JP2010226116A - Compound material of nanoparticles of lithium titanate and carbon, manufacturing method thereof, electrode material made of the compound, electrode using the electrode material, and electrochemical element - Google Patents
Compound material of nanoparticles of lithium titanate and carbon, manufacturing method thereof, electrode material made of the compound, electrode using the electrode material, and electrochemical element Download PDFInfo
- Publication number
- JP2010226116A JP2010226116A JP2010090098A JP2010090098A JP2010226116A JP 2010226116 A JP2010226116 A JP 2010226116A JP 2010090098 A JP2010090098 A JP 2010090098A JP 2010090098 A JP2010090098 A JP 2010090098A JP 2010226116 A JP2010226116 A JP 2010226116A
- Authority
- JP
- Japan
- Prior art keywords
- lithium titanate
- carbon
- composite
- electrode
- nanoparticles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、チタン酸リチウムナノ粒子とカーボンの複合体とその製造方法、この複合体からなる電極材料、この電極材料を用いた電極及び電気化学素子に関する。 The present invention relates to a composite of lithium titanate nanoparticles and carbon, a method for producing the composite, an electrode material comprising the composite, an electrode using the electrode material, and an electrochemical device.
従来より、電気化学素子負極用のリチウム吸蔵、放出活物質として、チタン酸リチウムが用いられている。また、結晶性の優れたチタン酸リチウム粒子を形成する方法として、湿式法(特許文献1参照)が知られているが、出力特性が十分でないといった問題点があった。 Conventionally, lithium titanate has been used as a lithium storage / release active material for electrochemical element negative electrodes. Further, a wet method (see Patent Document 1) is known as a method for forming lithium titanate particles having excellent crystallinity, but there is a problem that output characteristics are not sufficient.
そこで、本出願人等は、従来にない液相反応において反応を促進する方法を提供し、さらにはこの反応方法を用いて作成した金属酸化物ナノ粒子および電気化学素子用電極材として用いられるこの金属酸化物ナノ粒子を高分散担持させたカーボン、ならびにこの電極を用いた電気化学素子を提供することを目的として、特願2005−356845として先に特許出願した。 Therefore, the present applicants provide a method for accelerating the reaction in an unprecedented liquid phase reaction, and further, the metal oxide nanoparticles prepared by using this reaction method and the electrode material for an electrochemical device. A patent application was previously filed as Japanese Patent Application No. 2005-356845 for the purpose of providing carbon in which metal oxide nanoparticles are highly dispersed and supported and an electrochemical device using this electrode.
しかしながら、上述したような先願の明細書に記載されたメカノケミカル反応を用いて加水分解反応を起こさせる金属塩として、例えば、チタンアルコキシドを用いた場合、反応が早すぎて、チタン酸リチウムを作製する際に酸化チタンが形成されてしまい、チタン酸リチウムを作製することができない場合があるといった問題点があった。また、チタン酸リチウムを微粒子化した状態で、カーボンに担持させることが難しい問題もあった。 However, for example, when a titanium alkoxide is used as a metal salt for causing a hydrolysis reaction using the mechanochemical reaction described in the specification of the prior application as described above, the reaction is too early, and lithium titanate is used. When manufacturing, titanium oxide was formed, and there was a problem that lithium titanate could not be manufactured. In addition, there is a problem that it is difficult to support lithium titanate on carbon in the state of fine particles.
本発明は、上述したような従来技術の問題点を解決するために提案されたものであって、その目的は、金属酸化物の結晶化を進行させることで微粒子化されたチタン酸リチウムナノ粒子とカーボンの複合体を得ると共に、そのような複合体の製造方法、この複合体からなる電極材料、この電極材料を用いた電極及び電気化学素子を提供することにある。 The present invention has been proposed to solve the problems of the prior art as described above, and its purpose is to make lithium titanate nanoparticles finely divided by advancing crystallization of a metal oxide. An object of the present invention is to provide a composite of carbon and carbon, a method for producing such a composite, an electrode material comprising the composite, an electrode using the electrode material, and an electrochemical device.
本発明者等は、上記課題を解決すべく鋭意検討を重ねた結果、以下述べるような着想に基づいて、本発明のチタン酸リチウムナノ粒子とカーボンの複合体とその製造方法、この複合体からなる電極材料、この電極材料を用いた電極及び電気化学素子を完成するに至ったものである。 As a result of intensive studies to solve the above-mentioned problems, the present inventors, based on the idea as described below, based on the composite of lithium titanate nanoparticles and carbon of the present invention, its production method, and this composite Thus, the present inventors have completed an electrode material, an electrode using the electrode material, and an electrochemical element.
(反応抑制剤)
すなわち、先願の明細書に記載されたメカノケミカル反応を適用する所定の金属アルコキシドに、反応抑制剤として該金属アルコキシドと錯体を形成する所定の化合物を添加することにより、化学反応が促進しすぎるのを抑制することができることが判明したものである。
(Reaction inhibitor)
That is, by adding a predetermined compound that forms a complex with the metal alkoxide as a reaction inhibitor to the predetermined metal alkoxide to which the mechanochemical reaction described in the specification of the prior application is applied, the chemical reaction is promoted too much. It has been found that this can be suppressed.
すなわち、金属アルコキシドに、これと錯体を形成する酢酸等の所定の化合物を該金属アルコキシド1モルに対して、1〜3モル添加して錯体を形成することにより、反応を抑制、制御することができることが分かった。なお、この反応によって生成されるのは、金属と酸化物の複合体のナノ粒子、例えば、チタン酸リチウムの前駆体である、リチウムと酸化チタンの複合体のナノ粒子であり、これを焼成することにより、チタン酸リチウムの結晶が得られる。 That is, the reaction can be suppressed and controlled by adding 1 to 3 mol of a predetermined compound such as acetic acid that forms a complex with metal alkoxide to 1 mol of the metal alkoxide to form a complex. I understood that I could do it. It is to be noted that a metal-oxide composite nano-particle, for example, a lithium-titanium oxide composite nano-particle, which is a precursor of lithium titanate, is produced by firing this reaction. Thus, a crystal of lithium titanate is obtained.
このように、反応抑制剤として酢酸等の所定の化合物を添加することにより、化学反応が促進しすぎるのを抑制することができるのは、酢酸等の所定の化合物が金属アルコキシドと安定な錯体を形成するためであると考えられる。 Thus, by adding a predetermined compound such as acetic acid as a reaction inhibitor, it is possible to suppress the chemical reaction from being promoted too much because the predetermined compound such as acetic acid can form a stable complex with the metal alkoxide. It is thought that it is for forming.
なお、金属アルコキシドと錯体を形成することができる物質としては、酢酸の他、クエン酸、蓚酸、ギ酸、乳酸、酒石酸、フマル酸、コハク酸、プロピオン酸、レプリン酸等のカルボン酸、EDTA等のアミノポリカルボン酸、トリエタノールアミン等のアミノアルコールに代表される錯化剤が挙げられる。 Examples of substances that can form a complex with a metal alkoxide include acetic acid, citric acid, succinic acid, formic acid, lactic acid, tartaric acid, fumaric acid, succinic acid, propionic acid, carboxylic acid such as propionic acid, and EDTA. Examples include complexing agents represented by amino alcohols such as aminopolycarboxylic acid and triethanolamine.
(焼成工程)
また、得られたチタン酸リチウムの前駆体の焼成工程において、室温から800℃まで急熱、50℃まで急冷、この急熱、急冷を1分以内に行うことによって、チタン酸リチウムの凝集を防止することができ、粒径の小さなナノ粒子が形成されることが分かった。
(Baking process)
Moreover, in the baking process of the obtained lithium titanate precursor, rapid heating from room temperature to 800 ° C., rapid cooling to 50 ° C., and rapid heating and rapid cooling are performed within 1 minute to prevent aggregation of lithium titanate. It was found that nanoparticles having a small particle size were formed.
(金属アルコキシド)
本発明に係る反応抑制剤を適用することができる金属アルコキシドとしては、上記のチタンアルコキシドの他に、金属アルコキシドの加水分解反応の反応速度定数が10-5mol-1sec-1以上のものが挙げられる。このような金属としては、スズ、ジルコニア、セシウム等を挙げることができる。
(Metal alkoxide)
As the metal alkoxide to which the reaction inhibitor according to the present invention can be applied, in addition to the above titanium alkoxide, a metal alkoxide having a reaction rate constant of 10 −5 mol −1 sec −1 or more for the hydrolysis reaction of the metal alkoxide. Can be mentioned. Examples of such metals include tin, zirconia, and cesium.
(カーボン)
また、反応過程で所定のカーボンを加えることによって、5〜20nmのチタン酸リチウムを高分散担持させたカーボンを得ることができる。すなわち、反応器の内筒の内部に金属塩と上記の反応抑制剤と所定のカーボンを投入して、内筒を旋回して金属塩と上記の反応抑制剤とカーボンを混合、分散する。さらに内筒を旋回させながら水酸化ナトリウムなどの触媒を投入して加水分解、縮合反応を進行させ、金属酸化物を生成すると共に、この金属酸化物とカーボンを分散状態で、混合する。反応終了と共に、金属酸化物ナノ粒子を高分散担持させたカーボンを形成することができる。
(carbon)
In addition, by adding predetermined carbon during the reaction process, carbon in which 5 to 20 nm lithium titanate is highly dispersed and supported can be obtained. That is, a metal salt, the above reaction inhibitor, and a predetermined carbon are introduced into the inner cylinder of the reactor, and the inner cylinder is rotated to mix and disperse the metal salt, the above reaction inhibitor, and carbon. Further, while turning the inner cylinder, a catalyst such as sodium hydroxide is added to cause hydrolysis and condensation reaction to proceed to produce a metal oxide, and the metal oxide and carbon are mixed in a dispersed state. Along with the completion of the reaction, carbon in which metal oxide nanoparticles are supported in a highly dispersed state can be formed.
ここで用いるカーボンとしては、ケッチェンブラック、アセチレンブラック等のカーボンブラック、カーボンナノチューブ、カーボンナノホーン、無定形炭素、炭素繊維、天然黒鉛、人造黒鉛、活性炭、メソポーラス炭素等を挙げることができ、これらの複合材を用いることもできる。 Examples of the carbon used here include carbon blacks such as ketjen black and acetylene black, carbon nanotubes, carbon nanohorns, amorphous carbon, carbon fibers, natural graphite, artificial graphite, activated carbon, mesoporous carbon, and the like. Composite materials can also be used.
また、本発明により得られた金属酸化物ナノ粒子を高分散担持させたカーボンは、場合によっては焼成して、バインダーと混錬、成型し、電気化学素子の電極、すなわち電気エネルギー貯蔵用電極とすることができるが、この電極は高出力特性、高容量特性を示す。 Further, the carbon in which the metal oxide nanoparticles obtained according to the present invention are highly dispersed and supported may be calcined, kneaded with a binder, molded, and then an electrode of an electrochemical element, that is, an electrode for storing electric energy. However, this electrode exhibits high output characteristics and high capacity characteristics.
ここで、この電極を用いることができる電気化学素子は、リチウムイオンを含有する電解液を用いる電気化学キャパシタ、電池である。すなわち、本発明の電極は、リチウムイオンの吸蔵、脱着を行うことができ、負極として作動する。したがって、リチウムイオンを含有する電解液を用い、対極として活性炭、リチウムが吸蔵、脱着するカーボン等を用いることによって、電気化学キャパシタ、電池を構成することができる。 Here, the electrochemical element which can use this electrode is an electrochemical capacitor and a battery using an electrolytic solution containing lithium ions. That is, the electrode of the present invention can occlude and desorb lithium ions and operates as a negative electrode. Therefore, an electrochemical capacitor and a battery can be configured by using an electrolytic solution containing lithium ions and using, as a counter electrode, activated carbon, carbon that occludes and desorbs lithium, and the like.
(メカノケミカル反応)
なお、本発明で用いる反応方法は、本出願人等が先に特許出願した上記明細書に示した方法と同様のメカノケミカル反応であって、化学反応の過程で、旋回する反応器内で反応物にずり応力と遠心力を加えて化学反応を促進させるものである。
(Mechanochemical reaction)
The reaction method used in the present invention is a mechanochemical reaction similar to the method shown in the above specification previously filed by the applicant of the present application, and is performed in a rotating reactor in the course of the chemical reaction. A chemical reaction is promoted by applying shear stress and centrifugal force to an object.
この反応方法においては、反応物にずり応力と遠心力の双方の機械的エネルギーが同時に加えられることによって、このエネルギーが化学エネルギーに転化することによるものと思われるが、従来にない速度で化学反応を促進させることができる。 In this reaction method, mechanical energy of both shear stress and centrifugal force is applied to the reactant at the same time, which seems to be due to the conversion of this energy into chemical energy. Can be promoted.
そして、このような化学反応を促進させるには、外筒と内筒の同心円筒からなり、内筒の側面に貫通孔を備えるとともに、外筒の開口部にせき板を配置してなる反応器において、内筒の旋回による遠心力によって内筒内の反応物を内筒の貫通孔を通じて外筒の内壁面に移動させ、外筒の内壁面に反応物を含む薄膜を生成するとともに、この薄膜にずり応力と遠心力を加えることによって実現することができる。 And in order to promote such a chemical reaction, the reactor which consists of a concentric cylinder of an outer cylinder and an inner cylinder, is equipped with a through-hole in the side surface of an inner cylinder, and arrange | positions a slat in the opening part of an outer cylinder. In this, the reactant in the inner cylinder is moved to the inner wall surface of the outer cylinder through the through-hole of the inner cylinder by centrifugal force due to the turning of the inner cylinder, and a thin film containing the reactant is generated on the inner wall surface of the outer cylinder. This can be realized by applying shear stress and centrifugal force.
本発明によれば、金属酸化物ナノ粒子の前駆体を担持したカーボンの焼成工程において、急熱することによって、金属酸化物ナノ粒子の凝集を防止することができ、粒径の小さなナノ粒子が形成される。 According to the present invention, in the baking process of the carbon carrying the precursor of the metal oxide nanoparticles, it is possible to prevent aggregation of the metal oxide nanoparticles by rapid heating, and the nanoparticles having a small particle diameter It is formed.
以下、実施例により本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
(1)チタン酸リチウムとケッチェンブラックから成る複合体粉末について
(実施例1)
チタンアルコキシド1モルに対して、酢酸1.8モル、酢酸リチウム1モルとなる量の酢酸と酢酸リチウムをイソプロパノールと水の混合物に溶解して混合溶媒を作製した。この混合溶媒とチタンアルコキシド、イソプロピルアルコール、ケッチェンブラック(ケッチェン・ブラック・インターナショナル社製、商品名:ケッチェンブラックEC600JD、空隙率78Vol.%、一次粒子径40nm、平均二次粒径337.8nm)を旋回反応器内に投入し、66,000N(kgms-2)の遠心力で5分間、内筒を旋回して外筒の内壁に反応物の薄膜を形成すると共に、反応物にずり応力と遠心力を加えて化学反応を促進させ、チタン酸リチウムの前駆体を高分散担持したケッチェンブラックを得た。
(1) Composite powder composed of lithium titanate and ketjen black (Example 1)
A mixed solvent was prepared by dissolving acetic acid and lithium acetate in an amount of 1.8 mol of acetic acid and 1 mol of lithium acetate in a mixture of isopropanol and water with respect to 1 mol of titanium alkoxide. This mixed solvent, titanium alkoxide, isopropyl alcohol, ketjen black (Ketjen Black International Co., Ltd., trade name: ketjen black EC600JD, porosity 78 Vol.%, Primary particle size 40 nm, average secondary particle size 337.8 nm) Into the swirl reactor, and the inner cylinder is swirled with a centrifugal force of 66,000 N (kgms -2 ) for 5 minutes to form a thin film of the reactant on the inner wall of the outer cylinder. A chemical reaction was promoted by applying centrifugal force to obtain Ketjen Black carrying a highly dispersed lithium titanate precursor.
得られたチタン酸リチウムの前駆体を高分散担持させたケッチェンブラックを、真空中において80℃で17時間乾燥することにより、チタン酸リチウムの前駆体がケッチェンブラックに高分散担持された複合体粉末を得た。 The obtained Ketjen black carrying a highly dispersed lithium titanate precursor was dried at 80 ° C. for 17 hours in a vacuum to obtain a composite in which the lithium titanate precursor was carried highly dispersed by Ketjen black. A body powder was obtained.
得られたチタン酸リチウムの前駆体がケッチェンブラックに高分散担持された複合体粉末を、真空中で1分間以内に室温→800℃→50℃と急熱、急冷することによってリチウムを含有するチタン酸化物の結晶化を進行させ、チタン酸リチウムのナノ粒子がケッチェンブラックに高分散担持された複合体粉末を得た。 The composite powder in which the obtained lithium titanate precursor is highly dispersed and supported on ketjen black is rapidly heated and rapidly cooled in room temperature → 800 ° C. → 50 ° C. within one minute in a vacuum to contain lithium. Crystallization of the titanium oxide was advanced to obtain a composite powder in which lithium titanate nanoparticles were highly dispersed and supported on Ketjen Black.
このようにして得られた複合体のTEM像を図1に示した。図1においては5nm〜20nmのチタン酸リチウムのナノ粒子がケッチェンブラックに高分散担持していることが分かる。 A TEM image of the composite thus obtained is shown in FIG. In FIG. 1, it can be seen that 5 to 20 nm lithium titanate nanoparticles are highly dispersed and supported on Ketjen Black.
(比較例1)
実施例1と同様の手法によって作製したチタン酸リチウムの前駆体を高分散担持したケッチェンブラックを、800℃で12時間焼成することによってリチウムを含有するチタン酸化物の結晶化を進行させ、チタン酸リチウムが担持されたケッチェンブラック複合体を得た。
(Comparative Example 1)
Ketjen black carrying a highly dispersed lithium titanate precursor prepared in the same manner as in Example 1 is baked at 800 ° C. for 12 hours to advance crystallization of titanium oxide containing lithium. A ketjen black composite carrying lithium acid was obtained.
このようにして得られたチタン酸リチウムが担持されたケッチェンブラック複合体のSEM観察をしてみたところ、0.5μm〜2μmのチタン酸リチウムの凝集粒子が生成していた。 SEM observation of the ketjen black composite on which lithium titanate thus obtained was supported revealed that aggregated particles of lithium titanate of 0.5 μm to 2 μm were generated.
(比較例2)
チタンアルコキシド1モルに対して、酢酸1.8モル、酢酸リチウム1モルとなる量の酢酸と酢酸リチウムをイソプロパノールと水の混合物に溶解して混合溶媒を作製した。チタンアルコキシドとイソプロピルアルコールをスターラーで撹拌しながら上記混合溶媒を滴下し、5時間撹拌した。生成したチタン酸リチウムの前駆体を、真空中において80℃で17時間乾燥することにより、リチウムを含有するチタン酸化物の粉末を得た。
(Comparative Example 2)
A mixed solvent was prepared by dissolving acetic acid and lithium acetate in an amount of 1.8 mol of acetic acid and 1 mol of lithium acetate in a mixture of isopropanol and water with respect to 1 mol of titanium alkoxide. While stirring titanium alkoxide and isopropyl alcohol with a stirrer, the mixed solvent was added dropwise and stirred for 5 hours. The produced lithium titanate precursor was dried in vacuum at 80 ° C. for 17 hours to obtain lithium-containing titanium oxide powder.
得られたチタン酸リチウムの前駆体を、酸素雰囲気中、800℃で12時間焼成することによって、リチウムを含有するチタン酸化物の結晶化を進行させ、チタン酸リチウム粉末を得た。 The obtained lithium titanate precursor was baked at 800 ° C. for 12 hours in an oxygen atmosphere to promote crystallization of lithium-containing titanium oxide to obtain a lithium titanate powder.
このようにして得られたチタン酸リチウム粉末をSEM観察してみたところ、0.5μm〜2μmのチタン酸リチウム粒子が生成していた。 When the lithium titanate powder thus obtained was observed with an SEM, lithium titanate particles of 0.5 μm to 2 μm were produced.
(比較例3)
酢酸を用いずに、実施例1と同様の手法で作製したところ、材料の混合時に加水分解が進行してしまい、超遠心処理で複合体を作製することができなかった。
(Comparative Example 3)
When it was produced by the same method as in Example 1 without using acetic acid, hydrolysis progressed when the materials were mixed, and the composite could not be produced by ultracentrifugation.
(測定結果)
実施例1、比較例1及び比較例2で得られた複合体粉末をSUS板上に溶接されたSUSメッシュ中に投入し電極とした。上記電極上にセパレータと対極及び参照極としてLiフォイルを乗せ、電解液として1M LiPF6 EC/DECを浸透させてセルとした。
(Measurement result)
The composite powder obtained in Example 1, Comparative Example 1 and Comparative Example 2 was put into a SUS mesh welded on a SUS plate to obtain an electrode. A separator, a counter electrode, and a Li foil were placed on the electrode as a reference electrode, and 1M LiPF 6 EC / DEC was infiltrated as an electrolyte to obtain a cell.
上記セルの複合体を有するSUSメッシュ溶接SUS板を作用極とし、電圧範囲1.3〜2.0Vvs.Li/Li+、掃引速度0.1mVsec-1で掃引することによりサイクリックボルタモグラムを測定した。測定されたサイクリックボルタモグラムを図2に示した。また、実施例1、比較例1及び比較例2について、ピーク電位差を測定したところ、表1に示すような結果が得られた。
図2から明らかなように、実施例1はCVピークがシャープになっていることが分かった。これは、ナノ粒子自体の出力特性が向上したか、あるいは、結晶性の向上によって出力特性が向上したか、の理由によって、電極の出力特性が向上したと考えられる。また、表1から明らかなように、実施例1は、高いレート特性を有していることが分かった。 As is clear from FIG. 2, it was found that Example 1 had a sharp CV peak. This is presumably because the output characteristics of the electrodes were improved because the output characteristics of the nanoparticles themselves were improved or the output characteristics were improved by improving the crystallinity. Further, as is clear from Table 1, it was found that Example 1 has a high rate characteristic.
(2)本発明の電極を用いた電気化学キャパシタについて
上記のメカノケミカル反応によって得られたチタン酸リチウムとケッチェンブラックを用いた電極を負極に用い、正極として活性炭等の分極性電極を用いることによって、リチウムデンドライドの発生することのない電解液にリチウム塩を含む電気化学キャパシタが得られることが分かった。以下、詳述する。
(2) Regarding the electrochemical capacitor using the electrode of the present invention, an electrode using lithium titanate and ketjen black obtained by the above mechanochemical reaction is used as the negative electrode, and a polarizable electrode such as activated carbon is used as the positive electrode. Thus, it was found that an electrochemical capacitor containing a lithium salt in an electrolytic solution in which lithium dendride is not generated can be obtained. Details will be described below.
通常の電解液にリチウム塩を含む電気化学キャパシタの負極には、リチウムを吸蔵、放出可能な炭素材料を用いているが、リチウムのデンドライドが発生する電位と炭素の電位が近いため、リチウムのデンドライドが起きるおそれがある。これに対して、本発明に係るチタン酸リチウムの電位は、リチウムのデンドライドが発生する電位より約1.5V大きいため、デンドライドが発生しない。 The negative electrode of an electrochemical capacitor that contains a lithium salt in a normal electrolyte uses a carbon material that can store and release lithium. However, since the potential at which lithium dendrites are generated is close to the potential at carbon, lithium dendrites May occur. On the other hand, since the potential of the lithium titanate according to the present invention is about 1.5 V higher than the potential at which lithium dendride is generated, dendride is not generated.
ところが、本願の電極を用いて充放電試験を行ったところ、図3に示すような結果が得られた。すなわち、startからAまで充電し、放電を行ったところ、Dまでしか放電せず、不可逆容量を有することが判明した。また、チタン酸リチウムのみでは不可逆容量を有していないことから、カーボンが原因であると考えられた。 However, when a charge / discharge test was performed using the electrode of the present application, results as shown in FIG. 3 were obtained. That is, when charging was performed from start to A and discharging was performed, only D was discharged, and it was found to have irreversible capacity. In addition, since lithium titanate alone has no irreversible capacity, it was considered that carbon was the cause.
次に、充電をA、B、Cまで行った場合の不可逆容量を図4に示した。図から明らかなように、充電容量が小さいほど不可逆容量が小さいことが分かった。なお、図4の横軸は、充電容量をLi4+xTi5O12の“x”に換算した値で表している。 Next, the irreversible capacity | capacitance at the time of charging to A, B, and C was shown in FIG. As can be seen from the figure, the smaller the charge capacity, the smaller the irreversible capacity. The horizontal axis in FIG. 4 represents the charge capacity converted to “x” of Li 4 + x Ti 5 O 12 .
また、本願電極の負極中のカーボンの量と不可逆容量の関係を調べたところ、図5に示すような結果が得られた。また、カーボンの量と容量減少率の関係を調べたところ、図6に示すような結果が得られた。これらの結果から、カーボンの含有量は30〜50wt%が好ましく、より好ましくは35〜45wt%であることが分かった。 Further, when the relationship between the amount of carbon in the negative electrode of the present application electrode and the irreversible capacity was examined, the results shown in FIG. 5 were obtained. Further, when the relationship between the amount of carbon and the capacity reduction rate was examined, results as shown in FIG. 6 were obtained. From these results, it was found that the content of carbon is preferably 30 to 50 wt%, more preferably 35 to 45 wt%.
また、チタン酸リチウムの容量を高めて、充電電位を下げて、不可逆容量を低減するために、焼成温度の検討を行ったところ、図7に示すような結果が得られた。図からわかるように、900〜1000℃で容量が増大し、理論容量まで増大した。なお、容量を増大させるために、比表面積の大きなケッチェンブラックを用いることが好ましい。 Moreover, in order to raise the capacity | capacitance of a lithium titanate, to reduce a charging potential, and to reduce an irreversible capacity | capacitance, when the calcination temperature was examined, the result as shown in FIG. 7 was obtained. As can be seen from the figure, the capacity increased from 900 to 1000 ° C. and increased to the theoretical capacity. In order to increase the capacity, it is preferable to use ketjen black having a large specific surface area.
これらの結果に基づいて、焼成温度を900℃、ケッチェンブラックの含有量を40wt%として、電気化学キャパシタを作製し、特性を評価したところ、図8に示すような結果が得られた。図から明らかなように、両極に活性炭を用いた電気二重層キャパシタに比べて、エネルギー密度の高い電気化学キャパシタが得られることが分かった。 Based on these results, an electrochemical capacitor was fabricated with a firing temperature of 900 ° C. and a ketjen black content of 40 wt%, and the characteristics were evaluated. The results shown in FIG. 8 were obtained. As is clear from the figure, it was found that an electrochemical capacitor having a higher energy density can be obtained as compared with an electric double layer capacitor using activated carbon for both electrodes.
(実施例2)
チタンアルコキシド1モルに対して、酢酸1.8モル、酢酸リチウム1モルとなる量の酢酸と酢酸リチウムをイソプロパノールと水の混合物に溶解して混合溶媒を作製した。この混合溶媒とチタンアルコキシド、イソプロピルアルコール、ケッチェンブラック(ケッチェン・ブラック・インターナショナル社製、商品名:ケッチェンブラックEC600JD、空隙率78Vol.%、一次粒子径40nm、平均二次粒径337.8nm)を旋回反応器内に投入し、66,000N(kgms-2)の遠心力で5分間、内筒を旋回して外筒の内壁に反応物の薄膜を形成すると共に、反応物にずり応力と遠心力を加えて化学反応を促進させ、チタン酸リチウムの前駆体を高分散担持したケッチェンブラックを得た。
(Example 2)
A mixed solvent was prepared by dissolving acetic acid and lithium acetate in an amount of 1.8 mol of acetic acid and 1 mol of lithium acetate in a mixture of isopropanol and water with respect to 1 mol of titanium alkoxide. This mixed solvent, titanium alkoxide, isopropyl alcohol, ketjen black (Ketjen Black International Co., Ltd., trade name: ketjen black EC600JD, porosity 78 Vol.%, Primary particle size 40 nm, average secondary particle size 337.8 nm) Into the swirl reactor, and the inner cylinder is swirled with a centrifugal force of 66,000 N (kgms -2 ) for 5 minutes to form a thin film of the reactant on the inner wall of the outer cylinder. A chemical reaction was promoted by applying centrifugal force to obtain Ketjen Black carrying a highly dispersed lithium titanate precursor.
得られたチタン酸リチウムの前駆体を高分散担持させたケッチェンブラックを、真空中において80℃で17時間乾燥することにより、チタン酸リチウムの前駆体がケッチェンブラックに高分散担持された複合体粉末を得た。 The obtained Ketjen black carrying a highly dispersed lithium titanate precursor was dried at 80 ° C. for 17 hours in a vacuum to obtain a composite in which the lithium titanate precursor was carried highly dispersed by Ketjen black. A body powder was obtained.
得られたチタン酸リチウムの前駆体がケッチェンブラックに高分散担持された複合体粉末を、真空中で1分間以内に室温→800℃→50℃と急熱、急冷することによってリチウムを含有するチタン酸化物の結晶化を進行させ、チタン酸リチウムのナノ粒子がケッチェンブラックに高分散担持された複合体粉末を得た。 The composite powder in which the obtained lithium titanate precursor is highly dispersed and supported on ketjen black is rapidly heated and rapidly cooled in room temperature → 800 ° C. → 50 ° C. within one minute in a vacuum to contain lithium. Crystallization of the titanium oxide was advanced to obtain a composite powder in which lithium titanate nanoparticles were highly dispersed and supported on Ketjen Black.
上記のようにして得られた複合体粉末7重量部と、2重量部のバインダー(ポリテトラフルオロエチレン)と、導電性材料としてカーボンナノファイバー(昭和電工製、VGCF−S)1重量部とを混練し、圧延してシートを形成した。このシートを真空乾燥後、銅箔に接合し、負極とした。 7 parts by weight of the composite powder obtained as described above, 2 parts by weight of binder (polytetrafluoroethylene), and 1 part by weight of carbon nanofiber (VGCF-S, manufactured by Showa Denko) as a conductive material. Kneaded and rolled to form a sheet. This sheet was vacuum dried and then joined to a copper foil to obtain a negative electrode.
また、活性炭(クラレケミカル社製、YP−17)8重量部と、1重量部のバインダー(ポリテトラフルオロエチレン)、導電性材料としてケッチェンブラック1重量部とを混練し、圧延してシートを形成した。このシートを真空乾燥後、アルミニウム箔に接合し、正極とした。 Further, 8 parts by weight of activated carbon (manufactured by Kuraray Chemical Co., Ltd., YP-17), 1 part by weight of binder (polytetrafluoroethylene) and 1 part by weight of ketjen black as a conductive material are kneaded and rolled to obtain a sheet. Formed. This sheet was vacuum dried and then joined to an aluminum foil to form a positive electrode.
(比較例4)
活性炭(クラレケミカル社製、YP−17)8重量部と、1重量部のバインダー(ポリテトラフルオロエチレン)、導電性材料としてケッチェンブラック1重量部とを混練し、圧延してシートを形成した。このシートを真空乾燥後、アルミニウム箔に接合し、正極及び負極とした。
(Comparative Example 4)
8 parts by weight of activated carbon (manufactured by Kuraray Chemical Co., YP-17), 1 part by weight of binder (polytetrafluoroethylene) and 1 part by weight of ketjen black as a conductive material were kneaded and rolled to form a sheet. . This sheet was vacuum dried and then joined to an aluminum foil to form a positive electrode and a negative electrode.
これらの電極を、LiPF4、プロピレンカーボネート溶液を注入したビーカーに、セルロース系のセパレータを介して、対向させてセルを作製した。これらのセルについて、定電流で充放電試験を行い、エネルギー密度とパワー密度を測定したところ、図8に示すような結果が得られた。 These electrodes were made to face each other through a cellulosic separator in a beaker into which LiPF 4 and a propylene carbonate solution had been injected to produce a cell. When these cells were subjected to a charge / discharge test at a constant current and measured for energy density and power density, results as shown in FIG. 8 were obtained.
図8から明らかなように、従来の活性炭を用いた電気二重層キャパシタに比較して、エネルギー密度が向上していることが分かった。 As apparent from FIG. 8, it was found that the energy density was improved as compared with the electric double layer capacitor using the conventional activated carbon.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010090098A JP4944974B2 (en) | 2007-03-28 | 2010-04-09 | Lithium titanate nanoparticle / carbon composite, method for producing the same, electrode material comprising the composite, electrode using the electrode material, and electrochemical device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007086035 | 2007-03-28 | ||
JP2007086035 | 2007-03-28 | ||
JP2010090098A JP4944974B2 (en) | 2007-03-28 | 2010-04-09 | Lithium titanate nanoparticle / carbon composite, method for producing the same, electrode material comprising the composite, electrode using the electrode material, and electrochemical device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008086009A Division JP5180643B2 (en) | 2007-03-28 | 2008-03-28 | Reaction method and metal oxide nanoparticles obtained by the method, or carbon carrying the metal oxide nanoparticles, an electrode containing the carbon, and an electrochemical device using the electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010226116A true JP2010226116A (en) | 2010-10-07 |
JP4944974B2 JP4944974B2 (en) | 2012-06-06 |
Family
ID=40049815
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008086009A Active JP5180643B2 (en) | 2007-03-28 | 2008-03-28 | Reaction method and metal oxide nanoparticles obtained by the method, or carbon carrying the metal oxide nanoparticles, an electrode containing the carbon, and an electrochemical device using the electrode |
JP2010090098A Expired - Fee Related JP4944974B2 (en) | 2007-03-28 | 2010-04-09 | Lithium titanate nanoparticle / carbon composite, method for producing the same, electrode material comprising the composite, electrode using the electrode material, and electrochemical device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008086009A Active JP5180643B2 (en) | 2007-03-28 | 2008-03-28 | Reaction method and metal oxide nanoparticles obtained by the method, or carbon carrying the metal oxide nanoparticles, an electrode containing the carbon, and an electrochemical device using the electrode |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP5180643B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012227147A (en) * | 2011-04-19 | 2012-11-15 | Samsung Sdi Co Ltd | Negative electrode active material, negative electrode and lithium battery including the negative electrode active material, and method of producing the negative electrode active material |
JP2013073854A (en) * | 2011-09-28 | 2013-04-22 | Nippon Chemicon Corp | Composite of lithium titanate and carbon nanofiber, production method therefor, electrode using composite and electrochemical element |
JP2014203606A (en) * | 2013-04-03 | 2014-10-27 | 日本ケミコン株式会社 | Composite material, method of producing the composite material, lithium ion secondary battery and electrochemical capacitor using the composite material |
CN108713152A (en) * | 2016-02-04 | 2018-10-26 | 西门子股份公司 | The method for determining the aging of electrochemical storage device |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010212309A (en) * | 2009-03-06 | 2010-09-24 | Nippon Chemicon Corp | Electrode material, and electrode containing the same |
JP5926959B2 (en) * | 2009-12-22 | 2016-05-25 | 石原産業株式会社 | Lithium titanate, method for producing the lithium titanate, slurry used in the production method, electrode active material containing the lithium titanate, and lithium secondary battery using the electrode active material |
JP6155316B2 (en) * | 2010-03-31 | 2017-06-28 | 日本ケミコン株式会社 | Composite of metal compound nanoparticles and carbon, electrode having the composite, and electrochemical device |
JP5877630B2 (en) * | 2010-03-31 | 2016-03-08 | 日本ケミコン株式会社 | Electrochemical capacitor |
JP5877631B2 (en) * | 2010-03-31 | 2016-03-08 | 日本ケミコン株式会社 | Electrochemical capacitor |
KR101793762B1 (en) * | 2010-03-31 | 2017-11-03 | 닛뽄 케미콘 가부시끼가이샤 | Lithium titanate nanoparticles, composite of lithium titanate nanoparticles and carbon, method for producing said composite, electrode material comprising said composite, electrode using said electrode material, electrochemical element, and electrochemical capacitor |
JP5829796B2 (en) * | 2010-03-31 | 2015-12-09 | 日本ケミコン株式会社 | Method for producing composite of lithium titanate nanoparticles and carbon |
JP5877629B2 (en) * | 2010-03-31 | 2016-03-08 | 日本ケミコン株式会社 | Electrochemical capacitor |
JP5858395B2 (en) * | 2010-03-31 | 2016-02-10 | 日本ケミコン株式会社 | Method for producing composite of metal compound nanoparticles and carbon |
JP5836568B2 (en) | 2010-05-04 | 2015-12-24 | 日本ケミコン株式会社 | Lithium titanate crystal structure and carbon composite, manufacturing method thereof, electrode using the composite, and electrochemical device |
KR101112754B1 (en) * | 2010-05-18 | 2012-02-24 | 삼화콘덴서공업주식회사 | Active material for Anode, Method for manufacturing the same, And Secondary Battery and Super Capacitor including the Same |
JP2012012261A (en) * | 2010-07-02 | 2012-01-19 | Otsuka Chem Co Ltd | Method for producing porous lithium titanate, the porous lithium titanate and lithium battery using the same |
JP2012146763A (en) * | 2011-01-11 | 2012-08-02 | Nippon Chemicon Corp | Electrochemical capacitor |
WO2012133844A1 (en) * | 2011-03-30 | 2012-10-04 | 日本ケミコン株式会社 | Negative electrode active material, method for producing said negative electrode active material, and lithium-ion rechargeable battery using said negative electrode active material |
JPWO2013062126A1 (en) | 2011-10-29 | 2015-04-02 | 日本ケミコン株式会社 | Sheet composite, production method thereof, electrode and electrochemical element using the composite |
JP6429458B2 (en) | 2011-10-29 | 2018-11-28 | 日本ケミコン株式会社 | Method for producing electrode material |
JP6099038B2 (en) | 2012-11-13 | 2017-03-22 | 日本ケミコン株式会社 | Method for producing electrode material |
US9129756B2 (en) * | 2013-03-28 | 2015-09-08 | Corning Incorporated | Composite electrode for lithium ion capacitor |
US9905372B2 (en) | 2013-08-19 | 2018-02-27 | Nippon Chemi-Con Corporation | Electrochemical capacitor |
JP5965015B2 (en) * | 2015-03-23 | 2016-08-03 | 日本ケミコン株式会社 | Lithium titanate crystal structure |
JP6012057B2 (en) * | 2015-06-22 | 2016-10-25 | 日本ケミコン株式会社 | Method for producing lithium titanate nanoparticles |
JP6678012B2 (en) * | 2015-11-10 | 2020-04-08 | 日本ケミコン株式会社 | Electrode material, method for manufacturing electrode material, electrode, and power storage device |
JP7148873B2 (en) * | 2019-03-25 | 2022-10-06 | トヨタ自動車株式会社 | Manufacturing method of negative electrode active material |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005239460A (en) * | 2004-02-25 | 2005-09-08 | Ishihara Sangyo Kaisha Ltd | Method for manufacturing lithium titanate and lithium cell produced by using the lithium titanate |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4297533B2 (en) * | 1998-10-13 | 2009-07-15 | ホソカワミクロン株式会社 | Method for producing lithium ion battery material |
JP2005169315A (en) * | 2003-12-12 | 2005-06-30 | Hosokawa Funtai Gijutsu Kenkyusho:Kk | Method of producing compound powder |
JP2007160151A (en) * | 2005-12-09 | 2007-06-28 | K & W Ltd | Reaction method, metal oxide nanoparticle or metal oxide nanoparticle-deposited carbon obtained thereby, electrode containing the carbon and electrochemical element using the electrode |
-
2008
- 2008-03-28 JP JP2008086009A patent/JP5180643B2/en active Active
-
2010
- 2010-04-09 JP JP2010090098A patent/JP4944974B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005239460A (en) * | 2004-02-25 | 2005-09-08 | Ishihara Sangyo Kaisha Ltd | Method for manufacturing lithium titanate and lithium cell produced by using the lithium titanate |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012227147A (en) * | 2011-04-19 | 2012-11-15 | Samsung Sdi Co Ltd | Negative electrode active material, negative electrode and lithium battery including the negative electrode active material, and method of producing the negative electrode active material |
US9350015B2 (en) | 2011-04-19 | 2016-05-24 | Samsung Sdi Co., Ltd. | Anode active material, anode and lithium battery including the material, and method of preparing the material |
JP2013073854A (en) * | 2011-09-28 | 2013-04-22 | Nippon Chemicon Corp | Composite of lithium titanate and carbon nanofiber, production method therefor, electrode using composite and electrochemical element |
JP2014203606A (en) * | 2013-04-03 | 2014-10-27 | 日本ケミコン株式会社 | Composite material, method of producing the composite material, lithium ion secondary battery and electrochemical capacitor using the composite material |
CN108713152A (en) * | 2016-02-04 | 2018-10-26 | 西门子股份公司 | The method for determining the aging of electrochemical storage device |
CN108713152B (en) * | 2016-02-04 | 2021-05-25 | 劳斯莱斯德国有限两合公司 | Method for determining aged SOH of lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
JP4944974B2 (en) | 2012-06-06 |
JP2008270795A (en) | 2008-11-06 |
JP5180643B2 (en) | 2013-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4944974B2 (en) | Lithium titanate nanoparticle / carbon composite, method for producing the same, electrode material comprising the composite, electrode using the electrode material, and electrochemical device | |
JP5858395B2 (en) | Method for producing composite of metal compound nanoparticles and carbon | |
JP2010212309A (en) | Electrode material, and electrode containing the same | |
JP5836568B2 (en) | Lithium titanate crystal structure and carbon composite, manufacturing method thereof, electrode using the composite, and electrochemical device | |
WO2011122046A1 (en) | Lithium titanate nanoparticles, composite of lithium titanate nanoparticles and carbon, method for producing said composite, electrode material comprising said composite, electrode using said electrode material, electrochemical element, and electrochemical capacitor | |
JP6030708B1 (en) | Method for producing titanium niobium oxide negative electrode active material | |
JP6688840B2 (en) | METHOD FOR PRODUCING METAL COMPOUND PARTICLE, METAL COMPOUND PARTICLE, AND ELECTRODE FOR STORAGE DEVICE HAVING METAL COMPOUND PARTICLE | |
JP2017152217A (en) | Method of manufacturing negative electrode active material for secondary battery | |
JP5829796B2 (en) | Method for producing composite of lithium titanate nanoparticles and carbon | |
JP6172309B1 (en) | Lithium ion secondary battery | |
CN108598458B (en) | Nitrogen-doped lithium titanate composite material, preparation method thereof and lithium ion battery | |
JP6341961B2 (en) | Method for producing titanium niobium oxide negative electrode active material | |
JP6155316B2 (en) | Composite of metal compound nanoparticles and carbon, electrode having the composite, and electrochemical device | |
JP2018142420A (en) | Electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP2019067596A (en) | Method for manufacturing electrode material for lithium ion secondary battery | |
JP5846453B2 (en) | Method for producing positive electrode active material | |
JP6775937B2 (en) | Electrode material, method of manufacturing electrode material, and power storage device with electrode material | |
JP5969554B2 (en) | Positive electrode active material for secondary battery and method for producing the same | |
JP5877630B2 (en) | Electrochemical capacitor | |
JP6012057B2 (en) | Method for producing lithium titanate nanoparticles | |
JP2012104288A (en) | Composite of manganese oxide nanoparticle and carbon, method for manufacturing the same, and electrode and electrochemical element using the composite | |
WO2024078053A1 (en) | Negative electrode material, preparation method therefor, secondary battery, and electrical device | |
JP2017228437A (en) | Lithium sodium titanium oxide particle, electrode for power storage device including lithium sodium titanium oxide particles, and method for manufacturing lithium sodium titanium oxide particles | |
TWI671264B (en) | Process for producing spinel-lnmo material and use the same | |
JP2017091818A (en) | Electrode material, method for producing electrode material, electrode, and electricity storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120221 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120302 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4944974 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150309 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |