JP2010224335A - Dissimilar material assembly - Google Patents

Dissimilar material assembly Download PDF

Info

Publication number
JP2010224335A
JP2010224335A JP2009073166A JP2009073166A JP2010224335A JP 2010224335 A JP2010224335 A JP 2010224335A JP 2009073166 A JP2009073166 A JP 2009073166A JP 2009073166 A JP2009073166 A JP 2009073166A JP 2010224335 A JP2010224335 A JP 2010224335A
Authority
JP
Japan
Prior art keywords
substrate
island
divided
dissimilar
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009073166A
Other languages
Japanese (ja)
Other versions
JP5187906B2 (en
JP2010224335A5 (en
Inventor
Tetsuya Mizumoto
哲弥 水本
Kazumasa Sakurai
一正 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2009073166A priority Critical patent/JP5187906B2/en
Publication of JP2010224335A publication Critical patent/JP2010224335A/en
Publication of JP2010224335A5 publication Critical patent/JP2010224335A5/en
Application granted granted Critical
Publication of JP5187906B2 publication Critical patent/JP5187906B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dissimilar material assembly, for eliminating the generation of a crack between the different materials, for example, between a semiconductor substrate and a material such as a magneto-optical material when manufacturing an optical isolator. <P>SOLUTION: This dissimilar material assembly is formed by joining the substrate comprising a semiconductor material, and the different kind of material different from the material of the substrate, and is arranged with a plurality of divided island-like joining part with a separation part, on a surface of the substrate or the different kind of material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、異種材料、特に半導体基板と磁気光学材料等とを、接合して成る異種材料接合体に関する。   The present invention relates to a dissimilar material joined body formed by joining dissimilar materials, in particular, a semiconductor substrate and a magneto-optical material.

異種材料を接着剤などを介さずに直接接合する技術(ダイレクトボンディング、あるいは単にボンディングと呼ばれることもある)は、複合的な材料を用いて形成される部品やデバイスなどの製造分野で用いられる。中でも、近年、表面活性化接合法が、部品やデバイスを製造する際の異種材料の直接接合技術として知られている。   A technique for directly joining different kinds of materials without using an adhesive or the like (sometimes referred to as direct bonding or simply bonding) is used in the field of manufacturing components and devices formed using a composite material. Among these, in recent years, the surface activated bonding method is known as a technique for directly bonding different materials when manufacturing parts and devices.

上記のような方法を使用して製造される部品(デバイス)として、例えば特許文献1(国際特許公開2007/083419号公報)に、図1に示すような光アイソレータが開示されている。図1に示す光アイソレータは、半導体製のInP基板100上で結晶成長させた半導体製のGaInAsPから成る導波層101の上に、CeYFe12(Ce:YIG)の磁気光学材料102を積層した構造となっており、その断面構造は、図2に示すように単純な積層構造となっている。 As a part (device) manufactured using the above method, for example, Patent Document 1 (International Patent Publication No. 2007/083419) discloses an optical isolator as shown in FIG. The optical isolator shown in FIG. 1 includes a magneto-optical material 102 of CeY 2 Fe 5 O 12 (Ce: YIG) on a waveguide layer 101 made of semiconductor GaInAsP grown on a semiconductor InP substrate 100. As shown in FIG. 2, the cross-sectional structure is a simple laminated structure.

しかしながら、このような半導体レーザと光アイソレータを一体集積化したデバイスは、製造過程において、III−V族化合物半導体で形成される光導波路上に、光アイソレータ機能に必要な磁気光学材料を表面活性化接合で接合(材料を120〜400℃程度の高音に加熱して接合)する際に、高温の接合時に歪みなく接合した場合、接合部を室温に戻すと、材料の熱膨張係数の差によって接合界面近傍に応力が発生し、材料表面からクラック(亀裂)が発生するという問題がある。図3はクラック発生の一例を示しており、長軸方向に帯状に広がったように見える箇所がクラックである。このようなクラックは、光導波路を横断するように形成されるため、光導波路が分断されて光透過損失が著しく増大してしまう。したがって、このクラック発生を防止することが部品やデバイスの製造にとって必要不可欠となる。   However, such a device in which a semiconductor laser and an optical isolator are integrated integrally activates a magneto-optical material necessary for the optical isolator function on an optical waveguide formed of a III-V compound semiconductor in the manufacturing process. When joining by joining (heating the material at a high sound of about 120 to 400 ° C. and joining) without distortion at the time of joining at high temperature, if the joined part is returned to room temperature, joining is performed due to the difference in thermal expansion coefficient of the material. There is a problem that stress is generated in the vicinity of the interface, and cracks are generated from the material surface. FIG. 3 shows an example of the occurrence of a crack, and a portion that appears to spread in a strip shape in the major axis direction is a crack. Since such a crack is formed so as to cross the optical waveguide, the optical waveguide is divided and the light transmission loss is remarkably increased. Therefore, preventing the occurrence of cracks is indispensable for the production of components and devices.

一方で、上述したような表面活性化接合によるデバイス製造時における、接合面のクラックなどの原因となる応力の緩和若しくは抑制を図る方法として、材料に溝を配置する方法が、例えば特開2007−214369号公報(特許文献2)に開示されている。   On the other hand, as a method for mitigating or suppressing stress that causes cracks in the joint surface during device manufacturing by surface activation bonding as described above, a method of arranging grooves in a material is disclosed in, for example, JP-A-2007- No. 214369 (Patent Document 2).

しかしながら、特許文献2に開示されている方法は、材料に溝を配置することで応力緩和若しくは抑制の効果を示す旨の開示はあるものの、接合自体は、前記溝を境界にして非接合部が折れ曲がり、その折れ曲がり部が接合に関与するものである。例えば、光アイソレータのようなデバイスを製造する際に非接合面に導波路を配置する場合、特許文献2のような技術によると、接合によって基板が変形されることになり、導波路が分断されてしまい、導波路としての機能を果たさなくなる可能性が大きいため、特許文献2のような非接合部の変形(反り等)を利用した接合方法は、光や電気等の集積回路や半導体部品、デバイス等の製造には適していない。   However, although the method disclosed in Patent Document 2 discloses that the effect of stress relaxation or suppression is exhibited by disposing grooves in the material, the bonding itself has no non-joined portion with the groove as a boundary. It is bent, and the bent portion is involved in joining. For example, when a waveguide is disposed on a non-joint surface when manufacturing a device such as an optical isolator, according to a technique such as Patent Document 2, the substrate is deformed by joining, and the waveguide is divided. Therefore, there is a high possibility that the function as the waveguide will not be fulfilled. Therefore, the joining method using deformation (warping or the like) of the non-joining part as in Patent Document 2 is an integrated circuit or semiconductor component such as light or electricity, It is not suitable for manufacturing devices.

国際特許公開2007/083419号公報International Patent Publication No. 2007/083419 特開2007−214369号公報JP 2007-214369 A

本発明は、上述したような問題点を解決するためになされたものであり、本発明の目的は、異種材料、例えば光アイソレータを製造する際の半導体製基板と磁気光学材料等の材料との間のクラック発生を解消した異種材料接合体を提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a semiconductor substrate and a material such as a magneto-optical material when manufacturing different materials, for example, optical isolators. An object of the present invention is to provide a joined body of different materials that eliminates the occurrence of cracks in the meantime.

本発明の上記目的は、半導体材料から成る基板と、前記基板と材質の異なる異種材料とを接合して成る異種材料接合体であって、前記基板又は前記異種材料の表面上に、離間部を有して複数の分割島状接合部が配置されることを特徴とすることで効果的に達成される。   The above-mentioned object of the present invention is a dissimilar material joined body formed by joining a substrate made of a semiconductor material and a dissimilar material different from the substrate, and a spacing portion is formed on the surface of the substrate or the dissimilar material. This is achieved effectively by having a plurality of divided island-shaped joint portions.

更に、本発明の上記目的は、前記異種材料が磁気光学材料であることにより、或いは前記分割島状接合部の断面形状が矩形又は円形であることにより、或いは前記分割島状接合部の幅が1〜200μmであることにより、或いは前記離間部の幅が前記分割島状接合部の幅に対して5〜60%であることにより、或いは前記分割島状接合部の高さが10〜200nmであることにより、より効果的に達成される。   Further, the object of the present invention is that the dissimilar material is a magneto-optical material, or that the cross-sectional shape of the divided island-shaped joint is rectangular or circular, or the width of the divided island-shaped joint is large. When it is 1 to 200 μm, or when the width of the separated portion is 5 to 60% of the width of the divided island-shaped joint, or the height of the divided island-shaped joint is 10 to 200 nm. Some are achieved more effectively.

更に、上述した異種材料接合体からなる光アイソレータによっても効果的に達成される。   Furthermore, it can also be effectively achieved by an optical isolator composed of the above-mentioned dissimilar material joined body.

本発明の異種材料接合体は、1ヶ所当たりの接合面積(接合寸法)を小さくすることによって、熱膨張差によって発生する応力の大きさを低減できる。また、十分な接合力を得るためには、全体の接合面積はある程度確保する必要があるので、均一な広い面積を接合する代わりに、接合面を断面が矩形や円形の島状に分割し、接合1ヶ所当たりの寸法を短くすることで、熱膨張係数差によって発生する歪を低減することができる。   In the dissimilar material joined body of the present invention, the size of the stress generated by the difference in thermal expansion can be reduced by reducing the joint area (joint dimension) per place. Also, in order to obtain a sufficient bonding force, it is necessary to secure the entire bonding area to some extent, so instead of bonding a uniform wide area, the bonding surface is divided into islands with a rectangular or circular cross section, By shortening the dimension per joint, the strain generated by the difference in thermal expansion coefficient can be reduced.

また、接合面を島状に分割することによって、高温接合時から室温に戻した状態で熱応力の発生を低減することができ、異種材料の接合におけるクラック発生を緩和若しくは抑制することができる。   Further, by dividing the joint surface into islands, the generation of thermal stress can be reduced in the state where the temperature is returned to room temperature from the time of high-temperature bonding, and the generation of cracks in the bonding of different materials can be reduced or suppressed.

光アイソレータの一例を示す外観図である。It is an external view which shows an example of an optical isolator. 図1における基板、導波層及び異種材料(Ce:YIG)の接合を示す断面図ある。FIG. 2 is a cross-sectional view illustrating the bonding of the substrate, the waveguide layer, and the dissimilar material (Ce: YIG) in FIG. 1. 図1における基板と異種材料(磁気光学材料)の接合面にクラックが発生した例を示す電子顕微鏡写真図である。FIG. 2 is an electron micrograph showing an example in which a crack is generated on a bonding surface between a substrate and a different material (magneto-optical material) in FIG. 1. 本発明における、基板と異種材料とから成る接合体断面の一例を示す断面図である。It is sectional drawing which shows an example of the conjugate | zygote cross section which consists of a board | substrate and a dissimilar material in this invention. 本発明における基板の表面の一例を示す図である。It is a figure which shows an example of the surface of the board | substrate in this invention. 表面均一基板と異種材料との接合シミュレーション(従来例)を示す断面図である。It is sectional drawing which shows the joining simulation (conventional example) of a surface uniform board | substrate and a dissimilar material. 分割島状接合部設置基板と異種材料との接合シミュレーション(本発明)を示す断面図である。It is sectional drawing which shows the joining simulation (this invention) of a division | segmentation island-like junction part installation board | substrate and a dissimilar material. 図6の接合シミュレーションの応力分布を説明するための図である。It is a figure for demonstrating the stress distribution of the joining simulation of FIG. 図7の接合シミュレーションの応力分布を説明するための図である。It is a figure for demonstrating the stress distribution of the joining simulation of FIG. 表面均一基板と異種(磁気光学)材料との接合例を示す断面図である。It is sectional drawing which shows the example of joining of a surface uniform substrate and a dissimilar (magneto-optic) material. 本発明の分割島状接合部の例を示す基板の平面図である。It is a top view of the board | substrate which shows the example of the division | segmentation island-like junction part of this invention. サンプルAにおける基板の接合面を示す図である。It is a figure which shows the joint surface of the board | substrate in the sample A. FIG. サンプルBにおける基板の接合面を示す図である。It is a figure which shows the joint surface of the board | substrate in the sample B. FIG. 本発明の接合体の応用例を示す半導体構造の断面図である。It is sectional drawing of the semiconductor structure which shows the application example of the conjugate | zygote of this invention.

以下、本発明を実施するための形態について、図面を参照しながら説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図4は、本発明における、基板1と異種材料2から成る接合体の積層構造の一例を示す断面図であり、基板1と異種材料2との接合は、基板1の上表面に分割して島状に設けられている高さHの分割島状接合部3によって行われる。ここで、該積層構造を構成する基板1及び異種材料2と、基板1及び異種材料2の接合の仕方とについて順次説明する。   FIG. 4 is a cross-sectional view showing an example of a laminated structure of a joined body made of the substrate 1 and the different material 2 in the present invention. The bonding of the substrate 1 and the different material 2 is divided on the upper surface of the substrate 1. This is performed by the divided island-shaped joint portion 3 having a height H provided in an island shape. Here, the substrate 1 and the dissimilar material 2 constituting the laminated structure, and the method of joining the substrate 1 and the dissimilar material 2 will be sequentially described.

基板1は、反りや曲がりがなく、平坦な基板であれば材質は特に問わないが、中でも、半導体材料(III―V族、IV族など)製が好ましい。更に、基板1自体の強度、熱伝導性等を考慮した場合、リン化インジウム(InP)、ヒ素化ガリウム(GaAs)等のIII―V族(13−15族)化合物半導体が好ましい。ここで、光アイソレータ等の製造を考えた場合、基板1上で予め、導波路等の構成材料に成り得る半導体材料を、結晶成長させる必要がある。なお、この時点における、結晶成長の方法は、有機金属気相成長法、分子線エピタキシ法など従来法で構わない。また、基板1の厚さはμm単位であれば構わないが、100μm〜1mm程度が好ましい。   The material of the substrate 1 is not particularly limited as long as it is a flat substrate without warping or bending, but among them, a semiconductor material (III-V group, IV group, etc.) is preferable. Further, when considering the strength, thermal conductivity, etc. of the substrate 1 itself, III-V (group 13-15) compound semiconductors such as indium phosphide (InP) and gallium arsenide (GaAs) are preferable. Here, when manufacturing an optical isolator or the like is considered, a semiconductor material that can be a constituent material such as a waveguide needs to be crystal-grown on the substrate 1 in advance. Note that the crystal growth method at this point may be a conventional method such as metal organic chemical vapor deposition or molecular beam epitaxy. The thickness of the substrate 1 may be in the unit of μm, but is preferably about 100 μm to 1 mm.

次に、異種材料2も基板1と同様、用途(磁気光学特性、半導体特性等)に応じた無機化合物であれば材質は特に問わないが、例えば、光アイソレータの製造を考えた場合、磁気光学材料の結晶成長が可能である材質、中でもガーネット結晶体であることが好ましい。例としては、ガドリニウムガリウムガーネット(GdGa12:GGG)、置換型ガドリニウムガリウムガーネット(SGGG)などが挙げられる。なお、実際の応用、例えば光アイソレータの製造などを考えた場合、基板1と同様に異種材料2の上面に、セリウム置換イットリウム鉄ガーネット(Ce:YIG)、ビスマス置換イットリウム鉄ガーネット(Bi:YIG)などの磁気光学材料を結晶成長させて用いることになる。この際の結晶成長の方法は、スパッタエピタキシ法、液相成長法、FZ法、チョクラルスキー法、溶媒移動浮遊帯溶融法など従来法で構わない。また、異種材料2の厚さもまた100μm〜1mm程度が好ましい。 Next, as with the substrate 1, the dissimilar material 2 is not particularly limited as long as it is an inorganic compound according to the application (magneto-optical characteristics, semiconductor characteristics, etc.). A material capable of crystal growth of the material, particularly a garnet crystal is preferable. Examples include gadolinium gallium garnet (Gd 3 Ga 5 O 12 : GGG), substituted gadolinium gallium garnet (SGGG), and the like. In consideration of actual application, for example, production of an optical isolator, the cerium-substituted yttrium iron garnet (Ce: YIG) and bismuth-substituted yttrium iron garnet (Bi: YIG) are formed on the upper surface of the dissimilar material 2 in the same manner as the substrate 1. Such a magneto-optical material is used after crystal growth. The crystal growth method at this time may be a conventional method such as sputtering epitaxy, liquid phase growth, FZ, Czochralski, or solvent transfer floating zone melting. The thickness of the different material 2 is also preferably about 100 μm to 1 mm.

次に、基板1の表面構造例を図5に示す。上述したように、構成材料を基板1上で結晶成長させた後、基板1上に、等間隔で断面矩形の分割島状接合部3を配置し、該接合部3間を接合部3の幅Dに対して約5〜60%の幅となるように離間して設ける。即ち、分割島状接合部3の幅をxy軸方向についてDとすると、隣接した分割島状接合部の離間部4を形成するx軸方向の離間距離DxはD×(0.05〜0.6)であり、y軸方向の離間距離DyはD×(0.05〜0.6)であり、離間距離Dx、Dyは異なっていても良い。   Next, an example of the surface structure of the substrate 1 is shown in FIG. As described above, after the constituent material is crystal-grown on the substrate 1, the divided island-shaped joint portions 3 having a rectangular cross section are arranged on the substrate 1 at equal intervals, and the width of the joint portion 3 is set between the joint portions 3. It is provided so as to have a width of about 5 to 60% with respect to D. That is, when the width of the divided island-shaped joint portion 3 is D in the xy-axis direction, the separation distance Dx in the x-axis direction that forms the separation portion 4 of the adjacent divided island-shaped joint portion is D × (0.05-0.0.0). 6), the separation distance Dy in the y-axis direction is D × (0.05 to 0.6), and the separation distances Dx and Dy may be different.

分割島状接合部3の断面形状は、基板1上に離間部4を設けることができれば(ただし分割島状接合部3の幅D、並びに離間距離Dx及びDyは上述の記載範囲)特に限定されないが、例えば図5に示すように角部を円弧状にした矩形又は円形であることが望ましい。分割島状分割部3の断面を矩形にする場合、角部を円弧状にすることによって、矩形そのままよりも、応力の緩和効果をより大きくすることができるが、角部を円弧状にしなくても緩和効果はある。また、分割島状接合部3の幅Dは1〜200μmが望ましい。この場合、1μm以下若しくは200μm以上の幅Dであると、基板1の熱膨張による応力の緩和が十分ではなくなる。   The cross-sectional shape of the divided island-shaped joint portion 3 is not particularly limited as long as the separation portion 4 can be provided on the substrate 1 (however, the width D of the divided island-shaped joint portion 3 and the separation distances Dx and Dy are in the above described range). However, for example, as shown in FIG. 5, it is desirable that the corner is a rectangle or a circle having an arc shape. When the cross section of the divided island-shaped divided portion 3 is rectangular, the stress relaxation effect can be increased by making the corners arc-shaped as compared to the rectangle as it is, but the corners are not arc-shaped. Also has a mitigating effect. Further, the width D of the divided island-shaped joint portion 3 is preferably 1 to 200 μm. In this case, if the width D is 1 μm or less or 200 μm or more, the stress relaxation due to the thermal expansion of the substrate 1 is not sufficient.

分割島状接合部3が直交格子状に配置されていることにより、接合面にかかる応力が均等に分散される。例えば、光アイソレータの製造の際、離間部4に導波路を設けても良い。また、分割島状接合部3の高さ(離間部4の深さ)Hは10〜200nmが望ましい。10nm以下であると、基板1の熱膨張による応力の緩和が十分ではなくなり、200nm以上であると、基板1にクラック等が発生したり、却って更に応力がかかる可能性がある。ここで、上述した離間部4の幅Dx、Dyを分割島状接合部3の幅Dに対して5〜60%の幅となるように設けるとは、例えば分割島状接合部3の幅Dを100μmとしたとき、離間部4の幅Dx、Dyを5〜60μmに設定するということである。ちなみに、離間部4の幅Dx、Dyは、分割島状接合部3の幅Dに対して5〜60%という条件を尊守すれば、同じ幅である必要はないが、同じであっても構わない。なお、離間部4が5%以下の幅であると、基板1の熱膨張による応力の緩和が十分でなくなり、60%以上の幅であると、基板1の接合面に変形が生じる可能性がある。   Since the divided island joints 3 are arranged in an orthogonal lattice shape, the stress applied to the joint surface is evenly dispersed. For example, when the optical isolator is manufactured, a waveguide may be provided in the separation portion 4. Moreover, as for the height (depth of the separation part 4) H of the division | segmentation island-like junction part 3, 10-200 nm is desirable. When the thickness is 10 nm or less, the relaxation of stress due to thermal expansion of the substrate 1 is not sufficient, and when the thickness is 200 nm or more, cracks or the like may occur in the substrate 1 or the stress may be further applied. Here, providing the widths Dx and Dy of the above-described separated portion 4 so as to be 5 to 60% of the width D of the divided island-shaped joint portion 3 is, for example, the width D of the divided island-shaped joint portion 3. Is 100 μm, the widths Dx and Dy of the separation portion 4 are set to 5 to 60 μm. Incidentally, the widths Dx and Dy of the separation part 4 do not have to be the same width as long as the condition of 5 to 60% with respect to the width D of the divided island-like joint part 3 is respected. I do not care. If the spacing portion 4 has a width of 5% or less, stress relaxation due to thermal expansion of the substrate 1 becomes insufficient, and if it has a width of 60% or more, the bonding surface of the substrate 1 may be deformed. is there.

分割島状接合部3を基板1上に設ける方法は、エッチング、モールディング、又は機械の型押し等といった従来の製造方法を利用できる。また、分割島状接合部3は、基板1又は異種材料2の硬度や熱伝導性等を考慮して、異種材料2側に設けても良い。   A conventional manufacturing method such as etching, molding, mechanical embossing, or the like can be used as a method of providing the divided island-shaped joints 3 on the substrate 1. In addition, the divided island-shaped joint 3 may be provided on the different material 2 side in consideration of the hardness, thermal conductivity, etc. of the substrate 1 or the different material 2.

次に、基板1と異種材料2の接合について説明する。接合温度は100〜500℃が好ましい。この接合温度が100℃以下であると、表面が活性化されずに、接合が不十分になる可能性がある。また、500℃以上であると、接合前に基板1或いは異種材料2が、熱による溶融、組成変化、表面状態変化等の変形をするといったことや、接合しても、基板1或いは異種材料2を室温までに冷却したときに歪みが生じたり、却ってクラックが発生する原因となる可能性がある。   Next, joining of the substrate 1 and the dissimilar material 2 will be described. The bonding temperature is preferably 100 to 500 ° C. If the bonding temperature is 100 ° C. or lower, the surface may not be activated and bonding may be insufficient. Further, when the temperature is 500 ° C. or higher, the substrate 1 or the different material 2 is deformed by melting, composition change, surface state change or the like before the bonding, or even if the substrate 1 or the different material 2 is bonded. When this is cooled to room temperature, distortion may occur, or cracks may occur.

以上、本発明の接合体について説明したが、本発明はこれらに限定されるものではなく、種々の変更が可能である。   Although the joined body of the present invention has been described above, the present invention is not limited to these, and various modifications can be made.

次に、上記に述べた本発明の実施の形態の詳細を、具体的な実施例(光アイソレータの製造過程における接合)を基に説明する。   Next, the details of the embodiment of the present invention described above will be described based on specific examples (joining in the manufacturing process of the optical isolator).

[実施例1]接合領域周辺の熱応力シミュレーション
まず、異種材料が高温接合時において無歪で接合された場合、室温において発生する応力分布について有限要素法解析を用いたシミュレーションを行った。
[Example 1] Thermal stress simulation around the joining region First, when dissimilar materials were joined without distortion during high-temperature joining, a simulation using finite element method analysis was performed on the stress distribution generated at room temperature.

図6及び図7は、シミュレーションにおける基板5と異種材料6の接合の様子を示す断面図であり、図6は従来の表面均一基板6Aについての接合面を示しており、図7は本発明の分割島状接合部7を備えた基板6についての接合面を示しており、いずれも材料の条件としては、異種材料5としてガーネット結晶GdGa12(以下、GGGと略す)を用いた。GGGは、光アイソレータ用磁気光学材料(Ce置換YFe12(Ce:YIG))の結晶成長基板となる材料であり、Ce:YIGとほぼ同じ機械的物性を持つ。なお、本実施例1にて用いる異種材料5の厚さを500μm(図6のy軸方向)とした。 6 and 7 are cross-sectional views showing how the substrate 5 and the dissimilar material 6 are joined in the simulation, FIG. 6 shows a joining surface of the conventional surface uniform substrate 6A, and FIG. The bonding surface of the substrate 6 provided with the divided island-shaped bonding portions 7 is shown. In each case, as a material condition, a garnet crystal Gd 3 Ga 5 O 12 (hereinafter abbreviated as GGG) was used as the dissimilar material 5. . GGG is a material that becomes a crystal growth substrate of a magneto-optical material for optical isolators (Ce-substituted Y 3 Fe 5 O 12 (Ce: YIG)), and has substantially the same mechanical properties as Ce: YIG. The thickness of the dissimilar material 5 used in Example 1 was 500 μm (y-axis direction in FIG. 6).

また、基板6及び6AとしてIII−V族化合物半導体結晶InPを用いた。このInPは、半導体導波路の構成材料GaInAsPの結晶成長基板となる材料であり、GaInAsPとほぼ同じ機械的物性を持つ。なお、基板6Aは基板表面が均一であり、基板6は基板表面に、幅200μm、高さ200nmの分割島状接合部7を有し、各分割島状接合部7の離間距離は100μmになっている。ここで、本実施例1に用いる基板6及び6Aの厚さは350μmであり、異種材料5の長さ(図6のx軸方向)を10mmとし、基板6及び6Aの長さ(図6のx軸方向)は15mmである。表1に、各材料の材料定数を示す。   Further, III-V compound semiconductor crystal InP was used as the substrates 6 and 6A. This InP is a material used as a crystal growth substrate for the semiconductor waveguide constituent material GaInAsP, and has substantially the same mechanical properties as GaInAsP. The substrate surface of the substrate 6A is uniform, and the substrate 6 has the divided island-shaped joint portions 7 having a width of 200 μm and a height of 200 nm on the substrate surface, and the separation distance between the divided island-shaped joint portions 7 is 100 μm. ing. Here, the thickness of the substrates 6 and 6A used in Example 1 is 350 μm, the length of the different material 5 (x-axis direction in FIG. 6) is 10 mm, and the length of the substrates 6 and 6A (in FIG. 6). x-axis direction) is 15 mm. Table 1 shows material constants of the respective materials.

次に、温度400℃にて異種材料5と基板6Aとを接合した場合(図6)と、同じく温度400℃にて異種材料5と基板6とを接合した場合(図7)について、室温にて発生する応力分布を計算した(図8及び図9参照)。応力分布計算において、構造は2次元構造とする。すなわち、図6及び図7で、平面垂直方向において構造は均一とする。   Next, the case where the dissimilar material 5 and the substrate 6A are bonded at a temperature of 400 ° C. (FIG. 6) and the case where the dissimilar material 5 and the substrate 6 are bonded at the same temperature of 400 ° C. (FIG. 7) are brought to room temperature. The stress distribution generated was calculated (see FIGS. 8 and 9). In the stress distribution calculation, the structure is a two-dimensional structure. That is, in FIGS. 6 and 7, the structure is uniform in the direction perpendicular to the plane.

図6の場合、基板6AのInP中で、異種材料5の端部に対向する箇所(図8(a)の矢印にて示す部分)において、最も大きな応力として8.3GPaが発生している(図8(b)下線部参照)。また、図7の場合、最大応力は3.2GPaに低減した(図9(b)下線部参照)。最大応力が発生する箇所は、均一接合面の場合とほぼ同一の箇所(図9(a)の矢印にて示す部分)である。すなわち、上述のようなシミュレーションで、本発明の接合面分割による応力低減効果を確認することができた。   In the case of FIG. 6, 8.3 GPa is generated as the largest stress in the InP of the substrate 6A at the portion (the portion indicated by the arrow in FIG. 8A) facing the end of the dissimilar material 5 (the portion indicated by the arrow in FIG. 8A). (See the underlined portion in FIG. 8B). In the case of FIG. 7, the maximum stress was reduced to 3.2 GPa (see the underlined portion in FIG. 9B). The location where the maximum stress is generated is almost the same location as that of the uniform joint surface (the portion indicated by the arrow in FIG. 9A). That is, the stress reduction effect by the joint surface division of the present invention could be confirmed by the simulation as described above.

[実施例2]接合実験
実際の応用である、光アイソレータの製造過程における接合を考え、表面が均一な基板9を用いて異種材料(磁気光学材料)8を接合した場合(図10参照)と、表面に分割島状接合部11、11Aを配置して成る基板10、10Aにそれぞれ異種材料8を接合した場合(図11(a)、(b)参照)との比較をした。
[Example 2] Joining Experiment Considering joining in the manufacturing process of an optical isolator, which is an actual application, a case where a dissimilar material (magneto-optic material) 8 is joined using a substrate 9 having a uniform surface (see FIG. 10). The comparison was made with the case where the dissimilar material 8 was joined to the substrates 10 and 10A each having the divided island joints 11 and 11A arranged on the surface (see FIGS. 11A and 11B).

図10は、本実施例2における比較例(以下、「サンプルA」とする)として、磁気光学材料9と、上表面が均一な基板9とを接合した場合の側面側の断面図である。磁気光学材料8は、GGG(GdGa12)基板上に厚さ0.5μmのCe:YIGをスパッタエピタキシ法により結晶成長させたものを使用する。基板9は、InP上に厚さ0.36μmのGaInAsP結晶をスパッタエピタキシ法により成長させたものを使用する。磁気光学材料8及び基板9ともに、接合時の温度を150℃とし、表面活性化接合法により接合した。 FIG. 10 is a cross-sectional view of a side surface when a magneto-optical material 9 and a substrate 9 having a uniform upper surface are bonded as a comparative example (hereinafter referred to as “sample A”) in the second embodiment. As the magneto-optical material 8, a material obtained by growing Ce: YIG having a thickness of 0.5 μm on a GGG (Gd 3 Ga 5 O 12 ) substrate by sputtering epitaxy is used. As the substrate 9, a substrate in which a GaInAsP crystal having a thickness of 0.36 μm is grown on InP by sputtering epitaxy is used. Both the magneto-optical material 8 and the substrate 9 were bonded by a surface activated bonding method at a bonding temperature of 150 ° C.

図11は、本発明の実施例2として、分割島状接合部を基板の表面に配置したときの平面図であり、図11(a)は、基板10の表面上に、角部を円弧状にした断面矩形(100μm×100μm)の分割島状接合部11を3段に配置すると共に、各段の境界中央部に導波路12を配置した場合の平面図である。分割島状接合部11の断面は100μm×100μmの正方形の角部を円弧状にしたものであり、高さ10nmの分割島状接合部11は、3段に且つ5μm毎に離間されて整列されており、分割島状接合部11と導波路12との間にはそれぞれ30μmの離間部が設けられている。なお、基板10は、図10に示す基板9と同様の条件で製造したものであり、以下、図11(a)で示される基板11を使用して接合実験をしたサンプルを「サンプルB」とする。   FIG. 11 is a plan view when the divided island-shaped joint portion is arranged on the surface of the substrate as Example 2 of the present invention. FIG. FIG. 5 is a plan view when the divided island-shaped joint portions 11 having a rectangular cross section (100 μm × 100 μm) are arranged in three stages and the waveguide 12 is arranged in the center of the boundary of each stage. The cross section of the divided island-shaped joint portion 11 is a 100 μm × 100 μm square corner portion formed into an arc shape, and the divided island-shaped joint portion 11 having a height of 10 nm is arranged in three steps and spaced apart every 5 μm. In addition, a separation portion of 30 μm is provided between each of the divided island-shaped joint portions 11 and the waveguide 12. The substrate 10 was manufactured under the same conditions as the substrate 9 shown in FIG. 10. Hereinafter, a sample subjected to a bonding experiment using the substrate 11 shown in FIG. To do.

図11(b)は、基板10Aの表面上に断面円形(直径200μm)の分割島状接合部11Aを3段に配置すると共に、各段の境界中央部に導波路12Aを配置した場合の断面図である。分割島状接合部11Aは、直径200μmの円形にしたものであり、高さ10nmの分割島状接合部11Aは、3段に且つ5μm毎に離間されて整列されており、分割島状接合部11Aと導波路12Aとの間にはそれぞれ30μmの離間部が設けられている。なお、基板10Aは、図10に示す基板9と同様の条件で製造したものであり、以下、図11(b)で示される基板10Aを使用して接合実験をしたサンプルを「サンプルC」とする。   FIG. 11B shows a cross section when the divided island-shaped joint portions 11A having a circular cross section (diameter of 200 μm) are arranged in three stages on the surface of the substrate 10A, and the waveguide 12A is arranged in the center of the boundary of each stage. FIG. The divided island-shaped joint portion 11A is a circular shape having a diameter of 200 μm, and the divided island-shaped joint portions 11A having a height of 10 nm are arranged in three steps and spaced apart every 5 μm. A space of 30 μm is provided between 11A and the waveguide 12A. The substrate 10A was manufactured under the same conditions as the substrate 9 shown in FIG. 10. Hereinafter, a sample subjected to a bonding experiment using the substrate 10A shown in FIG. 11B is referred to as “sample C”. To do.

図11(a)に示すように、分割島状接合部11の断面を完全な矩形ではなく、角部を円弧状としたパターンと、図11(b)に示すように、円形の島状パターンにした理由は、角部を無くすことによって応力の集中を避けるためである。   As shown in FIG. 11 (a), the cross-section of the divided island-shaped joint portion 11 is not a perfect rectangle, but a pattern in which corners are arcuate, and a circular island-like pattern as shown in FIG. 11 (b). The reason for this is to avoid stress concentration by eliminating the corners.

なお、サンプルA、B及びCに共通の事項としては、基板9、10及び10Aの表面幅が4mm×4mmであること、接合する磁気光学材料8を同一にしたこと、及び接合温度を150℃として、表面活性化接合法により接合したことである。   In addition, as matters common to the samples A, B and C, the surface widths of the substrates 9, 10 and 10A are 4 mm × 4 mm, the magneto-optical material 8 to be bonded is the same, and the bonding temperature is 150 ° C. As mentioned above, it is bonded by a surface activated bonding method.

また、本実施例2ではCe:YIGの結晶成長方法としてスパッタエピタキシ法、GaInAsPの結晶成長方法として有機金属気相成長法を用いたが、特にスパッタエピタキシ法及び有機金属気相成長法に限定する必要はない。   In the second embodiment, the sputter epitaxy method is used as the Ce: YIG crystal growth method, and the metal organic vapor phase growth method is used as the GaInAsP crystal growth method. However, the present invention is limited to the sputter epitaxy method and the metal organic vapor phase growth method. There is no need.

結果として、サンプルAにおいて、図12に示す顕微鏡写真に見られるように、GaInAsP及び基板9の表面にクラックの発生が、複数個所観察された。これに対して、サンプルBでは、クラックの発生は観察されなかった(図13(a)、(b))。ここで、図13(a)は接合材料8の中心付近を、図13、(b)は接合材料8の端部付近の顕微鏡写真である。なお、サンプルCについては、顕微鏡写真を撮影していないものの、サンプルBの場合と同様であった。   As a result, in Sample A, as seen in the micrograph shown in FIG. 12, the occurrence of cracks on the surface of GaInAsP and the substrate 9 was observed at a plurality of locations. On the other hand, in sample B, no crack was observed (FIGS. 13A and 13B). Here, FIG. 13A is a photomicrograph of the vicinity of the center of the bonding material 8, and FIGS. Note that Sample C was the same as Sample B although no micrograph was taken.

したがって、接合時の温度が150℃というように比較的低温の場合でも、接合面の一方を島状に分割した接合部とすることで、接合時の温度から室温に戻した場合の応力を低減する効果があると結論される。   Therefore, even when the temperature at the time of bonding is relatively low, such as 150 ° C., by reducing the stress at the time of returning from the temperature at the time of bonding to room temperature by forming one of the bonding surfaces into an island shape. It is concluded that there is an effect.

[応用例]シリコン光回路上における半導体レーザ集積回路製造
上記実施例2の接合実験を応用した例として、シリコン光回路上における、半導体レーザ集積回路の製造を、図面を用いて概略説明する。
[Application Example] Manufacturing of Semiconductor Laser Integrated Circuit on Silicon Optical Circuit As an example of application of the joining experiment of Example 2, the manufacturing of a semiconductor laser integrated circuit on a silicon optical circuit will be schematically described with reference to the drawings.

図14は、本実施例3におけるシリコン光回路上における半導体レーザ集積回路の概略図である。シリコン光回路13は、シリコン基板14、二酸化ケイ素(SiO)から成るボックス層15及びシリコン導波路16によって構成されている。なお、シリコン光回路13は、従来法で製造される。 FIG. 14 is a schematic diagram of a semiconductor laser integrated circuit on a silicon optical circuit according to the third embodiment. The silicon optical circuit 13 includes a silicon substrate 14, a box layer 15 made of silicon dioxide (SiO 2 ), and a silicon waveguide 16. The silicon optical circuit 13 is manufactured by a conventional method.

次に、半導体レーザ集積の役割を果たす、基板17は、InP基板18上でGaInAsP19を結晶成長させた基板とする。   Next, the substrate 17 that plays the role of semiconductor laser integration is a substrate obtained by crystal-growing GaInAsP19 on the InP substrate 18.

本明細書では図示しないが、本応用例においては、シリコン光回路13の表面(基板17との接合面)に、図5や図11で示したような島状分割接合面を配置できる。なお、本応用例において、前記島状分割接合部若しくは離間部はエッチングなどの従来法で製造でき、島状分割接合部の幅及び高さ、離間部の幅、並びに接合温度等は、適宜変更可能である。   Although not shown in the present specification, in this application example, an island-shaped divided junction surface as shown in FIGS. 5 and 11 can be arranged on the surface of the silicon optical circuit 13 (the junction surface with the substrate 17). In this application example, the island-shaped divided joint portion or the separated portion can be manufactured by a conventional method such as etching, and the width and height of the island-shaped divided joined portion, the width of the separated portion, the bonding temperature, etc. are changed as appropriate. Is possible.

なお、上述では分割島状接合部の断面形状を矩形及び円形で説明したが、形状は任意であり、また、長形状の接合部を少なくとも2個設けた構造であっても良い。   In the above description, the cross-sectional shape of the divided island-shaped joint is described as a rectangle and a circle, but the shape is arbitrary, and a structure in which at least two long joints are provided may be used.

1,6,6A,9,10,10A,17 基板
2,5,8 異種材料
3,7,11,11A 分割島状接合部
4 離間部
12,12A 導波路
13 シリコン光回路
14 シリコン基板
15 ボックス層
16 シリコン導波路
18,100 InP基板
19 GaInAsP
101 導波層
102 磁気光学材料
1, 6, 6A, 9, 10, 10A, 17 Substrate 2, 5, 8 Dissimilar material 3, 7, 11, 11A Divided island joint 4 Spacing part 12, 12A Waveguide 13 Silicon optical circuit 14 Silicon substrate 15 Box Layer 16 Silicon waveguide 18, 100 InP substrate 19 GaInAsP
101 Waveguide layer 102 Magneto-optic material

Claims (7)

半導体材料から成る基板と、前記基板と材質の異なる異種材料とを接合して成る異種材料接合体であって、前記基板又は前記異種材料の表面上に、離間部を有して複数の分割島状接合部が配置されることを特徴とする異種材料接合体。   A dissimilar material joined body obtained by joining a substrate made of a semiconductor material and a dissimilar material different in material from the substrate, and having a plurality of divided islands on the surface of the substrate or the dissimilar material. Dissimilar material joined body, characterized in that a joint is disposed. 前記異種材料が磁気光学材料である請求項1に記載の異種材料接合体。   The dissimilar material joined body according to claim 1, wherein the dissimilar material is a magneto-optical material. 前記分割島状接合部の断面形状が矩形又は円形である請求項1又は2に記載の異種材料接合体。   The heterogeneous material joined body according to claim 1 or 2, wherein a cross-sectional shape of the divided island joint is a rectangle or a circle. 前記分割島状接合部の幅が1〜200μmである請求項1乃至3のいずれか1項に記載の異種材料接合体。   The heterogeneous material joined body according to any one of claims 1 to 3, wherein the divided island-shaped joined portion has a width of 1 to 200 µm. 前記離間部の幅が前記分割島状接合部の幅に対して5〜60%である請求項1乃至4のいずれか1項に記載の異種材料接合体。   5. The dissimilar material joined body according to claim 1, wherein a width of the spaced-apart portion is 5 to 60% with respect to a width of the divided island-shaped joint portion. 前記分割島状接合部の高さが10〜200nmである請求項1乃至5のいずれか1項に記載の異種材料接合体。   The heterogeneous material joined body according to any one of claims 1 to 5, wherein a height of the divided island-shaped joined portion is 10 to 200 nm. 請求項1乃至6のいずれか1項に記載の異種材料接合体からなる光アイソレータ。
The optical isolator which consists of a dissimilar-material joined body of any one of Claims 1 thru | or 6.
JP2009073166A 2009-03-25 2009-03-25 Dissimilar material joined body and dissimilar material joining method Expired - Fee Related JP5187906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073166A JP5187906B2 (en) 2009-03-25 2009-03-25 Dissimilar material joined body and dissimilar material joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009073166A JP5187906B2 (en) 2009-03-25 2009-03-25 Dissimilar material joined body and dissimilar material joining method

Publications (3)

Publication Number Publication Date
JP2010224335A true JP2010224335A (en) 2010-10-07
JP2010224335A5 JP2010224335A5 (en) 2012-03-22
JP5187906B2 JP5187906B2 (en) 2013-04-24

Family

ID=43041567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073166A Expired - Fee Related JP5187906B2 (en) 2009-03-25 2009-03-25 Dissimilar material joined body and dissimilar material joining method

Country Status (1)

Country Link
JP (1) JP5187906B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169833A (en) * 2014-03-07 2015-09-28 国立大学法人東京工業大学 Waveguide type magnetic optical device and manufacturing method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963912A (en) * 1995-08-18 1997-03-07 Hoya Corp Manufacture of joined substrate
JP2006503710A (en) * 2002-10-28 2006-02-02 サムスン エレクトロニクス カンパニー リミテッド Compression joining method
JP2006064989A (en) * 2004-08-26 2006-03-09 Kyocera Corp Joint structure, optical isolator using this structure and its manufacturing method
WO2007088998A1 (en) * 2006-01-31 2007-08-09 Tokyo Institute Of Technology Optical isolator
JP2007219285A (en) * 2006-02-17 2007-08-30 Mitsumi Electric Co Ltd Magnet holder for waveguide type optical isolator and waveguide type optical isolator using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963912A (en) * 1995-08-18 1997-03-07 Hoya Corp Manufacture of joined substrate
JP2006503710A (en) * 2002-10-28 2006-02-02 サムスン エレクトロニクス カンパニー リミテッド Compression joining method
JP2006064989A (en) * 2004-08-26 2006-03-09 Kyocera Corp Joint structure, optical isolator using this structure and its manufacturing method
WO2007088998A1 (en) * 2006-01-31 2007-08-09 Tokyo Institute Of Technology Optical isolator
JP2007219285A (en) * 2006-02-17 2007-08-30 Mitsumi Electric Co Ltd Magnet holder for waveguide type optical isolator and waveguide type optical isolator using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169833A (en) * 2014-03-07 2015-09-28 国立大学法人東京工業大学 Waveguide type magnetic optical device and manufacturing method of the same

Also Published As

Publication number Publication date
JP5187906B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
US20010026873A1 (en) Method for producing high quality heteroepitaxial growth using stress engineering and innovative substrates
US7981768B2 (en) Method for transferring an epitaxial layer
US20190341361A1 (en) High yield substrate assembly
TW200406934A (en) Semiconductor component and its production method
KR20120071322A (en) Process for cleaving a substrate
US7859848B1 (en) Heat spreader and method of making the same
US8481408B2 (en) Relaxation of strained layers
JP5187906B2 (en) Dissimilar material joined body and dissimilar material joining method
TWI645454B (en) Epitaxial substrate and method of manufacturing the same
JP4776478B2 (en) Compound semiconductor device and manufacturing method thereof
JP2005108943A (en) Semiconductor wafer and method for manufacturing semiconductor device using same
Takigawa et al. Demonstration of GaN/LiNbO3 hybrid wafer using room-temperature surface activated bonding
JP5613580B2 (en) Substrate manufacturing method
JP2015072959A (en) Junction structure of insulation substrate and cooler, manufacturing method thereof, power semiconductor module and manufacturing method thereof
US9048090B2 (en) Semiconductor element and method of manufacturing same
JP2016139695A (en) Semiconductor device
TWI702733B (en) Mounting method of light-emitting element
JP2011103466A (en) Semiconductor wafer, and method of manufacturing semiconductor device using the same
US20190131127A1 (en) Method for industrial manufacturing of a semiconductor structure with reduced bowing
JP2019021818A (en) Compound semiconductor substrate and method for manufacturing the same
Potin et al. HREM study of basal stacking faults in GaN layers grown over sapphire substrate
US9768057B2 (en) Method for transferring a layer from a single-crystal substrate
KR100761671B1 (en) Edge growth heteroepitaxy
CN115881555A (en) Manufacturing method of semiconductor device and semiconductor device structure
JP3193269B2 (en) Method of forming semiconductor quantum wire structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees