JP2010225295A - Manufacturing method of dye-sensitized solar cell, and dye-sensitized solar cell - Google Patents

Manufacturing method of dye-sensitized solar cell, and dye-sensitized solar cell Download PDF

Info

Publication number
JP2010225295A
JP2010225295A JP2009068015A JP2009068015A JP2010225295A JP 2010225295 A JP2010225295 A JP 2010225295A JP 2009068015 A JP2009068015 A JP 2009068015A JP 2009068015 A JP2009068015 A JP 2009068015A JP 2010225295 A JP2010225295 A JP 2010225295A
Authority
JP
Japan
Prior art keywords
counter electrode
substrate
dye
solar cell
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009068015A
Other languages
Japanese (ja)
Inventor
Sei Kisaka
聖 木坂
Daisuke Takei
大亮 竹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Jushi Corp
Original Assignee
Sekisui Jushi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Jushi Corp filed Critical Sekisui Jushi Corp
Priority to JP2009068015A priority Critical patent/JP2010225295A/en
Publication of JP2010225295A publication Critical patent/JP2010225295A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell and a manufacturing method thereof, in which power generation efficiency degradation due to warpage of a synthetic resin substrate is restrained. <P>SOLUTION: In the manufacturing method of the dye-sensitized solar cell, a counter electrode substrate is formed on a plate, a spacer portion is formed between the counter electrode and a transparent substrate, the transparent substrate is formed into a film body having flexibility and is made to deform along warpage of the counter electrode substrate. Since the transparent substrate is deformed so as to be along the warpage of the counter electrode, there is no risk to have a problem in which the transparent substrate and the counter electrode substrate are in contact with each other. Moreover, since a spacer portion is provided between the counter electrode substrate and the transparent substrate, they are not in contact with each other, the gap is retained constant, fluctuation of a thickness of an electrolyte layer is made small so as to restrain degradation of power generation efficiency. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金属酸化物をスパッタ蒸着させて電極を形成させた基板を用いた色素増感型太陽電池の製造方法と、製造された色素増感型太陽電池に関するものである。   The present invention relates to a method for producing a dye-sensitized solar cell using a substrate on which an electrode is formed by sputtering vapor deposition of a metal oxide, and the produced dye-sensitized solar cell.

近年、色素増感型太陽電池について種々の発明が開示されている。色素増感型太陽電池に用いられる基板は、ガラス製や合成樹脂製の基板にインジウム錫複合酸化物(ITO)などの金属酸化物をスパッタ蒸着させて作用極や対極などの電極を設ける方法が一般的に用いられている。しかし、板状の基板にスパッタ蒸着を施すと、蒸着工程の温度上昇により熱膨張した基板の表面に金属酸化物が付与され、これが冷却する過程で金属酸化物よりも熱膨張係数が小さい基板がより収縮するため、蒸着によって形成された電極側が凸状に反る反りが生じる場合がある。
基板の反りは、作用極電極と対極電極との距離の大きさの変動となり、発電効率の低下に繋がる。
In recent years, various inventions have been disclosed for dye-sensitized solar cells. A substrate used in a dye-sensitized solar cell is a method in which a metal oxide such as indium tin composite oxide (ITO) is sputter-deposited on a glass or synthetic resin substrate to provide an electrode such as a working electrode or a counter electrode. Commonly used. However, when sputter deposition is performed on a plate-shaped substrate, a metal oxide is imparted to the surface of the substrate that has been thermally expanded due to a temperature increase in the deposition process, and a substrate having a smaller thermal expansion coefficient than that of the metal oxide in the process of cooling. In order to shrink more, the electrode side formed by vapor deposition may warp in a convex shape.
The warpage of the substrate causes a change in the distance between the working electrode and the counter electrode, leading to a decrease in power generation efficiency.

基板の反りを抑制する発明として特許文献1には、ガラス基板、透明導電層、色素を吸着させた多孔質半導体層、電荷輸送層、対極で構成された色素増感太陽電池において、サイズは一辺100mm以上であり、該ガラス基板の反りは、測定距離100mm換算で0.001mm以上0.2mm以下であることを特徴とする色素増感太陽電池が開示されている。   Patent Document 1 discloses an invention that suppresses warping of a substrate. In a dye-sensitized solar cell including a glass substrate, a transparent conductive layer, a porous semiconductor layer that adsorbs a dye, a charge transport layer, and a counter electrode, the size is one side. There is disclosed a dye-sensitized solar cell that is 100 mm or more and that the warp of the glass substrate is 0.001 mm or more and 0.2 mm or less in terms of a measurement distance of 100 mm.

特開2007−035591号公報JP 2007-035591 A

しかしながら特許文献1に開示される色素増感太陽電池は、多孔質半導体層を形成するための焼成温度を低くするなどして、基板の反りを抑制させているが、ガラス製の基板に関する技術であり、合成樹脂製の基板については適用が困難なものと予想される。   However, although the dye-sensitized solar cell disclosed in Patent Document 1 suppresses the warpage of the substrate by lowering the firing temperature for forming the porous semiconductor layer or the like, it is a technique related to a glass substrate. Yes, it is expected to be difficult to apply to synthetic resin substrates.

そこで本発明は、合成樹脂製の基板においても、基板の反りによる発電効率低下が抑制される色素増感太陽電池とその製造方法を提供するものである。   Therefore, the present invention provides a dye-sensitized solar cell and a method for manufacturing the same, in which a decrease in power generation efficiency due to warpage of the substrate is suppressed even in a synthetic resin substrate.

上記目的を達成するため、本発明は以下のような構成としている。
すなわち本発明に係る色素増感型太陽電池の製造方法は、透明電極を形成させた透明基板と、対極電極を形成させた対極基板と、透明電極上に形成させ多孔質の半導体材料に増感色素を担持させて形成させた半導体粒子層と、前記半導体粒子層と対極電極との間に液状又は擬液状の電解質からなる電解質層と、前記電解質層を封止して前記透明基板と対極基板とを固着させる封止材を設けた色素増感型太陽電池の製造方法であって、
前記対極基板を板体から形成し、
前記対極基板と透明基板との間にスペーサー部を設け、
かつ金属酸化物をスパッタ蒸着する際の熱膨張後の収縮によって透明基板側に凸状に反る対極基板の反りに対応して、
前記対極基板の反りに追随して、該対応基板に沿って透明基板が変形するように前記透明基板を可撓性を有するフィルム体から形成することを特徴としている。
In order to achieve the above object, the present invention is configured as follows.
That is, the method for producing a dye-sensitized solar cell according to the present invention includes a transparent substrate on which a transparent electrode is formed, a counter electrode substrate on which a counter electrode is formed, and a porous semiconductor material formed on the transparent electrode. A semiconductor particle layer formed by supporting a dye; an electrolyte layer made of a liquid or quasi-liquid electrolyte between the semiconductor particle layer and the counter electrode; and the transparent substrate and the counter electrode substrate by sealing the electrolyte layer A method for producing a dye-sensitized solar cell provided with a sealing material for fixing
Forming the counter electrode substrate from a plate;
A spacer portion is provided between the counter electrode substrate and the transparent substrate,
And corresponding to the warpage of the counter electrode substrate that warps convexly to the transparent substrate side by shrinkage after thermal expansion when sputter deposition of metal oxide,
Following the warping of the counter electrode substrate, the transparent substrate is formed from a flexible film body so that the transparent substrate is deformed along the corresponding substrate.

本発明に係る製造方法により製造された色素増感型太陽電池は、対極基板が板状に形成されるので、色素増感型太陽電池の形状が不安定なものとならず、対極基板によって保たれる。
また、透明基板を可撓性を有するフィルム体から形成するので、対極基板の反りに追随してこれに沿うように透明基板が変形し、透明基板と対極基板とが接触するような問題が生じない。
また、対極基板と透明基板との間にスペーサー部を設けるので、透明基板と対極基板が接触しないとともに、その隙間がより一定に保たれ、前記電解質層の厚みの変動が小さくなり、発電効率の低下が抑制される。
In the dye-sensitized solar cell manufactured by the manufacturing method according to the present invention, since the counter electrode substrate is formed in a plate shape, the shape of the dye-sensitized solar cell does not become unstable and is maintained by the counter electrode substrate. Be drunk.
In addition, since the transparent substrate is formed from a flexible film body, the transparent substrate deforms along the counter electrode substrate so as to follow the warp of the counter electrode substrate, causing a problem that the transparent substrate and the counter electrode substrate are in contact with each other. Absent.
Further, since the spacer portion is provided between the counter electrode substrate and the transparent substrate, the transparent substrate and the counter electrode substrate are not in contact with each other, the gap is kept more constant, the variation in the thickness of the electrolyte layer is reduced, and the power generation efficiency is reduced. Reduction is suppressed.

本発明に係る製造方法により製造した色素増感型太陽電池の実施の一形態を示す図である。It is a figure which shows one Embodiment of the dye-sensitized solar cell manufactured with the manufacturing method which concerns on this invention.

本発明の実施の形態を図面に基づき具体的に説明する。
図面において、1は透明基板であり、2は対向基板である。
本実施形態における色素増感型太陽電池は、互いに対向するように配置したフィルム体の透明基板1と板体の対極基板2との間に電解質を含む電解質層4を設け、電解質層4は周りの隙間に封止材5を充填することによって封止している。
Embodiments of the present invention will be specifically described with reference to the drawings.
In the drawings, 1 is a transparent substrate and 2 is a counter substrate.
In the dye-sensitized solar cell according to the present embodiment, an electrolyte layer 4 including an electrolyte is provided between a transparent substrate 1 of a film body and a counter electrode substrate 2 of a plate body arranged so as to face each other. Sealing is performed by filling the gap 5 with the sealing material 5.

透明基板1の表面に透明電極11を積層させ、対極基板2の表面に対極電極21を積層させ、これら2つの電極は対向する各基板のそれぞれ内側となるように配置させている。すなわち封止材5によって封止させた電解質層4が透明基板1と対極基板2とに積層させた透明電極11と対極電極21に接触することで、透明電極11を負の電極とし、対極電極21を正の電極とした太陽電池セルを構成させている。また、このとき前記電解質層4内には電解質を充填させているとともに、透明電極11側に半導体粒子層3を形成させている。
また、封止材5によって封止した内側には、電解質層4を貫くようにスペーサー部6を設けており、スペーサー部6が半導体粒子層3と対極電極21とに接するように架け渡して形成している。
The transparent electrode 11 is laminated on the surface of the transparent substrate 1, the counter electrode 21 is laminated on the surface of the counter electrode substrate 2, and these two electrodes are arranged so as to be inside each of the opposing substrates. That is, when the electrolyte layer 4 sealed with the sealing material 5 is in contact with the transparent electrode 11 and the counter electrode 21 laminated on the transparent substrate 1 and the counter electrode 2, the transparent electrode 11 becomes a negative electrode, and the counter electrode A solar battery cell having 21 as a positive electrode is configured. At this time, the electrolyte layer 4 is filled with an electrolyte, and the semiconductor particle layer 3 is formed on the transparent electrode 11 side.
In addition, a spacer portion 6 is provided on the inner side sealed with the sealing material 5 so as to penetrate the electrolyte layer 4, and the spacer portion 6 is formed so as to be in contact with the semiconductor particle layer 3 and the counter electrode 21. is doing.

対極基板2の形成に用いる材料としては、透明性が必要とされない場合には適宜の材料を用いて形成することができるが、透明性が必要とされる場合にはガラス、強化ガラスや、ポリカーボネート樹脂、アクリル樹脂、ポリアリレート樹脂、ポリメタクリレート、ポリ塩化ビニル等の合成樹脂等を用いることができ、また電解質層4に対する耐久性の高いポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂といったポリエステル合成樹脂、ポリエチレン、ポリプロピレン、環状ポリオレフィン樹脂といったポリオレフィン系合成樹脂等も好適に用いることができる。
本実施形態では、120×150×2.5mmの板体に形成した環状ポリオレフィン樹脂を対極基板2として用いている。
The material used to form the counter electrode substrate 2 can be formed using an appropriate material when transparency is not required, but glass, tempered glass, and polycarbonate can be formed when transparency is required. Synthetic resins such as resin, acrylic resin, polyarylate resin, polymethacrylate, and polyvinyl chloride can be used, and polyester such as polyethylene terephthalate resin, polybutylene terephthalate resin, and polyethylene naphthalate resin that has high durability for the electrolyte layer 4 can be used. Polyolefin-based synthetic resins such as synthetic resins, polyethylene, polypropylene, and cyclic polyolefin resins can also be suitably used.
In the present embodiment, a cyclic polyolefin resin formed on a 120 × 150 × 2.5 mm plate is used as the counter electrode substrate 2.

対極電極21の形成については、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、酸化亜鉛等の金属酸化物をスパッタ蒸着法により対向基板2上に形成している。また、対極電極21の構成として前記金属酸化物のみ用いてもよいが、これらと、白金、カーボン、導電性ポリマーなどとの複合材料を用いてもよい。
本実施形態では、対極基板2上にITOをスパッタ蒸着させた後、この表面に白金を再度スパッタ蒸着させて、対極電極21を形成している。
Regarding the formation of the counter electrode 21, a metal oxide such as tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), zinc oxide or the like is formed on the counter substrate 2 by sputtering deposition. Moreover, although only the said metal oxide may be used as a structure of the counter electrode 21, you may use the composite material of these, platinum, carbon, a conductive polymer, etc.
In this embodiment, ITO is sputter-deposited on the counter electrode substrate 2, and platinum is sputter-deposited again on this surface to form the counter electrode 21.

板体の対極基板2上にスパッタ蒸着を施すと、蒸着工程の温度上昇により対極基板2が熱膨張する。
この対極基板2の表面にスパッタ蒸着により金属酸化物が付与され対極電極21が形成され、この後対極基板2と対極電極21が冷却される。
この冷却の過程で、対極電極21を形成する金属酸化物よりも熱膨張係数が小さい材料で形成されている対極基板2が、対極電極21より小さく縮むように収縮するので、対極電極21側が凸状に反る反りが生じるように対極基板2が形成される。
When sputter deposition is performed on the counter electrode substrate 2 of the plate body, the counter electrode substrate 2 is thermally expanded due to a temperature increase in the deposition process.
A metal oxide is applied to the surface of the counter electrode substrate 2 by sputtering deposition to form the counter electrode 21, and then the counter electrode substrate 2 and the counter electrode 21 are cooled.
In this cooling process, the counter electrode substrate 2 formed of a material having a smaller thermal expansion coefficient than the metal oxide forming the counter electrode 21 contracts so as to contract smaller than the counter electrode 21, so that the counter electrode 21 side is convex. The counter electrode substrate 2 is formed so as to warp.

透明基板1を対極電極2と同様に板体の基板に形成して、スパッタ蒸着により透明電極11を形成すれば、透明電極11側が凸状に反る反りが生じるので、透明基板1と対極基板2とを互いに対向するように配置したときに、双方の基板間の隙間の大きさが、基板の中央付近で最も小さく、端縁にいたるほど隙間が大きくなるように形成される。このため、双方の基板の間に設けられる電解質層4の厚みが、基板の中央付近と端縁付近とで大きく異なるように変動するので、構成される色素増感型太陽電池の発電効率が低下する。   If the transparent substrate 1 is formed on a plate-like substrate in the same manner as the counter electrode 2 and the transparent electrode 11 is formed by sputter deposition, the transparent electrode 11 side warps in a convex shape. When the two are disposed so as to face each other, the gap between the two substrates is the smallest near the center of the substrate, and the gap becomes larger toward the edge. For this reason, since the thickness of the electrolyte layer 4 provided between both substrates varies so as to be greatly different between the vicinity of the center and the vicinity of the edge of the substrate, the power generation efficiency of the dye-sensitized solar cell configured is reduced. To do.

本実施形態の透明基板1は可撓性を有するフィルム体の基板に形成しており、前記の対極基板2の反りに追随して変形可能に形成している。このため、前記のような電解質層4の厚みの変動が抑えられ、発電効率の低下がされる。
透明基板1の形成に用いる材料としては、ポリカーボネート樹脂、アクリル樹脂、ポリアリレート樹脂、ポリメタクリレート、ポリ塩化ビニル等の合成樹脂等を用いることができ、また電解質層4に対する耐久性の高いポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂といったポリエステル合成樹脂、ポリエチレン、ポリプロピレン、環状ポリオレフィン樹脂といったポリオレフィン系合成樹脂等も好適に用いることができる。
本実施形態では、120×150×0.1mmのフィルム体に形成した環状ポリオレフィン樹脂を透明基板1として用いている。
透明基板1の厚みは、透明基板1が対極基板2の反りに追随できる可撓性を持つ程度に薄ければ良く、0.05〜0.5mmの厚みで好適に用いることができる。
The transparent substrate 1 of the present embodiment is formed on a flexible film body substrate, and is formed so as to be deformable following the warpage of the counter electrode substrate 2. For this reason, the fluctuation | variation of the thickness of the electrolyte layer 4 as mentioned above is suppressed, and electric power generation efficiency falls.
As a material used for forming the transparent substrate 1, a synthetic resin such as a polycarbonate resin, an acrylic resin, a polyarylate resin, a polymethacrylate, or polyvinyl chloride can be used, and a highly durable polyethylene terephthalate resin for the electrolyte layer 4 Polyester synthetic resins such as polybutylene terephthalate resin and polyethylene naphthalate resin, polyolefin synthetic resins such as polyethylene, polypropylene, and cyclic polyolefin resins can also be suitably used.
In the present embodiment, a cyclic polyolefin resin formed in a 120 × 150 × 0.1 mm film body is used as the transparent substrate 1.
The thickness of the transparent substrate 1 should just be thin to the extent that the transparent substrate 1 has the flexibility which can follow the curvature of the counter electrode substrate 2, and can use it suitably with the thickness of 0.05-0.5 mm.

透明電極11の形成については、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、金、白金等やそれらを複数組み合わせたものを真空蒸着法、スパッタ蒸着法、イオンプレーティング法、CVD法、泳動電着法等の適宜の方法により透明基板1表面に形成することができる。   For the formation of the transparent electrode 11, a tin-doped indium oxide (ITO), a fluorine-doped tin oxide (FTO), gold, platinum or the like, or a combination thereof, is vacuum deposition, sputter deposition, ion plating, CVD It can be formed on the surface of the transparent substrate 1 by an appropriate method such as electrophoretic electrodeposition.

封止材5およびスペーサー部6は、合成樹脂製の基材51の内部に微小球体52を含有させて構成させている。
微小球体52は、硬質材料を用いて粒径の揃った球状体に形成しており、本実施形態ではSiO2を直径が約15μmの球体に形成している。
微小球体52は封止材5の内部において、互いに重ならずに透明電極11と対極電極21との間に挟まるように配置されることで、透明電極11と対極電極21との隙間を、微小球体52の粒径の大きさに構成することができる。また微小球体52を硬質材料で形成することで、透明電極11と対極電極21との隙間が、微小球体52の粒径の大きさ以下にならないように保つことができる。
本実施形態では、微小球体52の材質としてSiO2を用いているが、これに限るものではなく、ガラス、セラミック、合成樹脂などを好適に用いることができ、透明電極11と対極電極21との隙間を保つものであればよい。
The sealing material 5 and the spacer portion 6 are configured by containing microspheres 52 inside a base 51 made of synthetic resin.
The microsphere 52 is formed into a spherical body having a uniform particle diameter using a hard material, and in this embodiment, SiO2 is formed into a sphere having a diameter of about 15 μm.
The microspheres 52 are arranged inside the sealing material 5 so as not to overlap each other and are sandwiched between the transparent electrode 11 and the counter electrode 21, so that the gap between the transparent electrode 11 and the counter electrode 21 is reduced. The spherical body 52 can be configured to have a particle size. In addition, by forming the microsphere 52 with a hard material, the gap between the transparent electrode 11 and the counter electrode 21 can be kept so as not to be smaller than the particle size of the microsphere 52.
In the present embodiment, SiO2 is used as the material of the microsphere 52, but the material is not limited to this, and glass, ceramic, synthetic resin, or the like can be suitably used, and the gap between the transparent electrode 11 and the counter electrode 21 can be suitably used. Anything that keeps it.

基材51の原料としては、電解質層4の漏洩を防止できるものであれば特に限定されるものではないが、例えば、エポキシ系樹脂、アクリル系樹脂、シリコン系樹脂、フッ素系樹脂、メラニン系樹脂、フォスファーゼン系樹脂等が挙げられる。   The raw material of the base material 51 is not particularly limited as long as it can prevent the electrolyte layer 4 from leaking. For example, epoxy resin, acrylic resin, silicon resin, fluorine resin, melanin resin And phosphazene resins.

本実施形態では、封止材5とスペーサー部6とを、同じ基材51と微小球体52とで構成させているが、互いに異なる材質のものを用いてもよい。
また、図1において、スペーサー部6が1箇所形成されているように記載されているが、複数箇所設けても良く、その形状も点状や線状などに形成してもよい。
In the present embodiment, the sealing material 5 and the spacer portion 6 are composed of the same base material 51 and microspheres 52, but different materials may be used.
In FIG. 1, the spacer portion 6 is described as being formed at one location, but a plurality of locations may be provided, and the shape may be formed in a dot shape, a line shape, or the like.

電解質層4の形成については、アセトニトリルとエチレンカーボネートの混合溶液や、メトキシプロピオニトリル等の溶媒に、ヨウ化リチウム、金属ヨウ素等の電解質を加えたもの等の液体電解質や、高分子ゲル電解液等の擬固体化電解質といった液体電解質系、p型半導体、ホール輸送剤等の固体電解質系などを用いることができる。   For the formation of the electrolyte layer 4, a liquid electrolyte such as a mixed solution of acetonitrile and ethylene carbonate, a solvent such as methoxypropionitrile, an electrolyte such as lithium iodide or metallic iodine, or a polymer gel electrolyte Liquid electrolyte systems such as quasi-solidified electrolytes such as p-type semiconductors, and solid electrolyte systems such as hole transport agents can be used.

半導体粒子層3は、Fe2O3、Cu2O、In2O3、WO3、Fe2TiO3、PbO、V2O5、FeTiO3、Bi2O3、Nb2O3、SrTiO3、ZnO、BaTiO3、CaTiO3、KTaO3、SnO2、ZrO2などの半導体材料を用いて形成された薄膜に増感色素を担持させることで形成でき、半導体材料としてはこれらの内、コストや作業性等から酸化チタン(TiO2)、又は透明性の薄層の形成性に優れ且つ電析が可能である酸化亜鉛(ZnO)が好適であるが、それに限定されるものではなく適宜のものを用いることができる。半導体粒子層3に担持される色素は、特に限定されるものではないが、例えば、ルテニウムビピリジウム錯体、キサンテン系色素、ポルフィリン誘導体、フタ ロシアニン誘導錯体などが挙げられる。
半導体粒子層3と電解質層4との厚みの合計は、微小球体52の粒径と同程度となるように形成されている。
The semiconductor particle layer 3 is formed using a semiconductor material such as Fe2O3, Cu2O, In2O3, WO3, Fe2TiO3, PbO, V2O5, FeTiO3, Bi2O3, Nb2O3, SrTiO3, ZnO, BaTiO3, CaTiO3, KTaO3, SnO2, and ZrO2. It can be formed by supporting a sensitizing dye on the surface, and as a semiconductor material, titanium oxide (TiO2) or a transparent thin layer is excellent in terms of cost and workability, and can be electrodeposited. Zinc oxide (ZnO) is preferable, but is not limited thereto, and an appropriate one can be used. The dye supported on the semiconductor particle layer 3 is not particularly limited, and examples thereof include a ruthenium bipyridium complex, a xanthene dye, a porphyrin derivative, and a phthalocyanine derivative complex.
The total thickness of the semiconductor particle layer 3 and the electrolyte layer 4 is formed to be approximately the same as the particle size of the microspheres 52.

本実施形態は、透明基板1をフィルム体に形成し対極基板2を板体に形成しているが、透明基板1を板体に形成し対極基板2をフィルム体に形成しても、上記と同様の効果を得ることができる。   In this embodiment, the transparent substrate 1 is formed in a film body and the counter electrode substrate 2 is formed in a plate body. However, even if the transparent substrate 1 is formed in a plate body and the counter electrode substrate 2 is formed in a film body, Similar effects can be obtained.

1 透明基板
11 透明電極
2 対極基板
21 対極電極
3 半導体粒子層3
4 電解質層4
5 封止材
51 基材
52 微小球体
6 スペーサー部

DESCRIPTION OF SYMBOLS 1 Transparent substrate 11 Transparent electrode 2 Counter electrode substrate 21 Counter electrode 3 Semiconductor particle layer 3
4 Electrolyte layer 4
5 Sealant 51 Base 52 Microsphere 6 Spacer

Claims (2)

透明電極を形成させた透明基板と、対極電極を形成させた対極基板と、透明電極上に形成させ多孔質の半導体材料に増感色素を担持させて形成させた半導体粒子層と、前記半導体粒子層と対極電極との間に液状又は擬液状の電解質からなる電解質層と、前記電解質層を封止して前記透明基板と対極基板とを固着させる封止材を設けた色素増感型太陽電池の製造方法であって、
前記対極基板を板体から形成し、
前記対極基板と透明基板との間にスペーサー部を設け、
かつ金属酸化物をスパッタ蒸着する際の熱膨張後の収縮によって透明基板側に凸状に反る対極基板の反りに対応して、
前記対極基板の反りに追随して、該対応基板に沿って透明基板が変形するように前記透明基板を可撓性を有するフィルム体から形成することを特徴とする色素増感型太陽電池の製造方法。
A transparent substrate on which a transparent electrode is formed; a counter electrode substrate on which a counter electrode is formed; a semiconductor particle layer formed on the transparent electrode by carrying a sensitizing dye on a porous semiconductor material; and the semiconductor particles A dye-sensitized solar cell provided with an electrolyte layer made of a liquid or quasi-liquid electrolyte between a layer and a counter electrode, and a sealing material for sealing the electrolyte layer and fixing the transparent substrate and the counter electrode substrate A manufacturing method of
Forming the counter electrode substrate from a plate;
A spacer portion is provided between the counter electrode substrate and the transparent substrate,
And corresponding to the warpage of the counter electrode substrate that warps convexly to the transparent substrate side by shrinkage after thermal expansion when sputter deposition of metal oxide,
Following the warpage of the counter electrode substrate, the transparent substrate is formed from a flexible film body so that the transparent substrate is deformed along the corresponding substrate. Method.
前記請求項1に記載の色素増感型太陽電池の製造方法により製造された色素増感型太陽電池。   A dye-sensitized solar cell produced by the method for producing a dye-sensitized solar cell according to claim 1.
JP2009068015A 2009-03-19 2009-03-19 Manufacturing method of dye-sensitized solar cell, and dye-sensitized solar cell Pending JP2010225295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009068015A JP2010225295A (en) 2009-03-19 2009-03-19 Manufacturing method of dye-sensitized solar cell, and dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009068015A JP2010225295A (en) 2009-03-19 2009-03-19 Manufacturing method of dye-sensitized solar cell, and dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2010225295A true JP2010225295A (en) 2010-10-07

Family

ID=43042296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009068015A Pending JP2010225295A (en) 2009-03-19 2009-03-19 Manufacturing method of dye-sensitized solar cell, and dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2010225295A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004178A (en) * 2011-06-10 2013-01-07 Fujikura Ltd Dye-sensitized solar battery, and method of manufacturing the same
JP2013084596A (en) * 2011-09-30 2013-05-09 Fujikura Ltd Dye-sensitized solar cell
WO2014046117A1 (en) 2012-09-18 2014-03-27 学校法人東京理科大学 Antipole for dye-sensitization solar cell, and dye-sensitization solar cell
WO2015146226A1 (en) * 2014-03-27 2015-10-01 積水化学工業株式会社 Photoelectric conversion element, electric module and photoelectric conversion element manufacturing method
KR101610538B1 (en) 2014-11-10 2016-04-07 현대자동차주식회사 Dye-sensitized solar cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004178A (en) * 2011-06-10 2013-01-07 Fujikura Ltd Dye-sensitized solar battery, and method of manufacturing the same
JP2013084596A (en) * 2011-09-30 2013-05-09 Fujikura Ltd Dye-sensitized solar cell
WO2014046117A1 (en) 2012-09-18 2014-03-27 学校法人東京理科大学 Antipole for dye-sensitization solar cell, and dye-sensitization solar cell
KR20150044435A (en) 2012-09-18 2015-04-24 도쿄 유니버시티 오브 사이언스 에듀케이셔널 파운데이션 애드미니스트레이티브 오거니제이션 Antipole for dye-sensitization solar cell, and dye-sensitization solar cell
WO2015146226A1 (en) * 2014-03-27 2015-10-01 積水化学工業株式会社 Photoelectric conversion element, electric module and photoelectric conversion element manufacturing method
CN106104729A (en) * 2014-03-27 2016-11-09 积水化学工业株式会社 The manufacture method of photo-electric conversion element, electrical module and photo-electric conversion element
KR101610538B1 (en) 2014-11-10 2016-04-07 현대자동차주식회사 Dye-sensitized solar cell

Similar Documents

Publication Publication Date Title
JP4636890B2 (en) Dye-sensitized solar cell
KR100567331B1 (en) Lego-type module of dye-sensitized solar cells
US8299352B2 (en) Dye-sensitized solar cell using conductive fiber electrode
EP2104176B1 (en) Photoelectric conversion element
JP5240652B2 (en) Dye-sensitized solar cell
JP2009295406A (en) Dye-sensitized solar cell
JP2010225295A (en) Manufacturing method of dye-sensitized solar cell, and dye-sensitized solar cell
WO2008093962A1 (en) Dye-sensitized solar cell and method of preparing the same
US20100132784A1 (en) Dye sensitized solar cell with separation membrane and method thereof
JP2007265635A (en) Connection method of solar cell, and dye-sensitized solar cell
CN104040779A (en) Apparatus and method of manufacturing apparatus
JP2007018909A (en) Manufacturing method for photoelectric conversion device
EP2273604A1 (en) Dye-sensitized solar cell
JP5246541B2 (en) Dye-sensitized solar cell
US20120300285A1 (en) Electronic paper display device and method of manufacturing the same
KR20100117459A (en) Dye-sensitized solar cells including multi plastic layers
JP2010218935A (en) Solar cell module
JP2009140828A (en) Dye-sensitized solar cell
JP2010218934A (en) Dye-sensitized solar cell
KR20140003679A (en) Manufacturing method for bipv module
JP5677920B2 (en) Solar cell
KR20050066064A (en) Transparent solar module and method for manufacturing the same
CN215219386U (en) Electrochromic element and electronic equipment
KR101070452B1 (en) Dye Sensitized Solar Cell
KR101034217B1 (en) A method for manufacturing dye-sensitized solar cell and a dye-sensitized solar cell manufactured by using the same