JP3494404B2 - Biodegradable agricultural coating materials - Google Patents

Biodegradable agricultural coating materials

Info

Publication number
JP3494404B2
JP3494404B2 JP14954999A JP14954999A JP3494404B2 JP 3494404 B2 JP3494404 B2 JP 3494404B2 JP 14954999 A JP14954999 A JP 14954999A JP 14954999 A JP14954999 A JP 14954999A JP 3494404 B2 JP3494404 B2 JP 3494404B2
Authority
JP
Japan
Prior art keywords
acid
polylactic acid
width
lactic acid
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14954999A
Other languages
Japanese (ja)
Other versions
JP2000333542A (en
Inventor
雅美子 松永
篤 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP14954999A priority Critical patent/JP3494404B2/en
Publication of JP2000333542A publication Critical patent/JP2000333542A/en
Application granted granted Critical
Publication of JP3494404B2 publication Critical patent/JP3494404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Protection Of Plants (AREA)
  • Greenhouses (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、使用後には微生物
の作用によりほぼ完全に分解されて廃棄処理が容易であ
る農業用被覆資材に関し、特に露地栽培やトンネル栽培
あるいはハウス栽培において、直接、作物を被覆する農
業用被覆資材(ベタ掛けシートと通称される。)に好適
なシートに関する。
TECHNICAL FIELD The present invention relates to a covering material for agriculture, which is almost completely decomposed by the action of microorganisms after use and is easy to dispose of. In particular, in open field cultivation, tunnel cultivation or greenhouse cultivation, a crop is directly The present invention relates to a sheet suitable for an agricultural coating material (commonly referred to as a solid sheet) for coating a sheet.

【0002】[0002]

【従来の技術】従来から、防草シートやハウスの内張り
カーテン、水稲育苗用シート等の農業用資材として、各
種の不織布が多用されている。これらの用途の他にも、
不織布は、その通気性、透水性、軽量性を活かし、所謂
ベタ掛けシートとしても使用されている。このベタ掛け
とは、直接に作物を被覆し、保温、保水、防霜、防虫、
防鳥、防風等の効果を生ぜしめ、もって作物の成育促
進、品質向上、増収を図るものである。また、不織布の
被覆有無を選択により作物の成長速度を制御して出荷時
期を調整したり、被覆により虫害を減らして減農薬を進
め、安全な生鮮野菜を供給するためにも使用されてい
る。
2. Description of the Related Art Conventionally, various non-woven fabrics have been widely used as agricultural materials such as weed-preventing sheets, lining curtains for greenhouses, and sheets for raising rice seedlings. Besides these uses,
The non-woven fabric is used as a so-called sticking sheet by taking advantage of its breathability, water permeability and lightness. This solid coating covers the crops directly and keeps them warm, water, frost, insects,
By producing effects such as bird protection and wind protection, it aims to promote the growth of crops, improve their quality, and increase their yield. It is also used to control the growth rate of crops by adjusting the presence or absence of non-woven fabric to adjust the shipping time, or to reduce insect damage by coating to promote pesticide reduction and to supply safe fresh vegetables.

【0003】近年、農業分野においても、使用済みの各
種資材を自然環境を汚染することなく如何に処理するか
が大きな課題となっている。ところで、上記のような農
業用被覆資材としての不織布は、従来、ポリエステルや
ポリプロピレンのような熱可塑性重合体から構成されて
おり、自然環境下で分解しないため、作物から剥離した
多量の使用済み資材については、これを焼却等の廃棄方
法で処理しなければならず、自然環境に負担を生じてい
るのが現状である。また、かかる農業用被覆資材には、
太陽光線に直接的又は間接的に長時間暴露されて使用さ
れるものであるので、透光性や保温性等種々の性能の他
に、耐候性が要求され、従来の長繊維不織布を構成要素
とするシートでは長繊維不織布に採用されている熱可塑
性重合体が単独では十分な耐候性を有さないことが多
く、何らかの耐候剤を添加する必要があった。しかしな
がら、かかる資材では、ポリエステルやポリプロピレン
のような熱可塑性重合体から構成されており、添加した
耐候剤が溶融紡糸の際に熱分解してしまうことが多く、
十分な耐候性を発現し難い。耐熱分解性の高い耐候剤を
採用するということも考えられるが、十分な効果を有す
る耐候剤は未だ見出されていないのが現状である。
In recent years, also in the agricultural field, how to treat various used materials without polluting the natural environment has become a major issue. By the way, the non-woven fabric as the agricultural coating material as described above is conventionally composed of a thermoplastic polymer such as polyester or polypropylene, and does not decompose in a natural environment, so a large amount of used material peeled from the crop is used. However, the current situation is that this must be disposed of by a disposal method such as incineration, which is burdening the natural environment. Also, such agricultural coating materials,
Since it is used by being exposed directly or indirectly to sunlight for a long time, it is required to have weather resistance in addition to various performances such as translucency and heat retention. In such a sheet, the thermoplastic polymer used in the long-fiber nonwoven fabric often does not have sufficient weather resistance by itself, and it is necessary to add some weather resistance agent. However, such a material is composed of a thermoplastic polymer such as polyester or polypropylene, and the added weatherproofing agent is often thermally decomposed during melt spinning,
It is difficult to develop sufficient weather resistance. Although it may be possible to adopt a weathering agent having a high thermal decomposition resistance, the current situation is that no weathering agent having a sufficient effect has been found yet.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前記問題を
解決し、透光性や耐候性が高く、使用後には微生物の作
用によりほぼ完全に分解されて廃棄処理が容易である生
分解性農業用被覆資材を提供するものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, has high translucency and weather resistance, and is biodegradable which is easily decomposed by the action of microorganisms after use and is easily disposed of. It is intended to provide a covering material for agriculture.

【0005】[0005]

【課題を解決するための手段】本発明は、以下の構成を
その要旨とするものである。ポリ乳酸系長繊維の複屈折
率が10×10 -3 以上で、かつ結晶化度が10%以上で
あるポリ乳酸系長繊維不織布からなり、透光率が70%
以上、ウエザーメータを用いた耐候性試験において下記
式(イ)から求められる300時間照射後の抗張積SE
300が5kg・%/5cm幅以上、かつ下記式(ロ)
から求められる強力保持率が50%以上であることを特
徴とする生分解性農業用被覆資材。 SE300(kg・%/5cm幅)=S300×E30
0(イ) 強力保持率(%)=(SE300/SE0)×100
(ロ) SE300:300時間照射後の試料の抗張積(kg・
%/5cm幅) S300:300時間照射後の試料の引張り強力(kg
/5cm幅) E300:300時間照射後の試料の引張り伸度(%) SE0:照射前の試料の抗張積(kg・%/5cm幅)
The gist of the present invention is as follows. Birefringence of polylactic acid long fibers
The rate is 10 × 10 −3 or more and the crystallinity is 10% or more.
Made of a polylactic acid-based long-fiber non-woven fabric with a light transmittance of 70%
As described above, in the weather resistance test using the weather meter, the tensile product SE after irradiation for 300 hours, which is obtained from the following formula (a)
300 is 5 kg /% / 5 cm width or more, and the following formula (b)
A biodegradable coating material for agriculture, which has a high retention rate of 50% or more. SE300 (kg ・% / 5cm width) = S300 × E30
0 (a) Strong retention rate (%) = (SE300 / SE0) x 100
(B) SE300: Tensile product of the sample after irradiation for 300 hours (kg
% / 5cm width) S300: Tensile strength of the sample after irradiation for 300 hours (kg
/ 5 cm width) E300: Tensile elongation of the sample after irradiation for 300 hours (%) SE0: Tensile product of the sample before irradiation (kg ·% / 5 cm width)

【0006】[0006]

【発明の実体の形態】本発明の被覆資材は、生分解性を
有するポリ乳酸系長繊維からなる不織布で構成されるも
のであり、このような生分解性の繊維から構成すること
で、一定期間が経過した後の被覆資材は微生物によりほ
ぼ完全に分解され、敷設した被覆資材を回収して廃棄処
理を行う手間が省け、しかも自然環境を汚染することが
ない。本発明における長繊維を構成するポリ乳酸系重合
体は、生分解性を有する熱可塑性脂肪族ポリエステルで
あって、例えばポリ(α−ヒドロキシ酸)又はこの重合
体要素を主たる繰り返し単位とする共重合体が挙げられ
る。具体的には、ポリ(D−乳酸)と、ポリ(L−乳
酸)と、D−乳酸とL−乳酸との共重合体と、D−乳酸
とヒドロキシカルボン酸との共重合体と、L−乳酸とヒ
ドロキシカルボン酸との共重合体と、あるいはD−乳酸
とL−乳酸とヒドロキシカルボン酸との共重合体との
内、融点が80℃以上である重合体が好ましい。ここ
で、乳酸とヒドロキシカルボン酸との共重合体である場
合におけるヒドロキシカルボン酸としては、グリコール
酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカ
プロン酸、ヒドロキシヘプタン酸、ヒドロキシカプリル
酸等が挙げられる。このようなポリ乳酸系重合体は、数
平均分子量が約20,000以上、好ましくは40,0
00以上のものが得られる繊維特性の点で、また製造時
の製糸性の点で好ましい。
DETAILED DESCRIPTION OF THE INVENTION The coating material of the present invention is composed of a non-woven fabric made of polylactic acid-based long fibers having biodegradability. After the lapse of the period, the covering material is almost completely decomposed by microorganisms, and it is possible to save the trouble of collecting and disposing of the laid covering material, and to avoid contaminating the natural environment. The polylactic acid-based polymer that constitutes the long fibers in the present invention is a thermoplastic aliphatic polyester having biodegradability, and for example, poly (α-hydroxy acid) or a copolymerized polymer having the polymer element as a main repeating unit. An example is coalescence. Specifically, poly (D-lactic acid), poly (L-lactic acid), a copolymer of D-lactic acid and L-lactic acid, a copolymer of D-lactic acid and hydroxycarboxylic acid, and L Of the copolymer of lactic acid and hydroxycarboxylic acid or the copolymer of D-lactic acid, L-lactic acid and hydroxycarboxylic acid, a polymer having a melting point of 80 ° C. or higher is preferable. Here, examples of the hydroxycarboxylic acid in the case of a copolymer of lactic acid and hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxyheptanoic acid, and hydroxycaprylic acid. Such a polylactic acid-based polymer has a number average molecular weight of about 20,000 or more, preferably 40,000.
It is preferable from the standpoint of fiber characteristics that a fiber number of 00 or more can be obtained, and from the standpoint of spinnability during production.

【0007】 本発明における不織布を構成する長繊維
は、その複屈折率が10×10-3以上である。この複屈
折率は、ポリ乳酸系重合体の分子配向度を示すものであ
って、かかる範囲とすることにより、長繊維すなわち不
織布に、例えば引張り強力のような機械的特性が実用上
十分な程度に具備される。
[0007] long fibers constituting the nonwoven fabric in the present invention, Ru der its birefringence 10 × 10 -3 or more. This birefringence indicates the degree of molecular orientation of the polylactic acid-based polymer, and by setting it in such a range, mechanical properties such as tensile strength are practically sufficient for long fibers, that is, nonwoven fabrics. Be equipped with.

【0008】 本発明における不織布を構成する長繊維
は、その結晶化度が10%以上であり、10〜40%の
範囲にあることが好ましい。この範囲の結晶化度は、ポ
リ乳酸系重合体に対して例えばタルク、窒化ホウ素、炭
酸カルシウム、炭酸マグネシウム、酸化チタン等の結晶
核剤を添加することにより達成される。結晶核剤を添加
すると繊維の結晶化を促進させ、得られる被覆資材の機
械的特性や耐熱性を向上させることができ、しかも製造
時の溶融紡出・冷却工程での紡出糸条間の融着(所謂ブ
ロツキング)の発生を防止することができ、より好まし
い。このような結晶核剤の添加量は、0.1〜3.0重
量%、好ましくは0.5〜2.0重量%の範囲であるこ
とが望ましい。なお、本発明におけるポリ乳酸系重合体
には、必要に応じて他の添加剤、例えば艶消し剤や顔
料、着色剤、難燃剤、その他結晶核剤等の各種添加剤を
本発明の効果を損なわない範囲内で添加しても良い。
The long fibers constituting the nonwoven fabric in the present invention have a crystallinity of 10% or more, preferably 10 to 40%. The crystallinity in this range is achieved by adding a crystal nucleating agent such as talc, boron nitride, calcium carbonate, magnesium carbonate, or titanium oxide to the polylactic acid polymer. Addition of a crystal nucleating agent can promote crystallization of the fiber, improve the mechanical properties and heat resistance of the obtained coating material, and further improve the inter-spinning yarn spacing in the melt-spinning / cooling process during production. It is more preferable because it is possible to prevent the occurrence of fusion (so-called blocking). The addition amount of such a crystal nucleating agent is desirably in the range of 0.1 to 3.0% by weight, preferably 0.5 to 2.0% by weight. In the polylactic acid-based polymer of the present invention, if necessary, other additives such as a matting agent, a pigment, a colorant, a flame retardant, and other additives such as a crystal nucleating agent may be added to the effect of the present invention. You may add in the range which does not spoil.

【0009】本発明における不織布を構成する長繊維
は、その繊維形態がポリ乳酸系重合体単独でなるもので
も良く、融点が異なる2種以上のポリ乳酸系重合体が複
合されたものでも良い。また、その横断面形状は、通常
の丸断面の他に中空断面、異形断面、並列型複合断面、
多層型複合断面、芯鞘型複合断面、分割型複合断面等、
目的と用途に応じて任意の繊維横断面形態を採用し得る
が、生分解性能の点からは、中空断面、異形断面、分割
型複合断面等であることが好ましい。特に、融点が20
℃以上異なる2種のポリ乳酸系重合体が芯鞘型に複合さ
れる繊維の場合、高融点重合体を芯成分とし、該重合体
より融点が20℃以上低い低融点重合体を鞘成分とする
ことで不織布の機械的特性が向上し、その結果、農業用
被覆資材として使用するに際し、一定期間経過した後も
被覆資材の機械的特性を保持することが可能となり、好
ましい。
The long fibers constituting the non-woven fabric in the present invention may be composed of a polylactic acid type polymer alone in the fiber form, or may be a composite of two or more kinds of polylactic acid type polymers having different melting points. In addition, the cross-sectional shape, in addition to the usual round cross section, hollow cross section, irregular cross section, parallel type composite cross section,
Multi-layer composite cross section, core-sheath composite cross section, split composite cross section, etc.
Any fiber cross-sectional morphology may be adopted depending on the purpose and application, but from the viewpoint of biodegradability, hollow cross-sections, irregular cross-sections, split-type composite cross-sections and the like are preferable. In particular, the melting point is 20
In the case of a fiber in which two kinds of polylactic acid-based polymers differing by ℃ or more are core-sheath type, a high melting point polymer is used as a core component, and a low melting point polymer having a melting point lower than that of the polymer by 20 ° C. or more is used as a sheath component. By doing so, the mechanical properties of the nonwoven fabric are improved, and as a result, the mechanical properties of the covering material can be maintained even after a certain period of time when used as an agricultural covering material, which is preferable.

【0010】本発明における不織布を構成する長繊維
は、その単糸繊度が2〜15デニールの範囲にあること
が好ましい。単糸繊度が2デニール未満であると、得ら
れる不織布において単位面積当たりの構成繊維の本数が
増加するために繊維間空隙が小さくなって、不織布の透
光率が低下する。一方、単糸繊度が15デニールを超え
ると、溶融紡糸工程において紡出糸条の冷却性が劣るば
かりか、得られる不織布において単位面積当たりの構成
繊維の本数が減少するために繊維間空隙が大きくなり、
被覆資材として必要な機械的特性、保温性、防霜性が劣
ることになる。これらの理由から、単糸繊度は2〜15
デニールとし、好ましくは5〜12デニール、さらに好
ましくは6〜10デニールとする。本発明の被覆資材
は、その目付けが10〜30g/m2 の範囲にあること
が好ましい。目付けが10g/m2 未満であると、不織
布において単位面積当たりの構成繊維の本数が減少する
ために繊維間空隙が大きくなり、保温性が劣り、しかも
機械的特性も低下する。一方、目付けが30g/m2
超えると、不織布において単位面積当たりの構成繊維の
本数が増加するために繊維間空隙が小さくなって、透光
性や通気性が劣り、被覆資材として使用したとき、作物
の成育に支障を来す。なお、目付けと上述の単糸繊度と
は特に密接な関係にあり、例えば単糸繊度が小さい場合
には同一目付けでも緻密な不織布となるが、透光率が低
下することを考慮する必要があり、また繊維自体の機械
的特性が低い場合には、不織布として実用上の一定強力
を得るために、単糸繊度と目付けを大きくすることが必
要である。なお、これら目付けの不織布は、一工程で得
られたものであっても良いし、2枚以上の不織布を積層
して得たものであっても良い。
The long fibers constituting the nonwoven fabric in the present invention preferably have a single yarn fineness in the range of 2 to 15 denier. If the single yarn fineness is less than 2 denier, the number of constituent fibers per unit area in the obtained nonwoven fabric increases, so that the inter-fiber void becomes small and the light transmittance of the nonwoven fabric decreases. On the other hand, when the single yarn fineness exceeds 15 denier, not only is the cooling property of the spun yarn reduced in the melt spinning process, but also the number of constituent fibers per unit area in the obtained nonwoven fabric decreases, resulting in large interfiber voids. Becomes
The mechanical properties, heat retention and frost resistance required as a covering material will be poor. For these reasons, the single yarn fineness is 2 to 15
Denier, preferably 5 to 12 denier, and more preferably 6 to 10 denier. The coating material of the present invention preferably has a basis weight of 10 to 30 g / m 2 . When the basis weight is less than 10 g / m 2 , the number of constituent fibers per unit area in the non-woven fabric decreases, the inter-fiber voids increase, the heat retention becomes poor, and the mechanical properties also deteriorate. On the other hand, when the basis weight exceeds 30 g / m 2 , the number of constituent fibers per unit area in the non-woven fabric increases and the inter-fiber void becomes small, resulting in poor light transmission and air permeability, and when used as a covering material. , Hinder the growth of crops. It should be noted that there is a particularly close relationship between the basis weight and the above-mentioned single yarn fineness. For example, when the single yarn fineness is small, a dense non-woven fabric will be obtained even with the same basis weight, but it is necessary to consider that the light transmittance decreases. Further, when the mechanical properties of the fiber itself are low, it is necessary to increase the single yarn fineness and the basis weight in order to obtain a practically constant strength as a nonwoven fabric. The non-woven fabric having these fabric weights may be obtained in one step, or may be obtained by laminating two or more non-woven fabrics.

【0011】本発明の被覆資材は、上記単糸繊度のポリ
乳酸系長繊維で形成された上記範囲の目付けを有する不
織布で構成され、さらに70%以上の透光率を有するも
のである。透光率が70%より小さいと、被覆資材が太
陽光線を十分透過させることができず、作物の成育に支
障を来たし、好ましくない。
The coating material of the present invention is composed of a non-woven fabric formed of polylactic acid-based long fibers having the above-mentioned single yarn fineness and having a basis weight in the above range, and further has a light transmittance of 70% or more. When the light transmittance is less than 70%, the covering material cannot sufficiently transmit the sun rays, which hinders the growth of crops, which is not preferable.

【0012】本発明の被覆資材は、ウエザーメータを用
いた耐候性試験において上記式(イ)から求められる3
00時間照射後の抗張積SE300 が5kg・%/5cm
幅以上、かつ上記式(ロ)から求められる強力保持率が
50%以上のものである。被覆資材の耐候性は、被覆資
材が生分解によって崩壊する前に強力及び伸度が気候の
変化等によって低下することが無いかを示す指標であ
り、生分解によって崩壊する前に被覆資材の強力及び伸
度が低下すると破損等の異常が生じ易くなって、農業用
被覆資材としての使用過程で被覆資材の有する透光性や
保温性に悪影響を及ぼし、作物の成育に支障を来すこと
になる。したがって、本発明では、上記抗張積SE300
が5kg・%/5cm幅以上、かつ上記強力保持率を5
0%以上とし、抗張積SE300 が5kg・%/5cm幅
未満及び/又は強力保持率が50%未満であると、農業
用被覆資材として使用した際に経時的に強力が低下し、
作物の成育に悪影響を及ぼすことになり、また被覆資材
の耐用年数も短くなる。
The coating material of the present invention is obtained from the above formula (a) in a weather resistance test using a weather meter.
Tensile product SE300 after irradiation for 00 hours is 5kg ・% / 5cm
The width is not less than the width, and the strength retention obtained from the above formula (b) is not less than 50%. The weather resistance of the covering material is an index indicating whether the strength and elongation of the covering material are not deteriorated due to climate change, etc. before the covering material collapses due to biodegradation. And, if the elongation decreases, abnormalities such as damage are likely to occur, which adversely affects the translucency and heat retention of the covering material during the process of using it as an agricultural covering material, and interferes with the growth of crops. Become. Therefore, in the present invention, the above tensile product SE300 is used.
Is more than 5 kg /% / 5 cm width, and the above strength retention rate is 5
When it is 0% or more, the tensile product SE300 is less than 5 kg ·% / 5 cm width and / or the strength retention is less than 50%, the strength decreases with time when used as an agricultural coating material,
This will adversely affect the growth of the crop and shorten the useful life of the covering material.

【0013】本発明の被覆資材では、不織布を構成する
長繊維は、例えばカーボンブラツクに代表される黒色顔
料又は黒色染料等を含有する着色繊維であってもよい。
このような着色繊維とすることによって、不織布が黒色
となり、農業用被覆資材として使用した際に被覆資材が
太陽熱を吸収し易くなるため保温効果が得られ、作物の
成育に効果的である。このような顔料又は染料等の添加
は、添加量が多くなり過ぎると溶融紡糸時の製糸性が低
下するため、添加量として0.1〜3.0重量%、好ま
しくは0.5〜2.0重量%の範囲とすることが肝要で
ある。この着色繊維は、かかる黒色顔料を予め練り込ん
だ重合体を溶融紡糸して得られる原着繊維であることが
好ましい。このような原着繊維を用いると、繊維に対し
て予め顔料が含有されているため、染色等の後加工を施
す必要がなく、染色時の熱劣化や製造工程の増加といっ
た問題を生ずることがない。
In the covering material of the present invention, the long fibers constituting the non-woven fabric may be colored fibers containing a black pigment or a black dye typified by carbon black, for example.
By using such colored fibers, the non-woven fabric becomes black, and when used as an agricultural coating material, the coating material easily absorbs solar heat, so that a heat retaining effect is obtained and it is effective for growing crops. Addition of such pigments or dyes lowers the spinnability during melt spinning if the amount added is too large, so the amount added is 0.1-3.0% by weight, preferably 0.5-2. It is important to set it in the range of 0% by weight. It is preferable that the colored fiber is an original fiber obtained by melt spinning a polymer in which the black pigment is kneaded in advance. When such a dyed fiber is used, since the pigment is contained in advance in the fiber, there is no need to perform post-processing such as dyeing, and problems such as heat deterioration during dyeing and an increase in manufacturing processes may occur. Absent.

【0014】本発明の被覆資材を構成する不織布は、か
かる長繊維からなるウエブが部分的に熱圧着されて不織
布としての形態が保持されたものである。すなわち、こ
の不織布は、部分的に形成される点状融着区域において
のみ熱圧接着されたものであって、このような構造によ
り不織布において形態保持性が向上する。このような部
分的な熱圧着は、エンボス加工処理又は超音波融着処理
によって不織ウエブに点状融着区域が形成されるもので
あり、具体的には、加熱されたエンボスロールと表面が
平滑な金属ロールとの間にウエブを通して繊維間に点状
融着区域を形成する方法、又はパターンロール上で超音
波による高周波を印加してパターン部に相当する繊維間
に点状融着区域を形成する方法が採用される。
The non-woven fabric constituting the covering material of the present invention is one in which the web made of such long fibers is partially thermocompression-bonded to retain the form of the non-woven fabric. That is, this non-woven fabric is thermo-bonded only in the spot-shaped fused regions that are partially formed, and such a structure improves the shape retention of the non-woven fabric. Such partial thermocompression bonding is one in which a dot-shaped fused area is formed on the nonwoven web by an embossing treatment or an ultrasonic welding treatment, and specifically, the heated embossing roll and the surface are A method of forming a point fusion area between fibers through a web with a smooth metal roll, or applying a high frequency by ultrasonic waves on a pattern roll to form a point fusion area between fibers corresponding to a pattern part. The method of forming is adopted.

【0015】次に、本発明の被覆資材の製造方法につい
て説明する。まず、本発明の被覆資材を構成するための
長繊維不織布は、いわゆるスパンボンド法によって効率
よく製造することができる。すなわち、上述したポリ乳
酸系重合体を加熱溶融して紡糸口金から吐出し、得られ
た紡出糸条を従来公知の横型吹付けや環状吹付け等の冷
却装置を用いて冷却せしめた後、エアーサツカの如き吸
引装置あるいはその他公知の牽引手段を用いて牽引細化
し、引き続き、牽引手段から排出された糸条群を開繊し
た後、メツシユスクリーンからなるコンベアの如き移動
堆積装置上に開繊堆積させてウエブとする。次いで、こ
の移動堆積装置上に形成されたウエブに、加熱されたエ
ンボスロールと表面平滑な金属ロールとからなる部分熱
圧着装置または超音波融着装置等の部分熱圧着装置を用
いて部分的な熱圧着処理を施すことにより長繊維不織布
を得る。
Next, a method of manufacturing the covering material of the present invention will be described. First, the long-fiber nonwoven fabric for forming the covering material of the present invention can be efficiently manufactured by the so-called spunbond method. That is, the above-mentioned polylactic acid-based polymer is heated and melted and discharged from the spinneret, and the obtained spun yarn is cooled using a conventionally known cooling device such as horizontal spraying or annular spraying, After pulling and thinning using a suction device such as an air sucker or other known pulling means, the yarn group discharged from the pulling means is opened, and then spread on a moving deposition device such as a conveyor consisting of mesh screens. The web is deposited. Then, the web formed on the moving deposition apparatus is partially heated by using a partial thermocompression bonding apparatus such as a heated embossing roll and a metal roller having a smooth surface or a partial thermocompression bonding apparatus such as an ultrasonic welding apparatus. A long fiber non-woven fabric is obtained by performing thermocompression bonding treatment.

【0016】本発明において、いわゆるスパンボンド法
によって長繊維不織布を製造する場合、紡出糸条の牽引
速度を1000〜6000m/分とするのが好ましい。
紡出糸条を牽引細化する際の牽引速度が1000m/分
未満であると、重合体の分子配向と結晶化が進行せず、
得られる不織布の機械的特性が向上せず、しかも分解速
度が大きくなり過ぎる。牽引速度が3000m/分以上
であると、重合体の分子配向がより進行して複屈折率が
10×10-3以上となり、得られる不織布の機械的特性
が一層向上し、より好ましい。一方、牽引速度が600
0m/分を超えると、製糸性が急激に悪化し、糸切れを
生じる。なお、重合体には、上述したところの結晶核剤
を添加すると、溶融紡出に際して紡出糸条の冷却性が向
上し、より好ましい。
In the present invention, when a long fiber non-woven fabric is produced by the so-called spun bond method, it is preferable that the traction speed of the spun yarn is 1000 to 6000 m / min.
If the pulling speed at the time of pulling and thinning the spun yarn is less than 1000 m / min, molecular orientation and crystallization of the polymer do not proceed,
The mechanical properties of the resulting nonwoven fabric are not improved, and the decomposition rate is too high. When the pulling speed is 3000 m / min or more, the molecular orientation of the polymer further proceeds, the birefringence becomes 10 × 10 −3 or more, and the mechanical properties of the resulting nonwoven fabric are further improved, which is more preferable. On the other hand, the towing speed is 600
If it exceeds 0 m / min, the yarn-forming property deteriorates sharply and yarn breakage occurs. It is more preferable to add the above-described crystal nucleating agent to the polymer because the cooling property of the spun yarn is improved during melt spinning.

【0017】[0017]

【作用】本発明の生分解性農業用被覆資材は、ポリ乳酸
系長繊維からなる不織布で構成されるため、使用に際し
て一定期間が経過した後の被覆資材は生分解によりほぼ
完全に分解され、被覆資材を回収して廃棄処理を行う手
間が省け、しかも自然環境を汚染することがない。ま
た、透光率が70%以上であるので、太陽光線を十分透
過させることができ、作物の成育不足を防止することが
できる。さらに、ウエザーメータを用いた耐候性試験に
おける上記抗張積SE300 が5kg・%/5cm幅以
上、かつ上記強力保持率が50%以上であるので、被覆
資材の強力低下を防ぎ、耐用年数を長くすることができ
る。
Since the biodegradable agricultural coating material of the present invention is composed of a non-woven fabric composed of polylactic acid-based long fibers, the coating material after being used for a certain period of time is almost completely decomposed by biodegradation, There is no need to collect the covering material and dispose of it, and it does not pollute the natural environment. In addition, since the light transmittance is 70% or more, it is possible to sufficiently transmit sunlight, and it is possible to prevent insufficient growth of crops. Further, since the tensile product SE300 in the weather resistance test using a weather meter is 5 kg ·% / 5 cm width or more and the strength retention rate is 50% or more, it is possible to prevent the strength of the covering material from lowering and to prolong the service life. can do.

【0018】[0018]

【実施例】以下、実施例により本発明を具体的に説明す
る。なお、本発明はこれらの実施例によって何ら限定さ
れるものではない。実施例において、各物性値は次のよ
うにして求めた。 (1)融点(℃):パーキンエルマ社製の示差走査熱量
計DSC−7型を用い、昇温速度を20℃/分として測
定して得た融解吸熱曲線の極値を与える温度を融点
(℃)とした。 (2)ポリ乳酸のメルトフローレート(以下、MFRと
略称する。)(g/10分):ASTM D1238
(L)に記載の方法に準じて測定した。なお、溶融温度
を210℃とした。 (3)ポリエチレンテレフタレートの固有粘度:フエノ
ールと四塩化エタンとの等重量混合溶液を溶媒とし、試
料濃度0.5g/dl、温度20℃で測定した。 (4)ポリエチレンのメルトインデツクス(以下、MI
と略称する。)(g/10分):ASTM D1238
(E)に記載の方法に準じて測定した。 (5)単糸繊度(デニール):ウエブ状態における繊維
50本の直径を顕微鏡にて測定し、密度補正して求めた
繊度の平均値を単糸繊度(デニール)とした。 (6)複屈折率:長繊維の複屈折率を、ベレクコンペン
セータを備えた偏光顕微鏡を用い、浸液としてトリクレ
ジルホスフエートを使用して、常法により測定した。 (7)結晶化度(重量%):長繊維の結晶化度(重量
%)を次の方法により測定した。すなわち、測定対象の
長繊維を粉末化してAl試料枠(20mm×18mm×
0.5mm)に充填したうえで垂直方向に保持した測定
試料について、理学電機社製のRAD−rB型X線発生
装置により、Cu−Kα線を同測定試料に対し直角方向
から照射した。受光側には、湾曲グラフアイトモノクロ
メータを用いた。そのうえで、2θ=5〜125°の範
囲で走査を行い、Ruland法により結晶化度(重量
%)を求めた。 (8)目付け(g/m2 ):標準状態の試料から縦10
cm×横10cmの試料片10点を作成し、平衡水分に
至らしめた後、各試料片の重量(g)を秤量し、得られ
た値の平均値を単位面積当たりに換算し、目付け(g/
2 )とした。 (9)引張り強力(kg/5cm幅):JIS L19
06に記載のストリツプ法に準じて測定した。すなわ
ち、試料長が20cm、試料幅が5cmの試料片を不織
布の縦方向に10点を作成し、定速伸長型引張試験機
(東洋ボールドウイン社製テンシロンUTM−4−1−
100)を用いて、各試料片毎に不織布の縦方向につい
て把持間隔10cm、引張速度20cm/分で伸長し、
最大引張り強力(kg/5cm幅)を求め、得られた最
大引張り強力の平均値を不織布の引張り強力(kg/5
cm幅)とした。 (10)引裂き強力(kg):JIS L1096に記
載のベンジユラム法に準じて測定した。すなわち、試料
長が6.5cm、試料幅が10cmの試料片を不織布の
縦方向に各5点作成し、各試料片毎に不織布の縦方向に
ついて引裂き強力を求め、得られた値の平均値を不織布
の引裂き強力(kg)とした。 (11)透光率(%):光源(レフランプ)と受光部の
照度計との間に試料を置いたときの照度(B)と、試料
を置かないときの照度(A)とを測定し、下記式(ハ)
から透光率(%)を求めた。 透光率(%)=(B/A)×100 (ハ) (12)300時間照射後の試料の抗張積(kg・%/
5cm幅):耐候性の指標である300時間照射後の抗
張積SE300 を、次のようにして求めた。すなわち、ウ
エザーメータを用いた耐候性試験において、300時間
照射後の試料の引張り強力S300 (kg/5cm幅)と
300時間照射後の試料の引張り伸度E300 (%)とを
定速伸長型引張試験機(東洋ボールドウイン社製テンシ
ロンUTM−4−1−100)を用いて測定し、上記式
(イ)から300時間照射後の抗張積SE300 (kg・
%/5cm幅)を求めた。 (13)強力保持率(%):耐候性の指標である強力保
持率を次のようにして求めた。すなわち、ウエザーメー
タを用いた耐候性試験において、光線照射前の試料の抗
張積(強力×伸度)SE0 (kg・%/5cm幅)と3
00時間照射後の試料の抗張積(強力×伸度)SE300
(kg・%/5cm幅)とを定速伸長型引張試験機(東
洋ボールドウイン社製テンシロンUTM−4−1−10
0)を用いて測定し、上記式(ロ)から強力保持率
(%)を求めた。 (14)冷却性:紡出糸条を目視にて観察し、下記の3
段階で評価した。 ○;密着糸が認められない。 △;密着糸がわずかであるが認められる。 ×;大部分が密着し、開繊不可能である。 (15)開繊性:開繊装置より排出した紡出糸条で形成
された不織ウエブを目視にて観察し、下記の3段階で評
価した。 ○;構成繊維の大部分が分繊され、密着糸又は収束糸が
認められない。 △;密着糸又は収束糸がわずかであるが認められる。 ×;構成繊維の大部分が密着し、開繊性が不良である (16)生分解性能:試料片を土中に埋設し、1年、2
年及び3年経過後に取り出して試料片の形態を観察し、
以下の3段階で評価した。 ○:試料片が埋設後2年経過するまでは不織布の形態を
保持し、3年経過時点で崩壊していた。 △:試料片が埋設後2年経過するまでに不織布の形態を
崩壊させていた。 ×:試料片が埋設後3年経過しても不織布の形態を保持
していた。
EXAMPLES The present invention will be specifically described below with reference to examples. The present invention is not limited to these examples. In the examples, each physical property value was determined as follows. (1) Melting point (° C.): The temperature that gives the extreme value of the melting endothermic curve obtained by measuring the temperature rising rate at 20 ° C./min using a differential scanning calorimeter DSC-7 type manufactured by Perkin Elma Co., Ltd. is the melting point ( ℃). (2) Melt flow rate of polylactic acid (hereinafter abbreviated as MFR) (g / 10 minutes): ASTM D1238
It measured according to the method as described in (L). The melting temperature was 210 ° C. (3) Intrinsic viscosity of polyethylene terephthalate: Measured at a sample concentration of 0.5 g / dl and a temperature of 20 ° C. using a mixed solution of equal weight of phenol and ethane tetrachloride as a solvent. (4) Polyethylene melt index (hereinafter MI
Is abbreviated. ) (G / 10 minutes): ASTM D1238
It measured according to the method as described in (E). (5) Single yarn fineness (denier): The diameter of 50 fibers in a web state was measured with a microscope, and the average value of the fineness obtained by density correction was taken as the single yarn fineness (denier). (6) Birefringence: The birefringence of long fibers was measured by a conventional method using a polarizing microscope equipped with a Belek compensator and tricresyl phosphate as an immersion liquid. (7) Crystallinity (% by weight): The crystallinity (% by weight) of the long fibers was measured by the following method. That is, the long fiber to be measured is pulverized and the Al sample frame (20 mm × 18 mm ×
The measurement sample filled with 0.5 mm) and held in the vertical direction was irradiated with Cu-Kα rays from the perpendicular direction by the RAD-rB type X-ray generator manufactured by Rigaku Denki Co., Ltd. A curved graphite monochromator was used on the light receiving side. Then, scanning was performed in the range of 2θ = 5 to 125 °, and the crystallinity (% by weight) was determined by the Ruland method. (8) Unit weight (g / m 2 ): 10 from the standard state sample
After making 10 sample pieces of 10 cm x 10 cm and reaching the equilibrium water content, the weight (g) of each sample piece was weighed, and the average value of the obtained values was converted to per unit area, and the basis weight ( g /
m 2 ). (9) Tensile strength (kg / 5cm width): JIS L19
It was measured according to the strip method described in No. 06. That is, a sample piece having a sample length of 20 cm and a sample width of 5 cm was prepared at 10 points in the longitudinal direction of the non-woven fabric, and a constant speed elongation type tensile tester (Tensilon UTM-4-1-by Toyo Baldwin Co., Ltd. was used.
100) is used to stretch each sample piece in the longitudinal direction of the nonwoven fabric at a gripping interval of 10 cm and a pulling speed of 20 cm / min.
The maximum tensile strength (kg / 5cm width) was calculated, and the average value of the obtained maximum tensile strengths was used to determine the tensile strength (kg / 5
cm width). (10) Tear strength (kg): Measured according to the Benzirum method described in JIS L1096. That is, five sample pieces each having a sample length of 6.5 cm and a sample width of 10 cm were created in the longitudinal direction of the nonwoven fabric, and the tear strength in the longitudinal direction of the nonwoven fabric was calculated for each sample piece, and the average value of the obtained values was calculated. Was defined as the tear strength (kg) of the nonwoven fabric. (11) Light transmittance (%): The illuminance (B) when the sample is placed between the light source (ref lamp) and the illuminance meter of the light receiving part, and the illuminance (A) when the sample is not placed are measured. , The following formula (C)
The light transmittance (%) was calculated from Light transmittance (%) = (B / A) × 100 (C) (12) Tensile product (kg ·% /) of the sample after irradiation for 300 hours
5 cm width): Tensile product SE300 after irradiation for 300 hours, which is an index of weather resistance, was determined as follows. That is, in a weather resistance test using a weather meter, the tensile strength S300 (kg / 5 cm width) of the sample after irradiation for 300 hours and the tensile elongation E300 (%) of the sample after irradiation for 300 hours were measured by a constant-velocity elongation type tensile test. Measured using a testing machine (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.), and the tensile product SE300 (kg ·
% / 5 cm width) was determined. (13) Strength retention (%): Strength retention, which is an index of weather resistance, was determined as follows. That is, in a weather resistance test using a weather meter, the tensile product (strength × elongation) SE0 (kg ·% / 5 cm width) of the sample before light irradiation and 3
Tensile product (strength x elongation) SE300 of sample after irradiation for 00 hours
(Kg ·% / 5 cm width) and constant speed extension type tensile tester (Tensilon UTM-4-1-10 manufactured by Toyo Baldwin Co., Ltd.)
0), and the tenacity retention rate (%) was calculated from the above formula (b). (14) Coolability: The spun yarn was visually observed and
The grade was evaluated. ◯: No adhesion thread is observed. Δ: A small amount of adhesive thread is observed. X: Most of them adhere to each other and cannot be opened. (15) Opening property: The nonwoven web formed by the spun yarn discharged from the opening device was visually observed and evaluated according to the following three grades. ◯: Most of the constituent fibers are separated, and no adherent yarn or convergent yarn is observed. Δ: A small amount of the close contact yarn or the convergent yarn is recognized. X: Most of the constituent fibers are in close contact with each other and the openability is poor. (16) Biodegradability: A sample piece is buried in soil for 1 year, 2
After 3 years and 3 years, take out and observe the morphology of the sample piece,
The following three grades were used for evaluation. ◯: The shape of the non-woven fabric was maintained until 2 years passed after the sample piece was buried, and the sample piece collapsed after 3 years passed. Δ: The morphology of the nonwoven fabric was destroyed by 2 years after the sample piece was buried. X: The shape of the non-woven fabric was retained even after the sample piece was buried for 3 years.

【0019】実施例1 融点が169℃、数平均分子量が59100、MFRが
37g/10分のポリ乳酸(D体/L体=1.3/9
8.7)(以下、PLAと略称する。)を芯成分とし、
融点が140℃、数平均分子量が60100、MFRが
51g/10分のポリ乳酸(D体/L体=7.7/9
2.3)(以下、PLAと略称する。)を鞘成分とする
芯鞘型複合長繊維を溶融紡出した。詳細には、酸化チタ
ンを20重量%練り混み含有させたマスターバツチを用
いてポリ乳酸に対する酸化チタン含有率が0.5重量%
となる如く計量配合した上記高融点ポリ乳酸と、同じく
酸化チタン含有率が0.5重量%の上記低融点ポリ乳酸
とを個別のエクストルーダ型溶融押し出し機を用いてそ
れぞれ溶融した後、紡糸温度200℃、単孔吐出量3.
7g/分の条件下で、高融点ポリ乳酸が芯部で低融点ポ
リ乳酸が鞘部〔複合比(重量比)=1/1〕となる如く
芯鞘型複合紡糸口金より溶融紡出した。紡出糸条を冷却
装置にて冷却した後、引き続いて紡糸口金の下方に設け
たエアーサツカにて牽引速度4800m/分で牽引細化
し、公知の開繊機を用いて開繊し、移動するメツシユス
クリーンコンベア上にウエブとして捕集堆積させた。次
いで、このウエブを温度105℃に加熱されたエンボス
ロールと表面平滑な金属ロールとからなる部分熱圧着装
置に通し、線圧60kg/cmの条件下で部分的熱圧着
処理を施して、単糸繊度が7.0デニールの長繊維から
なる目付けが15g/m2 の長繊維不織布を得た。得ら
れた長繊維不織布の各種特性を表1に示す。
Example 1 Polylactic acid having a melting point of 169 ° C., a number average molecular weight of 59100 and an MFR of 37 g / 10 min (D / L = 1.3 / 9)
8.7) (hereinafter abbreviated as PLA) as a core component,
Polylactic acid having a melting point of 140 ° C., a number average molecular weight of 60100, and an MFR of 51 g / 10 min (D isomer / L isomer = 7.7 / 9)
2.3) A core-sheath type composite filament having a sheath component of (hereinafter, abbreviated as PLA) was melt-spun. Specifically, using a master batch containing 20% by weight of titanium oxide, the content of titanium oxide to polylactic acid was 0.5% by weight.
After melting the high melting point polylactic acid and the low melting point polylactic acid having the same titanium oxide content of 0.5% by weight using individual extruder type extruders, the spinning temperature is 200 C, single hole discharge rate 3.
Under the condition of 7 g / min, the high melting point polylactic acid was melt-spun from the core-sheath type composite spinneret so that the high melting point polylactic acid became the core part and the low melting point polylactic acid became the sheath part [composite ratio (weight ratio) = 1/1]. After the spun yarn is cooled by a cooling device, it is subsequently pulled and thinned by an air sucker provided below the spinneret at a pulling speed of 4800 m / min, and opened and moved using a well-known opener. It was collected and deposited as a web on the screen conveyor. Then, this web is passed through a partial thermocompression bonding apparatus consisting of an embossing roll heated to a temperature of 105 ° C. and a metal roll having a smooth surface, and subjected to a partial thermocompression bonding treatment under the condition of a linear pressure of 60 kg / cm to obtain a single yarn. A long-fiber nonwoven fabric having a fineness of 7.0 denier and having a basis weight of 15 g / m 2 was obtained. Table 1 shows various properties of the obtained long-fiber nonwoven fabric.

【0020】実施例2 融点が168℃、数平均分子量が60800、MFRが
44g/10分のポリ乳酸(D体/L体=1.8/9
8.2)を芯成分重合体として用い、また融点が150
℃、数平均分子量が60100、MFRが55g/10
分のポリ乳酸(D体/L体=4.5/95.5)を鞘成
分重合体として用い、部分熱圧着処理温度を120℃と
したこと以外は実施例1と同様にして、単糸繊度が7.
0デニールの長繊維からなる目付けが15g/m2 の長
繊維不織布を得た。得られた長繊維不織布の各種特性を
表1に示す。
Example 2 Polylactic acid having a melting point of 168 ° C., a number average molecular weight of 60800 and an MFR of 44 g / 10 min (D isomer / L isomer = 1.8 / 9)
8.2) is used as the core component polymer and has a melting point of 150.
℃, number average molecular weight 60100, MFR 55g / 10
A single yarn was prepared in the same manner as in Example 1 except that polylactic acid (D-form / L-form = 4.5 / 95.5) was used as the sheath component polymer and the partial thermocompression treatment temperature was 120 ° C. Fineness is 7.
A long-fiber nonwoven fabric having a basis weight of 0 g / m 2 and a basis weight of 15 g / m 2 was obtained. Table 1 shows various properties of the obtained long-fiber nonwoven fabric.

【0021】実施例3 融点が169℃、数平均分子量が59100、MFRが
37g/10分のポリ乳酸(D体/L体=1.3/9
8.7)に対し酸化チタンを20重量%練り混み含有さ
せたマスターバツチを用いてポリ乳酸に対する酸化チタ
ン含有率が0.5重量となる如く計量配合し、エクスト
ルーダ型溶融押し出し機を用いて溶融した後、紡糸温度
200℃、単孔吐出量3.7g/分の条件下で、紡糸口
金より溶融紡出した。紡出糸条を冷却装置にて冷却した
後、引き続いて紡糸口金の下方に設けたエアーサツカに
て牽引速度4800m/分で牽引細化し、公知の開繊機
を用いて開繊し、移動するメツシユスクリーンコンベア
上にウエブとして捕集堆積させた。次いで、このウエブ
を温度140℃に加熱されたエンボスロールと表面平滑
な金属ロールとからなる部分熱圧着装置に通し、線圧6
0kg/cmの条件下で部分的熱圧着処理を施して、単
糸繊度が7.0デニールの長繊維からなる目付けが15
g/m2 の長繊維不織布を得た。得られた長繊維不織布
の各種特性を表1に示す。
Example 3 Polylactic acid having a melting point of 169 ° C., a number average molecular weight of 59100 and an MFR of 37 g / 10 min (D / L = 1.3 / 9)
8.7), using a master batch containing 20% by weight of titanium oxide kneaded and mixed, it was weighed and blended so that the content of titanium oxide in polylactic acid would be 0.5%, and melted using an extruder type melt extruder. After that, melt spinning was performed from a spinneret under the conditions of a spinning temperature of 200 ° C. and a single hole discharge rate of 3.7 g / min. After the spun yarn is cooled by a cooling device, it is subsequently pulled and thinned by an air sucker provided below the spinneret at a pulling speed of 4800 m / min, and opened and moved using a well-known opener. It was collected and deposited as a web on the screen conveyor. Then, the web was passed through a partial thermocompression bonding apparatus composed of an embossing roll heated to a temperature of 140 ° C. and a metal roll having a smooth surface, and a linear pressure of 6
Partial thermocompression treatment was applied under the condition of 0 kg / cm, and the unit weight of the continuous fiber having a single yarn fineness of 7.0 denier was 15
A long fiber non-woven fabric having a g / m 2 was obtained. Table 1 shows various properties of the obtained long-fiber nonwoven fabric.

【0022】実施例4 単孔吐出量を5.0g/分、単糸繊度を9.3デニー
ル、目付けを20g/m 2 としたこと以外は実施例1と
同様にして、長繊維不織布を得た。得られた長繊維不織
布の各種特性を表1に示す。
Example 4 Single hole discharge rate is 5.0 g / min, single yarn fineness is 9.3 deniers
20g / m 2Example 1 except that
In the same manner, a long fiber nonwoven fabric was obtained. Obtained long-fiber non-woven
The various properties of the fabric are shown in Table 1.

【0023】実施例5 単孔吐出量を1.6g/分、単糸繊度を3.0デニール
としたこと以外は実施例1と同様にして、長繊維不織布
を得た。得られた長繊維不織布の各種特性を表1に示
す。
Example 5 A long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the single hole discharge rate was 1.6 g / min and the single yarn fineness was 3.0 denier. Table 1 shows various properties of the obtained long-fiber nonwoven fabric.

【0024】実施例6 融点が170℃、数平均分子量が45000、MFRが
60g/10分のポリ乳酸(D体/L体=1.0/9
9.0)を用い、紡糸温度を210℃、単孔吐出量を
1.8g/分、牽引速度を5500m/分、単糸繊度を
3.0デニールとしたこと以外は実施例3と同様にし
て、長繊維不織布を得た。得られた長繊維不織布の各種
特性を表1に示す。
Example 6 Polylactic acid having a melting point of 170 ° C., a number average molecular weight of 45,000 and an MFR of 60 g / 10 min (D / L = 1.0 / 9).
9.0), the spinning temperature was 210 ° C., the single hole discharge rate was 1.8 g / min, the pulling speed was 5500 m / min, and the single yarn fineness was 3.0 denier. As a result, a long-fiber nonwoven fabric was obtained. Table 1 shows various properties of the obtained long-fiber nonwoven fabric.

【0025】比較例1 融点が258℃、固有粘度が0.7、酸化チタン含有率
が0.3重量%のポリエチレンテレフタレート(以下、
PETと略称する。)を芯成分とし、融点が128℃、
MIが25g/10分の高密度ポリエチレン(以下、P
Eと略称する。)を鞘成分とする芯鞘型複合長繊維を溶
融紡出した。具体的には、上記PETと上記PEとを個
別のエクストルーダ型溶融押し出し機を用いてそれぞれ
溶融した後、紡糸温度290℃、単孔吐出量3.5g/
分の条件下で、PETが芯部でPEが鞘部〔複合比(重
量比)=2/1〕となる如く芯鞘型複合紡糸口金より溶
融紡出し、紡出糸条を冷却装置にて冷却した後、引き続
き紡糸口金の下方に設けたエアーサツカにて牽引速度3
500m/分で牽引細化し、公知の開繊機を用いて開繊
し、移動するメツシユスクリーンコンベア上にウエブと
して捕集堆積させた。次いで、このウエブを温度118
℃に加熱されたエンボスロールと表面平滑な金属ロール
とからなる部分熱圧着装置に通し、線圧30kg/cm
の条件下で部分的熱圧着処理を施して、単糸繊度が8.
9デニールの長繊維からなる目付けが15g/m2 の長
繊維不織布を得た。得られた長繊維不織布の各種特性を
表1に示す。
Comparative Example 1 Polyethylene terephthalate having a melting point of 258 ° C., an intrinsic viscosity of 0.7, and a titanium oxide content of 0.3% by weight (hereinafter, referred to as
Abbreviated as PET. ) As the core component, the melting point is 128 ° C,
High-density polyethylene with MI of 25 g / 10 min (hereinafter P
It is abbreviated as E. The core-sheath type composite long fiber having a sheath component of (4) was melt-spun. Specifically, the above PET and the above PE are melted using individual extruder type melt extruders, and then the spinning temperature is 290 ° C. and the single hole discharge amount is 3.5 g /
Under the condition of minutes, PET is core and PE is sheath [composite ratio (weight ratio) = 2/1] so that melt spinning is performed from the core-sheath type composite spinneret and the spun yarn is cooled in a cooling device. After cooling, pulling speed is 3 with an air blower installed below the spinneret.
It was pulled and thinned at 500 m / min, opened using a known opening machine, and collected and deposited as a web on a moving mesh screen conveyor. The web is then heated to a temperature of 118
Passing through a partial thermocompression bonding device consisting of an embossing roll heated to ℃ and a metal roll with a smooth surface, linear pressure 30 kg / cm
Partial thermocompression bonding is applied under the conditions of No. 1, and the single yarn fineness is 8.
A long-fiber nonwoven fabric having a basis weight of 9 g / m 2 and a basis weight of 15 g / m 2 was obtained. Table 1 shows various properties of the obtained long-fiber nonwoven fabric.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例1〜6で得られた被覆資材は、いず
れも透光率が70%以上で、農業用被覆資材として用い
たとき保温性が良好で、作物の成育も良好であった。ま
た、耐候性を示す300時間照射後の抗張積SE300 が
5kg・%/5cm幅以上、強力保持率が50%以上と
高く、耐候性も良好であった。そして、生分解性を有す
るポリ乳酸繊維からなる不織布にて形成されているた
め、土中に埋設し3年経過後には完全に分解しており、
焼却等の廃棄処理の必要がないものであった。これに対
し、比較例1で得られた被覆資材は、不織布構成繊維の
重合体としてポリエチレンテレフタレートと高密度ポリ
エチレンを用いたため、引張り強力や引裂き強力等の機
械的特性には優れるものの、特に強力保持率が低く、耐
候性に劣るものであった。また、生分解性のないポリエ
チレンテレフタレートを用いているため、土中に埋設し
一定期間が経過しても土中で分解することがなく、使用
後には被覆資材を回収して焼却する必要があり、自然環
境を汚染することにもなる。
Each of the covering materials obtained in Examples 1 to 6 had a light transmittance of 70% or more, and when used as an agricultural covering material, the heat retaining property was good and the growth of crops was good. Also, the tensile product SE300 after irradiation for 300 hours showing weather resistance was 5 kg ·% / 5 cm width or more, and the strength retention was as high as 50% or more, and the weather resistance was also good. And since it is formed of a non-woven fabric made of biodegradable polylactic acid fiber, it is completely decomposed after being buried in the soil for 3 years,
There was no need for disposal such as incineration. On the other hand, since the coating material obtained in Comparative Example 1 uses polyethylene terephthalate and high-density polyethylene as the polymer of the non-woven fabric constituent fibers, it has excellent mechanical properties such as tensile strength and tear strength, but retains particularly strong strength. The rate was low and the weather resistance was poor. In addition, since it uses polyethylene terephthalate, which is not biodegradable, it does not decompose in the soil even if it is buried in the soil for a certain period of time, and it is necessary to collect and incinerate the covering material after use. It will also pollute the natural environment.

【0028】[0028]

【発明の効果】本発明の生分解性農業用被覆資材は、
屈折率が10×10 -3 以上で、かつ結晶化度が10%以
上であるポリ乳酸系長繊維からなる不織布で構成される
ため、使用に際して一定期間が経過した後のシートは生
分解によりほぼ完全に分解され、被覆資材を回収して廃
棄処理を行う手間が省け、しかも自然環境を汚染するこ
とがない。また、透光率が70%以上であるので、太陽
光線を十分透過させることができ、作物の成育不足を防
止することができる。さらに、ウエザーメータを用いた
耐候性試験における上記抗張積SE300が5kg・%
/5cm幅以上、かつ上記強力保持率が50%以上とあ
るごとく耐候性に優れ、劣化が少なく、長期間の使用に
も耐えることができる。
Biodegradable agricultural covering material of the present invention exhibits, double
Refractive index is 10 × 10 -3 or more and crystallinity is 10% or more
Since it is composed of the non-woven fabric made of polylactic acid-based long fibers as described above, the sheet is biodegraded almost completely after a certain period of time in use, saving the trouble of collecting the covering material and disposing of it. Moreover, it does not pollute the natural environment. In addition, since the light transmittance is 70% or more, it is possible to sufficiently transmit sunlight, and it is possible to prevent insufficient growth of crops. Furthermore, the tensile product SE300 in the weather resistance test using a weather meter is 5 kg ·%.
Since the width is / 5 cm or more and the strength retention is 50% or more, it has excellent weather resistance, little deterioration, and can withstand long-term use.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリ乳酸系長繊維の複屈折率が10×1
-3 以上で、かつ結晶化度が10%以上であるポリ乳酸
系長繊維不織布からなり、透光率が70%以上、ウエザ
ーメータを用いた耐候性試験において下記式(イ)から
求められる300時間照射後の抗張積SE300が5k
g・%/5cm幅以上、かつ下記式(ロ)から求められ
る強力保持率が50%以上であることを特徴とする生分
解性農業用被覆資材。 SE300(kg・%/5cm幅)=S300×E30
0(イ) 強力保持率(%)=(SE300/SE0)×100
(ロ) SE300:300時間照射後の試料の抗張積(kg・
%/5cm幅) S300:300時間照射後の試料の引張り強力(kg
/5cm幅) E300:300時間照射後の試料の引張り伸度(%) SE0:照射前の試料の抗張積(kg・%/5cm幅)
1. The birefringence of polylactic acid-based filaments is 10 × 1.
It is composed of a polylactic acid-based long-fiber nonwoven fabric having a crystallinity of 0 -3 or more and a crystallinity of 10% or more, a light transmittance of 70% or more, and is obtained from the following formula (a) in a weather resistance test using a weather meter. Tensile product SE300 after irradiation for 300 hours is 5k
A biodegradable covering material for agriculture, characterized by having a width of g ·% / 5 cm or more and a high retention rate of 50% or more, which is obtained from the following formula (b). SE300 (kg ・% / 5cm width) = S300 × E30
0 (a) Strong retention rate (%) = (SE300 / SE0) x 100
(B) SE300: Tensile product of the sample after irradiation for 300 hours (kg
% / 5cm width) S300: Tensile strength of the sample after irradiation for 300 hours (kg
/ 5 cm width) E300: Tensile elongation of the sample after irradiation for 300 hours (%) SE0: Tensile product of the sample before irradiation (kg ·% / 5 cm width)
【請求項2】 ポリ乳酸が、ポリ(D−乳酸)と、ポリ
(L−乳酸)と、D−乳酸とL−乳酸との共重合体と、
D−乳酸とヒドロキシカルボン酸との共重合体と、L−
乳酸とヒドロキシカルボン酸との共重合体と、D−乳酸
とL−乳酸とヒドロキシカルボン酸との共重合体とから
選ばれるいずれかの重合体、あるいはこれらのブレンド
体であることを特徴とする請求項1に記載の生分解性農
業用被覆資材。
2. Polylactic acid is poly (D-lactic acid), poly (L-lactic acid), a copolymer of D-lactic acid and L-lactic acid,
A copolymer of D-lactic acid and hydroxycarboxylic acid, L-
A polymer selected from the group consisting of a copolymer of lactic acid and hydroxycarboxylic acid and a copolymer of D-lactic acid, L-lactic acid and hydroxycarboxylic acid, or a blend thereof. The biodegradable agricultural coating material according to claim 1.
【請求項3】 ポリ乳酸系長繊維が、ポリ乳酸系重合体
Aを芯成分とし、該重合体Aより融点が20℃以上低い
ポリ乳酸系重合体Bを鞘成分とする芯鞘型複合長繊維で
ある請求項1又は2のいずれかに記載の生分解性農業用
被覆資材。
3. A core-sheath composite long fiber in which a polylactic acid-based long fiber has a polylactic acid-based polymer A as a core component and a polylactic acid-based polymer B having a melting point of 20 ° C. or more lower than that of the polymer A as a sheath component. The biodegradable agricultural coating material according to claim 1, which is a fiber.
【請求項4】 ポリ乳酸系長繊維の単糸繊度が2〜15
デニールで、かつ被覆資材の目付けが10〜30g/m
2 である請求項1、2、又は3のいずれかに記載の生分
解性農業用被覆資材。
4. The single yarn fineness of the polylactic acid-based long fiber is 2 to 15
Denier and coating weight of coating material is 10-30g / m
2 biodegradable agricultural covering material according to any of claims 1, 2, or 3.
JP14954999A 1999-05-28 1999-05-28 Biodegradable agricultural coating materials Expired - Fee Related JP3494404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14954999A JP3494404B2 (en) 1999-05-28 1999-05-28 Biodegradable agricultural coating materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14954999A JP3494404B2 (en) 1999-05-28 1999-05-28 Biodegradable agricultural coating materials

Publications (2)

Publication Number Publication Date
JP2000333542A JP2000333542A (en) 2000-12-05
JP3494404B2 true JP3494404B2 (en) 2004-02-09

Family

ID=15477595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14954999A Expired - Fee Related JP3494404B2 (en) 1999-05-28 1999-05-28 Biodegradable agricultural coating materials

Country Status (1)

Country Link
JP (1) JP3494404B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291389A (en) * 2005-04-11 2006-10-26 Toray Ind Inc Biodegradable nonwoven fabric
WO2016173115A1 (en) * 2015-04-30 2016-11-03 汤晓峰 Natural fibre felt cloth and production method therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1460096B1 (en) * 1999-06-18 2006-11-15 Toray Industries, Inc. Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
JP2008054535A (en) * 2006-08-30 2008-03-13 Unitika Ltd Biodegradable agricultural covering material
CN102972391A (en) * 2012-11-02 2013-03-20 北京市植物保护站 Insect prevention method suitable for crops
CN109137523A (en) * 2018-06-05 2019-01-04 苏州存异新材料科技有限公司 A kind of manufacturing method of new bio textile material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291389A (en) * 2005-04-11 2006-10-26 Toray Ind Inc Biodegradable nonwoven fabric
WO2016173115A1 (en) * 2015-04-30 2016-11-03 汤晓峰 Natural fibre felt cloth and production method therefor
CN106183153A (en) * 2015-04-30 2016-12-07 汤晓峰 A kind of natural fiber felt-cloth and production method thereof
CN106183153B (en) * 2015-04-30 2018-03-16 汤晓峰 A kind of natural fiber felt-cloth and its production method
US10743478B2 (en) 2015-04-30 2020-08-18 Xiaofeng Tang Natural fiber felt and production method thereof

Also Published As

Publication number Publication date
JP2000333542A (en) 2000-12-05

Similar Documents

Publication Publication Date Title
US5053482A (en) Novel polyesters and their use in compostable products such as disposable diapers
US5783504A (en) Nonwoven/film biodegradable composite structure
NO315906B1 (en) Fibrous material, process for producing low shrinkage polylactide-containing fibers, and multi-component fibers
JP3494404B2 (en) Biodegradable agricultural coating materials
CN101092067B (en) An environmental protective wet towel and preparation method
JP5100134B2 (en) Biodegradable herbicidal sheet
JPH0995847A (en) Nonwoven fabric of polylactate-based filament and its production
JP3573612B2 (en) Biodegradable weed control sheet
JP3434628B2 (en) Polylactic acid-based long-fiber nonwoven fabric and method for producing the same
JP2000034657A (en) Biodegradable nonwoven fabric for draining filtration
JP2000045164A (en) Biodegradable mulching sheet
JP3461648B2 (en) Biodegradable seedling root cover
JP5350910B2 (en) Biodegradable agricultural coating materials
JP2011006823A (en) Biodegradable agricultural covering material
JP2000045163A (en) Biodegradable lining sheet for plastic greenhouse
JP4483062B2 (en) Biodegradable tape
JP5588080B2 (en) Laying grass protection sheet for ground cover plant curing
JP4716589B2 (en) Biodegradable seedling root cover and method for producing the same
JP5230503B2 (en) Fiber material for seaweed aquaculture
JP2008054535A (en) Biodegradable agricultural covering material
JP2005143332A (en) Graft tape
JP2005176616A (en) Binding tape
JPH11269753A (en) Biodegradable nonwoven fabric for nursery pot
JP4000022B2 (en) Method for producing polylactic acid-based long fiber nonwoven fabric
JPH0457953A (en) Microorganism-degradable nonwoven fabric

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees