JP2005169315A - Method of producing compound powder - Google Patents

Method of producing compound powder Download PDF

Info

Publication number
JP2005169315A
JP2005169315A JP2003415188A JP2003415188A JP2005169315A JP 2005169315 A JP2005169315 A JP 2005169315A JP 2003415188 A JP2003415188 A JP 2003415188A JP 2003415188 A JP2003415188 A JP 2003415188A JP 2005169315 A JP2005169315 A JP 2005169315A
Authority
JP
Japan
Prior art keywords
powder
metal
metal elements
synthetic
synthetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003415188A
Other languages
Japanese (ja)
Inventor
Takehisa Fukui
武久 福井
Kenji Murata
憲司 村田
Makio Naito
牧男 内藤
Hiroya Abe
浩也 阿部
Kiyoshi Noshiro
清 野城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOSOKAWA FUNTAI GIJUTSU KENKYU
Hosokawa Powder Technology Research Institute
Original Assignee
HOSOKAWA FUNTAI GIJUTSU KENKYU
Hosokawa Powder Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOSOKAWA FUNTAI GIJUTSU KENKYU, Hosokawa Powder Technology Research Institute filed Critical HOSOKAWA FUNTAI GIJUTSU KENKYU
Priority to JP2003415188A priority Critical patent/JP2005169315A/en
Publication of JP2005169315A publication Critical patent/JP2005169315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of producing a compound powder efficiently in high quality without needing assistant addition and high temperature sintering. <P>SOLUTION: Powder 50 which contains metal, metal oxide, metal salt or metal organic salt and contains two kinds or more metal elements is used as raw material, a compressive force and a shear force are applied to the powder 50 in a dry state and, thereby, the metal elements included in the powder are connected to each other. Otherwise, the metal elements are connected to each other via one or more elements among oxygen element, nitrogen element and carbon element, thereby producing the compound powder of single phase containing a plurality of metal elements. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属、金属酸化物、金属塩、又は、金属有機塩からなる原料粉体同士を反応させて合成粉体を製造する合成粉体製造方法に関する。   The present invention relates to a synthetic powder production method for producing a synthetic powder by reacting raw material powders composed of metal, metal oxide, metal salt, or metal organic salt.

このような金属、金属酸化物、金属塩、金属有機物からなる粉体を原料として製造される金属基複合材料としては、燃料電池のインターコネクタ材料として利用されるランタンクロム酸化物(LaCrO)や、特にSOFC(固体酸化物形燃料電池)の空気極材料や巨大磁気抵抗を利用した磁気ヘッド材料などの電磁気材料として利用されるランタンストロンチウムマンガン酸化物(La(Sr)MnO)等のペロブスカイト型酸化物がある。そして、近年、このような誘電性及び圧電性等の電気的特性に優れたペロブスカイト型酸化物などの金属基複合材料である合成粉体を高品質且つ低価格に製造する技術が研究されている。 As a metal matrix composite material manufactured using such a metal, metal oxide, metal salt, or metal organic powder as a raw material, lanthanum chromium oxide (LaCrO 3 ) used as a fuel cell interconnector material, In particular, perovskite type such as lanthanum strontium manganese oxide (La (Sr) MnO 3 ) used as electromagnetic material such as air electrode material of SOFC (solid oxide fuel cell) and magnetic head material using giant magnetoresistance There is an oxide. In recent years, a technique for manufacturing a synthetic powder, which is a metal-based composite material such as a perovskite oxide excellent in electrical characteristics such as dielectricity and piezoelectricity, at high quality and at low cost has been studied. .

上記のような合成粉体製造方法としては、原料を固相状態で混合する粉末治金法等の固相法や、原料を液相状態で混合する液相法のほかに、メカノケミカル法がある。このようなメカノケミカル法は、原料の粉体に対して圧縮力、せん断力、衝撃力等の機械的な力を付与して、粉体を構成する原子同士を結合させる方法として知られている(例えば、特許文献1及び2を参照。)。
従来のメカノケミカル法では、金属等からなる粉体に対して、ボールミルなどで主に衝撃力を与えて粉砕混合するように構成されている。
Synthetic powder production methods such as those described above include solid-phase methods such as powder metallurgy that mix raw materials in the solid phase, liquid phase methods that mix raw materials in the liquid phase, and mechanochemical methods. is there. Such a mechanochemical method is known as a method of bonding atoms constituting the powder by applying mechanical force such as compressive force, shear force, impact force, etc. to the raw material powder. (For example, see Patent Documents 1 and 2.)
The conventional mechanochemical method is configured to pulverize and mix a powder made of metal or the like by mainly applying an impact force with a ball mill or the like.

特開平9−255893号公報JP-A-9-255893 特開平9−52773号公報Japanese Patent Laid-Open No. 9-52773

しかし、上記のような従来のメカノケミカル法による合成粉体製造方法のように、粉体に主に衝撃力を与えて粉砕混合して粉体を構成する原子同士を結合させる方法では、その結合が充分に進まないという問題があったため、原料の粉体に対して水酸化物又は水等の助剤を添加して反応を利用した粉砕混合や、粉砕混合した粉体に対して高温で焼結させるなどが必要であった。
そして、粉体に助剤を添加する場合には、その助剤を別に準備し、更に、合成後の合成粉体を乾燥させるなどの助剤を除去する必要があった。一方、合成粉体を高温で焼結させる場合には、結晶粒の成長が促進され、均質且つ微細な粉体を製造することができず、更に、蒸気圧が低い金属元素が揮発してしまい合成粉体の品質が低下する場合があった。
However, as in the case of the synthetic powder manufacturing method by the conventional mechanochemical method as described above, in the method in which the powders are mainly subjected to impact force and pulverized and mixed to bond the atoms constituting the powder, the bonding However, there is a problem that the powder does not proceed sufficiently. It was necessary to tie.
When an auxiliary agent is added to the powder, it is necessary to prepare the auxiliary agent separately, and further to remove the auxiliary agent such as drying the synthesized synthetic powder. On the other hand, when the synthetic powder is sintered at a high temperature, the growth of crystal grains is promoted, a homogeneous and fine powder cannot be produced, and the metal element having a low vapor pressure volatilizes. In some cases, the quality of the synthetic powder deteriorated.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、助剤添加及び高温焼結を行うことなく、合成粉体を高効率且つ高品質に製造することができる合成粉体製造方法を実現する点にある。   The present invention has been made in view of the above problems, and an object of the present invention is to produce a synthetic powder with high efficiency and high quality without adding an auxiliary agent and performing high-temperature sintering. The point is to realize the manufacturing method.

上記目的を達成するための本発明に係る合成粉体製造方法の第1特徴構成は、金属、金属酸化物、金属塩、又は、金属有機塩からなる二種以上の金属元素を含む粉体を原料とし、前記粉体に対して乾燥状態で圧縮力とせん断力とを付与することで、前記粉体に含まれる金属元素同士を結合させ、又は、該金属元素を酸素元素、窒素元素、炭素元素のうちの1以上の元素を介して結合させて、複数の金属元素を含む単一相の合成粉体を製造する点にある。   In order to achieve the above object, the first characteristic configuration of the synthetic powder production method according to the present invention is a powder containing two or more metal elements composed of metal, metal oxide, metal salt, or metal organic salt. By applying compressive force and shear force to the powder in a dry state as a raw material, the metal elements contained in the powder are bonded to each other, or the metal element is oxygen element, nitrogen element, carbon A single-phase synthetic powder containing a plurality of metal elements is produced by bonding via one or more of the elements.

本発明者らは、金属、金属酸化物、金属塩、及び、金属有機塩のうちの一種以上の金属化合物として存在する粉体であって、二種以上の金属元素を含む粉体を原料とし、その原料に対して、乾燥状態で強力な圧縮力とせん断力とを付与して摩砕することで、水などの助剤の添加及び高温の熱処理を必要とせずに、粉体に含まれる金属元素同士を結合させ、又は、該金属元素を酸素元素、窒素元素、炭素元素のうちの1以上の元素を介して結合させて、複数の金属元素を含む単一相の合成粉体を製造することができることを見出し、本発明を完成するに至った。
即ち、上記原料となる粉体に対して強力な圧縮力とせん断力とを付与して粉体を摩砕することで、粉体に例えば結晶の歪や新生面を形成することにより粉体の活性を高めながら、粉体に含まれる二種金属元素を、水などの助剤に阻まれることなく、非常に高いエネルギで上記のように結合させることができると考えられる。
従って、本発明により、助剤の添加及び高温での熱処理を行うことなく、合成粉体を高効率且つ高品質に製造することができる合成粉体製造方法を実現することができる。
The present inventors use, as a raw material, a powder that exists as one or more metal compounds of metal, metal oxide, metal salt, and metal organic salt, and contains two or more metal elements. By adding a strong compressive force and shearing force in the dry state to the raw material and grinding, it is included in the powder without the need for an auxiliary agent such as water and high-temperature heat treatment. A single-phase synthetic powder containing a plurality of metal elements is produced by bonding metal elements together, or by bonding the metal elements via one or more elements of oxygen element, nitrogen element, and carbon element. As a result, the present invention has been completed.
That is, by applying a strong compressive force and shearing force to the powder as the raw material and grinding the powder, for example, by forming a crystal strain or a new surface on the powder, the activity of the powder is increased. It is considered that the two metal elements contained in the powder can be bonded as described above with very high energy without being blocked by an auxiliary agent such as water.
Therefore, according to the present invention, it is possible to realize a synthetic powder production method capable of producing a synthetic powder with high efficiency and high quality without adding an auxiliary agent and performing heat treatment at a high temperature.

本発明に係る合成粉体製造方法の第2特徴構成は、前記粉体が堆積する堆積面と、前記堆積面に対向配置され凸状に湾曲する処理面とを、前記堆積面に沿って相対移動させることで、前記堆積面と前記処理面との間で、前記粉体に対して前記機械的な力を付与する点にある。   According to a second characteristic configuration of the synthetic powder manufacturing method of the present invention, a deposition surface on which the powder is deposited and a treatment surface that is disposed opposite to the deposition surface and is curved in a convex shape are relatively disposed along the deposition surface. By moving, the mechanical force is applied to the powder between the deposition surface and the processing surface.

上記第2特徴構成によれば、粉体が堆積する上記堆積面に対して処理面を堆積面に沿って相対移動させることで、堆積面に堆積している粉体に対して、処理面との間隙で、非常に強力な圧縮力とせん断力とを付与して摩砕することができ、粉体に含まれる金属元素の結合を一層促進させ、更に、1μm未満のナノサイズの非常に小さい合成粉体を得ることができる。   According to the second characteristic configuration, the processing surface is moved relative to the deposition surface on which the powder is deposited, and the processing surface is moved relative to the powder deposited on the deposition surface by moving the processing surface along the deposition surface. It is possible to grind by applying a very strong compressive force and shear force in the gap of the metal, further promoting the bonding of the metal elements contained in the powder, and further, the nano size of less than 1 μm is very small Synthetic powder can be obtained.

本発明に係る合成粉体製造方法の第3特徴構成は、前記合成粉体がペロブスカイト型酸化物である点にある。   A third characteristic configuration of the synthetic powder manufacturing method according to the present invention is that the synthetic powder is a perovskite oxide.

上記第3特徴構成によれば、粉体に対して乾燥状態で圧縮力とせん断力とを付与することで粉体に含まれる該金属元素を酸素元素を介して結合させて、複数の金属元素を含む単一相の、導電性、誘電性及び圧電性等の電気的特性、並びに触媒活性に優れたペロブスカイト型酸化物の合成粉体を、高効率且つ高品質に製造することができる。   According to the third characteristic configuration, the metal element contained in the powder is bonded through the oxygen element by applying a compressive force and a shear force in a dry state to the powder, and a plurality of metal elements A perovskite-type oxide synthetic powder having excellent single-phase electrical characteristics such as conductivity, dielectric property and piezoelectricity, and catalytic activity can be produced with high efficiency and high quality.

本発明に係る合成粉体製造方法の第4特徴構成は、前記粉体が、希土類金属から選択される一種以上の金属元素、Li,Na,Kのアルカリ金属から選択される一種以上の金属元素、Ba,Mg,Ca,Srのアルカリ土類金属から選択される一種以上の金属元素、及び、Cr,Mn,Fe,Co,Ni,Ti,V,Ge,Cu,Zr,Pb,W,Sb,Bi,Zn,Nbの遷移金属から選択される一種以上の金属元素を二種以上含む点にある。   A fourth characteristic configuration of the synthetic powder manufacturing method according to the present invention is that the powder is one or more metal elements selected from rare earth metals, one or more metal elements selected from Li, Na, and K alkali metals. One or more metal elements selected from alkaline earth metals of Ba, Mg, Ca, and Sr, and Cr, Mn, Fe, Co, Ni, Ti, V, Ge, Cu, Zr, Pb, W, and Sb , Bi, Zn, and Nb. One or more metal elements selected from transition metals are included.

上記第4特徴構成によれば、特定の金属元素を含む粉体を原料として、高効率且つ高品質に合成粉体を製造することができる。かかる合成粉体は、導電性、触媒活性、磁性、誘電性、圧電性等の特性を有し、電極材料、触媒材料、誘電材料、圧電材料、導電材料、磁性材料等に利用される。   According to the fourth characteristic configuration, a synthetic powder can be manufactured with high efficiency and high quality using a powder containing a specific metal element as a raw material. Such synthetic powder has properties such as conductivity, catalytic activity, magnetism, dielectricity, and piezoelectricity, and is used for electrode materials, catalyst materials, dielectric materials, piezoelectric materials, conductive materials, magnetic materials, and the like.

本発明に係る合成粉体製造方法の第5特徴構成は、前記合成粉体を熱処理する点にある。   The fifth characteristic configuration of the synthetic powder manufacturing method according to the present invention is that the synthetic powder is heat-treated.

上記第5特徴構成によれば、粉体に対して乾燥状態で圧縮力とせん断力とを付与することで粉体に含まれる金属元素同士を結合させ、又は、該金属元素を酸素元素、窒素元素、炭素元素のうちの1以上の元素を介して結合させることができるが、その合成粉体における金属元素の結合が不十分な場合には、その合成粉体に対して所定温度に加熱して熱処理を行うことで、金属元素を完全に結合させて、一層高品質な合成粉体を製造することができる。また、この熱処理前の合成粉体においては金属元素の結合が比較的進行しているので、熱処理における加熱温度を焼結時における加熱よりも比較的低温とすることができ、粒成長を抑制すると共に、低蒸気圧の金属の揮発を抑制して所望の合成粉体を得ることができる。   According to the fifth feature, the metal elements contained in the powder are bonded to each other by applying compressive force and shear force to the powder in a dry state, or the metal elements are combined with oxygen element, nitrogen. It can be bonded via one or more of the elements and carbon elements, but if the binding of metal elements in the synthetic powder is insufficient, the synthetic powder is heated to a predetermined temperature. By performing the heat treatment, it is possible to produce a higher quality synthetic powder by completely bonding the metal elements. In addition, since the bonding of metal elements is relatively advanced in the synthetic powder before the heat treatment, the heating temperature in the heat treatment can be made relatively lower than the heating during the sintering, thereby suppressing grain growth. At the same time, volatilization of the low vapor pressure metal can be suppressed to obtain a desired synthetic powder.

本発明の実施の形態について、図面に基づいて説明する。
本発明の合成粉体製造方法は、金属、金属酸化物、金属塩、又は、金属有機塩からなる二種以上の金属元素を含む粉体を原料とし、後述する粉体処理装置を利用して、前記粉体に対して乾燥状態で、圧縮力とせん断力とを付与することで、前記粉体に含まれる金属元素同士を結合させ、又は、該金属元素を酸素元素、窒素元素、炭素元素のうちの1以上の元素を介して結合させて、複数の金属元素を含む単一相の合成粉体を製造する方法である。先ず、この合成粉体製造方法に利用される粉体処理装置について、説明する。
Embodiments of the present invention will be described with reference to the drawings.
The synthetic powder production method of the present invention uses, as a raw material, a powder containing two or more metal elements composed of a metal, a metal oxide, a metal salt, or a metal organic salt, and uses a powder processing apparatus described later. By applying compressive force and shear force to the powder in a dry state, the metal elements contained in the powder are bonded to each other, or the metal element is oxygen element, nitrogen element, carbon element In this method, a single-phase synthetic powder containing a plurality of metal elements is produced by bonding via one or more elements. First, the powder processing apparatus used for this synthetic powder manufacturing method will be described.

図1及び図2に示す粉体処理装置には、主に、基台1に設置された略円筒形状のケーシング2と、このケーシング2の内部に配置され筒軸心を中心に回転自在な有底略円筒状の容器部材3と、容器部材3の内部に配置されケーシング2に固定されたプレスヘッド5とが設けられている。また、プレスヘッド5は、容器部材3の円筒軸心側から、容器部材3の内面である堆積面3a側に突出し、そして、プレスヘッド5の先端部には、堆積面3aに対向して凸状に湾曲した処理面5aが形成されている。
また、原料の粉体50は、容器部材3内に供給される。
The powder processing apparatus shown in FIG. 1 and FIG. 2 mainly includes a substantially cylindrical casing 2 installed on a base 1 and an inside which is disposed inside the casing 2 and is rotatable around a cylinder axis. A substantially cylindrical container member 3 and a press head 5 disposed inside the container member 3 and fixed to the casing 2 are provided. Further, the press head 5 protrudes from the cylindrical axis side of the container member 3 toward the deposition surface 3a, which is the inner surface of the container member 3, and the tip of the press head 5 protrudes in opposition to the deposition surface 3a. A processing surface 5a curved in a shape is formed.
The raw material powder 50 is supplied into the container member 3.

容器部材3は、ケーシング2に軸受けされた軸体15に固定され、その軸体15の軸心周りに回転自在に構成されている。更に、軸体15を回転駆動するモータ、プーリー、及び、ベルト等からなる回転駆動手段16が設けられている。   The container member 3 is fixed to a shaft body 15 supported by the casing 2 and is configured to be rotatable around the axis of the shaft body 15. Furthermore, a rotation driving means 16 including a motor, a pulley, a belt, and the like that rotationally drive the shaft body 15 is provided.

回転駆動手段16は、軸体15を回転駆動することで、容器部材3を、ケーシング2に固定されたプレスヘッド5に対して相対回転させて、容器部材3の内面である堆積面3aと、プレスヘッド5の処理面5aとを、堆積面3aに沿って相対移動させる。   The rotation driving means 16 rotates the shaft body 15 to rotate the container member 3 relative to the press head 5 fixed to the casing 2, and the deposition surface 3 a that is the inner surface of the container member 3; The processing surface 5a of the press head 5 is relatively moved along the deposition surface 3a.

この回転駆動手段16により、堆積面3aと処理面5aとを堆積面3aに沿って相対移動させることで、堆積面3aと処理面5aとの間隙7にある粉体50に対して、乾燥状態で、非常に強力な圧縮力とせん断力とを付与する摩砕処理を行うことができる。   The rotational driving means 16 moves the deposition surface 3a and the treatment surface 5a relative to each other along the deposition surface 3a, so that the powder 50 in the gap 7 between the deposition surface 3a and the treatment surface 5a is dried. Thus, it is possible to perform a grinding treatment that imparts a very strong compressive force and shear force.

そして、金属、金属酸化物、金属塩、又は、金属有機塩からなる二種以上の金属元素を含む粉体50を原料として容器部材3内に投入し、回転駆動手段16を働かせて、その粉体50に対して乾燥状態で非常に強力な圧縮力とせん断力とを付与することで、粉体50を処理面5aにより堆積面3a側に押し付けながら擦りつけて、粉体50の表面又はその近傍に歪を発生させたり新生面を形成して、粉体50を活性化させることができ、このように活性化した粉体50が更に粉砕混合されることで、その粉体50に含まれる金属元素同士が結合し、又は、該金属元素が、供給された酸素元素、窒素元素、炭素元素のうちの1以上の元素を介して結合して、複数の金属元素を含む単一相の合成粉体が製造される。   Then, a powder 50 containing two or more kinds of metal elements made of metal, metal oxide, metal salt, or metal organic salt is put into the container member 3 as a raw material, and the rotational drive means 16 is operated to produce the powder. By applying a very strong compressive force and shearing force to the body 50 in a dry state, the powder 50 is rubbed while being pressed against the deposition surface 3a side by the treatment surface 5a, and the surface of the powder 50 or its surface The powder 50 can be activated by generating a strain or forming a new surface in the vicinity, and the powder 50 thus activated is further pulverized and mixed, whereby the metal contained in the powder 50 Single-phase synthetic powder containing a plurality of metal elements in which the elements are bonded to each other or the metal elements are bonded through one or more of the supplied oxygen element, nitrogen element, and carbon element The body is manufactured.

尚、堆積面3aと処理面5aとの間隙7の幅は、プレスヘッド5を堆積面5aに交差する方向に移動させることで調整可能である。
また、処理面5aと堆積面3aとの相対移動の速度は、回転駆動手段16による回転速度を調整することにより調整可能である。また、その回転速度を回転駆動手段16の回転能力以上としたい場合には、容器部材3の内径を拡大して、相対移動速度を稼ぐことができる。
また、堆積面3aと処理面5aとの間隙7の幅や相対移動速度は、原料となる粉体50から所望の合成粉体を得るための実験により適宜決定することができ、例えば、1μm未満のナノサイズの非常に小さい合成粉体を得ることができる。
The width of the gap 7 between the deposition surface 3a and the processing surface 5a can be adjusted by moving the press head 5 in a direction intersecting the deposition surface 5a.
Further, the speed of relative movement between the processing surface 5a and the deposition surface 3a can be adjusted by adjusting the rotation speed by the rotation driving means 16. Further, when the rotational speed is desired to be greater than or equal to the rotational capacity of the rotation driving means 16, the inner diameter of the container member 3 can be enlarged to increase the relative movement speed.
The width of the gap 7 between the deposition surface 3a and the treatment surface 5a and the relative movement speed can be appropriately determined by an experiment for obtaining a desired synthetic powder from the raw material powder 50, for example, less than 1 μm. It is possible to obtain a nano-sized synthetic powder having a very small size.

プレスヘッド5によって圧縮力及びせん断力を付与された粉体50は、主に容器部材3の周壁8に設けた孔部9を介して外方に排出され、周壁8の外周部に形成した羽根部材10によって再び容器部材3の内部に循環される。本構成により、処理面5aと堆積面3aとの間隙7に挟まれた粉体50を積極的に流動・循環させ、堆積面3aに対する粉体50の付着量を少なくすることができる。
この粉体処理装置のごとく、孔部9を介して粉体50を循環させる構成の装置を用いることとすれば、粉体50に作用させる圧縮力等を適宜加減することができる。
例えば、孔部9の開口面積を広く設定しておけば、粉体50は容器部材3の外部に容易に排出されるから、粉体50に対する処理面5aの作用時間が短くなり、粉体50に作用する圧縮力が結果的に弱まることとなる。逆に、孔部9の開口面積を狭く設定しておけば、粉体50に対する処理面5aの作用時間が長くなり、圧縮力は強まることとなる。
The powder 50 applied with compressive force and shear force by the press head 5 is discharged to the outside mainly through a hole 9 provided in the peripheral wall 8 of the container member 3, and a blade formed on the outer peripheral portion of the peripheral wall 8. The member 10 is again circulated inside the container member 3. With this configuration, the powder 50 sandwiched in the gap 7 between the processing surface 5a and the deposition surface 3a can be actively flowed and circulated, and the amount of the powder 50 attached to the deposition surface 3a can be reduced.
If a device configured to circulate the powder 50 through the hole 9 as in this powder processing device is used, the compressive force applied to the powder 50 can be appropriately adjusted.
For example, if the opening area of the hole 9 is set wide, the powder 50 is easily discharged to the outside of the container member 3, so that the operation time of the processing surface 5 a on the powder 50 is shortened, and the powder 50 As a result, the compressive force acting on is weakened. On the contrary, if the opening area of the hole 9 is set to be narrow, the action time of the treatment surface 5a on the powder 50 becomes longer, and the compressive force becomes stronger.

これまで説明してきた粉体処理装置を用いて、金属、金属酸化物、金属塩、又は、金属有機塩からなる二種以上の金属元素を含む粉体50を原料とし、その粉体50に対して乾燥状態で圧縮力とせん断力とを付与することで、粉体50に含まれる金属元素同士を結合させ、又は、該金属元素を酸素元素、窒素元素、炭素元素のうちの1以上の元素を介して結合させて、複数の金属元素を含む単一相の合成粉体を高効率且つ高品質に製造することができ、更に、1μm未満のナノサイズの非常に小さい合成粉体を得ることができる。
また、下記の表1に示すように、原料となる粉体50を選択すれば、導電性、誘電性及び圧電性等の電気的特性や触媒特性に優れた所望のペロブスカイト型酸化物等の合成粉体を製造することができる。
Using the powder processing apparatus described so far, a powder 50 containing two or more metal elements composed of metal, metal oxide, metal salt, or metal organic salt is used as a raw material, and the powder 50 By applying compressive force and shearing force in a dry state, the metal elements contained in the powder 50 are bonded to each other, or the metal element is one or more elements of oxygen element, nitrogen element, and carbon element To produce a single-phase synthetic powder containing a plurality of metal elements with high efficiency and high quality, and to obtain a very small synthetic powder having a nano size of less than 1 μm. Can do.
In addition, as shown in Table 1 below, if a powder 50 as a raw material is selected, synthesis of a desired perovskite oxide having excellent electrical characteristics such as conductivity, dielectricity, and piezoelectricity, and catalytic characteristics, etc. Powder can be manufactured.

尚、上記表1では、原料となる粉体50を金属酸化物、金属塩、又は、金属有機塩から選択したが、別に、粉体50としてそれ以外の金属を選択しても構わない。   In Table 1 above, the raw material powder 50 is selected from a metal oxide, a metal salt, or a metal organic salt. However, another metal may be selected as the powder 50.

また、原料となる粉体50が、希土類金属から選択される一種以上の金属元素、Li,Na,Kのアルカリ金属から選択される一種以上の金属元素、Ba,Mg,Ca,Srのアルカリ土類金属から選択される一種以上の金属元素、及び、Cr,Mn,Fe,Co,Ni,Ti,V,Ge,Cu,Zr,Pb,W,Sb,Bi,Zn,Nbの遷移金属から選択される一種以上の金属元素を二種以上含むものであれば、導電性、触媒活性、磁性、誘電性、圧電性等の特性を有する合成粉体を高効率且つ高品質に製造することができ、このような合成粉体は電極材料、触媒材料、誘電材料、圧電材料、導電材料、磁性材料等に利用される。   In addition, the raw material powder 50 is one or more metal elements selected from rare earth metals, one or more metal elements selected from Li, Na, and K alkali metals, and alkaline earths of Ba, Mg, Ca, and Sr. One or more metal elements selected from similar metals and transition metals such as Cr, Mn, Fe, Co, Ni, Ti, V, Ge, Cu, Zr, Pb, W, Sb, Bi, Zn, and Nb Synthetic powders having properties such as conductivity, catalytic activity, magnetism, dielectricity, and piezoelectricity can be produced with high efficiency and high quality if they contain at least one kind of metal element. Such synthetic powders are used for electrode materials, catalyst materials, dielectric materials, piezoelectric materials, conductive materials, magnetic materials, and the like.

また、本合成粉体製造方法では、前述の粉体処理装置により、粉体50に対して乾燥状態で圧縮力とせん断力とを付与することで得た合成粉体に対して、所定温度に加熱して熱処理を行うことで、粉体50に含まれる金属元素を完全に結合させて、一層高品質な合成粉体を製造することができる。   Moreover, in this synthetic powder manufacturing method, with respect to the synthetic powder obtained by applying a compressive force and a shearing force to the powder 50 in a dry state by the above-described powder processing apparatus, the synthetic powder is brought to a predetermined temperature. By performing heat treatment by heating, the metal element contained in the powder 50 can be completely bonded, and a higher quality synthetic powder can be produced.

以下に、これまで説明してきた粉体処理装置を用いて、実際に合成粉体を製造した実施例について、説明する。   Hereinafter, examples in which a synthetic powder was actually manufactured using the powder processing apparatus described so far will be described.

本実施例では、酸化ランタン(La)粉体、三酸化二マンガン(Mn)粉体、炭酸ストロンチウム(SrCO)粉体を所定の割合で混合した粉体を原料とし、これまで説明してきた粉体処理装置を用いて、この原料の粉体50に対して乾燥状態で圧縮力とせん断力とを付与する摩砕処理を行うことで、ランタンストロンチウムマンガン酸化物(La(Sr)MnO)の合成粉体を製造した。 In this example, lanthanum oxide (La 2 O 3 ) powder, dimanganese trioxide (Mn 2 O 3 ) powder, and strontium carbonate (SrCO 3 ) powder mixed at a predetermined ratio are used as raw materials. By using the powder processing apparatus described so far, this raw material powder 50 is subjected to a grinding treatment that imparts a compressive force and a shearing force in a dry state, whereby lanthanum strontium manganese oxide (La ( A synthetic powder of Sr) MnO 3 ) was produced.

尚、本実施例における各種条件は、以下のように設定した。
容器部材3の回転数:2000〜3000rpm
処理面5aと堆積面3aとの相対移動の速度:30〜60m/sec
堆積面3aと処理面5aとの間隙7の幅:3mm
摩砕処理時間:40分、120分
Various conditions in this example were set as follows.
The rotation speed of the container member 3: 2000 to 3000 rpm
Speed of relative movement between the processing surface 5a and the deposition surface 3a: 30 to 60 m / sec
Width of gap 7 between deposition surface 3a and treatment surface 5a: 3 mm
Milling time: 40 minutes, 120 minutes

本実施例で製造したランタンストロンチウムマンガン酸化物の合成粉体は、図3の顕微鏡写真に示すように、BET比表面積約7.1m/g、計算粒子径約150nmの非常に小さい合成粉体が、適当に数μm程度の凝集体を形成して存在する状態となっており、このような凝集体はある程度の大きさを有することから可搬性に優れたものとなっている。
また、本実施例で得た合成粉体を、X線回折装置により成分分析を行うと、40分間摩砕処理して得た合成粉体は、図4に示すように、合成が不完全であり、ランタンストロンチウムマンガン酸化物と共に、原料粉体である酸化ランタン、三酸化二マンガンが残存していることが判る。しかし。120分間処理して得た合成粉体は、図5に示すように、殆ど原料粉体が残存しておらず、極めて純粋なランタンストロンチウムマンガン酸化物であることが確認できた。
また、このようにして得たランタンストロンチウムマンガン酸化物の合成粉体のBET比表面積は約7.1m/gであることから、それから計算される粒子径が約150nmであった。
The synthetic powder of lanthanum strontium manganese oxide produced in this example is a very small synthetic powder having a BET specific surface area of about 7.1 m 2 / g and a calculated particle diameter of about 150 nm, as shown in the micrograph of FIG. However, it is in a state in which an aggregate of about several μm is appropriately formed, and such an aggregate has a certain size and thus has excellent portability.
In addition, when the synthetic powder obtained in this example was subjected to component analysis using an X-ray diffractometer, the synthetic powder obtained by grinding for 40 minutes was incompletely synthesized as shown in FIG. It can be seen that lanthanum oxide and dimanganese trioxide, which are raw material powders, remain together with the lanthanum strontium manganese oxide. However. As shown in FIG. 5, the synthetic powder obtained by the treatment for 120 minutes had almost no raw material powder remaining, and it was confirmed that it was an extremely pure lanthanum strontium manganese oxide.
Further, since the BET specific surface area of the synthetic powder of lanthanum strontium manganese oxide thus obtained was about 7.1 m 2 / g, the particle diameter calculated therefrom was about 150 nm.

また、上記の40分間摩砕処理して得た合成粉体に対して、800℃で2時間加熱する熱処理を行うことでも、上記120分間摩砕処理して得た合成粉体と同様に、極めて純粋なランタンストロンチウムマンガン酸化物の合成粉体を得ることができた。   Also, the synthetic powder obtained by grinding for 40 minutes can be heat-treated at 800 ° C. for 2 hours, similarly to the synthetic powder obtained by grinding for 120 minutes. A very pure synthetic powder of lanthanum strontium manganese oxide could be obtained.

一方、比較例として、上記実施例と同じ原料粉体を用いて従来の合成粉体製造方法で合成粉体を製造した。
この従来の合成粉体製造方法としては、媒体としてのエタノールに、原料粉体と、粉砕用のジルコニア製のボールとを投入して、16時間混合した後に、1000℃で12時間加熱して、粉体に含まれる金属元素同士を焼結させる方法を採用した。
本比較例で製造したランタンストロンチウムマンガン酸化物の合成粉体は、図6の顕微鏡写真に示すように、BET比表面積約0.41m/g、計算粒子径約10μmの合成粉体であり、本実施例と比較して、高温焼結により結晶成長が促進され、粒径が比較的大きなものとなった。
このことから、本実施例の合成粉体製造方法で製造した合成粉体は、従来の合成粉体製造方法と比較して、非常に小さい合成粉体を製造することができることが確認できた。
On the other hand, as a comparative example, a synthetic powder was produced by a conventional synthetic powder production method using the same raw material powder as in the above example.
As this conventional synthetic powder production method, raw material powder and zirconia balls for pulverization are introduced into ethanol as a medium, mixed for 16 hours, heated at 1000 ° C. for 12 hours, A method of sintering metal elements contained in the powder was adopted.
The synthetic powder of lanthanum strontium manganese oxide produced in this comparative example is a synthetic powder having a BET specific surface area of about 0.41 m 2 / g and a calculated particle diameter of about 10 μm, as shown in the micrograph of FIG. Compared with this example, crystal growth was promoted by high-temperature sintering, and the particle size became relatively large.
From this, it was confirmed that the synthetic powder produced by the synthetic powder production method of this example can produce a very small synthetic powder as compared with the conventional synthetic powder production method.

本発明に係る合成粉体製造方法を実行するための粉体処理装置を示す概略立面図Schematic elevation view showing a powder processing apparatus for carrying out the synthetic powder manufacturing method according to the present invention 図1に示す粉体処理装置の概略平面図Schematic plan view of the powder processing apparatus shown in FIG. 本発明に係る合成粉体製造方法により得た合成粉体の顕微鏡写真Photomicrograph of synthetic powder obtained by the synthetic powder manufacturing method according to the present invention 本発明に係る合成粉体製造方法により得た合成粉体のX線回折装置による解析結果を示す図The figure which shows the analysis result by the X-ray-diffraction apparatus of the synthetic powder obtained by the synthetic powder manufacturing method concerning this invention 本発明に係る合成粉体製造方法により得た合成粉体のX線回折装置による解析結果を示す図The figure which shows the analysis result by the X-ray-diffraction apparatus of the synthetic powder obtained by the synthetic powder manufacturing method concerning this invention 従来の合成粉体製造方法により得た合成粉体の顕微鏡写真Micrograph of synthetic powder obtained by conventional synthetic powder manufacturing method

符号の説明Explanation of symbols

3:容器部材
3a:堆積面
5:プレスヘッド
5a:処理面
16:回転駆動手段
50:粉体
3: Container member 3a: Deposition surface 5: Press head 5a: Processing surface 16: Rotation drive means 50: Powder

Claims (5)

金属、金属酸化物、金属塩、又は、金属有機塩からなる二種以上の金属元素を含む粉体を原料とし、前記粉体に対して乾燥状態で圧縮力とせん断力とを付与することで、前記粉体に含まれる金属元素同士を結合させ、又は、該金属元素を酸素元素、窒素元素、炭素元素のうちの1以上の元素を介して結合させて、複数の金属元素を含む単一相の合成粉体を製造することを特徴とする合成粉体製造方法。   By using a powder containing two or more metal elements consisting of metal, metal oxide, metal salt, or metal organic salt as a raw material, and applying compressive force and shear force to the powder in a dry state A single element containing a plurality of metal elements by bonding metal elements contained in the powder or by bonding the metal elements through one or more elements of oxygen element, nitrogen element, and carbon element A synthetic powder production method comprising producing a synthetic powder of a phase. 前記粉体が堆積する堆積面と、前記堆積面に対向配置され凸状に湾曲する処理面とを、前記堆積面に沿って相対移動させることで、前記堆積面と前記処理面との間で、前記粉体に対して前記機械的な力を付与することを特徴とする請求項1に記載の合成粉体製造方法。   By relatively moving a deposition surface on which the powder is deposited and a processing surface that is arranged to be opposed to the deposition surface and is curved in a convex shape, between the deposition surface and the processing surface. The synthetic powder manufacturing method according to claim 1, wherein the mechanical force is applied to the powder. 前記合成粉体がペロブスカイト型酸化物であることを特徴とする請求項1又は2に記載の合成粉体製造方法。   The method for producing a synthetic powder according to claim 1 or 2, wherein the synthetic powder is a perovskite oxide. 前記粉体が、希土類金属から選択される一種以上の金属元素、Li,Na,Kのアルカリ金属から選択される一種以上の金属元素、Ba,Mg,Ca,Srのアルカリ土類金属から選択される一種以上の金属元素、及び、Cr,Mn,Fe,Co,Ni,Ti,V,Ge,Cu,Zr,Pb,W,Sb,Bi,Zn,Nbの遷移金属から選択される一種以上の金属元素を二種以上含むことを特徴とする請求項1又は2に記載の合成粉体製造方法。   The powder is selected from one or more metal elements selected from rare earth metals, one or more metal elements selected from alkali metals of Li, Na and K, and alkaline earth metals of Ba, Mg, Ca and Sr. One or more metal elements selected from the group consisting of Cr, Mn, Fe, Co, Ni, Ti, V, Ge, Cu, Zr, Pb, W, Sb, Bi, Zn, and Nb. The method for producing a synthetic powder according to claim 1 or 2, comprising two or more metal elements. 前記合成粉体を熱処理することを特徴とする請求項1から4の何れか1項に記載の合成粉体製造方法。   The synthetic powder manufacturing method according to claim 1, wherein the synthetic powder is heat-treated.
JP2003415188A 2003-12-12 2003-12-12 Method of producing compound powder Pending JP2005169315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003415188A JP2005169315A (en) 2003-12-12 2003-12-12 Method of producing compound powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003415188A JP2005169315A (en) 2003-12-12 2003-12-12 Method of producing compound powder

Publications (1)

Publication Number Publication Date
JP2005169315A true JP2005169315A (en) 2005-06-30

Family

ID=34734768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003415188A Pending JP2005169315A (en) 2003-12-12 2003-12-12 Method of producing compound powder

Country Status (1)

Country Link
JP (1) JP2005169315A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066581A1 (en) * 2005-12-09 2007-06-14 K & W Limited Reaction method, metal oxide nanoparticles or carbon carrying the nanoparticles, obtained by the method, electrodes containing the carbon, and electrochemical devices with the electrodes
JP2008007394A (en) * 2005-12-16 2008-01-17 Hokko Chem Ind Co Ltd Method for producing precursor of perovskite type composite oxide and method for producing perovskite type composite oxide
JP2008270795A (en) * 2007-03-28 2008-11-06 Nippon Chemicon Corp Reaction method and metal oxide nano-particles obtained using the method, or metal oxide nanoparticle-dispersed/deposited carbon and electrode containing this carbon and electric chemical element using this electrode
JP2010180099A (en) * 2009-02-05 2010-08-19 Hosokawa Micron Corp Method for producing compound oxide powder
JP2010225590A (en) * 2010-03-31 2010-10-07 Nippon Chemicon Corp Carbon carrying high-dispersion metal oxide nano particle, electrode material containing this carbon, electrode using the electrode material, and electrochemical element
JP2013219009A (en) * 2012-10-29 2013-10-24 Nippon Chemicon Corp Reaction method and metal oxide nanoparticle obtained by the same, or carbon carrying metal oxide nanoparticle, electrode containing carbon, and electrochemical element using electrode
JP2015163582A (en) * 2015-03-31 2015-09-10 日本ケミコン株式会社 Manufacturing method of metallic oxide, electrode and electrochemical element
JP2016176007A (en) * 2015-03-20 2016-10-06 株式会社カネカ Composite particle for yag phosphor, yag phosphor and production method of the same
JP2019147968A (en) * 2019-06-13 2019-09-05 株式会社カネカ Composite particle for yag phosphor, yag phosphor and light-emitting device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140209833A1 (en) * 2005-12-09 2014-07-31 Nippon Chemi-Con Corporation Carbon that carries a metal oxide nanoparticle, an electrode, and an electrochemical device incorporating the same
JP2007160151A (en) * 2005-12-09 2007-06-28 K & W Ltd Reaction method, metal oxide nanoparticle or metal oxide nanoparticle-deposited carbon obtained thereby, electrode containing the carbon and electrochemical element using the electrode
US20100025627A1 (en) * 2005-12-09 2010-02-04 K & W Limited Reaction method, metal oxide nanoparticle or carbon carrying the nanoparticle, obtained by the method, electrode containing the carbon, and electrochemical device with the electrode
WO2007066581A1 (en) * 2005-12-09 2007-06-14 K & W Limited Reaction method, metal oxide nanoparticles or carbon carrying the nanoparticles, obtained by the method, electrodes containing the carbon, and electrochemical devices with the electrodes
US20170279116A1 (en) * 2005-12-09 2017-09-28 Nippon Chemi-Con Corporation Carbon that carries a metal oxide nanoparticle, an electrode, and an electrochemical device incorporating the same
JP2008007394A (en) * 2005-12-16 2008-01-17 Hokko Chem Ind Co Ltd Method for producing precursor of perovskite type composite oxide and method for producing perovskite type composite oxide
JP2008270795A (en) * 2007-03-28 2008-11-06 Nippon Chemicon Corp Reaction method and metal oxide nano-particles obtained using the method, or metal oxide nanoparticle-dispersed/deposited carbon and electrode containing this carbon and electric chemical element using this electrode
JP2010180099A (en) * 2009-02-05 2010-08-19 Hosokawa Micron Corp Method for producing compound oxide powder
JP2010225590A (en) * 2010-03-31 2010-10-07 Nippon Chemicon Corp Carbon carrying high-dispersion metal oxide nano particle, electrode material containing this carbon, electrode using the electrode material, and electrochemical element
JP2013219009A (en) * 2012-10-29 2013-10-24 Nippon Chemicon Corp Reaction method and metal oxide nanoparticle obtained by the same, or carbon carrying metal oxide nanoparticle, electrode containing carbon, and electrochemical element using electrode
JP2016176007A (en) * 2015-03-20 2016-10-06 株式会社カネカ Composite particle for yag phosphor, yag phosphor and production method of the same
JP2015163582A (en) * 2015-03-31 2015-09-10 日本ケミコン株式会社 Manufacturing method of metallic oxide, electrode and electrochemical element
JP2019147968A (en) * 2019-06-13 2019-09-05 株式会社カネカ Composite particle for yag phosphor, yag phosphor and light-emitting device

Similar Documents

Publication Publication Date Title
KR101091272B1 (en) Fabrication method of nanocomposite powders consisted with carbon nanotubes and metal
Baláž et al. Hallmarks of mechanochemistry: from nanoparticles to technology
Zhang et al. Effect of Fe2O3 crystallite size on its mechanochemical reaction with La2O3 to form LaFeO3
CN108778994A (en) The inorganic matrix composite of graphene enhancing is produced without chemicals formula
EP2857476B1 (en) Method for manufacturing alumina-based abrasive grains for abrasive material
TW200844071A (en) Complex oxide powder, method for preparing the complex oxide powder, ceramic composition and ceramic electronic component comprising the complex oxide powder
JP2011508378A (en) Small particle electrode material composition and method for forming small particle electrode material composition
JP2005169315A (en) Method of producing compound powder
JP2009051690A (en) Composite oxide powder and its manufacturing method, ceramic composition using composite oxide powder, and ceramic electronic component using the same
US20240096532A1 (en) Magnetoelectronic device comprising ferrite-based nanocomposite
JP5529419B2 (en) Method for producing composite oxide powder
KR100839541B1 (en) Synthetic method of nano-size lead-free piezoceramic powder by mechanochemical process
Ng et al. Bismuth titanate from mechanical activation of a chemically coprecipitated precursor
JP3135036B2 (en) Method for producing composite oxide ceramics
Čelko et al. High-energy ball milling and spark plasma sintering of molybdenum-lanthanum oxide (Mo-La2O3) and molybdenum–lanthanum zirconate (Mo-La2Zr2O7) composite powders
Kong et al. Reaction sintering of partially reacted system for PZT ceramics via a high-energy ball milling
Quetel-Weben et al. Thermoelectric Ca0. 9Yb0. 1MnO3− δ grain growth controlled by spark plasma sintering
Ngida et al. Utilization of leached MnO2 for the mechanosynthesis of nano LaxCa1-xMnO3 and LaxSr1-xMnO3: Sinterability and properties
CN109047788A (en) A kind of ultrafine yttria Doped Tungsten composite nanometre powder preparation method of cyclic oxidation reduction
Alamdari et al. Mechanochemistry
KR20130006039A (en) The thermoelectric device having improved thermoelectric efficiency and manufacturing method thereof
JP2006206360A (en) Ferrite magnetic material and its manufacturing method
JP6006111B2 (en) Method for producing ceramic slurry
Jha et al. Dielectric Properties of Dual Phase (Cu-Zn-Ni-Mg-Fe) O High Entropy Oxide
KR20160017947A (en) Thermoelectric material for n-typed thermoelectric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090108

A521 Written amendment

Effective date: 20090225

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090702

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100128