JP2010227035A - Fiber material for culturing seaweed - Google Patents

Fiber material for culturing seaweed Download PDF

Info

Publication number
JP2010227035A
JP2010227035A JP2009079147A JP2009079147A JP2010227035A JP 2010227035 A JP2010227035 A JP 2010227035A JP 2009079147 A JP2009079147 A JP 2009079147A JP 2009079147 A JP2009079147 A JP 2009079147A JP 2010227035 A JP2010227035 A JP 2010227035A
Authority
JP
Japan
Prior art keywords
polylactic acid
fiber
melting point
heat
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009079147A
Other languages
Japanese (ja)
Other versions
JP5230503B2 (en
Inventor
Futoshi Yamada
太志 山田
Nobuhiro Matsunaga
伸洋 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2009079147A priority Critical patent/JP5230503B2/en
Publication of JP2010227035A publication Critical patent/JP2010227035A/en
Application granted granted Critical
Publication of JP5230503B2 publication Critical patent/JP5230503B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide fiber material for culturing seaweed suitable for production of culturing material having good seaweed-adhesive properties and root-taking properties, and favorably usable even in a place under severe wave conditions. <P>SOLUTION: The fiber material for culturing seaweed is used in water, and comprises lines of thread obtained by collecting a plurality of fibers twisted or not twisted. The lines of thread contain at least heat-fusible conjugate fibers. The heat-fusible conjugate fibers include a polylactic acid polymer having a high melting point and a polylactic acid polymer having a melting point lower than that of the high-melting-point polylactic acid polymer by ≥20°C. The low-melting-point polylactic acid polymer occupies at least part of the surface of the heat-fusible conjugate fiber, and the fibers forming the line of thread are mutually and thermally bonded via the melted or softened low-melting-point polylactic acid polymer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水中で使用する海藻類養殖用繊維資材に関し、特に、海藻類の付着性や活着性が良く、波浪条件の厳しい場所においても好適に使用できる海藻類養殖用繊維資材に関するものである。   TECHNICAL FIELD The present invention relates to a seaweed aquaculture fiber material used in water, and particularly to a seaweed aquaculture fiber material that has good adhesion and entrapment of seaweeds and can be suitably used even in severe wave conditions. .

従来、海苔などの海藻類を養殖する養殖網として環境負荷低減効果のある生分解性繊維を用い、かつ海苔の胞子が付着・生育しやすくするため生分解性繊維の表面をポリビニルアルコール樹脂で被覆した海藻養殖網が知られている(特許文献1)。   Conventionally, biodegradable fibers that reduce environmental impact are used as aquaculture nets for aquaculture of seaweeds such as seaweed, and the surface of biodegradable fibers is covered with polyvinyl alcohol resin to make it easier for the nori spores to adhere and grow A seaweed aquaculture net is known (Patent Document 1).

また同様に環境負荷低減効果のあるポリ乳酸繊維などの、太繊度、中繊度、細繊度といった繊度の異なる撚糸を合撚し、一本一本の繊維がバラケにくくして結果的に海藻類の胞子が脱落しにくいような種苗糸が知られている(特許文献2)。   Similarly, twisted yarns with different fineness, such as polylactic acid fiber, which is effective for reducing environmental impact, such as thickness, mediumness, and fineness, are twisted together. Seedlings and yarns from which spores are less likely to fall off are known (Patent Document 2).

しかしながら、上記従来の海藻類養殖資材のうち、生分解性繊維の表面をポリビニルアルコール樹脂で被覆した海藻養殖網は、湾外等のように波浪条件の厳しい場所で使用すると、繊維表面被覆樹脂は生分解性ポリマーとはポリマー種が異なるため、互いに十分な相溶性がないと思われるポリビニルアルコール樹脂が生分解性繊維から脱落して海藻類の胞子活着性が低くなると想定される。また、繊度の異なる撚糸を合撚する方法は、波浪条件の厳しい場所で使用すると、糸がバラケて胞子が脱落すると考えられる。   However, among the above conventional seaweed aquaculture materials, the seaweed aquaculture net with the surface of biodegradable fibers coated with polyvinyl alcohol resin is used in places with severe wave conditions such as outside the bay, the fiber surface coating resin is Since the polymer species is different from that of the biodegradable polymer, it is assumed that polyvinyl alcohol resins that are considered not to be sufficiently compatible with each other fall off from the biodegradable fiber and the spores of the seaweed are reduced. Moreover, when the method of twisting twisted yarns having different finenesses is used in a place where the wave conditions are severe, it is considered that the yarn breaks and spores fall off.

特開平9−96号公報JP-A-9-96 特開2006−129741号公報JP 2006-129741 A

本発明は、前記問題点を解決し、海藻類の付着性や活着性が良く、波浪条件の厳しい場所においても好適に使用できる養殖資材を得るのに好適な海藻類養殖用繊維資材を提供するものである。   The present invention provides a fiber material for aquaculture of seaweeds that solves the above problems and is suitable for obtaining aquaculture materials that have good adhesion and viability for seaweeds and that can be suitably used even in places with severe wave conditions. Is.

本発明は、水中で使用する海藻類養殖用繊維資材であって、前記繊維資材は複数の繊維が無撚で集束しているかあるいは複数の繊維が撚られて集束した糸条であり、前記糸条は少なくとも熱融着性複合繊維を含有し、前記熱融着性複合繊維が、高融点ポリ乳酸系重合体と該高融点ポリ乳酸系重合体の融点より20℃以上低い融点を有する低融点ポリ乳酸系重合体により構成され、熱融着性複合繊維の表面の少なくとも一部を低融点ポリ乳酸系重合体が占めており、糸条を構成する繊維同士が、溶融または軟化した低融点ポリ乳酸系重合体を介して熱接着していることを特徴とする海藻類養殖用繊維資材を要旨とするものである。   The present invention is a fiber material for seaweed culture used in water, wherein the fiber material is a yarn in which a plurality of fibers are bundled without twisting or a plurality of fibers are twisted and gathered, and the yarn The strip contains at least a heat-fusible conjugate fiber, and the heat-fusible conjugate fiber has a high melting point polylactic acid polymer and a low melting point having a melting point that is 20 ° C. lower than the melting point of the high melting point polylactic acid polymer. A low-melting-point polymer composed of a polylactic acid-based polymer, wherein the low-melting-point polylactic acid-based polymer occupies at least a part of the surface of the heat-fusible composite fiber, and the fibers constituting the yarn are melted or softened. The gist of the present invention is a fiber material for seaweed aquaculture that is thermally bonded via a lactic acid polymer.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の海藻類養殖用繊維資材とは、具体的には、海藻類等を付着させて水中で生育させるための海藻類養殖資材(養殖網やロープ、撚糸等)を構成するための糸条であって、複数の繊維が無撚で集束しているか、あるいは複数の繊維が撚られて集束したものである。前記糸条は、少なくとも熱融着性複合繊維を含有している。   Specifically, the fiber material for seaweed culture of the present invention is a thread for constituting seaweed culture material (culture net, rope, twisted yarn, etc.) for attaching seaweed and growing it in water. In this case, the plurality of fibers are bundled without twisting, or the plurality of fibers are twisted and bundled. The yarn contains at least a heat-fusible conjugate fiber.

本発明に用いる熱融着性複合繊維は、高融点ポリ乳酸系重合体と該高融点ポリ乳酸系重合体の融点より20℃以上低い融点を有する低融点ポリ乳酸系重合体によって構成され、該複合繊維の表面の少なくとも一部を低融点ポリ乳酸系重合体が占めている。   The heat-fusible conjugate fiber used in the present invention is composed of a high-melting polylactic acid polymer and a low-melting polylactic acid polymer having a melting point 20 ° C. lower than the melting point of the high-melting polylactic acid polymer, The low melting point polylactic acid polymer occupies at least a part of the surface of the composite fiber.

本発明において、ポリ乳酸系重合体とは、ポリ−D−乳酸、ポリ−L−乳酸、D−乳酸とL−乳酸との共重合体、D−乳酸とヒドロキシカルボン酸との共重合体、L−乳酸とヒドロキシカルボン酸との共重合体、D−乳酸とL−乳酸とヒドロキシカルボン酸との共重合体との群から選ばれる重合体が挙げられる。ヒドロキシカルボン酸としては、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸等が挙げられる、これらの中でも特に、ヒドロキシカプロン酸またはグリコール酸を用いることが低コストの点から好ましい。   In the present invention, the polylactic acid polymer is poly-D-lactic acid, poly-L-lactic acid, a copolymer of D-lactic acid and L-lactic acid, a copolymer of D-lactic acid and hydroxycarboxylic acid, Examples thereof include a polymer selected from the group consisting of a copolymer of L-lactic acid and hydroxycarboxylic acid, and a copolymer of D-lactic acid, L-lactic acid and hydroxycarboxylic acid. Examples of hydroxycarboxylic acids include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid, hydroxyoctanoic acid, etc. Among these, hydroxycaproic acid or glycolic acid should be used. Is preferable from the viewpoint of low cost.

ポリ乳酸のホモポリマーであるポリ−L−乳酸やポリ−D−乳酸の融点は約180℃であるが、ポリ乳酸系重合体として前記コポリマーを用いる場合には、実用性と融点等を考慮してポリマー成分の共重合量比を決定することが好ましい。ポリ乳酸系重合体の融点の制御について、以下、説明する。ポリ乳酸を構成する乳酸モノマーは光学活性の炭素を有しており、D体とL体の光学異性体が存在する。L体にD体を1モル%未満共重合させると融点170℃以上、L体に2モル%未満のD体を共重合させると融点165℃以上、D体を8モル%共重合させると融点130℃程度、D体を12モル%共重合させると融点110℃といった具合に融点のコントロールが可能である。D体よりもL体の共重合量が多く、かつD体が18モル%以上(ただし、L体の共重合量を超えない範囲)となると明確な結晶融点は観察されず、軟化温度90℃未満の非晶性の強いポリマーとなる。本発明において、D体とL体との共重合体を用いる場合、採用する共重合体のその共重合モル比は、D体/L体(共重合モル比)=100〜82/0〜18、あるいは0〜18/100〜82であることにより、実用的な融点を有するものを得ることができる。   Poly-L-lactic acid and poly-D-lactic acid, which are homopolymers of polylactic acid, have a melting point of about 180 ° C. However, when the copolymer is used as a polylactic acid polymer, the practicality and melting point are taken into consideration. It is preferable to determine the copolymerization amount ratio of the polymer components. The control of the melting point of the polylactic acid polymer will be described below. The lactic acid monomer that constitutes polylactic acid has optically active carbon, and there exist optical isomers of D-form and L-form. When the L form is copolymerized with less than 1 mol% of the D form, the melting point is 170 ° C. or more, when the L form is copolymerized with less than 2 mol% of the D form, the melting point is 165 ° C. or more, and when the D form is copolymerized with 8 mol%, the melting point When the D form is copolymerized at about 130 ° C. and 12 mol%, the melting point can be controlled such that the melting point is 110 ° C. When the amount of copolymer of L-form is larger than that of D-form, and the D-form is 18 mol% or more (however, it does not exceed the amount of copolymerization of L-form), no clear crystalline melting point is observed, and softening temperature is 90 ° C Less amorphous strong polymer. In the present invention, when a copolymer of D-form and L-form is used, the copolymerization molar ratio of the employed copolymer is D-form / L-form (copolymerization mole ratio) = 100-82 / 0-18. Alternatively, when it is 0 to 18/100 to 82, a material having a practical melting point can be obtained.

また、本発明において用いるポリ乳酸系重合体として、融点が190℃〜235℃であるステレオコンプレックスを形成したポリ乳酸を用いることもできる。ステレオコンプレックスを形成したポリ乳酸は、光学純度が70%〜100%であるポリ−L−乳酸と光学純度が70%〜100%であるポリ−D−乳酸とが30/70〜70/30の比率(質量比)でブレンドすることにより得ることができる。ポリ−L−乳酸の光学純度あるいはポリ−D−乳酸の光学純度が70%未満であると、立体特異的な結合であるステレオコンプレックスの形成を阻害し、ブレンドされたポリ乳酸の結晶融解開始温度を190℃以上とすることが困難となる。また、ポリ−L−乳酸とポリ−D−乳酸のブレンド比率が、30/70〜70/30(質量比)の範囲を外れると、前記と同様で、立体特異的な結合であるステレオコンプレックスの形成を阻害し、ポリ乳酸の結晶融解開始温度を190℃以上とすることが困難となる。より好ましいブレンド比率は、40/60〜60/40である。ポリ−L−乳酸とポリ−D−乳酸をブレンドしてステレオコンプレックスを形成したポリ乳酸を得るための具体的な方法としては、ポリ−L−乳酸とポリ−D−乳酸を個々に溶融した後、均一混練する方法、ポリ−L−乳酸ペレットとポリ−D−乳酸ペレットをできるだけ均一に混合後、溶融する方法等が例示できるが、いずれの方法であっても構わない。   Further, as the polylactic acid polymer used in the present invention, polylactic acid having a stereocomplex having a melting point of 190 ° C. to 235 ° C. can be used. The polylactic acid forming the stereocomplex has 30/70 to 70/30 of poly-L-lactic acid having an optical purity of 70% to 100% and poly-D-lactic acid having an optical purity of 70% to 100%. It can be obtained by blending at a ratio (mass ratio). If the optical purity of poly-L-lactic acid or the optical purity of poly-D-lactic acid is less than 70%, formation of a stereocomplex that is a stereospecific bond is inhibited, and the crystal melting start temperature of the blended polylactic acid It is difficult to set the temperature to 190 ° C. or higher. When the blend ratio of poly-L-lactic acid and poly-D-lactic acid is out of the range of 30/70 to 70/30 (mass ratio), the stereocomplex that is stereospecific is the same as described above. Formation is inhibited, and it becomes difficult to make the crystal melting start temperature of polylactic acid 190 ° C. or higher. A more preferable blend ratio is 40/60 to 60/40. As a specific method for obtaining polylactic acid in which a stereo complex is formed by blending poly-L-lactic acid and poly-D-lactic acid, poly-L-lactic acid and poly-D-lactic acid are individually melted. Examples thereof include a method of uniformly kneading, a method of mixing poly-L-lactic acid pellets and poly-D-lactic acid pellets as uniformly as possible, and then melting them, and any method may be used.

本発明で用いられるポリ乳酸系重合体には、用途に応じて、例えば酸化チタン、酸化ケイ素、炭酸カルシウム、チッ化ケイ素、クレー、タルクなどの各種無機粒子、架橋高分子粒子、各種金属粒子などの粒子類の他に、老化防止剤、抗酸化剤、着色防止剤、耐光剤、包接化合物、帯電防止剤、各種着色剤、各種界面活性剤、各種強化繊維類などの従来公知の添加剤を本発明の効果を損なわない範囲で添加してもよい。   The polylactic acid polymer used in the present invention includes various inorganic particles such as titanium oxide, silicon oxide, calcium carbonate, silicon nitride, clay and talc, crosslinked polymer particles, various metal particles, etc., depending on the application. In addition to these particles, conventionally known additives such as anti-aging agents, antioxidants, anti-coloring agents, light resistance agents, inclusion compounds, antistatic agents, various coloring agents, various surfactants, various reinforcing fibers, etc. May be added as long as the effects of the present invention are not impaired.

本発明に用いる熱融着性複合繊維は、高融点ポリ乳酸系重合体と低融点ポリ乳酸系重合体とから構成され、低融点重合体が複合繊維表面の少なくとも一部を占めた複合形態である。このような複合形態としては、低融点ポリ乳酸系重合体を鞘部、高融点ポリ乳酸系重合体を芯部に配した芯鞘型、低融点ポリ乳酸系重合体と高融点ポリ乳酸系重合体を貼り合わしてなるサイドバイサイド型、高融点ポリ乳酸系重合体が多数の島部、低融点ポリ乳酸系重合体が海部に配してなる海島型、また、放射型や多葉型等の割繊型等が挙げられる。本発明では、繊維間の接着性や得られる海藻類養殖用繊維資材の強力等を考慮して、芯鞘型複合形態を採用することが好ましい。   The heat-fusible conjugate fiber used in the present invention is composed of a high melting point polylactic acid polymer and a low melting point polylactic acid polymer, and the low melting point polymer occupies at least a part of the surface of the conjugate fiber. is there. Such a composite form includes a core-sheath type in which a low melting point polylactic acid polymer is disposed in a sheath and a high melting point polylactic acid polymer in a core, and a low melting point polylactic acid polymer and a high melting point polylactic acid polymer. The side-by-side type, in which the coalesced materials are bonded together, the sea-island type in which the high-melting-point polylactic acid-based polymer is arranged in many islands, the low-melting-point polylactic acid-based polymer in the sea, and the radiation type and multi-leaf type Examples thereof include a fine mold. In the present invention, it is preferable to adopt a core-sheath type composite form in consideration of the adhesiveness between fibers and the strength of the obtained fiber material for seaweed aquaculture.

高融点ポリ乳酸系重合体と低融点ポリ乳酸系重合体の融点差は、20℃以上である(なお、ポリ乳酸系重合体の非晶性が高く、明確な融点を有しないものについては、目視での軟化温度を融点とみなす。)。両者の融点差が20℃未満であると、熱処理工程において高融点ポリ乳酸系重合体までもが軟化または溶融し繊維形態を維持できないものとなり、その結果、溶融したポリ乳酸系重合体が流動して一箇所に固まったり脱落したりして接着面積が小さくなり、効果的に繊維同士を接着することができなくなる。また、高融点ポリ乳酸系重合体が繊維形態を維持しないため、繊維強度が低下する。両者の融点差を20℃以上に設定することにより、熱処理により低融点ポリ乳酸系重合体のみを溶融させて繊維同士を接着させ、一方、高融点ポリ乳酸系重合体は、熱による影響を受けることなく繊維形態を維持させるため、乾燥状態および湿潤状態の両方において、機械的強力、柔軟性を向上させることができる。   The difference in melting point between the high melting point polylactic acid polymer and the low melting point polylactic acid polymer is 20 ° C. or more (in addition, the polylactic acid polymer is highly amorphous and has no clear melting point. The visual softening temperature is considered the melting point.) If the difference between the melting points of the two is less than 20 ° C., even the high melting point polylactic acid polymer is softened or melted in the heat treatment process and the fiber form cannot be maintained. As a result, the molten polylactic acid polymer flows. Then, it is hardened in one place or falls off, and the bonding area becomes small, and the fibers cannot be effectively bonded to each other. Moreover, since a high melting point polylactic acid-type polymer does not maintain a fiber form, fiber strength falls. By setting the difference in melting point between the two to 20 ° C. or more, only the low melting point polylactic acid polymer is melted by heat treatment to bond the fibers together, while the high melting point polylactic acid polymer is affected by heat. Therefore, the mechanical strength and flexibility can be improved both in the dry state and in the wet state.

両者の融点差を20℃以上とするには、上記したポリ乳酸の中から適宜選択して組み合わせればよいが、例えば、融点170℃以上の高融点ポリ乳酸系重合体(L体98モル%以上、D体2モル%未満)と融点155〜110℃の低融点ポリ乳酸系重合体(L体82〜95モル%、D体5〜18モル%)の組み合わせが挙げられる。また、融点200℃以上あるいは結晶融解開始温度が180℃以上のステレオコンプレックスを形成した高融点ポリ乳酸系重合体と、比較的D体共重合量の少ない融点160℃〜170℃程度のポリ−L−乳酸との組み合わせもよい。なお、ポリ乳酸系重合体の組み合わせにおいて、高融点ポリ乳酸系重合体として融点110℃以上のポリ乳酸系重合体、低融点ポリ乳酸系重合体として軟化点90℃未満の非晶性の強いポリ乳酸系重合体といった組み合わせでもよいが、繊維製造工程におけるヒートセット工程で、十分なヒートセット加工を施し難いため、得られる熱融着性繊維自体が熱収縮しやすくなる。   In order to make the difference between the melting points of 20 ° C. or more, the polylactic acid may be appropriately selected and combined from the above-mentioned polylactic acids. For example, a high melting point polylactic acid polymer having a melting point of 170 ° C. or more (98 mol% L-form) As mentioned above, the combination of D isomer less than 2 mol%) and a low melting point polylactic acid polymer having a melting point of 155 to 110 ° C. (L isomer 82 to 95 mol%, D isomer 5 to 18 mol%). In addition, a high melting point polylactic acid-based polymer in which a stereocomplex having a melting point of 200 ° C. or higher or a crystal melting start temperature of 180 ° C. or higher is formed, and a poly-L having a relatively low D copolymer amount of 160 ° C. to 170 ° C. -Combination with lactic acid is also possible. In the combination of polylactic acid polymers, a high melting point polylactic acid polymer having a melting point of 110 ° C. or higher, and a low melting point polylactic acid polymer having a softening point of less than 90 ° C. Although a combination such as a lactic acid polymer may be used, it is difficult to perform sufficient heat setting in the heat setting process in the fiber manufacturing process, and thus the heat-fusible fiber itself is likely to be thermally contracted.

融点200℃以上あるいは結晶融解開始温度が180℃以上のステレオコンプレックスを形成してなるポリ乳酸系重合体を芯部に配し、融点160℃〜170℃程度のポリ−L−乳酸を鞘部に配した芯鞘型複合繊維は、繊維製造時に高温で熱セットすることが可能であるため、得られる熱融着性繊維は、資材製造時における熱接着処理等の加熱処理の際、熱収縮が発生せずに安定した加熱処理を行うことができる。そして得られる資材においては、風合い硬化や凹凸発生による表面外観の乱れが生じることがなく好ましい。結晶融解開始温度は、示差走査型熱量計(パーキンエルマー社製、Diamond DSC使用、昇温速度20℃/分にて自動測定)にて融解吸熱曲線を描いた際(図1参照)、融解吸熱曲線において結晶融解が開始するa点を指し、結晶融解開始温度が180℃とは、このa点での温度が180℃であることをいう。また、ポリ乳酸系重合体が結晶性を有するとは、示差走査型熱量計にて融解吸熱曲線を描いた際に明瞭な吸熱ピークを描くもののことをいう。   A polylactic acid polymer formed by forming a stereocomplex having a melting point of 200 ° C. or higher or a crystal melting start temperature of 180 ° C. or higher is arranged in the core, and poly-L-lactic acid having a melting point of about 160 ° C. to 170 ° C. is used as the sheath. Since the core-sheath type composite fiber arranged can be heat-set at a high temperature at the time of fiber production, the resulting heat-fusible fiber is not subject to thermal shrinkage during heat treatment such as heat bonding treatment at the time of material production. Stable heat treatment can be performed without generating. The obtained material is preferable since the appearance of the surface is not disturbed due to texture hardening or unevenness generation. The crystal melting start temperature is a melting endotherm when a melting endotherm is drawn with a differential scanning calorimeter (Perkin Elmer, Diamond DSC, automatically measured at a heating rate of 20 ° C./min) (see FIG. 1). The point a at which crystal melting starts in the curve is indicated, and the crystal melting start temperature of 180 ° C. means that the temperature at the point a is 180 ° C. The term “polylactic acid polymer has crystallinity” means that a clear endothermic peak is drawn when a melting endothermic curve is drawn with a differential scanning calorimeter.

高融点ポリ乳酸系重合体と低融点ポリ乳酸系重合体とのそれぞれの極限粘度については、紡糸設備や繊維物性等により適宜選択すればよく、特に限定されるものではない。   The intrinsic viscosities of the high melting point polylactic acid polymer and the low melting point polylactic acid polymer may be appropriately selected depending on the spinning equipment, fiber physical properties and the like, and are not particularly limited.

熱融着性複合繊維を構成する高融点ポリ乳酸系重合体と低融点ポリ乳酸系重合体との複合比率(質量比)は、熱接着性等を考慮して適宜決定すればよく、通常、70/30〜30/70、好ましくは60/40〜40/60の範囲がよい。高融点ポリ乳酸系重合体の複合比率を30質量部以上とすることにより、糸条の強度を保持することができ、得られる繊維資材の風合いが硬化することなく取り扱い性が良好なものを得ることができる。一方、高融点ポリ乳酸系重合体の複合比率を70質量部以下とすることにより、接着成分である低融点ポリ乳酸系重合体の比率が減少しすぎないため、繊維同士の熱接着点を相対的に保持し、集束してなる繊維同士がバラけにくく、厳しい波浪状態においても繊維間の空隙に保持していた胞子等が脱落しにくい資材を得ることができる。   The composite ratio (mass ratio) of the high-melting point polylactic acid polymer and the low-melting point polylactic acid polymer constituting the heat-fusible conjugate fiber may be appropriately determined in consideration of thermal adhesiveness, etc. The range is 70/30 to 30/70, preferably 60/40 to 40/60. By setting the composite ratio of the high melting point polylactic acid-based polymer to 30 parts by mass or more, the strength of the yarn can be maintained, and the resulting fiber material has a good handleability without being cured. be able to. On the other hand, by setting the composite ratio of the high melting point polylactic acid polymer to 70 parts by mass or less, the ratio of the low melting point polylactic acid polymer that is an adhesive component does not decrease too much. Therefore, it is possible to obtain a material in which the fibers that are held and focused are not easily separated from each other, and the spores and the like that are held in the gaps between the fibers are not easily dropped even in a severe wave state.

本発明で用いる熱融着性複合繊維は、常法に従い、複合紡糸装置を用いて製造できる。すなわち、引取速度が4500m/分以下の範囲で複合紡糸した後、延伸を施すことにより得ることができる。引取速度が4500m/分を超えると紡糸時に糸切れが発生しやすく、また、延伸倍率が低くなるため延伸後の強度が低く、実用的な物性の糸条を得にくくなる。また、生産性よく製造するには引取速度を1000m/分以上とすることが好ましい。延伸は紡糸した糸を一旦捲き取った後に延伸機に供給するか、あるいは、紡糸に引き続き、延伸ローラを介して直接延伸を施してから捲き取ることもできる。   The heat-fusible conjugate fiber used in the present invention can be produced using a compound spinning device according to a conventional method. That is, it can be obtained by subjecting the composite spinning to a take-up speed of 4500 m / min or less and then drawing. When the take-up speed exceeds 4500 m / min, yarn breakage is likely to occur during spinning, and since the draw ratio is low, the strength after drawing is low, making it difficult to obtain a yarn with practical physical properties. In order to manufacture with good productivity, the take-up speed is preferably set to 1000 m / min or more. For drawing, the spun yarn can be wound once and then supplied to a drawing machine, or, after spinning, it can be drawn directly after being drawn through a drawing roller.

本発明の海藻養殖用繊維資材を構成する糸条は、上記した熱融着性複合繊維のみから構成されていてもよいが、熱融着性複合繊維と熱融着性複合繊維以外の他の繊維とから構成されていてもよい。他の繊維を含む場合、他の繊維は、熱融着性複合繊維を構成する低融点ポリ乳酸系重合体の融点よりも20℃以上高い融点を有するポリ乳酸系重合体によって構成される繊維であることが好ましい。他の繊維もまた、ポリ乳酸系重合体によって構成されることによって、溶融または軟化した低融点ポリ乳酸系重合体との接着性が良好となるため、本発明の効果を良好に奏するためである。本発明の目的を効果的に達成するためには、糸条に含まれる熱融着繊維複合繊維の含有量は、30質量%以上であることが好ましく、より好ましくは50質量%以上である。   The yarn constituting the seaweed culture fiber material of the present invention may be composed only of the above-mentioned heat-fusible conjugate fiber, but other than the heat-fusible conjugate fiber and the heat-fusible conjugate fiber. You may be comprised from a fiber. When other fibers are included, the other fibers are fibers composed of a polylactic acid polymer having a melting point higher by 20 ° C. than the melting point of the low melting point polylactic acid polymer constituting the heat-fusible conjugate fiber. Preferably there is. Another fiber is also composed of a polylactic acid-based polymer, so that the adhesiveness with the melted or softened low-melting-point polylactic acid-based polymer is good, so that the effects of the present invention are excellent. . In order to effectively achieve the object of the present invention, the content of the heat-fusible fiber composite fiber contained in the yarn is preferably 30% by mass or more, and more preferably 50% by mass or more.

糸条を形成する繊維の形態は、連続繊維であっても短繊維であってもよいが、強度等を考慮すると連続繊維を用いることが好ましい。繊維の断面形状についても、特に限定されず、例えば、円形、楕円形、3角形等の多角形、T字、Y字,H字等のアルファベット,十字型、5葉、6葉などの多葉形状、正方形、長方形、菱形、繭型、馬蹄型などを挙げることができ、これらの形状を一部変更したものであってもよい。また、これら各種断面形状の繊維を適宜組み合わせて用いてもよい。   The form of the fiber forming the yarn may be continuous fiber or short fiber, but it is preferable to use continuous fiber in consideration of strength and the like. The cross-sectional shape of the fiber is not particularly limited, and for example, a multi-leaf such as a circle, an ellipse, a polygon such as a triangle, an alphabet such as a T-shape, a Y-shape, or an H-shape, a cross shape, a 5-leaf, a 6-leaf, etc. A shape, a square, a rectangle, a rhombus, a saddle shape, a horseshoe shape, etc. can be mentioned, and these shapes may be partially changed. Moreover, you may use combining suitably the fiber of these various cross-sectional shapes.

糸条の形態としては、連続繊維が集束したものであっても、短繊維からなる紡績糸であっても、また、連続繊維と短繊維とを混紡したものであってもよい。また、マルチフィラメントとモノフィラメントとを合撚した合撚糸、マルチフィラメントと紡績糸とを合撚した合撚糸、モノフィラメントと紡績糸とを合撚した合撚糸、あるいは、モノフィラメント同士やマルチフィラメント同士を撚った合撚糸であってもよい。   The form of the yarn may be a continuous fiber, a spun yarn made of short fibers, or a mixture of continuous fibers and short fibers. In addition, a twisted yarn in which a multifilament and a monofilament are twisted together, a twisted yarn in which a multifilament and a spun yarn are twisted together, a twisted yarn in which a monofilament and a spun yarn are twisted together, or monofilaments or multifilaments are twisted together. It may be a twisted yarn.

糸条を形成する繊維の単糸繊度もまた適宜選択すればよいが、マルチフィラメントや紡績糸を構成する個々の単糸の繊度は、3.3〜22dtexであることが好ましく、マルチフィラメントの総繊度は55〜2200dtex、紡績糸の繊度もまた55〜2200dtexであることが好ましい。モノフィラメントの場合、網の形態の資材を構成する際にモノフィラメントを撚り合せた糸条とする場合の収束性、耐久性あるいは製網性の点から、単糸繊度は55〜1100dtexが好ましく、220〜670dtexが更に好ましい。単糸繊度があまりに大きくなると、繊維同士の接点が相対的に減少するため、場合によっては十分な接着強力が発揮できなくなることがある。これらの繊維によって形成される糸条の繊度もまた適宜選択すればよいが、約60〜5万dtex程度とする。   The single yarn fineness of the fibers forming the yarn may be selected as appropriate, but the fineness of each single yarn constituting the multifilament or spun yarn is preferably 3.3 to 22 dtex, It is preferable that the fineness is 55 to 2200 dtex, and the fineness of the spun yarn is also 55 to 2200 dtex. In the case of monofilaments, the single yarn fineness is preferably 55 to 1100 dtex, from the viewpoint of convergence, durability, or netting properties when the yarn is formed by twisting monofilaments when forming a material in the form of a net, 220 to More preferred is 670 dtex. When the single yarn fineness is too large, the contact points between the fibers are relatively decreased, and in some cases, sufficient adhesive strength may not be exhibited. The fineness of the yarn formed by these fibers may be selected as appropriate, but is about 60 to 50,000 dtex.

本発明の海藻類養殖用繊維資材である糸条は、構成する繊維同士が、溶融または軟化した低融点ポリ乳酸系重合体を介して熱接着している。繊維同士の少なくとも接点が、低融点ポリ乳酸系重合体によって熱接着されていることにより、外力によっても繊維間の空隙が変形せずに固定され、繊維がバラけることを防止できるため、一旦、保持した海藻類の胞子が脱落しにくくなる。繊維同士を熱接着する方法としては、低融点ポリ乳酸系重合体のみが溶融または軟化する温度に設定した熱処理装置内を通すことにより行うことができる。熱処理装置内を通す際の処理時間は、熱処理装置の設定温度を考慮して適宜設定すればよい。熱処理装置としては、特定の直径を有するトンネル炉を通すことにより、糸条を熱処理することが好ましい。トンネル炉の内径を考慮して熱処理前の糸条の直径を適宜選択することによって、繊維間の空隙の大きさを適宜設定できる。また、糸条を加熱した後に、所定の内径(糸条の直径以下の径)を有する管を通すことによっても、繊維間の空隙の大きさを適宜設定しながら繊維同士を熱接着することができる。   In the yarn which is the fiber material for seaweed cultivation of the present invention, the constituent fibers are thermally bonded via a molten or softened low melting point polylactic acid polymer. Since at least the contact point between the fibers is thermally bonded by the low melting point polylactic acid polymer, the gap between the fibers is fixed without being deformed even by an external force, and the fibers can be prevented from being broken. The retained seaweed spores are less likely to fall off. The method of thermally bonding the fibers can be performed by passing through a heat treatment apparatus set to a temperature at which only the low melting point polylactic acid polymer melts or softens. What is necessary is just to set the processing time at the time of letting it pass in the heat processing apparatus suitably considering the preset temperature of a heat processing apparatus. As the heat treatment apparatus, it is preferable to heat treat the yarn by passing through a tunnel furnace having a specific diameter. By appropriately selecting the diameter of the yarn before the heat treatment in consideration of the inner diameter of the tunnel furnace, the size of the gap between the fibers can be appropriately set. In addition, after heating the yarn, the fibers can be thermally bonded while appropriately setting the size of the gap between the fibers by passing a tube having a predetermined inner diameter (diameter equal to or less than the diameter of the yarn). it can.

本発明では、上記した海藻類養殖用繊維資材を用いて、製網等を行って、海藻類養殖資材を得る。また、上記した海藻類養殖用繊維資材、それ自体を海藻類養殖資材として用いることもできる。本発明において海藻類養殖資材とは、網、ロープ、撚糸といった形態を呈したものであり、海苔、昆布、ホンダワラ、もずく等の海藻類の胞子や種子を付着させて水中で生育させるのに使用するものをいう。   In the present invention, using the above-described fiber material for seaweed aquaculture, netting or the like is performed to obtain a seaweed aquaculture material. Moreover, the above-mentioned seaweed culture fiber material, itself, can also be used as seaweed culture material. In the present invention, the seaweed aquaculture material is in the form of nets, ropes, twisted yarns, and is used to grow spores and seeds of seaweed such as seaweed, kelp, honda, mozuku, etc. Say what you do.

本発明の海藻類養殖資材は、上記した海藻類養殖用繊維資材のみから構成されてもよいが、養殖資材の強度、柔軟性、乾燥性、寸法安定性、海藻胞子の付着性、海藻胞子の間引き性および比重調整などの目的に応じて、他のポリエステル繊維、ポリアミド繊維、ポリプロピレン繊維、ポリエチレン繊維等から選ばれた一種以上の繊維からなる他の糸条を併用して構成してもよい。本発明の海藻類養殖資材において、本発明の海藻類養殖用繊維資材の含有率は、使用する場所やそれぞれの要求特性により適宜決定すればよいが、海藻類養殖資材を構成する糸の総質量の30質量%以上とすることが好ましい。   The seaweed aquaculture material of the present invention may be composed only of the above-mentioned seaweed aquaculture fiber material, but the strength, flexibility, dryness, dimensional stability, adhesion of seaweed spores, seaweed spores, Depending on the purpose such as thinning out and adjusting specific gravity, other yarns composed of one or more fibers selected from other polyester fibers, polyamide fibers, polypropylene fibers, polyethylene fibers, etc. may be used in combination. In the seaweed cultivating material of the present invention, the content of the fiber material for cultivating seaweed of the present invention may be determined as appropriate according to the place of use and the respective required characteristics, but the total mass of the yarn constituting the seaweed cultivating material It is preferable to set it as 30 mass% or more.

本発明の海藻類養殖資材が網の形態である場合、網の形状は特に限定されるものではなく、結節網、無結節網、綟子網、織網など従来公知のものに適用できる。   When the seaweed aquaculture material of the present invention is in the form of a net, the shape of the net is not particularly limited, and can be applied to conventionally known materials such as a knot net, a knotless net, a cocoon net, and a woven net.

また、本発明の海藻類養殖資材を得るための他の実施態様として、以下の方法がある。すなわち、複数の繊維が無撚で集束しているかあるいは複数の繊維が撚りを有することで集束しており、かつ熱融着性複合繊維を含有する糸条を用いて海藻類養殖資材を製造する方法が挙げられ、この方法では、資材を構成する材料として用意する糸条は、まだ熱処理が施されてなく、繊維同士は、熱接着していないものである。熱融着性複合繊維は、上記したように、高融点ポリ乳酸系重合体と該高融点ポリ乳酸系重合体の融点より20℃以上低い融点を有する低融点ポリ乳酸系重合体により構成され、低融点ポリ乳酸系重合体が繊維表面の少なくとも一部を占めている。糸条において、まだ熱処理が施されてなく、繊維同士が熱接着していないものを用いて、ロープあるいは網等の適宜の形態にした後、このロープあるいは網等の形態を呈する海藻類養殖資材に、低融点ポリ乳酸系重合体が溶融または軟化する温度で熱処理を施し、少なくとも繊維同士の接点を溶融または軟化した低融点ポリ乳酸系重合体を介して熱接着させる。熱処理は、熱接着成分である低融点ポリ乳酸系重合体のみが溶融または軟化する温度で行えばよく、処理時間は処理温度に応じて適宜設定すればよい。具体的な熱処理装置としては、熱風循環装置内を通す方法や、熱ロールを沿わせて熱処理する方法等が挙げられる。熱処理を施さずに繊維同士が未だ熱接着していない糸条を用いて、ロープや網等の適宜の形態とした後に熱処理を施すことにより、製網等の資材を形成する段階では、糸条は、熱接着点を有しないため硬くなく、しなやかで取扱いやすいとう利点がある。また、ロープや網等の適宜の形態とした後に熱処理を施すことによって、糸条同士の接点や結節点における糸条同士の接点においても熱接着点を形成することができ、全体に機械的強力に優れる海藻類養殖資材を得ることができる。   Moreover, there exists the following method as another embodiment for obtaining the seaweed culture material of this invention. That is, a seaweed aquaculture material is manufactured using yarns that are bundled with a plurality of fibers that are untwisted or that have a plurality of fibers that are twisted and that contain a heat-fusible composite fiber In this method, the yarn prepared as the material constituting the material is not yet heat-treated, and the fibers are not thermally bonded. As described above, the heat-fusible conjugate fiber is composed of a high-melting polylactic acid polymer and a low-melting polylactic acid polymer having a melting point that is 20 ° C. lower than the melting point of the high-melting polylactic acid polymer, The low melting point polylactic acid polymer occupies at least a part of the fiber surface. Sea yarn algae cultivation material that takes the form of a rope or net, etc. after making it into an appropriate form such as a rope or net using a yarn that has not been heat-treated yet and whose fibers are not thermally bonded to each other Further, heat treatment is performed at a temperature at which the low melting point polylactic acid polymer is melted or softened, and at least the contact points of the fibers are melted or softened to be thermally bonded through the low melting point polylactic acid polymer. The heat treatment may be performed at a temperature at which only the low melting point polylactic acid-based polymer that is a heat bonding component is melted or softened, and the treatment time may be appropriately set according to the treatment temperature. Specific examples of the heat treatment apparatus include a method of passing through a hot air circulation apparatus and a method of heat treatment along a hot roll. In the stage of forming a material such as a net by performing heat treatment after forming a suitable shape such as a rope or a net using a yarn that is not heat-bonded yet without heat treatment, Has the advantage that it is not hard because it does not have a thermal bonding point, and is flexible and easy to handle. In addition, by applying heat treatment after forming an appropriate form such as a rope or a net, a thermal bonding point can be formed at the contact between the yarns and at the contact between the yarns at the knot point, and the mechanical strength as a whole Seaweed aquaculture material excellent in

本発明の海藻類養殖用繊維資材は、高融点ポリ乳酸系重合体と低融点ポリ乳酸系重合体とからなり低融点ポリ乳酸系重合体が繊維表面の一部を占める複合繊維を含有した糸条であり、糸条を構成する繊維同士は、溶融または軟化した低融点ポリ乳酸系重合体によって熱接着している。したがって、この糸条(海藻類養殖用繊維資材)を用いて構成される網やロープ等の海藻類養殖資材は、海水中で繊維一本一本がバラケて動きにくく、繊維間の空隙に付着した海藻類の胞子が脱落しにくくなる。よって、本発明の海藻類養殖用繊維資材を用いた海藻類養殖資材は、湾外等の波浪条件の厳しい場所(流れの速い場所)において使用しても海藻類の活着性が良く、繊維の表面に付着した成長途中の海藻類の脱落が生じにくい。また、いったん活着すれば収穫時まで海藻類の付着を維持できるので、本発明の海藻類養殖用繊維資材および海藻類養殖資材によれば、高い収率を実現することができる。   The fiber material for seaweed aquaculture of the present invention comprises a high-melting polylactic acid-based polymer and a low-melting-point polylactic acid-based polymer, and a yarn containing a composite fiber in which the low-melting-point polylactic acid-based polymer occupies a part of the fiber surface. The fibers constituting the yarn are thermally bonded to each other by a molten or softened low melting point polylactic acid polymer. Therefore, seaweed aquaculture materials such as nets and ropes made using this yarn (seaweed aquaculture fiber material) are difficult to move because each fiber is scattered in seawater and adheres to the gaps between the fibers. This makes it difficult for the spores of the seaweed to fall off. Therefore, the seaweed culture material using the seaweed culture fiber material of the present invention has good seaweed survival even when used in places with severe wave conditions (fast flow areas) such as outside the bay. The growth of seaweeds growing on the surface is unlikely to occur. Moreover, since the adhesion of seaweeds can be maintained until harvesting once they are settled, according to the seaweed culture fiber material and seaweed culture material of the present invention, a high yield can be realized.

融解吸熱曲線の一例を示す図である。It is a figure which shows an example of a melting endothermic curve.

次に、実施例に基づき本発明を具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by these Examples.

実施例1
複合紡糸設備を用いて、常法により融点を異にする2種のポリ乳酸からなる同心芯鞘型複合モノフィラメント(芯部:融点170℃、D体/L体(共重合モル比)=2/98、相対粘度1.89、鞘部:融点130℃、D体/L体(共重合モル比)=8/92、相対粘度1.90、芯/鞘(質量比)=1/1)を紡出した。なお、相対粘度は、重合体をフェノールと四塩化エタンの等質量混合物を溶媒とし、試料濃度0.5g/dl、温度20度で測定した。紡出したモノフィラメントは20℃の水槽で冷却した後、常法に従い合計5.0倍に延伸および熱セットを行なってボビンに捲取り、単糸繊度が600dtexで、断面形状が円形の芯鞘型複合モノフィラメントを得た。得られたモノフィラメントの強伸度(JIS L−1013に記載の方法に従い、島津製作所社製のオートグラフDSS−500型を用いて、つかみ間隔25cm、引張速度30cm/分で測定)は、4.1cN/dtex、34%であった。
Example 1
Using a composite spinning facility, a concentric core-sheath type composite monofilament composed of two types of polylactic acid having different melting points by a conventional method (core: melting point 170 ° C., D-form / L-form (copolymerization molar ratio) = 2 / 98, relative viscosity 1.89, sheath: melting point 130 ° C., D-form / L-form (copolymerization molar ratio) = 8/92, relative viscosity 1.90, core / sheath (mass ratio) = 1/1) Spinned. The relative viscosity was measured at a sample concentration of 0.5 g / dl and a temperature of 20 degrees using an equimolar mixture of phenol and ethane tetrachloride as a solvent for the polymer. The spun monofilament is cooled in a water bath at 20 ° C. and then stretched and heat-set to a total of 5.0 times according to a conventional method and wound on a bobbin. The single filament fineness is 600 dtex and the cross-sectional shape is a core-sheath type A composite monofilament was obtained. The resulting monofilament has a high elongation (measured at 25 cm gripping distance and 30 cm / min pulling speed using an autograph DSS-500 model manufactured by Shimadzu Corporation according to the method described in JIS L-1013). 1 cN / dtex, 34%.

得られたモノフィラメント36本を撚糸して、150℃のトンネル炉に通して熱融着加工を行い、実施例1の海藻類養殖用繊維資材を得た。   The obtained 36 monofilaments were twisted, passed through a tunnel furnace at 150 ° C. and heat-sealed, and the seaweed aquaculture fiber material of Example 1 was obtained.

比較例1
実施例1において、モノフィラメント36本を撚糸した後に熱融着加工を行わなかったこと以外は実施例1と同様にして、比較例1の繊維資材を得た。
Comparative Example 1
In Example 1, the fiber material of Comparative Example 1 was obtained in the same manner as in Example 1 except that the heat fusion processing was not performed after twisting 36 monofilaments.

実施例2
実施例1において、芯鞘型複合モノフィラメントを得る際に芯部に用いたポリ乳酸(融点170℃、D体/L体(共重合モル比)=2/98、相対粘度1.89)のみを用いて、単糸繊度が600dtexで、断面形状が円形の単相型のモノフィラメントを得た。
Example 2
In Example 1, only the polylactic acid (melting point 170 ° C., D-form / L-form (copolymerization molar ratio) = 2/98, relative viscosity 1.89) used for the core when obtaining the core-sheath type composite monofilament was used. The monofilament monofilament having a single yarn fineness of 600 dtex and a circular cross section was obtained.

得られた単相型のモノフィラメント12本と実施例1で得られた芯鞘型複合モノフィラメント24本とを撚糸して、150℃のトンネル炉に通して熱融着加工を行い、実施例2の海藻類養殖用繊維資材を得た。   Twelve single-phase monofilaments obtained and 24 core-sheath type composite monofilaments obtained in Example 1 were twisted, passed through a tunnel furnace at 150 ° C., and heat-sealed. A seaweed aquaculture fiber material was obtained.

実施例3
実施例1において、芯鞘型複合モノフィラメントを得るにあたり、芯部に、融点175℃、D体/L体(共重合モル比)=0.5/99.5および、融点175℃、L体/D体(共重合モル比)=0.6/99.4、相対粘度1.91のポリ乳酸を等質量あらかじめ均一に溶融混合したものを用いたこと以外は、実施例1と同様に実施して、実施例3の海藻類養殖用繊維資材を得た。なお、得られた芯鞘型複合モノフィラメントの芯部を形成するポリポリ乳酸は、結晶融解開始温度が205℃、融点が225℃であり、ステレオコンプレックスを形成していた。
Example 3
In Example 1, to obtain a core-sheath type composite monofilament, the core part had a melting point of 175 ° C., D-form / L-form (copolymerization molar ratio) = 0.5 / 99.5, and a melting point of 175 ° C., L-form / Example D (copolymerization molar ratio) = 0.6 / 99.4, with equal mass of polylactic acid having a relative viscosity of 1.91 Thus, the seaweed aquaculture fiber material of Example 3 was obtained. The polypolylactic acid forming the core of the obtained core-sheath type composite monofilament had a crystal melting start temperature of 205 ° C. and a melting point of 225 ° C., forming a stereo complex.

実施例1〜3、比較例1で得られた海藻類養殖用繊維資材を海藻類養殖資材として用い、海苔網の陸上採苗と同様にして海苔の種付けを行った。種付けした資材は、栄養塩を添加した海水中に浸漬して30日間通気培養を行い、30日後に資材を引き上げて、海苔芽の着生状況を目視にて確認した。また、海苔養殖に多く用いられているビニロンフィラメント(ユニチカ社製 5号糸<MF5> 560dtex)を36本撚り合わせた撚糸を参考資材として用いて、同様に確認した。   Using the seaweed aquaculture material obtained in Examples 1 to 3 and Comparative Example 1 as a seaweed aquaculture material, seeding of seaweed was carried out in the same manner as onshore seedlings of laver nets. The seeded material was immersed in seawater to which nutrient salt was added and subjected to aeration culture for 30 days. After 30 days, the material was pulled up, and the appearance of nori buds was visually confirmed. Moreover, it confirmed similarly using the twisted yarn which twisted 36 vinylon filaments (Unitika company No. 5 yarn <MF5> 560dtex) often used for nori culture as a reference material.

実施例1〜3および比較例1の海藻類養殖資材は、海苔の種付け直後は、海苔の種付けによりいずれも同程度の茶褐色の色彩を呈し、参考資材であるビニロンフィラメントからなる撚糸と同様に良好に種が付着していた。30日後に海苔芽の着生状況を観察したところ、実施例1〜3の海藻類養殖資材は、参考資材であるビニロンフィラメントからなる撚糸と同様に資材全体に亘り、茶褐色の色彩を呈して海苔は育苗していた。一方、比較例1の資材は、茶褐色の色彩を呈した箇所が所々と全体に少なく、海苔芽は全体的に着生していなかった。   The seaweed aquaculture materials of Examples 1 to 3 and Comparative Example 1 all show the same brown color by seeding the seaweed immediately after seeding the seaweed and are as good as the twisted yarn made of the vinylon filament as a reference material The seeds were attached to. After 30 days of observing the growth of nori buds, the seaweed aquaculture material of Examples 1 to 3 had a brownish brown color throughout the entire material in the same manner as the twisted yarn made of vinylon filaments as a reference material. Was raising seedlings. On the other hand, in the material of Comparative Example 1, there were few places that exhibited a brownish brown color in some places, and the laver sprouts were not formed overall.

実施例4
複合紡糸設備を用い、常法により融点を異にする2種のポリ乳酸からなる同心芯鞘型複合マルチフィラメント(芯部:融点170℃、D体/L体(共重合モル比)=2/98、相対粘度1.89、鞘部:融点130℃、D体/L体(共重合モル比)=8/92、相対粘度1.90、芯/鞘(質量比)=1/1)を紡出した。紡出したマルチフィラメントを常法に従い合計3.3倍に延伸および熱セットを行なってボビンに捲取り、1100dtex/140fのマルチフィラメントを得た。マルチフィラメントの強伸度(JIS L−1013に記載の方法に従い、定速伸長形試験機を用い、つかみ間隔20cm、引張速度20cm/分で測定)は、4.7cN/dtex、32%であった。得られたマルチフィラメント3本を集束して120回/mのS撚りを与え、さらに得られた撚糸3本を集束して30回/mのZ撚を与えた。得られた糸を150℃のトンネル炉に通して熱融着加工を行い、実施例3の海藻類養殖用繊維資材を得た。得られた海草類養殖用繊維資材を海藻類養殖資材として、常法により、茶色い昆布の胞子を付着させた。これを流水中に一週間放置したあと観察したところ茶色の程度は殆ど変わらず減色していないことから、昆布の胞子が脱落しにくく、良好な養殖資材であることが分かった。
Example 4
Concentric core-sheath type composite multifilament made of two types of polylactic acid having different melting points by a conventional method using a composite spinning facility (core: melting point 170 ° C., D-form / L-form (copolymerization molar ratio) = 2 / 98, relative viscosity 1.89, sheath: melting point 130 ° C., D-form / L-form (copolymerization molar ratio) = 8/92, relative viscosity 1.90, core / sheath (mass ratio) = 1/1) Spinned. The spun multifilament was stretched and heat-set by a total of 3.3 times according to a conventional method, and wound on a bobbin to obtain a multifilament of 1100 dtex / 140 f. The multifilament tensile strength (measured with a constant-speed extension type tester using a method described in JIS L-1013 at a grip interval of 20 cm and a tensile speed of 20 cm / min) was 4.7 cN / dtex, 32%. It was. Three of the obtained multifilaments were converged to give an S twist of 120 times / m, and three of the obtained twisted yarns were converged to give a Z twist of 30 times / m. The obtained yarn was passed through a 150 ° C. tunnel furnace for heat-sealing, and the seaweed aquaculture fiber material of Example 3 was obtained. The obtained seaweed culture fiber material was used as a seaweed culture material, and brown kelp spores were attached by a conventional method. Observation of this after standing in running water for a week revealed that the degree of brown was almost unchanged and the color did not fade, indicating that the kelp spores were less likely to fall off and were good aquaculture materials.

比較例2
実施例4において、トンネル炉に通す熱融着加工を施さなかったこと以外は実施例4と同様にして繊維資材を得た。得られた繊維資材を用いて、実施例4と同様に昆布の胞子付着試験を行ったところ、流水中に一週間放置したあとは茶色の程度が著しく減色し、胞子の脱落度合いが大きいことが分かった。
Comparative Example 2
In Example 4, a fiber material was obtained in the same manner as in Example 4 except that the heat fusion process through a tunnel furnace was not performed. Using the obtained fiber material, a kelp spore adhesion test was conducted in the same manner as in Example 4. After standing for 1 week in running water, the brown color was remarkably reduced, and the degree of spore loss was large. I understood.

Claims (5)

水中で使用する海藻類養殖用繊維資材であって、前記繊維資材は複数の繊維が無撚で集束しているかあるいは複数の繊維が撚られて集束した糸条であり、前記糸条は少なくとも熱融着性複合繊維を含有し、前記熱融着性複合繊維が、高融点ポリ乳酸系重合体と該高融点ポリ乳酸系重合体の融点より20℃以上低い融点を有する低融点ポリ乳酸系重合体により構成され、熱融着性複合繊維の表面の少なくとも一部を低融点ポリ乳酸系重合体が占めており、糸条を構成する繊維同士が、溶融または軟化した低融点ポリ乳酸系重合体を介して熱接着していることを特徴とする海藻類養殖用繊維資材。 A seaweed culture fiber material used in water, wherein the fiber material is a yarn in which a plurality of fibers are untwisted or bundled and a plurality of fibers are twisted and bundled, and the yarn is at least heat A low-melting-point polylactic acid-based polymer containing a fusible conjugate fiber, wherein the heat-fusible conjugate fiber has a melting point that is at least 20 ° C. lower than the melting point of the high-melting point polylactic acid-based polymer and the high-melting point polylactic acid-based polymer. A low-melting polylactic acid polymer in which at least a part of the surface of the heat-fusible composite fiber is composed of coalesced, and the fibers constituting the yarn are melted or softened. A seaweed aquaculture fiber material characterized by being thermally bonded via 糸条が熱融着性複合繊維と熱融着性複合繊維以外の他の繊維とから構成され、他の繊維がポリ乳酸系重合体によって構成される繊維であることを特徴とする請求項1記載の海藻類養殖用繊維資材。 The yarn is composed of a heat-fusible conjugate fiber and a fiber other than the heat-fusible conjugate fiber, and the other fiber is a fiber composed of a polylactic acid-based polymer. The fiber material for seaweed culture described. 請求項1または2記載の海藻類養殖用繊維資材を少なくとも一部に用いて構成している海藻類養殖資材。 A seaweed culture material comprising at least a part of the fiber material for seaweed culture according to claim 1 or 2. 海藻類養殖資材が、ロープあるいは網の形態である請求項3記載の海藻類養殖資材。 The seaweed culture material according to claim 3, wherein the seaweed culture material is in the form of a rope or a net. 複数の繊維が無撚で集束しているかあるいは複数の繊維が撚りを有することで集束しかつ複数の繊維として熱融着性複合繊維を含有する糸条を用いて海藻類養殖資材を製造する方法であって、熱融着性複合繊維が、高融点ポリ乳酸系重合体と該高融点ポリ乳酸系重合体の融点より20℃以上低い融点を有する低融点ポリ乳酸系重合体により構成され、低融点ポリ乳酸系重合体が繊維表面の少なくとも一部を占めており、前記糸条を用いてロープあるいは網等の適宜の形態にした後、低融点ポリ乳酸系重合体が溶融または軟化する温度で熱処理を施し、少なくとも繊維同士の接点を溶融または軟化した低融点ポリ乳酸系重合体を介して熱接着することを特徴とする海藻類養殖資材の製造方法。
A method for producing a seaweed aquaculture material using yarns that are bundled with a plurality of fibers that are untwisted or bundled with a plurality of fibers and that contain a heat-fusible composite fiber as the plurality of fibers The heat-fusible composite fiber is composed of a high-melting polylactic acid polymer and a low-melting polylactic acid polymer having a melting point that is 20 ° C. or more lower than the melting point of the high-melting polylactic acid polymer. The melting point polylactic acid-based polymer occupies at least a part of the fiber surface, and is made into an appropriate shape such as a rope or a net using the yarn, and then at a temperature at which the low-melting point polylactic acid-based polymer melts or softens. A method for producing a seaweed aquaculture material, characterized in that heat treatment is performed and heat bonding is performed via a low melting point polylactic acid polymer in which at least a contact between fibers is melted or softened.
JP2009079147A 2009-03-27 2009-03-27 Fiber material for seaweed aquaculture Expired - Fee Related JP5230503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009079147A JP5230503B2 (en) 2009-03-27 2009-03-27 Fiber material for seaweed aquaculture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009079147A JP5230503B2 (en) 2009-03-27 2009-03-27 Fiber material for seaweed aquaculture

Publications (2)

Publication Number Publication Date
JP2010227035A true JP2010227035A (en) 2010-10-14
JP5230503B2 JP5230503B2 (en) 2013-07-10

Family

ID=43043585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079147A Expired - Fee Related JP5230503B2 (en) 2009-03-27 2009-03-27 Fiber material for seaweed aquaculture

Country Status (1)

Country Link
JP (1) JP5230503B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095122A1 (en) * 2018-11-07 2020-05-14 Garware Technical Fibres Limited Predator-resistant net for aquaculture
JP2020176230A (en) * 2019-04-22 2020-10-29 東洋インキScホールディングス株式会社 Biodegradable adhesive and sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791131A (en) * 1980-11-22 1982-06-07 Taito Seiko Kk Adhering substrate material for breeding sea algae and production thereof
JP2001346463A (en) * 2000-06-05 2001-12-18 Yamada Jitsugyo Kk Biodegradable net for cultivating laver
JP2003342836A (en) * 2002-05-27 2003-12-03 Nippon Ester Co Ltd Heat-bonding fiber and fiber product comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791131A (en) * 1980-11-22 1982-06-07 Taito Seiko Kk Adhering substrate material for breeding sea algae and production thereof
JP2001346463A (en) * 2000-06-05 2001-12-18 Yamada Jitsugyo Kk Biodegradable net for cultivating laver
JP2003342836A (en) * 2002-05-27 2003-12-03 Nippon Ester Co Ltd Heat-bonding fiber and fiber product comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095122A1 (en) * 2018-11-07 2020-05-14 Garware Technical Fibres Limited Predator-resistant net for aquaculture
JP2020176230A (en) * 2019-04-22 2020-10-29 東洋インキScホールディングス株式会社 Biodegradable adhesive and sheet

Also Published As

Publication number Publication date
JP5230503B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
TW293049B (en)
JP2017516000A (en) Artificial lawn production using nucleating agents
JP5844388B2 (en) Porous three-dimensional support and method for producing the same
CN105764327B (en) Manufacture the method and container for plants of container for plants
JP3694192B2 (en) Antibacterial and antifungal polylactic acid structure and method for producing the same
JP5230503B2 (en) Fiber material for seaweed aquaculture
JP3573612B2 (en) Biodegradable weed control sheet
JPH1150369A (en) Non-woven fabric of biodegradable, conjugate, continuous fiber
JP2003227061A (en) Spunbonded nonwoven fabric composed of multifilament yarn and method for producing the same
JPH0995849A (en) Nonwoven fabric of polylactate-based filament and its production
JP4483062B2 (en) Biodegradable tape
JP2009299209A (en) Sheath-core conjugate filament
JP6388493B2 (en) Agricultural coating materials
JP3494404B2 (en) Biodegradable agricultural coating materials
JP2002088630A (en) Weather-resistant filament nonwoven fabric
JP3710175B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP2005143332A (en) Graft tape
JP2006291375A (en) Biodegradable weedproof sheet
JPH09191778A (en) Biodegradable root cover for raising seedling
JP2005176616A (en) Binding tape
WO2018204940A1 (en) Marine degradable supports
JP4000022B2 (en) Method for producing polylactic acid-based long fiber nonwoven fabric
JP7325088B2 (en) split type composite fiber
JP5350910B2 (en) Biodegradable agricultural coating materials
JP2011006823A (en) Biodegradable agricultural covering material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees