JP2010228031A - Diamond-coated cutting tool - Google Patents
Diamond-coated cutting tool Download PDFInfo
- Publication number
- JP2010228031A JP2010228031A JP2009077050A JP2009077050A JP2010228031A JP 2010228031 A JP2010228031 A JP 2010228031A JP 2009077050 A JP2009077050 A JP 2009077050A JP 2009077050 A JP2009077050 A JP 2009077050A JP 2010228031 A JP2010228031 A JP 2010228031A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- diamond
- cutting
- film thickness
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 114
- 239000010432 diamond Substances 0.000 title claims abstract description 114
- 238000005520 cutting process Methods 0.000 title claims abstract description 48
- 239000013078 crystal Substances 0.000 claims abstract description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 18
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 117
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- 239000000758 substrate Substances 0.000 description 11
- 229910000838 Al alloy Inorganic materials 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000005553 drilling Methods 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000004050 hot filament vapor deposition Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
Description
この発明は、表面平滑性にすぐれたダイヤモンド被覆切削工具に関し、例えば、金属材料よりも比強度、比剛性の高いCFRP(Carbon Fiber Reinforced Plastics。炭素繊維強化プラスチック)あるいは溶着性の高いAl合金等の切削加工に用いた場合には、ダイヤモンド皮膜の密着性に優れ、シャープな切刃が維持されるとともにバリ発生が少なく、すぐれた仕上げ面精度を示すダイヤモンド被覆切削工具(以下、ダイヤモンド被覆工具という)に関するものである。 The present invention relates to a diamond-coated cutting tool having excellent surface smoothness, such as CFRP (Carbon Fiber Reinforced Plastics) having higher specific strength and specific rigidity than a metal material or Al alloy having high weldability. When used for cutting, a diamond-coated cutting tool (hereinafter referred to as a diamond-coated tool) that has excellent diamond film adhesion, maintains a sharp cutting edge, generates less burrs, and exhibits excellent finished surface accuracy. It is about.
ダイヤモンド被覆部材は、工具部材、耐摩耗部材、摺動部材等の多方面の用途に利用されているが、従来から、基体との密着性が不十分であるため、これを改善するために種々の方策が提案されている。
例えば、基体とダイヤモンド層との間に中間層を介在形成し、密着性の改善を図ることが行われており、IVa,Va,VIa族の化合物からなる中間層を介在形成すること(特許文献1,2)、また、IVa,Va,VIa族の化合物とカーボン非晶質層とからなる中間層を介在形成すること(特許文献3)、あるいは、被覆すべきダイヤモンド皮膜とは異なる特性のダイヤモンドを中間層として介在形成すること(特許文献4,5)等が知られている。
しかし、これら従来のダイヤモンド被覆部材を、特に、高硬度、耐摩耗性の要求されるダイヤモンド被覆切削工具として用いたような場合には、切削開始時の初期切削抵抗が大であったり、ダイヤモンド膜の密着性が十分でないために剥離を生じたり、切削加工の仕上げ面精度が十分でない等の問題点があった。
Diamond coated members have been used for various purposes such as tool members, wear-resistant members, sliding members, etc., but since the adhesion to the base has been insufficient, various methods have been used to improve this. This measure has been proposed.
For example, an intermediate layer is interposed between a base and a diamond layer to improve adhesion, and an intermediate layer made of a IVa, Va, VIa group compound is interposed (Patent Document) 1, 2), or an intermediate layer composed of an IVa, Va, VIa group compound and a carbon amorphous layer (Patent Document 3), or diamond having different characteristics from the diamond film to be coated Is known as an intermediate layer (Patent Documents 4 and 5).
However, especially when these conventional diamond-coated members are used as diamond-coated cutting tools that require high hardness and wear resistance, the initial cutting resistance at the start of cutting is large, There are problems such as peeling due to insufficient adhesion, and insufficient precision of the finished surface of the cutting process.
近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、更に、切削条件はますます厳しいものとなってきている。上記の従来のダイヤモンド被覆部材をダイヤモンド被覆工具として用いた場合、通常条件での切削加工においては特段の問題は生じないが、これを、一般の金属材料に比して、比強度、比剛性にすぐれるCFRPの重切削、軟質で溶着性の高いAl合金等の重切削に用いた場合には、CFRPは炭素繊維とエポキシ系樹脂の複合材であるため工具摩耗が激しいばかりか欠損も生じやすく、また、Al合金等は、切削時の高熱発生により切刃への溶着を生じやすく、シャープな切刃を維持することが困難であるばかりか、欠損が生じやすくなり、工具寿命が短命であるという問題点があった。 In recent years, the FA of cutting devices has been remarkable, and on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting processing, and further, cutting conditions are becoming more severe. When the above conventional diamond-coated member is used as a diamond-coated tool, there are no particular problems in cutting under normal conditions. However, this has a higher specific strength and specific rigidity than ordinary metal materials. When used for heavy cutting of excellent CFRP and soft and highly weldable Al alloys, etc., CFRP is a composite material of carbon fiber and epoxy resin, so not only tool wear is severe, but also defects are likely to occur. In addition, Al alloy and the like are likely to be welded to the cutting edge due to high heat generation during cutting, and it is difficult not only to maintain a sharp cutting edge but also to cause chipping, resulting in a short tool life. There was a problem.
そこで、本発明者等は、上述のような観点から、特に難削材であるCFRPあるいは溶着性の高いAl合金等の切削加工において、バリの発生を抑制し、長期の使用に亘って、すぐれた仕上げ面精度を示すダイヤモンド被覆工具を開発すべく鋭意研究を行った結果、以下の知見を得た。
図1には、本発明のダイヤモンド被覆工具の側断面の概略図を示すが、図1において、工具基体の表面に、例えば、熱フィラメントCVD法によるダイヤモンド気相合成法によって、所定条件で所定層厚のカーボン非晶質層を形成し、ついで、成膜条件を変更し、所定粒径の微粒ダイヤモンド層を形成し、その上に、所望のダイヤモンド層(以下、上部ダイヤモンド層という)を形成するし、さらに、上記微粒ダイヤモンド層の結晶粒径を特定の数値範囲に定めるとともに、かつ、微粒ダイヤモンド層の膜厚と上部ダイヤモンド層の膜厚の比を特定の数値範囲に定めると、上部ダイヤモンド層の表面に形成される凹凸が小さくなり、平滑な表面を有するようになるために、このような層構造を有するダイヤモンド被覆工具を、CFRP、Al合金等の切削加工に用いた場合には、シャープな切刃が維持され、バリの発生も抑制され、長期の使用に亘って、すぐれた仕上げ面精度を示すことを見出したのである。
Therefore, the present inventors, from the above viewpoint, suppress the generation of burrs in cutting of difficult-to-cut materials such as CFRP or a highly weldable Al alloy, and are excellent for long-term use. As a result of diligent research to develop a diamond-coated tool exhibiting high finished surface accuracy, the following knowledge was obtained.
FIG. 1 shows a schematic side sectional view of the diamond-coated tool of the present invention. In FIG. 1, a predetermined layer is formed on the surface of the tool base by a diamond vapor synthesis method using, for example, a hot filament CVD method under predetermined conditions. A thick carbon amorphous layer is formed, then the film forming conditions are changed, a fine diamond layer having a predetermined particle diameter is formed, and a desired diamond layer (hereinafter referred to as an upper diamond layer) is formed thereon. Further, when the crystal grain size of the fine diamond layer is set within a specific numerical range, and the ratio of the thickness of the fine diamond layer and the upper diamond layer is set within the specific numerical range, the upper diamond layer The diamond-coated tool having such a layer structure is made of CFRP, Al in order to reduce the unevenness formed on the surface of the material and to have a smooth surface. When used in cutting of gold or the like, sharp cutting edge is maintained, the occurrence of burrs is suppressed, a long period of use, it was found to exhibit excellent surface finish.
この発明は、上記知見に基づいてなされたものであって、
「 切削工具基体表面にダイヤモンド皮膜が被覆形成されたダイヤモンド被覆切削工具において、
上記切削工具基体表面直上には、カーボン非晶質層が第1層として被覆形成され、上記第1層の表面には、膜厚方向の平均結晶粒径が0.05〜0.5μm、かつ、膜厚方向に直交する方向の平均結晶粒径が0.02〜0.2μmの微粒ダイヤモンド層が第2層として被覆形成され、上記第2層の表面には、ダイヤモンド層が第3層として被覆形成され、上記第2層の微粒ダイヤモンド層の膜厚D2と上記第3層のダイヤモンド層の膜厚D3の比の値D2/D3が0.01以上1.0以下であることを特徴とするダイヤモンド被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
"In a diamond-coated cutting tool with a diamond coating coated on the surface of the cutting tool base,
A carbon amorphous layer is formed as a first layer directly on the cutting tool base surface, and the average crystal grain size in the film thickness direction is 0.05 to 0.5 μm on the surface of the first layer. A fine diamond layer having an average crystal grain size in the direction perpendicular to the film thickness direction of 0.02 to 0.2 μm is formed as a second layer, and the diamond layer is formed as a third layer on the surface of the second layer. The ratio D 2 / D 3 of the film thickness D 2 of the fine diamond layer of the second layer and the film thickness D 3 of the diamond layer of the third layer is 0.01 or more and 1.0 or less. A diamond-coated cutting tool characterized by that. "
It has the characteristics.
つぎに、この発明のダイヤモンド被覆工具の被覆層について、詳細に説明する。 Next, the coating layer of the diamond-coated tool of the present invention will be described in detail.
《カーボン非晶質層》
本発明のダイヤモンド皮膜は、第1層がカーボン非晶質層、第2層が微粒ダイヤモンド層、第3層が上部ダイヤモンド層によって構成されるが、これらの各層は、いずれも通常のダイヤモンドの気相合成法、例えば、通常の熱フィラメント法によって形成することができる。
即ち、工具基体表面直上に、例えば、以下の条件の熱フィラメント法により、第1層としてのカーボン非晶質層を形成する。
成膜圧力: 1〜10 Torr、
H2流量: 1〜5 LM、
CH4流量: 50〜500 ccm、
基体温度: 700〜800 ℃
上記条件で形成された第1層を透過型電子顕微鏡で調査すると、カーボン非晶質層で構成されていることが確認される。
そして、カーボン非晶質層からなる第1層は、基体表面を均質化することにより、微粒ダイヤモンド層(第2層)の形成に際し微細な核生成を促進し、さらに、微粒ダイヤモンド層(第2層)と基体間に生じる残留応力の応力緩和層として機能し、基体とダイヤモンド皮膜の密着性向上に寄与する。
カーボン非晶質層の膜厚が1nm未満では核生成密度の向上、密着性向上効果が期待できず、一方、カーボン非晶質層の膜厚が20nm以上になると、ダイヤモンド皮膜の硬度低下が生じるようになるため、カーボン非晶質層からなる第1層の膜厚は1〜20nm、より好ましくは2〜5nm、とすることが望ましい。
<Carbon amorphous layer>
In the diamond film of the present invention, the first layer is constituted by a carbon amorphous layer, the second layer is constituted by a fine diamond layer, and the third layer is constituted by an upper diamond layer. It can be formed by a phase synthesis method, for example, a normal hot filament method.
That is, a carbon amorphous layer as a first layer is formed directly on the tool base surface by, for example, a hot filament method under the following conditions.
Deposition pressure: 1 to 10 Torr,
H 2 flow rate: 1-5 LM,
CH 4 flow rate: 50~500 ccm,
Substrate temperature: 700-800 ° C
When the 1st layer formed on the said conditions is investigated with a transmission electron microscope, it will be confirmed that it is comprised with the carbon amorphous layer.
The first layer composed of the amorphous carbon layer promotes fine nucleation when the fine diamond layer (second layer) is formed by homogenizing the surface of the substrate. It functions as a stress relaxation layer for residual stress generated between the substrate and the substrate, and contributes to improving the adhesion between the substrate and the diamond film.
If the film thickness of the carbon amorphous layer is less than 1 nm, the effect of improving the nucleation density and adhesion cannot be expected. On the other hand, if the film thickness of the carbon amorphous layer is 20 nm or more, the hardness of the diamond film decreases. Therefore, the film thickness of the first layer made of the carbon amorphous layer is desirably 1 to 20 nm, more preferably 2 to 5 nm.
《微粒ダイヤモンド層》
工具基体表面直上に形成されたカーボン非晶質層からなる第1層の上に、第2層としての微粒ダイヤモンド層を、例えば、以下の条件の熱フィラメント法により形成する。
成膜圧力: 10〜30 Torr、
H2流量: 1〜5 LM、
CH4流量: 20〜250 ccm、
基体温度: 700〜850 ℃
上記成膜条件により形成された微粒ダイヤモンド層を走査型電子顕微鏡で観察し、ダイヤモンド結晶粒のサイズを測定すると、膜厚方向の平均結晶粒径が0.05〜0.5μm、かつ、膜厚方向に直交する方向の平均結晶粒径が0.02〜0.2μmの微細ダイヤモンド結晶粒が形成されていることが確認される。
ここでいう平均結晶粒径とは、膜厚方向の場合、膜断面を観察して基体/膜界面方向で任意に10μm長の領域を選択し、そこに含まれる結晶粒子の膜厚方向のサイズを測定し、平均したものである。
膜厚と直交する方向の場合は、上記の条件範囲で第2層を形成し、第3層を形成せずに成膜を停止したものの膜表面を観察して観察面内の任意の10μm×10μmの領域に含まれる結晶粒子のサイズを測定し平均したものである。
微粒ダイヤモンド層の平均結晶粒径は、上記成膜条件の成膜圧力とCH4流量によって大きく影響を受けるが、微粒ダイヤモンドの平均結晶粒径が大きくなり上記範囲を外れると、第2層の上に形成される上部ダイヤモンド層が粗粒化しやすく、その結果、上部ダイヤモンド層の表面の凹凸が大きくなり、また、平滑表面を維持することができなくなり、CFRP、Al合金等の切削加工において、バリが発生しやすくなり、同時に、仕上げ面精度も劣化する。
一方、微粒ダイヤモンドの平均結晶粒径が小さくなり上記範囲を外れると、第3層に求められる耐摩耗性、耐欠損性が得られなくなる。また、第2層自体の耐摩耗性が低下するなどの問題を生ずる。
したがって、第2層の微細ダイヤモンド層におけるダイヤモンド結晶粒については、この上に上部ダイヤモンド層を形成した場合に、上部ダイヤモンド結晶の核生成密度を高め、微細な結晶粒が成長するように、膜厚方向の平均結晶粒径を0.05〜0.5μm、かつ、膜厚方向に直交する方向の平均結晶粒径を0.02〜0.2μmと制限した。
さらに、本発明では、微粒ダイヤモンド層からなる第2層の膜厚D2と上部ダイヤモンド層からなる第3層の膜厚D3の比の値を、0.01≦D2/D3≦1.0と定めているが、D2/D3の値が0.01未満の場合には、上部ダイヤモンド層のダイヤモンド結晶の核生成、成長を制御する効果は少なく、一方、D2/D3の値が1.0を超えると、ダイヤモンド皮膜全体としての耐摩耗性の低下がみられるようになるので、第2層の膜厚D2と第3層の膜厚D3の比の値を、0.01≦D2/D3≦1.0と定めた。
微粒ダイヤモンド層の膜厚D2は、上部ダイヤモンド層の膜厚D3にもよるが、通常、2〜8μmであることが望ましい。
《Fine diamond layer》
A fine diamond layer as a second layer is formed, for example, by a hot filament method under the following conditions on a first layer made of a carbon amorphous layer formed directly on the surface of the tool base.
Deposition pressure: 10 to 30 Torr,
H 2 flow rate: 1-5 LM,
CH 4 flow rate: 20~250 ccm,
Substrate temperature: 700-850 ° C
When the fine diamond layer formed under the above film formation conditions is observed with a scanning electron microscope and the size of the diamond crystal grains is measured, the average crystal grain size in the film thickness direction is 0.05 to 0.5 μm, and the film thickness It is confirmed that fine diamond crystal grains having an average crystal grain size in the direction orthogonal to the direction of 0.02 to 0.2 μm are formed.
The average crystal grain size here refers to the size in the film thickness direction of the crystal grains included in the film thickness direction by observing the film cross section and arbitrarily selecting a 10 μm long region in the substrate / film interface direction. Is measured and averaged.
In the case of the direction orthogonal to the film thickness, the second layer is formed in the above condition range, and the film surface is stopped without forming the third layer. The size of the crystal grains included in the 10 μm region is measured and averaged.
The average crystal grain size of the fine diamond layer is greatly influenced by the film forming pressure and CH 4 flow rate under the above film forming conditions. However, if the average crystal grain size of the fine diamond becomes large and exceeds the above range, The upper diamond layer formed on the surface is likely to be coarsened. As a result, the unevenness of the surface of the upper diamond layer becomes large, and the smooth surface cannot be maintained. Is likely to occur, and at the same time, the accuracy of the finished surface also deteriorates.
On the other hand, if the average crystal grain size of the fine diamond becomes small and out of the above range, the wear resistance and fracture resistance required for the third layer cannot be obtained. Further, there arises a problem that the wear resistance of the second layer itself is lowered.
Accordingly, with respect to the diamond crystal grains in the second fine diamond layer, when the upper diamond layer is formed thereon, the film thickness is increased so that the nucleation density of the upper diamond crystal is increased and the fine crystal grains are grown. The average crystal grain size in the direction was limited to 0.05 to 0.5 μm, and the average crystal grain size in the direction perpendicular to the film thickness direction was limited to 0.02 to 0.2 μm.
Furthermore, in the present invention, the ratio value of the thickness D 2 of the second layer made of the fine diamond layer and the thickness D 3 of the third layer made of the upper diamond layer is set to 0.01 ≦ D 2 / D 3 ≦ 1. Although the value of D 2 / D 3 is less than 0.01, the effect of controlling the nucleation and growth of diamond crystals in the upper diamond layer is small, while D 2 / D 3 If the value exceeds 1.0, the wear resistance of the diamond film as a whole is reduced. Therefore, the ratio of the film thickness D 2 of the second layer and the film thickness D 3 of the third layer is 0.01 ≦ D 2 / D 3 ≦ 1.0.
Thickness D 2 of the fine diamond layer depends on the thickness D 3 of the top diamond layer, typically, it is desirable that the 2 to 8 m.
《上部ダイヤモンド層》
微粒ダイヤモンド層からなる第2層の上に、例えば、以下の条件の熱フィラメント法により第3層としての上部ダイヤモンド層を形成する。
成膜圧力: 20〜50 Torr、
H2流量: 1〜5 LM、
CH4流量: 10〜200 ccm、
基体温度: 700〜900 ℃
微粒ダイヤモンド層からなる第2層の上に上部ダイヤモンド層が形成されることによって、上部ダイヤモンド層の結晶粒の粗大化は防止され、その結果、上部ダイヤモンド層表面の平滑性が維持され、CFRP、Al合金等の切削加工において、バリの発生が抑えられるとともに、すぐれた仕上げ面精度が得られる。
微細ダイヤモンド層について述べたように、上部ダイヤモンド層の膜厚D3は、第2層の膜厚D2との関係で、0.01≦D2/D3≦1.0を満足する必要があり、D2/D3の値が0.01未満となる程に相対的に上部ダイヤモンド層の膜厚が大になると、表面平滑性が劣化し、その結果、切削加工時にバリが発生しやすくなり、同時に、仕上げ面精度も低下するようになる。一方、D3の値が1.0を超え、相対的に微細ダイヤモンド層の膜厚が大になると、ダイヤモンド皮膜全体としての耐摩耗性が低下し、工具寿命が短くなることから、上部ダイヤモンド層の膜厚D3と第2層の膜厚D2とは、0.01≦D2/D3≦1.0の関係を満足することが必要である。
上部ダイヤモンド層の膜厚D3は、微粒ダイヤモンド層の膜厚D2にもよるが、通常、5〜10μmであることが望ましい。
《Upper diamond layer》
On the second layer made of a fine diamond layer, for example, an upper diamond layer as a third layer is formed by a hot filament method under the following conditions.
Deposition pressure: 20-50 Torr,
H 2 flow rate: 1-5 LM,
CH 4 flow rate: 10-200 ccm,
Substrate temperature: 700-900 ° C
By forming the upper diamond layer on the second layer made of the fine diamond layer, coarsening of the crystal grains of the upper diamond layer is prevented, and as a result, the smoothness of the upper diamond layer surface is maintained, CFRP, In the cutting of Al alloy or the like, generation of burrs can be suppressed and excellent finished surface accuracy can be obtained.
As described for the fine diamond layer, the film thickness D 3 of the upper diamond layer needs to satisfy 0.01 ≦ D 2 / D 3 ≦ 1.0 in relation to the film thickness D 2 of the second layer. Yes, if the film thickness of the upper diamond layer becomes relatively large so that the value of D 2 / D 3 is less than 0.01, the surface smoothness deteriorates, and as a result, burrs are likely to occur during cutting. At the same time, the finished surface accuracy also decreases. On the other hand, it exceeds the value of D 3 is 1.0, the thickness of the relatively fine diamond layer becomes large, and decreases the wear resistance of the entire diamond film, since the tool life is shortened, the upper diamond layer thickness D 3 of the film thickness D 2 of the second layer, it is necessary to satisfy the relationship of 0.01 ≦ D 2 / D 3 ≦ 1.0.
Thickness D 3 of the top diamond layer will depend on the thickness D 2 of the fine diamond layer, typically, it is desirable that 5 to 10 [mu] m.
この発明のダイヤモンド被覆工具は、工具基体表面直上にカーボン非晶質層からなる第1層を形成し、この上に、第2層を形成しているので、第2層は、微細な平均結晶粒径からなる微粒ダイヤモンド層として形成され、そして、さらにこの上に形成される上部ダイヤモンド層の結晶粒の粗大化が防止され、第3層の平滑性が維持されることから、比強度、比剛性の高いCFRPあるいは溶着性の高いAl合金等の切削加工において、シャープな切刃を維持したまま、バリの発生等を招くことなく、長期の使用に亘って、すぐれた仕上げ面精度を維持することができる。 In the diamond-coated tool according to the present invention, the first layer made of the carbon amorphous layer is formed directly on the surface of the tool base, and the second layer is formed thereon. Therefore, the second layer has a fine average crystal. It is formed as a fine diamond layer having a grain size, and further, coarsening of crystal grains of the upper diamond layer formed thereon is prevented, and the smoothness of the third layer is maintained. Maintains excellent finished surface accuracy over a long period of use without causing burrs, etc., while maintaining a sharp cutting edge in cutting of highly rigid CFRP or highly weldable Al alloy. be able to.
つぎに、この発明のダイヤモンド被覆工具を実施例により具体的に説明する。
ここでは、ダイヤモンド被覆工具を、ドリルに適用した場合について述べるが、本発明はこれに限定されるものではなく、各種の切削工具に適用することが可能である。
Next, the diamond-coated tool of the present invention will be specifically described with reference to examples.
Here, although the case where a diamond covering tool is applied to a drill is described, this invention is not limited to this, It is possible to apply to various cutting tools.
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr3C2粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、溝形成部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powder was prepared, each of these raw material powders was blended in the blending composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressed into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Then, a tool bar forming round bar sintered body having a diameter of 13 mm is formed, and from the round bar sintered body, a diameter x length of a groove forming part is 10 mm x 22 mm by grinding, and Tool bases (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were manufactured.
ついで、これらの工具基体(ドリル)D−1〜D−8の切刃にホーニングを施し、その表面をアセトン中で超音波洗浄し、乾燥した後、酸溶液によるエッチングおよび/またはアルカリ溶液によるエッチング処理を行い、さらに、ダイヤモンド粉末スラリー液を用いて超音波洗浄器で超音波処理を行なった後、
(a)まず、
成膜圧力:5 Torr、
H2流量:2 LM、
CH4流量:70 ccm、
基体温度:730 ℃
の条件で、カーボン非晶質層(第1層)を形成し、
(b)ついで、成膜条件を変更し、上記カーボン非晶質層の表面に、
成膜圧力:20 Torr、
H2流量:3 LM、
CH4流量:90 ccm、
基体温度:800 ℃
の条件で、微粒ダイヤモンド層(第2層)を形成し、
(c)ついで、
成膜圧力:35 Torr、
H2流量:3 LM、
CH4流量:75 ccm、
基体温度:850 ℃
の条件で、上部ダイヤモンド層(第3層)を形成することにより、
表2に示される膜厚、平均結晶粒径のダイヤモンド皮膜を成膜し、本発明のダイヤモンド被覆ドリル(以下、本発明ドリルという)1〜8をそれぞれ製造した。
Next, honing is applied to the cutting edges of these tool bases (drills) D-1 to D-8, and the surfaces thereof are ultrasonically cleaned in acetone, dried, and then etched with an acid solution and / or an alkaline solution. After performing the treatment, and further performing ultrasonic treatment with an ultrasonic cleaner using the diamond powder slurry liquid,
(A) First,
Deposition pressure: 5 Torr,
H 2 flow rate: 2 LM,
CH 4 flow rate: 70 ccm,
Substrate temperature: 730 ° C
Under the conditions, a carbon amorphous layer (first layer) is formed,
(B) Next, the film forming conditions are changed, and on the surface of the carbon amorphous layer,
Deposition pressure: 20 Torr,
H 2 flow rate: 3 LM,
CH 4 flow rate: 90 ccm,
Substrate temperature: 800 ° C
Under the conditions, a fine diamond layer (second layer) is formed,
(C) Next,
Deposition pressure: 35 Torr,
H 2 flow rate: 3 LM,
CH 4 flow rate: 75 ccm,
Substrate temperature: 850 ° C
By forming the upper diamond layer (third layer) under the conditions
A diamond film having a film thickness and an average crystal grain size shown in Table 2 was formed, and diamond-coated drills (hereinafter referred to as the present invention drills) 1 to 8 of the present invention were produced.
比較の目的で、上記の工具基体(ドリル)D−1〜D−4の表面に、上記成膜工程(a)及び(c)によりダイヤモンド皮膜を形成し、表3に示される膜厚、平均結晶粒径の比較例のダイヤモンド被覆ドリル(以下、比較ドリルという)1〜4をそれぞれ製造した。
さらに比較の目的で、上記の工具基体(ドリル)D−5〜D−8の表面に、上記成膜工程(b)及び(c)によりダイヤモンド皮膜を形成し、表3に示される膜厚、平均結晶粒径の比較ドリル5〜8をそれぞれ製造した。
For the purpose of comparison, a diamond film is formed on the surfaces of the tool bases (drills) D-1 to D-4 by the film forming steps (a) and (c). Diamond-coated drills (hereinafter referred to as comparative drills) 1 to 4 of comparative examples having crystal grain sizes were produced.
Furthermore, for the purpose of comparison, a diamond film is formed on the surfaces of the tool bases (drills) D-5 to D-8 by the film forming steps (b) and (c). Comparative drills 5 to 8 having an average crystal grain size were produced.
つぎに、上記本発明ドリル1〜8および比較ドリル1〜8のそれぞれについて、
[切削条件1]
被削材−平面寸法:100mm×250mm、厚さ:8mmの、炭素繊維と熱硬化型エポキシ系樹脂が直交積層構造を持つ炭素繊維強化樹脂複合材(CFRP)の板材、
切削速度:200 m/min.、
送り:0.06 mm/rev、
貫通穴:(8 mm)、
の条件での上記CFRPの乾式穴あけ切削加工試験、
[切削条件2]
被削材−平面寸法:100mm×250mm、厚さ:15mmの、JIS・ADC12の板材
切削速度:220 m/min.、
送り:0.09 mm/rev、
貫通穴:(15 mm)、
の条件での上記Al合金の乾式穴あけ切削加工試験、
をそれぞれ行い、いずれの切削加工試験でも、加工穴寸法精度が0.04mmを超えるまでの穴あけ加工数を測定した。
この測定結果を表4にそれぞれ示した。
Next, for each of the present invention drills 1-8 and comparative drills 1-8,
[Cutting conditions 1]
Work material-planar dimensions: 100 mm × 250 mm, thickness: 8 mm, carbon fiber reinforced resin composite material (CFRP) plate material with carbon fiber and thermosetting epoxy resin having an orthogonal laminated structure,
Cutting speed: 200 m / min. ,
Feed: 0.06 mm / rev,
Through hole: (8 mm),
CFRP dry drilling machining test under the conditions of
[Cutting condition 2]
Work Material-Plane Dimensions: 100mm x 250mm, Thickness: 15mm, JIS / ADC12 Plate Material
Cutting speed: 220 m / min. ,
Feed: 0.09 mm / rev,
Through hole: (15 mm),
Dry drilling test of the above Al alloy under the conditions of
In each of the cutting tests, the number of drilling processes until the drilling hole dimensional accuracy exceeded 0.04 mm was measured.
The measurement results are shown in Table 4, respectively.
表4に示される結果から、本発明ダイヤモンド被覆工具は、カーボン非晶質層(第1層)、微粒ダイヤモンド層(第2層)及び上部ダイヤモンド層(第3層)からダイヤモンド皮膜が構成されていることによって、ダイヤモンド皮膜の表面には凹凸が少なくすぐれた表面平滑性を備えることから、比強度、比剛性の高いCFRPあるいは溶着性の高いAl合金等の切削加工に際し、シャープな切刃を維持したまま、バリ等の発生を抑え、長期の使用に亘ってすぐれた仕上げ面精度を維持することができる。
これに対して、ダイヤモンド皮膜が、カーボン非晶質層と上部ダイヤモンド層から構成された比較ドリル1〜4、また、微粒ダイヤモンド層と上部ダイヤモンド層から構成された比較ドリル5〜8は、工具基体への密着性が不十分であるため、あるいは、上部ダイヤモンド層の表面に凹凸が多く表面平滑性が劣るため、バリ等の発生で仕上げ面精度が劣り、あるいは、ダイヤモンド皮膜が剥離すること等により、工具寿命が短命なものであった。
From the results shown in Table 4, the diamond-coated tool of the present invention has a diamond film composed of a carbon amorphous layer (first layer), a fine diamond layer (second layer), and an upper diamond layer (third layer). As a result, the surface of the diamond coating has excellent surface smoothness with few irregularities, so it maintains a sharp cutting edge when cutting CFRP with high specific strength and specific rigidity, or Al alloy with high weldability. In this way, the occurrence of burrs and the like can be suppressed, and excellent finished surface accuracy can be maintained over a long period of use.
On the other hand, the comparative drills 1 to 4 in which the diamond film is composed of a carbon amorphous layer and an upper diamond layer, and the comparative drills 5 to 8 in which a fine diamond layer and an upper diamond layer are formed Due to inadequate adhesion to the surface, or because the surface of the upper diamond layer has many irregularities and poor surface smoothness, resulting in inferior finished surface accuracy due to the occurrence of burrs, etc., or due to peeling of the diamond film The tool life was short-lived.
上述のように、この発明のダイヤモンド被覆工具は、通常条件での切削加工は勿論のこと、金属材料よりも比強度、比剛性の高いCFRPあるいは溶着性の高いAl合金等の切削加工においても、長期の使用に亘って、バリ等の発生もなくすぐれた仕上げ面精度を維持できるものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the diamond-coated tool of the present invention can be used not only for cutting under normal conditions, but also for cutting such as CFRP having a higher specific strength and higher rigidity than a metal material or Al alloy having a high weldability. Because it can maintain excellent finished surface accuracy without generation of burrs, etc. over a long period of use, it is fully satisfied with the FA of the cutting device, labor saving and energy saving of cutting processing, and further cost reduction It can cope with.
Claims (1)
上記切削工具基体表面直上には、カーボン非晶質層が第1層として被覆形成され、上記第1層の表面には、膜厚方向の平均結晶粒径が0.05〜0.5μm、かつ、膜厚方向に直交する方向の平均結晶粒径が0.02〜0.2μmの微粒ダイヤモンド層が第2層として被覆形成され、上記第2層の表面には、ダイヤモンド層が第3層として被覆形成され、上記第2層の微粒ダイヤモンド層の膜厚D2と上記第3層のダイヤモンド層の膜厚D3の比の値D2/D3が0.01以上1.0以下であることを特徴とするダイヤモンド被覆切削工具。 In a diamond-coated cutting tool in which a diamond coating is formed on the surface of the cutting tool base,
A carbon amorphous layer is formed as a first layer directly on the cutting tool base surface, and the average crystal grain size in the film thickness direction is 0.05 to 0.5 μm on the surface of the first layer. A fine diamond layer having an average crystal grain size in the direction perpendicular to the film thickness direction of 0.02 to 0.2 μm is formed as a second layer, and the diamond layer is formed as a third layer on the surface of the second layer. The ratio D 2 / D 3 of the film thickness D 2 of the fine diamond layer of the second layer and the film thickness D 3 of the diamond layer of the third layer is 0.01 or more and 1.0 or less. A diamond-coated cutting tool characterized by that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009077050A JP5287413B2 (en) | 2009-03-26 | 2009-03-26 | Diamond coated cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009077050A JP5287413B2 (en) | 2009-03-26 | 2009-03-26 | Diamond coated cutting tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010228031A true JP2010228031A (en) | 2010-10-14 |
JP5287413B2 JP5287413B2 (en) | 2013-09-11 |
Family
ID=43044393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009077050A Expired - Fee Related JP5287413B2 (en) | 2009-03-26 | 2009-03-26 | Diamond coated cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5287413B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5402543B2 (en) * | 2009-11-09 | 2014-01-29 | 三菱マテリアル株式会社 | Diamond-coated tool with excellent fracture and wear resistance |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63102801A (en) * | 1986-10-21 | 1988-05-07 | Idemitsu Petrochem Co Ltd | Diamond tool |
JPH03260069A (en) * | 1990-03-08 | 1991-11-20 | Mitsubishi Materials Corp | Artificial diamond-coated hard sintered tool member having high adhesive strength |
JPH07156002A (en) * | 1993-11-29 | 1995-06-20 | Fuji Seiko Kk | Diamond coated tool and manufacture thereof |
JPH07276106A (en) * | 1994-04-12 | 1995-10-24 | Mitsubishi Materials Corp | Gaseous phase synthetic diamond film brazed cutting tool |
JP2005271123A (en) * | 2004-03-24 | 2005-10-06 | Tungaloy Corp | Coating member |
-
2009
- 2009-03-26 JP JP2009077050A patent/JP5287413B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63102801A (en) * | 1986-10-21 | 1988-05-07 | Idemitsu Petrochem Co Ltd | Diamond tool |
JPH03260069A (en) * | 1990-03-08 | 1991-11-20 | Mitsubishi Materials Corp | Artificial diamond-coated hard sintered tool member having high adhesive strength |
JPH07156002A (en) * | 1993-11-29 | 1995-06-20 | Fuji Seiko Kk | Diamond coated tool and manufacture thereof |
JPH07276106A (en) * | 1994-04-12 | 1995-10-24 | Mitsubishi Materials Corp | Gaseous phase synthetic diamond film brazed cutting tool |
JP2005271123A (en) * | 2004-03-24 | 2005-10-06 | Tungaloy Corp | Coating member |
Also Published As
Publication number | Publication date |
---|---|
JP5287413B2 (en) | 2013-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102033188B1 (en) | Surface-coated cutting tool with hard coating that exhibits excellent chipping resistance and abrasion resistance | |
JP4739236B2 (en) | Surface coated cutting tool | |
JP5499650B2 (en) | Diamond-coated tools with excellent peeling and wear resistance | |
JP5488873B2 (en) | Diamond coated tool with excellent fracture resistance and wear resistance | |
JP5499771B2 (en) | Diamond coated cutting tool | |
JP6171525B2 (en) | Diamond coated cemented carbide cutting tool with improved cutting edge strength | |
JP5397689B2 (en) | Diamond coated cutting tool | |
JP5861982B2 (en) | Surface coated cutting tool whose hard coating layer exhibits excellent peeling resistance in high-speed intermittent cutting | |
JP5163879B2 (en) | Diamond coated tool with excellent fracture resistance and wear resistance | |
JP5287413B2 (en) | Diamond coated cutting tool | |
JP4888709B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP2011104721A (en) | Diamond coating tool showing excellent anti-defective property and abrasion resistance | |
JP5292900B2 (en) | Diamond coated tool with excellent fracture resistance and wear resistance | |
JP5187572B2 (en) | Diamond coated cemented carbide cutting tool | |
JP2008137129A (en) | Surface coated cutting tool | |
JP2011131347A (en) | Diamond-coated cemented carbide cutting tool | |
JP5569740B2 (en) | Surface coated cutting tool with excellent chipping resistance | |
JP2011062775A (en) | Hard carbon film-coated cutting tool | |
JP5246597B2 (en) | Diamond coated tools | |
JP5459504B2 (en) | Diamond coated cutting tool | |
JP7216915B2 (en) | Diamond-coated cemented carbide tools | |
JP5499751B2 (en) | Diamond-coated tools with excellent fracture resistance | |
JP2009090398A (en) | Diamond-coated cutting tool having excellent lubricity and machining accuracy | |
JP5477781B2 (en) | Diamond coated cutting tool | |
JP2008137130A (en) | Surface coated cutting tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110928 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130507 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130520 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5287413 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |