JP2010226565A - Rail vehicle transmission system - Google Patents

Rail vehicle transmission system Download PDF

Info

Publication number
JP2010226565A
JP2010226565A JP2009073270A JP2009073270A JP2010226565A JP 2010226565 A JP2010226565 A JP 2010226565A JP 2009073270 A JP2009073270 A JP 2009073270A JP 2009073270 A JP2009073270 A JP 2009073270A JP 2010226565 A JP2010226565 A JP 2010226565A
Authority
JP
Japan
Prior art keywords
transmission
data
repeater
mode
low delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009073270A
Other languages
Japanese (ja)
Other versions
JP5238570B2 (en
Inventor
Hideyuki Takahashi
秀之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009073270A priority Critical patent/JP5238570B2/en
Priority to CN201080012958.2A priority patent/CN102362466B/en
Priority to DE112010002652.1T priority patent/DE112010002652B4/en
Priority to PCT/JP2010/055055 priority patent/WO2010110300A1/en
Publication of JP2010226565A publication Critical patent/JP2010226565A/en
Application granted granted Critical
Publication of JP5238570B2 publication Critical patent/JP5238570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40293Bus for use in transportation systems the transportation system being a train

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rail vehicle transmission system capable of selecting an optimum transmission mode according to types of transmission data to transmit data in the selected mode. <P>SOLUTION: In the rail vehicle transmission system, a transmission repeater controller 2 of a leading vehicle issues a control command indicating a shift to a low delay mode between transmission repeaters 1 before transmitting a control instruction for trains which is necessary to transmit at a predetermined cycle, and all the transmission repeaters 1 are shifted to the low delay mode in which the respective repeaters 1 transmit received data repetitively. The controller 2 issues a control command for ending the low delay mode at the end of the transmission of the train control instruction, and all the repeaters 1 operate in a full duplex mode until the next low delay mode is selected. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、列車の制御指令は低遅延モードで伝送し、サービス情報データは全二重モードに切り換えて伝送する鉄道車両用伝送システムに関する。   The present invention relates to a railway vehicle transmission system that transmits a train control command in a low-delay mode and transmits service information data by switching to a full-duplex mode.

列車内でネットワークを構築する場合、扱う伝送データは伝送遅延やデータの衝突による再送遅延が許されない列車の制御指令と伝送遅延がある程度許容されるサービス情報データとの2種類に大きく分けられる。伝送遅延が規定されているデータである列車の制御指令としては、列車の走行を制御する力行/ブレーキ指令等が相当する。また、サービス情報データとしては、各機器のモニタリングデータや乗客への案内表示データ等がある。   When a network is built in a train, the transmission data to be handled is roughly divided into two types: a train control command that does not allow retransmission delay due to transmission delay or data collision, and service information data that allows transmission delay to some extent. The train control command, which is data for which transmission delay is specified, corresponds to a power running / brake command for controlling the running of the train. The service information data includes monitoring data for each device, guidance display data for passengers, and the like.

従来の鉄道車両用伝送システムでは、伝送遅延が規定される制御指令については専用の引き通し線を用いたり、伝送路を分離/専用化する等して伝送遅延を短縮する方式がとられているが、これらは引き通し線の増加や伝送チャンネルの追加を招く問題点があり、特に既存のネットワークのソフトウェアの変更だけで対応できる技術の開発が望まれていた。   Conventional transmission systems for railway vehicles use a method for shortening transmission delay by using a dedicated through line or by separating / dedicated transmission lines for control commands that define transmission delay. However, these have problems that lead to an increase in the number of lead-through lines and the addition of transmission channels, and in particular, it has been desired to develop a technology that can be dealt with only by changing the software of the existing network.

一方、例えば、特開2005−39783号公報(特許文献1)に記載されているシステムのように、汎用のネットワークの代表であるIEEE802.3規格で規定されるイーサネット(登録商標)、つまりツイストペアケーブルを使用する10Base−T/100Base−TX等を鉄道車両に適用する場合、CSMA/CD方式のイーサネット(登録商標)では、基本的にデータの衝突を許し、衝突発生時にはデータを再送する伝送方式であるため、列車の制御指令のような伝送遅延が許されないシステムへの適用が難しい。また、データの衝突を回避するため回線を全二重とし、スイッチングHUBを使用する方法も用いられているが、その場合にも、スイッチングHUBがストア・アンド・フォワードにて動作するためスイッチングHUBを通過するたびにデータが遅延してしまう問題点があり、列車の制御指令のような伝送遅延が許されないデータを伝送するシステムへの適用が難しかった。   On the other hand, for example, as in the system described in Japanese Patent Laid-Open No. 2005-37983 (Patent Document 1), Ethernet (registered trademark) defined by the IEEE 802.3 standard, which is a representative of general-purpose networks, that is, a twisted pair cable. When applying 10Base-T / 100Base-TX, etc., to the railway vehicle, the CSMA / CD Ethernet (registered trademark) basically allows data collision and retransmits data when a collision occurs. Therefore, it is difficult to apply to a system that does not allow transmission delay such as train control commands. Moreover, in order to avoid data collision, a method of using full-duplex lines and a switching HUB is also used. However, in this case, since the switching HUB operates in store-and-forward, the switching HUB is used. There is a problem that data is delayed every time it passes, and it has been difficult to apply it to a system that transmits data such as a train control command that does not allow transmission delay.

特開2005−39783号公報JP 2005-37983 A

本発明は、上述した従来技術の問題点に鑑みてなされたもので、列車の制御指令のような遅延が許されないデータの伝送には伝送遅延時間を最短にし、ある程度の遅延が許容されるサービス情報データの伝送には伝送回線の帯域を有効に活用することにより、複数種の伝送データをそれらの種類によって最適な伝送モードに切り換えて伝送することができる鉄道車両用伝送システムを提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and is a service in which a transmission delay time is minimized and a certain amount of delay is allowed for transmission of data such as a train control command that does not allow a delay. To provide a transmission system for a railway vehicle that can transmit a plurality of types of transmission data by switching to an optimum transmission mode depending on the type by effectively utilizing the bandwidth of the transmission line for the transmission of information data. Objective.

本発明は、各車両に搭載され他の車両から伝送されてきたデータを受信すると共に、受信したデータを送信する伝送中継器と、前記各車両の伝送中継器間を接続する幹線伝送路と、前記他の車両の伝送中継器とデータの送信を行う幹線伝送送信器及びデータの受信を行う幹線伝送受信器と、隣接する伝送中継器間に専用パケットの交換と受信データのリピート送信、バッファリング及びバッファリングデータの送信を行いネットワークを構築する伝送中継器制御装置と、前記伝送中継器制御装置とデータの送受信を行う伝送送受信器と、前記伝送送受信器に接続されデータの授受を行う伝送局とを備え、前記各車両の伝送中継器間で送信権を巡回させることにより列車の制御指令を一定時間以内で各伝送中継器に伝える鉄道車両用伝送システムであって、先頭車両の伝送中継器制御装置は、一定周期で伝送する必要のある列車の制御指令を伝送する前に伝送中継器間で低遅延モードへの移行を示す制御コマンドを流して全伝送中継器を低遅延モードに移行させて各伝送中継器に受信データをリピート送信させ、前記列車の制御指令の伝送終了時に低遅延モードを終了するための制御コマンドを流して次の低遅延モードまでの間は全伝送中継器を全二重モードで動作させる鉄道車両用伝送システムを特徴とする。   The present invention receives data transmitted from other vehicles mounted on each vehicle, and transmits a transmission repeater that transmits the received data; a trunk transmission line that connects between the transmission repeaters of each vehicle; A trunk transmission transmitter that transmits data to and from the transmission repeater of the other vehicle, a trunk transmission receiver that receives data, and exchange of dedicated packets, repeat transmission of received data, and buffering between adjacent transmission repeaters And a transmission repeater control device that transmits buffering data to construct a network, a transmission transmitter / receiver that transmits / receives data to / from the transmission repeater control device, and a transmission station that is connected to the transmission / reception transmitter and receives data A railway vehicle transmission system that transmits a train control command to each transmission repeater within a predetermined time by circulating a transmission right between the transmission repeaters of each vehicle. The transmission repeater control device of the leading vehicle sends a control command indicating the transition to the low-delay mode between transmission repeaters before transmitting a train control command that needs to be transmitted at a constant cycle. The transmission repeater is shifted to the low delay mode so that the transmission data is repeatedly transmitted to each transmission repeater, and the control command for terminating the low delay mode is sent at the end of transmission of the control command of the train to the next low delay mode. In the meantime, it is characterized by a transmission system for railway vehicles that operates all transmission repeaters in full-duplex mode.

本発明の鉄道車両用伝送システムによれば、引き通し線の増加や伝送チャンネルの追加を招くことなく、既存の1つの伝送路で伝送データの種類によって最適な伝送モードを適用することができ、列車の制御指令は伝送遅延時間を最短にする低遅延モードにて伝送し、サービス情報データは回線の帯域を最大限に活用する全二重モードに切り換えて伝送することができる。   According to the railway vehicle transmission system of the present invention, it is possible to apply an optimal transmission mode depending on the type of transmission data in one existing transmission line without causing an increase in the number of lead-through lines or addition of transmission channels. Train control commands are transmitted in a low delay mode that minimizes the transmission delay time, and service information data can be transmitted by switching to a full-duplex mode that maximizes the bandwidth of the line.

本発明の1つの実施の形態の鉄道車両用伝送システムの構成を示すブロック図。The block diagram which shows the structure of the transmission system for railway vehicles of one embodiment of this invention. 上記実施の形態の鉄道車両用伝送システムにおける伝送中継器の構成を示すブロック図。The block diagram which shows the structure of the transmission repeater in the transmission system for rail vehicles of the said embodiment. 上記伝送中継器内の伝送中継器制御装置の構成を示すブロック図。The block diagram which shows the structure of the transmission repeater control apparatus in the said transmission repeater. 上記実施の形態の鉄道車両用伝送システムによる低遅延モードと全二重モードとの切換タイミングを示すタイミングチャート。The timing chart which shows the switching timing of the low delay mode and full-duplex mode by the transmission system for railway vehicles of the said embodiment. 上記実施の形態の鉄道車両用伝送システムによる低遅延モード時の動作説明図その1。Operation | movement explanatory drawing 1 at the time of the low delay mode by the transmission system for railway vehicles of the said embodiment. 上記実施の形態の鉄道車両用伝送システムによる低遅延モード時の動作説明図その2。Operation | movement explanatory drawing 2 at the time of the low delay mode by the transmission system for railway vehicles of the said embodiment. 上記実施の形態の鉄道車両用伝送システムによる全二重モード動作時の動作説明図その1。Operation | movement explanatory drawing 1 at the time of the full duplex mode operation | movement by the transmission system for rail vehicles of the said embodiment. 上記実施の形態の鉄道車両用伝送システムによる全二重モード動作時の動作説明図その2。Operation explanatory drawing 2 at the time of the full-duplex mode operation | movement by the transmission system for rail vehicles of the said embodiment. 上記実施の形態の鉄道車両用伝送システムによる全二重モード動作時の動作説明図その3。Operation explanatory drawing 3 at the time of full-duplex mode operation | movement by the transmission system for rail vehicles of the said embodiment.

以下、本発明の実施の形態を図に基づいて詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に示すように、本発明の1つの実施の形態の鉄道車両用伝送システムは、鉄道車両の各車両1号車〜n号車それぞれに伝送中継器1a,1b,…,1nそれぞれが設置してあり、ツイストペアケーブル2本の全二重の幹線伝送路3a,3b,…,3(n−1)により隣接する伝送中継器間それぞれをバス状に接続している。尚、本実施の形態では、バス状伝送路で説明するが、冗長性を向上させるための梯子状伝送路やリング状伝送路にも適用可能である。   As shown in FIG. 1, the transmission system for a railway vehicle according to one embodiment of the present invention has transmission repeaters 1a, 1b,..., 1n installed in each of the cars No. 1 to No. n of the railway car. Yes, two full-duplex trunk transmission lines 3a, 3b,..., 3 (n-1) of two twisted pair cables connect the adjacent transmission repeaters in a bus shape. In this embodiment, a bus-like transmission line is described, but the present invention can also be applied to a ladder-like transmission line or a ring-like transmission line for improving redundancy.

図2に示すように、本実施の形態の鉄道車両用伝送システムにおける伝送中継器1a〜1n各々(以下、代表する場合には「伝送中継器1」とする)は、2ポートの幹線伝送受信器4a,4b、2ポートの幹線伝送送信器5a,5bと1ポート以上(自号車がデータ授受しない場合は0ポート以上)の伝送送受信器6a,6bと、各伝送ポートのデータのリピート(低遅延モード)又はストア・アンド・フォワード(全二重モード)の制御と伝送中継器間の送信権専用パケット(トークンパケット)の伝送を制御する伝送中継器制御装置2、自号車のデータ送信、受信を行う複数の伝送局7とを備えている。尚、自号車の伝送局7は伝送中継器1の内にあっても、伝送中継器1の外にあってもよい。伝送中継器1外に伝送局7がある場合は、伝送送受信器6のみが伝送中継器1内に実装される。図2では、伝送局7aが伝送中継器1内に、伝送局7bが伝送中継器1外に実装されている例を示している。さらに、このような伝送局及びそれに付随する伝送送受信器は複数あってもよい。   As shown in FIG. 2, each of the transmission repeaters 1a to 1n (hereinafter referred to as “transmission repeater 1” in the representative case) in the railway vehicle transmission system of the present embodiment is a 2-port trunk transmission reception. 4a, 4b, 2 port trunk line transmission transmitters 5a, 5b and 1 port or more transmission transceivers 6a, 6b (or 0 port or more when the own car does not exchange data), and data repeat of each transmission port (low (Delay mode) or store-and-forward (full-duplex mode) control and transmission repeater control device 2 that controls the transmission of transmission right exclusive packets (token packets) between transmission repeaters, data transmission and reception of own car And a plurality of transmission stations 7. The transmission station 7 of the own car may be inside the transmission repeater 1 or outside the transmission repeater 1. When the transmission station 7 is outside the transmission repeater 1, only the transmission transceiver 6 is mounted in the transmission repeater 1. FIG. 2 shows an example in which the transmission station 7 a is mounted in the transmission repeater 1 and the transmission station 7 b is mounted outside the transmission repeater 1. Furthermore, there may be a plurality of such transmission stations and associated transmission transceivers.

伝送中継器制御装置2内には全二重モード動作時に受信データを格納するためのバッファ回路8が設けてある。この伝送中継制御装置2はコンピュータであり、組み込まれている伝送制御プログラムに基づき後述する伝送制御動作を行う。   In the transmission repeater controller 2, a buffer circuit 8 is provided for storing received data during full-duplex mode operation. The transmission relay control device 2 is a computer and performs a transmission control operation to be described later based on a built-in transmission control program.

この伝送中継器制御装置2は図3に示す機能構成であり、低遅延データとサービス情報データとを切り換えて受信する受信データ切換回路21a,21b,21cと、低遅延データとサービス情報データとを切り換えて送信する送信データ切換回路22a,22b,22cと、低遅延モードにてデータリピートとトークン制御をする低遅延制御回路23と、バッファ8を備えた全二重モード動作制御回路24と、低遅延モードと全二重モードとのモード切換を制御するモード切換制御回路25を備えている。   The transmission repeater control device 2 has the functional configuration shown in FIG. 3, and includes received data switching circuits 21a, 21b, and 21c for switching and receiving low delay data and service information data, and low delay data and service information data. Transmission data switching circuits 22a, 22b and 22c for switching and transmission, a low delay control circuit 23 for data repeat and token control in the low delay mode, a full-duplex mode operation control circuit 24 having a buffer 8, A mode switching control circuit 25 that controls mode switching between the delay mode and the full-duplex mode is provided.

このモード切換制御回路25は、受信データの宛先アドレスから列車の制御指令とサービス情報データとを判別し、列車の制御指令であると判別した場合には、受信データをリピート送信することによって全伝送中継器に接続されている伝送局に対して列車の制御指令を低遅延モードにて伝達し、サービス情報データであると判別した場合には受信データをバッファリングし、宛先アドレスの伝送局に対してサービス情報データを送信する全二重モードで送信させるモード切換制御をする。   This mode switching control circuit 25 discriminates the train control command and service information data from the destination address of the received data, and if it is determined that it is a train control command, all the transmissions are performed by repeatedly transmitting the received data. The train control command is transmitted to the transmission station connected to the repeater in the low-delay mode, and if it is determined as service information data, the received data is buffered and Mode switching control for transmitting in the full duplex mode for transmitting service information data.

尚、受信データ切換回路21、送信データ切換回路22は、伝送局とのデータ送受信を行う伝送送受信器6の台数に応じて増減することになる。   Note that the reception data switching circuit 21 and the transmission data switching circuit 22 increase or decrease in accordance with the number of transmission / reception transmitters / receivers 6 that perform data transmission / reception with the transmission station.

次に、上記の構成の鉄道車両用伝送システムによる伝送動作について説明する。図4は、時間軸上で低遅延モードと全二重モードとの動作期間を示している。例えば、tcyc=10msを1サイクルとして、一定期間tREPの低遅延モードと残りの期間tSW(=tcyc−tREP)の全二重モードとを繰り返す。また、全二重モードの終わり近くにはtlim(例えば、9.5ms)が設定してあり、このtlimを超えて新しいサービス情報データの送信を開始しない。   Next, the transmission operation by the railway vehicle transmission system having the above configuration will be described. FIG. 4 shows operation periods of the low delay mode and the full duplex mode on the time axis. For example, tcyc = 10 ms is set as one cycle, and the low-delay mode for a certain period tREP and the full-duplex mode for the remaining period tSW (= tcyc−tREP) are repeated. Also, tlim (for example, 9.5 ms) is set near the end of the full-duplex mode, and transmission of new service information data is not started beyond this tlim.

図5〜図9を用いて、低遅延モードと全二重モードの動作を説明する。ここでは、説明の簡明化のために5両編成の列車を想定してn=eまでとし、中継器1a〜1eそれぞれを車両a〜e号車それぞれに設置している。   The operation in the low delay mode and the full duplex mode will be described with reference to FIGS. Here, for simplification of explanation, a train of 5 cars is assumed to be up to n = e, and each of the repeaters 1a to 1e is installed in each of the vehicles a to e.

1)リセット(低遅延モードへの移行)
最初に、本実施の形態では伝送中継器1a側をネットワークの上流側、1e側をネットワークの下流側と規定する。尚、上流側、下流側の定義は逆であってもかまわない。また、ネットワークが有効である範囲内で上流側の端の伝送中継器1が最上流として伝送の親局動作をする。ここで、ある伝送中継器1において上流側にデータ伝送してもその応答がない場合には自局が親局であると判断する。またある伝送中継器1において上流側、下流側それぞれにデータを伝送した場合に上流側、下流側それぞれから応答がある場合に中間局であると判断する。そしてある伝送中継器1が下流側にデータを伝送してもその応答がない場合には自局が最下流局であると判断する。
1) Reset (transition to low delay mode)
First, in this embodiment, the transmission repeater 1a side is defined as the upstream side of the network, and the 1e side is defined as the downstream side of the network. The definitions of the upstream side and the downstream side may be reversed. Further, within the range where the network is effective, the transmission repeater 1 at the upstream end performs the master station operation of transmission as the most upstream. Here, if there is no response even if data transmission is performed upstream in a certain transmission repeater 1, it is determined that the own station is the master station. Further, when data is transmitted to each of the upstream side and the downstream side in a certain transmission repeater 1, it is determined as an intermediate station when there is a response from each of the upstream side and the downstream side. If there is no response even if a certain transmission repeater 1 transmits data downstream, it is determined that the own station is the most downstream station.

図5(a)に示すように、最上流の親局として動作する伝送中継器1aは、低遅延モード開始の合図(送信権巡回の合図)としてリセットコマンドを発行する。リセットコマンドを受信した各伝送中継器1b〜1eは、下流側にリセットコマンドをリピート送信すると共に、動作モードを低遅延モードとしデータ受信準備に入る。各伝送中継器1a〜1eはリセットコマンド送信時(又は受信時であってもよい)に内部タイマをクリアして計時を再開する。   As shown in FIG. 5A, the transmission repeater 1a operating as the most upstream master station issues a reset command as a signal for starting the low-delay mode (a signal for transmitting the transmission right). Each of the transmission repeaters 1b to 1e that has received the reset command repeats transmission of the reset command to the downstream side, sets the operation mode to the low delay mode, and enters data reception preparation. Each of the transmission repeaters 1a to 1e clears the internal timer when the reset command is transmitted (or may be received) and restarts timing.

2)伝送中継器1aのデータ送信
図5(b)に示すように、伝送中継器1aは列車の制御指令データ(データa)を送信する。伝送中継器1b〜1dそれぞれは、伝送中継器1aからの受信データaを下流側にリピート送信する。ここで、リピート送信とは、一度データを全て受信完了してから送信するのではなく、受信動作を行いながら受信データを送信する動作である。このリピート送信によれば、伝送中継器1aが送信したデータaが最下流側の伝送中継器1eに届くまでの伝送遅延が短い。これを低遅延モードと称している。
2) Data transmission of transmission repeater 1a As shown in FIG. 5B, the transmission repeater 1a transmits train control command data (data a). Each of the transmission repeaters 1b to 1d repeatedly transmits the reception data a from the transmission repeater 1a to the downstream side. Here, the repeat transmission is an operation of transmitting received data while performing a reception operation, instead of transmitting after all the data has been received once. According to this repeat transmission, the transmission delay until the data a transmitted by the transmission repeater 1a reaches the most downstream transmission repeater 1e is short. This is called a low delay mode.

3)送信権を伝送中継器1aから伝送中継器1bへ移動
図5(c)に示すように、伝送中継器1aは、必要なデータ送信後に送信権を移動するためのトークンコマンドを発行する。伝送中継器1bは、伝送中継器1aからのトークンを受信し、送信権を確保する。伝送中継器1bは、トークンコマンドはリピート送信しない。
3) Move the transmission right from the transmission repeater 1a to the transmission repeater 1b As shown in FIG. 5C, the transmission repeater 1a issues a token command for moving the transmission right after necessary data transmission. The transmission repeater 1b receives the token from the transmission repeater 1a and secures the transmission right. The transmission repeater 1b does not repeat the token command.

4)伝送中継器1bのデータ送信
図5(d)に示すように、送信権を確保した伝送中継器1bは、列車の制御指令データ(データb)を上流側と下流側に送信する。伝送中継器1aは伝送中継器1bからのデータbを受信する。また、伝送中継器1c,1dは、伝送中継器1bからの受信データbを下流側にリピート送信する。伝送中継器1eは上流側の伝送中継器1dからデータbを受信する。このようにして、ほぼ同時に全伝送中継器がデータbを受信することができる。
4) Data transmission of transmission repeater 1b As shown in FIG. 5 (d), the transmission repeater 1b that secures the transmission right transmits train control command data (data b) to the upstream side and the downstream side. The transmission repeater 1a receives the data b from the transmission repeater 1b. Further, the transmission repeaters 1c and 1d repeatedly transmit the reception data b from the transmission repeater 1b to the downstream side. The transmission repeater 1e receives data b from the upstream transmission repeater 1d. In this way, all transmission repeaters can receive data b almost simultaneously.

5)送信権を伝送中継器1bから伝送中継器1cへ移動
図6(a)に示すように、伝送中継器1bは、必要なデータ送信後送信権を移動するためのトークンコマンドを発行する。伝送中継器1cは、伝送中継器1bからのトークンを受信し、送信権を確保する。
5) Move the transmission right from the transmission repeater 1b to the transmission repeater 1c As shown in FIG. 6A, the transmission repeater 1b issues a token command for moving the transmission right after necessary data transmission. The transmission repeater 1c receives the token from the transmission repeater 1b and secures the transmission right.

6)伝送中継器1cのデータ送信
図6(b)に示すように、送信権を確保した伝送中継器1cは、列車の制御指令データ(データc)を上流側と下流側に送信する。伝送中継器1bは下流側の伝送中継器1cからの受信データcを上流側にリピート送信する。また、伝送中継器1dは、上流側の伝送中継器1cからの受信データcを下流側にリピート送信する。このようにして、ほぼ同時に全伝送中継器1a,1b,1d,1eがデータcを受信することができる。
6) Data transmission of transmission repeater 1c As shown in FIG. 6 (b), the transmission repeater 1c that secures the transmission right transmits train control command data (data c) to the upstream side and the downstream side. The transmission repeater 1b repeats the reception data c from the downstream transmission repeater 1c to the upstream side. Also, the transmission repeater 1d repeats the reception data c from the upstream transmission repeater 1c to the downstream side. In this way, almost all transmission repeaters 1a, 1b, 1d, and 1e can receive data c almost simultaneously.

同様に、送信権を伝送中継器1cから伝送中継器1dへ移動し、伝送中継器1dのデータdを上流側、下流側に送信し、その後、送信権を伝送中継器1dから最下流側の伝送中継器1eへ移動する動作を繰り返す。こうして、最終的に最下流の伝送中継器1eまで送信権を移動する。   Similarly, the transmission right is moved from the transmission repeater 1c to the transmission repeater 1d, the data d of the transmission repeater 1d is transmitted to the upstream side and the downstream side, and then the transmission right is transferred from the transmission repeater 1d to the most downstream side. The operation of moving to the transmission repeater 1e is repeated. Thus, the transmission right is finally moved to the most downstream transmission repeater 1e.

7)伝送中継器1eデータ送信
図6(c)に示すように、送信権を確保した最下流の伝送中継器1eは、列車の制御指令データ(データe)を上流側に送信する。伝送中継器1b〜1d各々はそれぞれの下流側の伝送中継器1c〜1eからの受信データeを上流側にリピート送信する。このようにして、ほぼ同時に全伝送中継器1a〜1dがデータeを受信することができる。
7) Data transmission of transmission repeater 1e As shown in FIG. 6 (c), the most downstream transmission relay 1e that secures the transmission right transmits train control command data (data e) to the upstream side. Each of the transmission repeaters 1b to 1d repeatedly transmits the reception data e from the respective downstream transmission repeaters 1c to 1e to the upstream side. In this way, all transmission repeaters 1a to 1d can receive data e almost simultaneously.

8)リターン(低遅延モード期間終了)
図6(d)に示すように、伝送中継器1eは制御指令データ(データe)を送信完了すると、最下流の伝送中継器である(下流側に伝送中継器がない)ため、低遅延モードが完了したことを示すリターンコマンドを上流側に送信する。伝送中継器1b〜1dは、受信したリターンコマンドを上流側にリピート送信し、最上流の伝送中継器1aにまでリターンコマンドが送られる。
8) Return (low delay mode period end)
As shown in FIG. 6D, the transmission repeater 1e is the most downstream transmission repeater (there is no transmission repeater on the downstream side) when transmission of the control command data (data e) is completed. A return command indicating that is completed is sent to the upstream side. The transmission repeaters 1b to 1d repeatedly transmit the received return command to the upstream side, and the return command is sent to the most upstream transmission repeater 1a.

次に全二重モードでの動作について、図7〜図9を用いて説明する。   Next, the operation in the full-duplex mode will be described with reference to FIGS.

1)低遅延モードから全二重モードへモード切換
図7(a)に示すように、伝送中継器1eは、制御指令データを送信完了すると、低遅延モードが完了したことを示すリターンコマンドを上流側に送信する。これは図6(d)と同じ状態である。
1) Mode switching from low-delay mode to full-duplex mode As shown in FIG. 7A, when the transmission repeater 1e completes transmission of the control command data, a return command indicating that the low-delay mode is completed is sent upstream. To the side. This is the same state as in FIG.

各伝送中継器1a〜1dはリターンコマンドを受信すると低遅延モードから全二重モードにモード切換を行い、全二重モードに移行する。最下流の伝送中継器1eもリターンコマンドを送信した後にモード切換を行い、全二重モードに移行する。こうして、最終的に全伝送中継器1a〜1eは、低遅延モードを終了し、全二重モードへ移行する。   When each of the transmission repeaters 1a to 1d receives the return command, it switches the mode from the low delay mode to the full duplex mode, and shifts to the full duplex mode. The most downstream transmission repeater 1e also performs mode switching after transmitting a return command, and shifts to the full duplex mode. Thus, finally, all transmission repeaters 1a to 1e end the low delay mode and shift to the full duplex mode.

2)全二重モード時のパケットの流れと伝送中継器内のバッファ状態(1)
図7(b)に示すように、伝送中継器1a〜1eは、全二重モードに移行すると伝送中継器制御装置2に内蔵されているバッファ8を使用し、送信と受信を独立して同時に実施する全二重モードの動作を行う。
2) Packet flow in full-duplex mode and buffer status in the transmission repeater (1)
As shown in FIG. 7B, the transmission repeaters 1a to 1e use the buffer 8 built in the transmission repeater control device 2 when shifting to the full-duplex mode, so that transmission and reception can be performed independently and simultaneously. Perform full-duplex mode operation.

尚、図7〜図9では、各伝送中継器1a〜1eのバッファ8を上段は上流側の伝送中継器と自局の伝送局7へ送信するデータと下流側の伝送中継器から受信したデータのためのバッファ、下段は下流側と自局の伝送局7へ送信するデータと上流側の伝送中継器から受信したデータのためのバッファを示している。例えば、伝送中継器1aについては、図示上側のバッファには下流側の伝送中継器1bからのデータb’をバッファしている。同時に、図示下側のバッファには下流側の中継器1bと自局の伝送局7に送信するデータa’をバッファしている。また、中間の伝送中継器1bについては、図示上側のバッファには下流側の伝送中継器1cから受信したデータc’と上流側の伝送中継器1a及び自局の伝送局7に送信するためのデータb’とをバッファしている。同時に、図示下側のバッファには上流側の伝送中継器1aから受信したデータa’と下流側の伝送中継器1c及び自局の伝送局7に送信するデータb’をバッファしている。   7 to 9, the upper part of the buffer 8 of each transmission repeater 1a to 1e is the data transmitted to the upstream transmission repeater and the local transmission station 7, and the data received from the downstream transmission repeater. The lower row shows a buffer for data to be transmitted to the downstream side and the transmission station 7 of the own station and data received from the upstream transmission repeater. For example, for the transmission repeater 1a, data b 'from the downstream transmission repeater 1b is buffered in the upper buffer in the figure. At the same time, the lower buffer in the figure buffers data a 'to be transmitted to the downstream repeater 1b and the transmission station 7 of the own station. For the intermediate transmission repeater 1b, the upper buffer in the figure is used to transmit data c ′ received from the downstream transmission repeater 1c, the upstream transmission repeater 1a, and the transmission station 7 of the own station. Data b 'is buffered. At the same time, the lower buffer in the figure buffers data a 'received from the upstream transmission repeater 1a and data b' to be transmitted to the downstream transmission repeater 1c and the transmission station 7 of the own station.

3)全二重モード時のパケットの流れと伝送中継器内のバッファ状態(2)
図8(a)を用いて、伝送中継器1a,1c,1eそれぞれに二重の四角で囲った新規データ、データa”、データc”、データe”それぞれが発生した状態を説明する。
3) Packet flow in full duplex mode and buffer status in the transmission repeater (2)
A state in which new data, data a ″, data c ″, and data e ″ each surrounded by a double square is generated in each of the transmission repeaters 1a, 1c, and 1e will be described with reference to FIG.

伝送中継器1aでは、新規データa”が発生し下流側への送信バッファに格納され、回線が空き次第送信される。また、下流側から受信したデータc’をバッファ8に格納し、伝送局との回線が空き次第伝送局7に送信する。伝送中継器1bでは、データa”を受信すると下流側への送信バッファに格納されると共に、先にバッファに格納されていたデータa’を回線が空き次第、下流側と伝送局7に送信する。   In the transmission repeater 1a, new data a "is generated and stored in the transmission buffer to the downstream side, and transmitted as soon as the line is available. Also, the data c 'received from the downstream side is stored in the buffer 8, and the transmission station As soon as the line is free, the transmission repeater 1b receives the data a "and stores it in the transmission buffer to the downstream side, and also stores the data a 'previously stored in the buffer in the line. Transmits to the downstream side and the transmission station 7 as soon as available.

また、伝送中継器1bでは、上流側への送信バッファに格納されているデータc’を上流側と自局の伝送局7に送信すると共に下流側から受信したデータd’をバッファに格納する。伝送中継器1cでは、新規データc”を下流側への送信バッファと上流側への送信バッファに格納する。上流側から受信したデータa’を下流側への送信バッファに格納すると共に先に格納されていたデータb’を下流側と自局の伝送局7に送信する。また、伝送中継器1cでは、上流側への送信バッファに格納されているデータd’を上流側と自局の伝送局7に送信すると共に下流側から受信したデータe’をバッファに格納する。同様に、伝送中継器1d,1eでも図示したように受信データはバッファに格納され、先に格納されたバッファのデータが送信される。   Further, the transmission repeater 1b transmits the data c 'stored in the upstream transmission buffer to the upstream and local transmission stations 7, and stores the data d' received from the downstream side in the buffer. The transmission repeater 1c stores the new data c ″ in the downstream transmission buffer and the upstream transmission buffer. The data a ′ received from the upstream side is stored in the downstream transmission buffer and stored first. The transmitted data b ′ is transmitted to the downstream side and the transmission station 7 of the local station, and the transmission repeater 1c transmits the data d ′ stored in the upstream transmission buffer to the upstream side and the local station. The data e ′ received from the downstream side is transmitted to the station 7 and stored in the buffer.Similarly, the received data is also stored in the buffer as shown in the transmission repeaters 1d and 1e, and the buffer data previously stored is stored in the buffer. Is sent.

4)全二重モード時のパケットの流れと伝送中継器内のバッファ状態(3)
図8(b)に示すように、伝送中継器1bに二重の四角で囲った新規データb”が発生したときにはその新規データb”はバッファ8にいったん格納され、バッファ8に先に格納されていたデータから順に送信される。
4) Packet flow in full duplex mode and buffer status in transmission repeater (3)
As shown in FIG. 8B, when new data b ″ surrounded by a double square is generated in the transmission repeater 1b, the new data b ″ is temporarily stored in the buffer 8 and stored in the buffer 8 first. It is transmitted in order from the data that was stored.

5)リミット時間経過後(全二重モード終了)
図9に示すように、いま、伝送中継器1a〜1eは低遅延モード開始(リセットコマンド受信:t=0)からの時間tlim(例では9.5ms)が経過したとする。低遅延モードは1サイクル周期tcyc(例では、10ms)毎に起動するため、次回の低遅延モードが起動されるまでの残り時間はtcyc−tlim(例では0.5ms)となる。各伝送中継器1a〜1eは、リミット時間(tlim)を経過すると新規の送信を中止し、次回の低遅延モードの起動に備える。そして受信済みのデータは、次回の全二重モードまで各伝送中継器内のバッファ8に保管される。尚、リミット時間tlimは現在送信中のデータがtcycまでに送信完了できる時間をパケット長と伝送速度から決定し、設定する。
5) After the limit time has elapsed (full-duplex mode ends)
As shown in FIG. 9, it is assumed that a time tlim (9.5 ms in the example) has elapsed from the start of the low delay mode (reset command reception: t = 0) in the transmission repeaters 1a to 1e. Since the low delay mode is activated every cycle period tcyc (10 ms in the example), the remaining time until the next low delay mode is activated is tcyc-tlim (0.5 ms in the example). Each transmission repeater 1a to 1e stops new transmission when the limit time (tlim) elapses, and prepares for the next activation of the low delay mode. The received data is stored in the buffer 8 in each transmission repeater until the next full-duplex mode. The limit time tlim is set by determining the time during which transmission of currently transmitted data can be completed by tcyc from the packet length and the transmission speed.

このようにして、本実施の形態の鉄道車両用伝送システムによれば、1つの伝送路で列車の制御指令の伝送には伝送遅延時間が最短になる低遅延モードを使用し、サービス情報データの伝送には伝送回線の帯域を有効に活用する全二重モードを使用することができ、既存のイーサネット(登録商標)を利用して、伝送遅延の短縮と伝送路帯域の増大を両立することができる。   Thus, according to the railway vehicle transmission system of the present embodiment, the low delay mode in which the transmission delay time is the shortest is used for transmission of the train control command on one transmission path, and the service information data For transmission, the full-duplex mode that effectively uses the bandwidth of the transmission line can be used, and the existing Ethernet (registered trademark) can be used to reduce the transmission delay and increase the transmission path bandwidth. it can.

1,1a〜1n 伝送中継器
2 伝送中継器制御装置
3 伝送路
4a,4b 幹線伝送受信器
5a,5b 幹線伝送送信器
6a,6b 伝送送受信器
7,7a,7b 伝送局
8 バッファ
21a,21b,21c 受信データ切換回路
22a,22b,22c 送信データ切換回路
23 低遅延制御回路
24 全二重モード動作制御回路
25 モード切換回路
tcyc モード切換周期
tREP 低遅延モード期間
tSW 全二重モード期間
tlim 制限時間
1, 1a to 1n Transmission repeater 2 Transmission repeater controller 3 Transmission paths 4a, 4b Trunk transmission receivers 5a, 5b Trunk transmission transmitters 6a, 6b Transmission transceivers 7, 7a, 7b Transmission stations 8 Buffers 21a, 21b, 21c Reception data switching circuit 22a, 22b, 22c Transmission data switching circuit 23 Low delay control circuit 24 Full duplex mode operation control circuit 25 Mode switching circuit tcyc Mode switching period tREP Low delay mode period tSW Full duplex mode period tlim Time limit

Claims (4)

各車両に搭載され他の車両から伝送されてきたデータを受信すると共に、受信したデータを送信する伝送中継器と、前記各車両の伝送中継器間を接続する幹線伝送路と、前記他の車両の伝送中継器とデータの送信を行う幹線伝送送信器及びデータの受信を行う幹線伝送受信器と、隣接する伝送中継器間に専用パケットの交換と受信データのリピート送信、バッファリング及びバッファリングデータの送信を行いネットワークを構築する伝送中継器制御装置と、前記伝送中継器制御装置とデータの送受信を行う伝送送受信器と、前記伝送送受信器に接続されデータの授受を行う伝送局とを備え、前記各車両の伝送中継器間で送信権を巡回させることにより列車の制御指令を一定時間以内で各伝送中継器に伝えることを特徴とする鉄道車両用伝送システムにおいて、
先頭車両の伝送中継器制御装置は、一定周期で伝送する必要のある列車の制御指令を伝送する前に伝送中継器間で低遅延モードへの移行を示す制御コマンドを流して全伝送中継器を低遅延モードに移行させて各伝送中継器に受信データをリピート送信させ、前記列車の制御指令の伝送終了時に低遅延モードを終了するための制御コマンドを流して次の低遅延モードまでの間は全伝送中継器を全二重モードで動作させることを特徴とする鉄道車両用伝送システム。
A transmission repeater that receives data transmitted from other vehicles mounted on each vehicle and transmits the received data, a main transmission line that connects between the transmission repeaters of each vehicle, and the other vehicle The main transmission transmitter for transmitting data to the main transmission repeater, the main transmission receiver for receiving data, and the exchange of dedicated packets between the adjacent transmission repeaters and the repeated transmission of received data, buffering and buffering data A transmission repeater control device that constructs a network by transmitting the transmission, a transmission transceiver that transmits and receives data to and from the transmission repeater control device, and a transmission station that is connected to the transmission transceiver and transmits and receives data. Transmission for railway vehicles characterized in that a train control command is transmitted to each transmission repeater within a predetermined time by circulating a transmission right between the transmission repeaters of each vehicle. In the stem,
The transmission repeater control device of the leading vehicle sends all control repeaters by sending a control command indicating the transition to the low delay mode between transmission repeaters before transmitting a train control command that needs to be transmitted at a fixed period. Transition to the low delay mode and repeat transmission of the received data to each transmission repeater, until the next low delay mode by sending a control command to end the low delay mode at the end of transmission of the train control command A transmission system for a railway vehicle characterized by operating a full transmission repeater in a full duplex mode.
請求項1記載の鉄道車両用伝送システムにおいて、
前記各車両の伝送中継器の伝送中継器制御装置は、全二重モードから低遅延モードに移行する際、各伝送中継器にて低遅延モード開始からの経過時間を計測し、次回の低遅延モード開始までの時刻に近づいた場合、全二重モードでの新規の送信を中止し、低遅延モード開始の制御コマンドを待つ待機状態に移ることを特徴とする鉄道車両用伝送システム。
The transmission system for a railway vehicle according to claim 1,
The transmission repeater controller of the transmission repeater of each vehicle measures the elapsed time from the start of the low delay mode at each transmission repeater when shifting from the full duplex mode to the low delay mode, and the next low delay A railway vehicle transmission system characterized in that, when the time until the mode starts is approached, new transmission in the full-duplex mode is stopped and a standby state for waiting for a control command for starting the low-delay mode is entered.
請求項2記載の鉄道車両用伝送システムにおいて、
全二重モードから低遅延モードに移行する際、低遅延モードへの移行を示す制御パケットを受信した伝送中継器の伝送中継器制御装置は、全二重モードで送信中のサービス情報データを送信完了してから低遅延モードに移行することを特徴とする鉄道車両用伝送システム。
The transmission system for a railway vehicle according to claim 2,
When transiting from full-duplex mode to low-delay mode, the transmission repeater controller of the transmission repeater that has received a control packet indicating the transition to low-delay mode transmits service information data being transmitted in full-duplex mode A transmission system for a railway vehicle, which is shifted to a low delay mode after completion.
請求項1記載の鉄道車両用伝送システムにおいて、
前記全二重動作モードから低遅延モードに移行する際、低遅延モードへの移行を示す制御パケットを受信した伝送中継器の伝送中継器制御装置は、送信中のサービス情報データを破棄して直ちに低遅延モードに移行し、前記低遅延モードを終了して全二重動作モードに戻った時に前記破棄したサービス情報データを再送信することを特徴とする鉄道車両用伝送システム。
The transmission system for a railway vehicle according to claim 1,
When shifting from the full-duplex operation mode to the low delay mode, the transmission repeater control device of the transmission repeater that has received the control packet indicating the shift to the low delay mode immediately discards the service information data being transmitted The railway vehicle transmission system, wherein the discarded service information data is retransmitted when the low delay mode is entered and the low delay mode is terminated and the full duplex operation mode is restored.
JP2009073270A 2009-03-25 2009-03-25 Railway vehicle transmission system Expired - Fee Related JP5238570B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009073270A JP5238570B2 (en) 2009-03-25 2009-03-25 Railway vehicle transmission system
CN201080012958.2A CN102362466B (en) 2009-03-25 2010-03-24 Railcar-use transmission system
DE112010002652.1T DE112010002652B4 (en) 2009-03-25 2010-03-24 Transmission system for wagons
PCT/JP2010/055055 WO2010110300A1 (en) 2009-03-25 2010-03-24 Railcar-use transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009073270A JP5238570B2 (en) 2009-03-25 2009-03-25 Railway vehicle transmission system

Publications (2)

Publication Number Publication Date
JP2010226565A true JP2010226565A (en) 2010-10-07
JP5238570B2 JP5238570B2 (en) 2013-07-17

Family

ID=42780994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073270A Expired - Fee Related JP5238570B2 (en) 2009-03-25 2009-03-25 Railway vehicle transmission system

Country Status (4)

Country Link
JP (1) JP5238570B2 (en)
CN (1) CN102362466B (en)
DE (1) DE112010002652B4 (en)
WO (1) WO2010110300A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222405A (en) * 2011-04-04 2012-11-12 Toshiba Corp Vehicle information controller
WO2018029756A1 (en) * 2016-08-08 2018-02-15 三菱電機株式会社 Transmission device, system controller, train transmission system, and transmission method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9515944B2 (en) * 2011-12-12 2016-12-06 Mitsubishi Electric Corporation Train information management apparatus and train information management method
CN111836233B (en) * 2019-04-17 2022-04-19 中车大连电力牵引研发中心有限公司 Data transmission method, communication device, and storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247238A (en) * 1985-08-26 1987-02-28 Hitachi Ltd Control method for occupation right of data way
JPH06276205A (en) * 1993-03-18 1994-09-30 Hitachi Ltd Network system
JPH10145408A (en) * 1996-11-08 1998-05-29 Fujitsu Ltd Bypass control system for ring type transmission system
JPH10150455A (en) * 1996-11-18 1998-06-02 Omron Corp Data transmission control method and its device
JP2001223726A (en) * 2000-02-10 2001-08-17 Toyo Microsystems Corp Method, device, and system for multiplex communication
JP2002247059A (en) * 2001-02-13 2002-08-30 Fuji Electric Co Ltd Timing synchronizing method among nodes in ring type network and its node
JP2005039783A (en) * 2003-06-26 2005-02-10 Toshiba Corp Transmission equipment for rolling stock
WO2008108294A1 (en) * 2007-03-05 2008-09-12 Yamaguchi University Approximately synchronized cdma transmitter/receiver

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249512B1 (en) * 1997-04-22 2001-06-19 Kabushiki Kaisha Toshiba Data transmission system and its control method and multiplexing method
CN101094156B (en) * 2003-06-26 2011-03-23 株式会社东芝 Transmission device of railway carriage
JP4966094B2 (en) * 2007-05-24 2012-07-04 株式会社東芝 Railway vehicle transmission system and transmission apparatus used therefor
JP4881223B2 (en) * 2007-05-24 2012-02-22 株式会社東芝 Railway vehicle transmission system and transmission switching device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247238A (en) * 1985-08-26 1987-02-28 Hitachi Ltd Control method for occupation right of data way
JPH06276205A (en) * 1993-03-18 1994-09-30 Hitachi Ltd Network system
JPH10145408A (en) * 1996-11-08 1998-05-29 Fujitsu Ltd Bypass control system for ring type transmission system
JPH10150455A (en) * 1996-11-18 1998-06-02 Omron Corp Data transmission control method and its device
JP2001223726A (en) * 2000-02-10 2001-08-17 Toyo Microsystems Corp Method, device, and system for multiplex communication
JP2002247059A (en) * 2001-02-13 2002-08-30 Fuji Electric Co Ltd Timing synchronizing method among nodes in ring type network and its node
JP2005039783A (en) * 2003-06-26 2005-02-10 Toshiba Corp Transmission equipment for rolling stock
WO2008108294A1 (en) * 2007-03-05 2008-09-12 Yamaguchi University Approximately synchronized cdma transmitter/receiver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222405A (en) * 2011-04-04 2012-11-12 Toshiba Corp Vehicle information controller
WO2018029756A1 (en) * 2016-08-08 2018-02-15 三菱電機株式会社 Transmission device, system controller, train transmission system, and transmission method
JPWO2018029756A1 (en) * 2016-08-08 2018-12-13 三菱電機株式会社 Transmission device, system control device, train transmission system, and transmission method

Also Published As

Publication number Publication date
WO2010110300A1 (en) 2010-09-30
DE112010002652T5 (en) 2012-06-14
DE112010002652B4 (en) 2015-12-03
CN102362466B (en) 2014-09-17
JP5238570B2 (en) 2013-07-17
CN102362466A (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP6500123B2 (en) In-vehicle gateway device and in-vehicle network system
CN100413243C (en) Information transmission system
US20080192772A1 (en) Low-Weight Hybrid Deterministic Highspeed Data Bus
KR101143672B1 (en) Train communication system, communication device, and relay device
CN109219019B (en) Train communication network multi-hop scheduling method based on Ethernet
US10116462B2 (en) Method for transmitting data between nodes of a motor vehicle using an Ethernet transport protocol and control unit configured to carry out said method
JP4665026B2 (en) Railway vehicle transmission device and transmission repeater
JP7133022B2 (en) In-vehicle communication device and in-vehicle system
JP2009089433A5 (en)
JP5238570B2 (en) Railway vehicle transmission system
US8565214B2 (en) Method for scheduling data transmission in hybrid communication networks for transportation safety systems
EA024596B1 (en) Method and apparatus related to on-board message repeating for vehicle consist communications system
US20150156134A1 (en) Method For Transmitting Data In A Packet-Oriented Communications Network And Correspondingly Configured User Terminal In Said Communications Network
US20140153381A1 (en) Information transmission network and corresponding network node
JP4280155B2 (en) Railway vehicle transmission equipment
EP3780507B1 (en) Method and system for performing double message arbitration
CN108353437A (en) Network system, node, frame traffic method and program
Min et al. Interrupt-enabled Physical Layer Collision Avoidance for 10BASE-T1S Automotive Ethernet
US9673958B2 (en) Information transmission network and node
KR20100027794A (en) Network system usin flexray network for car
Shi et al. Research on bandwidth allocation strategy of train communication network based on time division multiplexing
US20150229519A1 (en) Node and Information Transmission Network
Karabulut et al. CoMACAV: Cooperative MAC Protocol for Autonomous Vehicles
JP2006117024A (en) Rolling stock transmitting device
JP2008113103A (en) Communication device for rail vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R151 Written notification of patent or utility model registration

Ref document number: 5238570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees