温度(PMT)230℃であった。

番号15〜22(比較例)
番号1〜6と同様にして表1の作製条件に基づいて、番号15〜22の試料を作製した。
Hereinafter, the present invention will be described in detail with reference to examples.
Numbers 1 to 6 (examples of the present invention)
Both surfaces of an aluminum alloy plate (material: JIS A5052, plate thickness: 0.8 mm, Vickers hardness HV5 (49.03N): 78) are degreased with a commercially available aluminum degreasing agent, washed with water, and then commercially available. Both surfaces were subjected to chemical conversion treatment with a phosphoric acid chromate treatment solution. Next, one chemical conversion treated surface was coated with a polyester resin paint with a bar coater so as to have a thickness of 10 μm and baked. On top of this, the paint a shown in Table 1 was applied with a bar coater and baked. The baking temperature was 230 ° C., the highest temperature reached (PMT).

Numbers 7 to 14 (examples of the present invention)
Both surfaces of an aluminum alloy plate (material: JIS A5182, plate thickness: 0.8 mm, Vickers hardness HV5 (49.03N): 99) are degreased with a commercially available aluminum degreasing agent, washed with water and then diluted with dilute sulfuric acid. After pickling treatment and water washing, chemical conversion treatment was performed with a commercially available zirconium treatment liquid. Next, an epoxy resin coating was applied to one chemical conversion treated surface with a bar coater to a thickness of 10 μm and baked. On top of this, the paint a shown in Table 1 was applied with a bar coater and baked. The baking temperature was 230 ° C., the highest temperature reached (PMT).

Numbers 15 to 22 (comparative example)
Samples of Nos. 15 to 22 were produced in the same manner as Nos. 1 to 6 based on the production conditions of Table 1.

Figure 2010228279
Figure 2010228279

上述した方法で得られた化成皮膜の皮膜量を蛍光X線分析装置により測定した結果、クロム量は30mg/m、ジルコニウム量10mg/mであった。
番号1〜22で作製したプレコートアルミニウム合金板試料について、樹脂皮膜表面の表面粗度、耐摩耗性、鉛筆引っかき値、加工性を下記の方法にて評価した。○、△を合格とし、×を不合格とした。
As a result of measuring the film amount of the chemical conversion film obtained by the above-described method using a fluorescent X-ray analyzer, the chromium content was 30 mg / m 2 and the zirconium content was 10 mg / m 2 .
About the precoat aluminum alloy plate sample produced with the numbers 1-22, the following method evaluated the surface roughness of the resin film surface, abrasion resistance, pencil scratch value, and workability. ○ and △ were accepted and x was rejected.

<樹脂皮膜表面の表面粗度>
樹脂皮膜表面の表面粗度は触針式の表面粗さ計にて測定する。プレコートアルミニウム合金板の任意の10箇所における塗装方向のRaを測定し、平均値と、最大値−最小値を算出する。同じように任意の10箇所における塗装方向に対して垂直方向のSmを測定し、平均値と、最大値−最小値を算出する。
<耐摩耗性>
樹脂皮膜表面の耐摩耗性はテーバー摩耗試験を行い、評価した。試験条件はCS−17の磨耗輪を用い、1000回実施後の摩耗量を算出した。なお、1000回実施前に素地の露出が認められた場合には、素地露出ありとした。
○:素地露出なく、摩耗量が70mg未満
△:素地露出なく、摩耗量が120mg未満
×:素地露出あり。
<鉛筆引っかき値>
塗装方向の鉛筆引っかき値は、JIS H4001に準拠して、測定した。判定は傷判定で実施した。
○:3H以上
△:2H
×:H以下
<加工性>
加工性は、JIS Z2248に準拠して、プレコートアルミニウム合金板の樹脂皮膜面を外側にして素板を2枚挟んで(合計厚さ1.6mm)180度曲げを行い、目視で曲げ部外観を観察した。
○:塗膜割れなし
△:僅かに塗膜割れあり
×:著しい塗膜割れあり

番号1〜22の上記試験結果を表2に示す。
<Surface roughness of resin film surface>
The surface roughness of the resin film surface is measured with a stylus type surface roughness meter. Ra in the coating direction at any 10 locations on the pre-coated aluminum alloy plate is measured, and an average value and a maximum value-minimum value are calculated. Similarly, Sm in the direction perpendicular to the coating direction at any 10 locations is measured, and an average value and a maximum value-minimum value are calculated.
<Abrasion resistance>
The abrasion resistance of the resin film surface was evaluated by performing a Taber abrasion test. The test conditions were CS-17 wear wheels, and the amount of wear after 1000 runs was calculated. In addition, when exposure of the substrate was recognized before 1000 implementations, it was determined that the substrate was exposed.
○: No substrate exposure, wear amount less than 70 mg Δ: No substrate exposure, wear amount less than 120 mg x: Base exposure.
<Pencil scratch value>
The pencil scratch value in the coating direction was measured according to JIS H4001. Judgment was carried out by scratch judgment.
○: 3H or more △: 2H
×: H or less <workability>
The workability is in accordance with JIS Z2248, bend 180 degrees with two pre-coated aluminum alloy sheets with the resin film surface facing outside (total thickness 1.6mm), and visually observe the bent part appearance. Observed.
○: No cracking of coating film △: Slight coating cracking ×: Significant coating cracking

The test results of Nos. 1-22 are shown in Table 2.

Figure 2010228279
Figure 2010228279

番号1〜14のプレコートアルミニウム合金板の樹脂皮膜の最外層はベース樹脂に無機系骨材を添加しており、樹脂皮膜表面における塗装方向のRaが0.6μm以上3.0μm以下であり、かつ任意の10箇所のRaを測定したときの最大値から最小値を引いた値が1.0μm以下であり、かつ、樹脂皮膜表面における塗装方向に対して垂直方向のSmが70μm以上180μm以下であり、かつ任意の10箇所のSmを測定したときの最大値から最小値を引いた値が40μm以下の結果を示す。これらのプレコートアルミニウム合金板では、良好な耐摩耗性、鉛筆引っかき値、加工性が得られた。
一方、番号15は樹脂皮膜表面の塗装方向のRaが0.6μm未満である為、耐摩耗性が劣っていた。
番号16は樹脂皮膜表面の塗装方向のRaが3.0μmを超える為、加工性が劣っていた。
番号17は樹脂皮膜表面の塗装方向において任意の10箇所のRaを測定したときの最大値から最小値を引いた値が1.0を超える為、耐摩耗性が劣っていた。
番号18は樹脂皮膜表面における塗装方向に対して垂直方向のSmが70μm未満である為、鉛筆引っかき値が劣っていた。
番号19は樹脂皮膜表面における塗装方向に対して垂直方向のSmが180μmを越える為、加工性が劣っていた。
番号20は樹脂皮膜表面における塗装方向に対して垂直方向のSmにおいて、任意の10箇所のSmを測定したときの最大値から最小値を引いた値が40μmを超える為、鉛筆引っかき値が劣っていた。
番号21及び22は樹脂皮膜表面の塗装方向において任意の10箇所のRaを測定したときの最大値から最小値を引いた値が1.0を超える為、耐摩耗性が劣っていた。
The outermost layer of the resin film of the precoated aluminum alloy plates of Nos. 1 to 14 has an inorganic aggregate added to the base resin, the Ra in the coating direction on the resin film surface is 0.6 μm or more and 3.0 μm or less, and The value obtained by subtracting the minimum value from the maximum value when measuring Ra at any 10 locations is 1.0 μm or less, and the Sm perpendicular to the coating direction on the resin film surface is 70 μm or more and 180 μm or less. And the value which subtracted the minimum value from the maximum value when measuring Sm of arbitrary 10 places shows the result of 40 micrometers or less. With these pre-coated aluminum alloy plates, good abrasion resistance, pencil scratch value, and workability were obtained.
On the other hand, No. 15 was inferior in wear resistance because Ra in the coating direction of the resin film surface was less than 0.6 μm.
No. 16 was inferior in workability because Ra in the coating direction of the resin film surface exceeded 3.0 μm.
No. 17 was inferior in wear resistance because the value obtained by subtracting the minimum value from the maximum value when measuring Ra at any 10 locations in the coating direction of the resin film surface exceeded 1.0.
No. 18 had an inferior pencil scratch value because Sm in the direction perpendicular to the coating direction on the resin film surface was less than 70 μm.
No. 19 was inferior in workability because Sm in the direction perpendicular to the coating direction on the resin film surface exceeded 180 μm.
No. 20 is inferior in the pencil scratch value because the value obtained by subtracting the minimum value from the maximum value when measuring Sm at any 10 locations in Sm perpendicular to the coating direction on the resin film surface exceeds 40 μm. It was.
Nos. 21 and 22 were inferior in wear resistance because the value obtained by subtracting the minimum value from the maximum value when measuring Ra at any 10 locations in the coating direction of the resin film surface exceeded 1.0.

1 基準長さ(l)
2 平均長さ
3 輪郭曲線
4 Z(x)
5 XSi
6 無機系骨材
7 樹脂皮膜A
1 Standard length (l)
2 Average length 3 Contour curve 4 Z (x)
5 X Si
6 Inorganic aggregate 7 Resin film A

Claims (3)

ビッカース硬さが60〜120の範囲にあるアルミニウム合金板の両面に形成した化成皮膜と、前記化成皮膜の少なくとも一方の上に樹脂皮膜を有するプレコートアルミニウム合金板において、最外層はエポキシ系樹脂、フッ素系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂の中から成る群から選択される1種以上のベース樹脂に無機系骨材を添加した樹脂皮膜Aであり、樹脂皮膜表面における塗装方向のRaが0.6μm以上3.0μm以下であり、かつ任意の10箇所のRaを測定したときの最大値から最小値を引いた値が1.0μm以下であり、かつ、樹脂皮膜表面における塗装方向に対して垂直方向のSmが70μm以上180μm以下であり、かつ任意の10箇所のSmを測定したときの最大値から最小値を引いた値が40μm以下であることを特徴とする電気電子機器筐体用プレコートアルミニウム合金板。   In a conversion coating formed on both surfaces of an aluminum alloy plate having a Vickers hardness in the range of 60 to 120, and a precoated aluminum alloy plate having a resin coating on at least one of the conversion coating, the outermost layer is an epoxy resin, fluorine A resin film A in which an inorganic aggregate is added to one or more base resins selected from the group consisting of a resin, an acrylic resin, a urethane resin, and a polyester resin. Ra is 0.6 μm or more and 3.0 μm or less, and the value obtained by subtracting the minimum value from the maximum value when measuring Ra at any 10 locations is 1.0 μm or less, and the coating direction on the resin film surface Is the value obtained by subtracting the minimum value from the maximum value when the Sm in the vertical direction is 70 μm or more and 180 μm or less and the Sm at any 10 locations is measured Is a pre-coated aluminum alloy sheet for electrical and electronic equipment casings. 無機系骨材がセラミック繊維又はシリカであることを特徴とする請求項1に記載の電気電子機器筐体用プレコートアルミニウム合金板。   The pre-coated aluminum alloy plate for an electric / electronic equipment casing according to claim 1, wherein the inorganic aggregate is ceramic fiber or silica. 前記シリカの平均粒径が1μm以上25μm以下であることを特徴とする請求項1又は2に記載の電気電子機器筐体用プレコートアルミニウム合金板。   The precoated aluminum alloy plate for an electric / electronic equipment casing according to claim 1 or 2, wherein the silica has an average particle size of 1 µm or more and 25 µm or less.
JP2009077912A 2009-03-27 2009-03-27 Precoated aluminum alloy sheet for casing of electric and electronic equipment Pending JP2010228279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009077912A JP2010228279A (en) 2009-03-27 2009-03-27 Precoated aluminum alloy sheet for casing of electric and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009077912A JP2010228279A (en) 2009-03-27 2009-03-27 Precoated aluminum alloy sheet for casing of electric and electronic equipment

Publications (1)

Publication Number Publication Date
JP2010228279A true JP2010228279A (en) 2010-10-14

Family

ID=43044597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009077912A Pending JP2010228279A (en) 2009-03-27 2009-03-27 Precoated aluminum alloy sheet for casing of electric and electronic equipment

Country Status (1)

Country Link
JP (1) JP2010228279A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017101088A1 (en) 2016-02-16 2017-08-17 Lenovo (Singapore) Pte. Ltd. Housing part, electronic device and method for producing the housing part
CN114804893A (en) * 2022-05-17 2022-07-29 惠州市纵胜电子材料有限公司 Electronic product shell based on continuous ceramic fibers and preparation method thereof
CN115338097A (en) * 2022-08-10 2022-11-15 深圳市首瓷新技术科技有限公司 Preparation method and application of aluminum alloy camera frame
JP7421783B1 (en) 2023-06-14 2024-01-25 株式会社寺方工作所 Irregular internal casing, its manufacturing method, and manufacturing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017101088A1 (en) 2016-02-16 2017-08-17 Lenovo (Singapore) Pte. Ltd. Housing part, electronic device and method for producing the housing part
US10285294B2 (en) 2016-02-16 2019-05-07 Lenovo (Singapore) Pte Ltd Method for producing a chassis member usable in a chassis of an electronic device
CN114804893A (en) * 2022-05-17 2022-07-29 惠州市纵胜电子材料有限公司 Electronic product shell based on continuous ceramic fibers and preparation method thereof
CN115338097A (en) * 2022-08-10 2022-11-15 深圳市首瓷新技术科技有限公司 Preparation method and application of aluminum alloy camera frame
JP7421783B1 (en) 2023-06-14 2024-01-25 株式会社寺方工作所 Irregular internal casing, its manufacturing method, and manufacturing device

Similar Documents

Publication Publication Date Title
KR100473517B1 (en) An aluminium plate having a film and an electronic device member using the same
JP2010514886A (en) Excellent heat-dissipating black resin composition, galvanized steel sheet treatment method using the same, and galvanized steel sheet treated thereby
JP2010228279A (en) Precoated aluminum alloy sheet for casing of electric and electronic equipment
JP2008161735A (en) Precoated metal sheet and manufacturing method of precoated metal sheet
JP4104637B2 (en) Pre-coated metal plate for slot-in drive case
JP4897109B2 (en) Painted metal and its manufacturing method
JP4616573B2 (en) Manufacturing method of product made of magnesium or magnesium alloy
JP2004291445A (en) Surface treated aluminum material and manufacturing method thereof
JP2010005545A (en) Precoated metallic plate for electronic/electrical equipment
JP2009126105A (en) Pre-coated metal plate and method of manufacturing the same
JP5646875B2 (en) Pre-coated aluminum plate for drawing and container-shaped molded products
JP5097794B2 (en) Resin-coated metal material excellent in wear resistance and moldability and method for producing the same
Adarraga et al. Superhydrophobic and oleophobic microtextured aluminum surface with long durability under corrosive environment
JP5237080B2 (en) Pre-coated metal sheet for electronic and electrical equipment
JP6790827B2 (en) Laminated film and its manufacturing method
JP4638538B2 (en) Pre-coated aluminum plate
JP2005262841A (en) Resin coated aluminum material excellent in processability and heat radiation
JP2008114194A (en) Precoat aluminum alloy plate for case
JP2010017979A (en) Resin coated aluminum alloy sheet and hdd case using the resin coated aluminum alloy sheet, hdd, and manufacturing method for resin coated aluminum alloy sheet
JP6296662B2 (en) Lubricating aluminum paint
JP2019505608A (en) Resin composition, black resin steel plate using the same, and method for producing the same
JP2005096405A (en) High-reflective pre-coated aluminum alloy plate
JP2002178447A (en) Coated metal plate excellent in abrasion resistance and cleaning recovery property
JP2007217584A (en) Method for producing coating composition and resin-coated metal plate with resin coating film formed therefrom
WO2023090184A1 (en) Resin-coated aluminum alloy sheet and resin composition for resin-coated aluminum alloy sheet