JP2010223854A - Three-axis detection angular velocity sensor - Google Patents

Three-axis detection angular velocity sensor Download PDF

Info

Publication number
JP2010223854A
JP2010223854A JP2009073303A JP2009073303A JP2010223854A JP 2010223854 A JP2010223854 A JP 2010223854A JP 2009073303 A JP2009073303 A JP 2009073303A JP 2009073303 A JP2009073303 A JP 2009073303A JP 2010223854 A JP2010223854 A JP 2010223854A
Authority
JP
Japan
Prior art keywords
axis direction
axis
detection
drive
angular velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009073303A
Other languages
Japanese (ja)
Inventor
Takashi Kawai
孝士 川井
Koji Yamamoto
幸二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009073303A priority Critical patent/JP2010223854A/en
Publication of JP2010223854A publication Critical patent/JP2010223854A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-axis detection angular velocity sensor that accurately detects angular velocities in an X-axis direction, a Y-axis direction and a Z-axis direction in such a manner that a driving signal in the Y-axis direction and a detection signal by a Coriolis force in the Y-axis direction generated by driving in the Z-axis direction and an angular velocity around an X axis do not have the same phases. <P>SOLUTION: A driving circuit 49 is provided with a phase shift circuit 55b. A driving signal for driving of vibration in the Z-axis direction and a driving signal for driving of vibration in the Y-axis direction have phases different from each other by an angle except 90 degrees. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、特に、X軸、Y軸およびZ軸の3軸方向の角速度を検出することが可能な3軸検出角速度センサに関するものである。   In particular, the present invention relates to a triaxial detection angular velocity sensor capable of detecting angular velocities in the triaxial directions of the X axis, the Y axis, and the Z axis.

従来のこの種の3軸検出角速度センサは、図13、図14に示すように構成されていた。   Conventional three-axis detection angular velocity sensors of this type are configured as shown in FIGS.

図13は従来の3軸検出角速度センサの側断面図、図14は同3軸検出角速度センサの上面図である。   FIG. 13 is a side sectional view of a conventional triaxial detection angular velocity sensor, and FIG. 14 is a top view of the triaxial detection angular velocity sensor.

図13、図14において、1はSiからなる直方体形状の質量部である。そして、この質量部1は、X軸方向およびY軸方向の共振周波数が略同一になるように構成されている。2は内周および外周が8角形状をなし、かつその全周にわたって延出されたSiからなる支持部材で、この支持部材2は、前記質量部1を外方全周から支持するとともに、上面に複数のPZTからなる外側駆動圧電体3および内側駆動圧電体4を設けている。また、支持部材2の上面には、前記外側駆動圧電体3および内側駆動圧電体4の間に位置して、外側検出圧電体5および内側検出圧電体6を設けている。7はSiからなる四角形筒状の枠体で、この枠体7は前記支持部材2を一体に支持している。   13 and 14, reference numeral 1 denotes a rectangular parallelepiped mass portion made of Si. And this mass part 1 is comprised so that the resonant frequency of a X-axis direction and a Y-axis direction may become substantially the same. Reference numeral 2 denotes a support member made of Si, the inner periphery and the outer periphery of which are octagonal and extended over the entire periphery. The support member 2 supports the mass portion 1 from the entire outer periphery, and a plurality of support members on the upper surface. An outer drive piezoelectric body 3 and an inner drive piezoelectric body 4 made of PZT are provided. An outer detection piezoelectric member 5 and an inner detection piezoelectric member 6 are provided on the upper surface of the support member 2 between the outer drive piezoelectric member 3 and the inner drive piezoelectric member 4. Reference numeral 7 denotes a rectangular cylindrical frame made of Si. The frame 7 integrally supports the support member 2.

以上のように構成された従来の3軸検出角速度センサについて、次に、その動作を説明する。   Next, the operation of the conventional three-axis detection angular velocity sensor configured as described above will be described.

支持部材2における外側駆動圧電体3および内側駆動圧電体4に、図15(a)(b)に示すような、Z軸方向とY軸方向の位相差が90度である交流電圧を印加すると、図16(a)〜(d)に示すように、振動子1がZ軸方向およびY軸方向の位相差が90度になるように円形状の振動駆動をする。そして、その状態において、振動子1のX軸、Y軸およびZ軸周りに角速度が発生すると、振動子1が振動駆動する方向および角速度が発生する方向の両者と垂直な方向にF=2mV×ωのコリオリ力が発生する。そして、このコリオリ力により外側検出圧電体5および内側検出圧電体6から発生する電荷をIV変換した後、同期検波することにより、X軸方向、Y軸方向およびZ軸方向の角速度を検出するものであった。   When an AC voltage having a phase difference of 90 degrees between the Z-axis direction and the Y-axis direction as shown in FIGS. 15A and 15B is applied to the outer drive piezoelectric body 3 and the inner drive piezoelectric body 4 in the support member 2. As shown in FIGS. 16A to 16D, the vibrator 1 is driven in a circular vibration so that the phase difference between the Z-axis direction and the Y-axis direction is 90 degrees. In this state, when an angular velocity is generated around the X axis, Y axis, and Z axis of the vibrator 1, F = 2 mV × in the direction perpendicular to both the direction in which the vibrator 1 is driven to vibrate and the direction in which the angular speed is generated. ω Coriolis force is generated. Then, the electric charges generated from the outer detection piezoelectric member 5 and the inner detection piezoelectric member 6 are IV-converted by this Coriolis force, and then detected synchronously to detect angular velocities in the X axis direction, the Y axis direction, and the Z axis direction. Met.

なお、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1が知られている。
特開平8−145683号公報
As prior art document information relating to the invention of this application, for example, Patent Document 1 is known.
JP-A-8-145683

しかしながら、上記した従来の構成では、Z軸方向に振動駆動させる駆動信号とY軸方向に振動駆動させる駆動信号との位相差が90度であるため、図17(a)に示すY軸方向の駆動信号と、図17(b)に示すZ軸方向の駆動でかつX軸周りの角速度により発生するY軸方向のコリオリ力による検出信号とが、図17(c)に示すように、同一位相で加算されるため、信号を分離することが困難となり、これにより、X軸方向、Y軸方向およびZ軸方向の角速度を正確に検出することができないという課題を有していた。   However, in the conventional configuration described above, the phase difference between the drive signal that is driven to vibrate in the Z-axis direction and the drive signal that is driven to vibrate in the Y-axis direction is 90 degrees, and therefore the Y-axis direction shown in FIG. The drive signal and the detection signal based on the Coriolis force in the Y-axis direction generated by the angular velocity around the X-axis and driven in the Z-axis direction shown in FIG. 17B are in the same phase as shown in FIG. Therefore, it is difficult to separate the signals, thereby causing a problem that the angular velocities in the X-axis direction, the Y-axis direction, and the Z-axis direction cannot be accurately detected.

本発明は上記従来の課題を解決するもので、Y軸方向の駆動信号とZ軸方向の駆動でかつX軸周りの角速度により発生するY軸方向のコリオリ力による検出信号とが同一位相となることのないX軸方向、Y軸方向およびZ軸方向の角速度を正確に検出可能な3軸検出角速度センサを提供することを目的とするものである。   The present invention solves the above-described conventional problem, and the drive signal in the Y-axis direction and the detection signal based on the Coriolis force in the Y-axis direction generated by the angular velocity around the X-axis driven in the Z-axis direction have the same phase. It is an object of the present invention to provide a triaxial detection angular velocity sensor that can accurately detect angular velocities in the X axis direction, the Y axis direction, and the Z axis direction.

上記目的を達成するために、本発明は以下の構成を有するものである。   In order to achieve the above object, the present invention has the following configuration.

本発明の請求項1に記載の発明は、X軸、Y軸およびZ軸の3軸方向に変位可能な質量部と、この質量部を支持するとともに少なくとも一対の駆動圧電体と少なくとも1つの検出圧電体と少なくとも1つのモニタ圧電体とを設けた支持部材と、前記質量部をY軸方向およびZ軸方向に振動駆動する駆動回路と、前記質量部に付加される角速度により、支持部材における検出圧電体に発生する出力信号を検出する検出回路とを備え、前記駆動回路に位相シフト回路を設け、Z軸方向に振動駆動させる駆動信号とY軸方向に振動駆動させる駆動信号とが90度以外の互いに異なる位相差となるようにしたもので、この構成によれば、駆動回路に位相シフト回路を設け、Z軸方向に振動駆動させる駆動信号とY軸方向に振動駆動させる駆動信号とが90度以外の互いに異なる位相差となるようにしたため、異なる位相により位相検波をすることができることとなり、これにより、Y軸方向の駆動信号と、Z軸方向の駆動でかつX軸周りの角速度により発生するY軸方向のコリオリ力による検出信号とが、同一位相となることがないから、位相検波により信号を分離することが可能となり、その結果、X軸方向、Y軸方向およびZ軸方向の角速度を正確に検出することができるという作用効果を有するものである。   According to a first aspect of the present invention, a mass part that is displaceable in the three-axis directions of the X axis, the Y axis, and the Z axis, the mass part that supports the mass part, and at least a pair of drive piezoelectric bodies and at least one detection Detection on the support member by a support member provided with a piezoelectric body and at least one monitor piezoelectric body, a drive circuit that vibrates and drives the mass portion in the Y-axis direction and the Z-axis direction, and an angular velocity added to the mass portion A detection circuit that detects an output signal generated in the piezoelectric body, and a phase shift circuit is provided in the drive circuit so that a drive signal for driving vibration in the Z-axis direction and a drive signal for driving vibration in the Y-axis direction are other than 90 degrees. According to this configuration, a phase shift circuit is provided in the drive circuit, and a drive signal for driving vibration in the Z-axis direction and a drive signal for driving vibration in the Y-axis direction are provided. Since the phase differences are different from each other other than 0 degrees, phase detection can be performed with different phases, and accordingly, the drive signal in the Y-axis direction, the drive in the Z-axis direction, and the angular velocity around the X-axis Since the generated detection signal due to the Coriolis force in the Y-axis direction does not have the same phase, it is possible to separate the signals by phase detection, and as a result, in the X-axis direction, the Y-axis direction, and the Z-axis direction. This has the effect of being able to accurately detect the angular velocity.

本発明の請求項2に記載の発明は、X軸、Y軸およびZ軸の3軸方向に変位可能な質量部と、この質量部を支持するとともにX軸方向に延出されかつ上面に少なくとも1つの検出圧電体を設けたX軸方向支持部材と、前記質量部を支持するとともにY軸方向に延出されかつ上面に少なくとも一対の駆動圧電体と少なくとも1つの検出圧電体と少なくとも1つのモニタ圧電体とを設けたY軸方向支持部材と、前記質量部をY軸方向およびZ軸方向に振動駆動する駆動回路と、前記質量部に付加される角速度により、X軸方向支持部材またはY軸方向支持部材のうちのいずれか一方または両方の検出圧電体に発生する出力信号を検出する検出回路とを備え、前記駆動回路に位相シフト回路を設け、Z軸方向に振動駆動させる駆動信号と、Y軸方向に振動駆動させる駆動信号とが90度以外の互いに異なる位相となるようにしたもので、この構成によれば、駆動回路に位相シフト回路を設け、Z軸方向に振動駆動させる駆動信号とY軸方向に振動駆動させる駆動信号とが90度以外の互いに異なる位相差となるようにしたため、異なる位相により位相検波をすることができることとなり、これにより、Y軸方向の駆動信号と、Z軸方向の駆動でかつX軸周りの角速度により発生するY軸方向のコリオリ力による検出信号とが、同一位相となることがないから、位相検波により信号を分離することが可能となり、その結果、X軸方向、Y軸方向およびZ軸方向の角速度を正確に検出することができるという作用効果を有するものである。   According to a second aspect of the present invention, there is provided a mass part that is displaceable in the three axial directions of the X-axis, Y-axis, and Z-axis, and supports the mass part, extends in the X-axis direction, and is at least on the upper surface. An X-axis direction support member provided with one detection piezoelectric body; and at least a pair of drive piezoelectric bodies, at least one detection piezoelectric body and at least one monitor that support the mass portion and extend in the Y-axis direction on the upper surface. A Y-axis support member provided with a piezoelectric body, a drive circuit that vibrates and drives the mass part in the Y-axis direction and the Z-axis direction, and an angular velocity added to the mass part, depending on the X-axis direction support member or the Y-axis A detection circuit for detecting an output signal generated in one or both of the direction support members, a drive signal provided with a phase shift circuit in the drive circuit, and driven to vibrate in the Z-axis direction; Y-axis direction The drive signal to be driven to vibrate has a different phase other than 90 degrees. According to this configuration, the drive circuit is provided with a phase shift circuit, and the drive signal to be driven to vibrate in the Z-axis direction and the Y-axis direction. Since the phase difference between the driving signal and the driving signal to be vibrated is different from that other than 90 degrees, phase detection can be performed with a different phase. As a result, the driving signal in the Y-axis direction and the driving signal in the Z-axis direction can be detected. And the detection signal due to the Coriolis force in the Y-axis direction generated by the angular velocity around the X-axis does not have the same phase, so that the signal can be separated by phase detection. This has the effect of being able to accurately detect the angular velocities in the Y-axis direction and the Z-axis direction.

本発明の請求項3に記載の発明は、特に、位相シフト回路により、Y軸方向に振動駆動させる駆動信号をZ軸方向に振動駆動させる駆動信号より、略45度遅らせるかまたは進ませるようにしたもので、この構成によれば、位相シフト回路により、Y軸方向に振動駆動させる駆動信号をZ軸方向に振動駆動させる駆動信号より、略45度遅らせるかまたは進ませるようにしたため、検出信号に発生する不要な信号を位相検波する際に、確実に除去できるという作用効果を有するものである。   According to the third aspect of the present invention, in particular, the phase shift circuit causes the drive signal for driving vibration in the Y-axis direction to be delayed or advanced by about 45 degrees from the drive signal for driving vibration in the Z-axis direction. According to this configuration, since the drive signal for driving the vibration in the Y-axis direction is delayed or advanced by about 45 degrees from the drive signal for driving the vibration in the Z-axis direction by the phase shift circuit, the detection signal When the unnecessary signal generated in the phase detection is phase-detected, there is an effect that it can be surely removed.

以上のように本発明の3軸検出角速度センサは、X軸、Y軸およびZ軸の3軸方向に変位可能な質量部と、この質量部を支持するとともに少なくとも一対の駆動圧電体と少なくとも1つの検出圧電体と少なくとも1つのモニタ圧電体とを設けた支持部材と、前記質量部をY軸方向およびZ軸方向に振動駆動する駆動回路と、前記質量部に付加される角速度により、支持部材における検出圧電体に発生する出力信号を検出する検出回路とを備え、前記駆動回路に位相シフト回路を設け、Z軸方向に振動駆動させる駆動信号とY軸方向に振動駆動させる駆動信号とが90度以外の互いに異なる位相差となるようにしたもので、この構成によれば、駆動回路に位相シフト回路を設け、Z軸方向に振動駆動させる駆動信号とY軸方向に振動駆動させる駆動信号とが90度以外の互いに異なる位相差となるようにしたため、異なる位相により位相検波をすることができることとなり、これにより、Y軸方向の駆動信号と、Z軸方向の駆動でかつX軸周りの角速度により発生するY軸方向のコリオリ力による検出信号とが、同一位相となることがないから、位相検波により信号を分離することが可能となり、その結果、X軸方向、Y軸方向およびZ軸方向の角速度を正確に検出することができる3軸検出角速度センサを提供することができるという効果を有するものである。   As described above, the three-axis detection angular velocity sensor of the present invention includes a mass part that can be displaced in the three-axis directions of the X-axis, the Y-axis, and the Z-axis, and supports at least one pair of driving piezoelectric bodies and at least one. A support member provided with two detection piezoelectric bodies and at least one monitor piezoelectric body; a drive circuit that vibrates and drives the mass section in the Y-axis direction and the Z-axis direction; and an angular velocity added to the mass section. And a detection circuit for detecting an output signal generated in the detection piezoelectric body, and a phase shift circuit is provided in the drive circuit so that a drive signal for driving vibration in the Z-axis direction and a drive signal for driving vibration in the Y-axis direction are 90. In this configuration, the phase shift circuit is provided in the drive circuit to drive the drive signal in the Z-axis direction and the drive signal in the Y-axis direction. Since the phase difference between the motion signal and the moving signal is different from each other other than 90 degrees, phase detection can be performed with a different phase, whereby the drive signal in the Y-axis direction, the drive in the Z-axis direction, and the X-axis Since the detection signal due to the Coriolis force in the Y-axis direction generated by the surrounding angular velocity does not have the same phase, it is possible to separate the signals by phase detection. As a result, the X-axis direction, the Y-axis direction, and This has the effect of providing a three-axis detection angular velocity sensor that can accurately detect the angular velocity in the Z-axis direction.

以下、本発明の一実施の形態における3軸検出角速度センサについて、図面を参照しながら説明する。   Hereinafter, a three-axis detection angular velocity sensor according to an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施の形態における3軸検出角速度センサの側断面図、図2は同3軸検出角速度センサの上面図、図3は同3軸検出角速度センサにおける第1のX軸方向支持部材の側断面図、図4は同3軸検出角速度センサの回路図である。   1 is a side sectional view of a triaxial detection angular velocity sensor according to an embodiment of the present invention, FIG. 2 is a top view of the triaxial detection angular velocity sensor, and FIG. 3 is a first X-axis direction of the triaxial detection angular velocity sensor. FIG. 4 is a circuit diagram of the triaxial detection angular velocity sensor.

図1〜図4において、21はSiからなる直方体形状の質量部である。22はSiからなる第1のX軸方向支持部材で、この第1のX軸方向支持部材22は、前記質量部21における一側面の上部を支持するとともに、上面の外側に一対のPZTからなる外側駆動圧電体23を設け、さらに上面の内側に一対のPZTからなる内側駆動圧電体24を設けているものである。また、前記第1のX軸方向支持部材22の上面には、前記一対の外側駆動圧電体23の間に位置して、外側検出圧電体25を設けており、さらに前記内側駆動圧電体24の間に位置して、内側検出圧電体26を設けているものである。   1-4, 21 is a rectangular parallelepiped mass part which consists of Si. Reference numeral 22 denotes a first X-axis direction support member made of Si. The first X-axis direction support member 22 supports an upper portion of one side surface of the mass portion 21 and a pair of PZTs on the outer side of the upper surface. An outer drive piezoelectric body 23 is provided, and an inner drive piezoelectric body 24 made of a pair of PZTs is provided inside the upper surface. Further, on the upper surface of the first X-axis direction support member 22, an outer detection piezoelectric member 25 is provided between the pair of outer drive piezoelectric members 23. An inner detection piezoelectric body 26 is provided between them.

27はSiからなる第2のX軸方向支持部材で、この第2のX軸方向支持部材27は、前記質量部21における前記第1のX軸方向支持部材22を設けた側と反対側の一側面の上部を支持するとともに、上面の外側に一対のPZTからなる外側駆動圧電体28を設け、さらに上面の内側に一対のPZTからなる内側駆動圧電体29を設けているものである。また、前記第2のX軸方向支持部材27の上面には、前記一対の外側駆動圧電体28の間に位置して、外側検出圧電体30を設けており、さらに前記内側駆動圧電体29の間に位置して、内側検出圧電体31を設けているものである。   Reference numeral 27 denotes a second X-axis direction support member made of Si. The second X-axis direction support member 27 is on the opposite side of the mass portion 21 from the side on which the first X-axis direction support member 22 is provided. While supporting the upper part of one side, the outer side drive piezoelectric material 28 which consists of a pair of PZT is provided in the outer side of the upper surface, and the inner side drive piezoelectric material 29 which consists of a pair of PZT is further provided inside the upper surface. Further, on the upper surface of the second X-axis direction support member 27, an outer detection piezoelectric body 30 is provided between the pair of outer drive piezoelectric bodies 28. The inner detection piezoelectric body 31 is provided between them.

32はSiからなる第1のY軸方向支持部材で、この第1のY軸方向支持部材32は、前記質量部21における一側面の上部を支持するとともに、上面の外側に一対のPZTからなる外側駆動圧電体33を設け、さらに上面の内側に一対のPZTからなる内側駆動圧電体34を設けているものである。また、前記第1のY軸方向支持部材32の上面には、前記一対の外側駆動圧電体33の間に位置して、外側検出圧電体35を設けており、さらに前記内側駆動圧電体34の間に位置して、内側検出圧電体36を設けているものである。そしてまた、前記第1のY軸方向支持部材32の上面には、前記外側駆動圧電体33の外側に位置して外側モニタ圧電体37を設けるとともに、内側駆動圧電体34の外側に位置して内側モニタ圧電体38を設けているものである。   Reference numeral 32 denotes a first Y-axis direction support member made of Si. The first Y-axis direction support member 32 supports the upper part of one side surface of the mass portion 21 and is made of a pair of PZTs on the outer side of the upper surface. An outer drive piezoelectric body 33 is provided, and an inner drive piezoelectric body 34 made of a pair of PZTs is provided inside the upper surface. Further, on the upper surface of the first Y-axis direction support member 32, an outer detection piezoelectric body 35 is provided between the pair of outer drive piezoelectric bodies 33. An inner detection piezoelectric body 36 is provided between them. Further, on the upper surface of the first Y-axis direction support member 32, an outer monitor piezoelectric body 37 is provided outside the outer drive piezoelectric body 33 and is positioned outside the inner drive piezoelectric body 34. An inner monitor piezoelectric body 38 is provided.

39はSiからなる第2のY軸方向支持部材で、この第2のY軸方向支持部材39は、前記質量部21における前記第1のY軸方向支持部材32を設けた側と反対側の一側面の上部を支持するとともに、上面の外側に一対のPZTからなる外側駆動圧電体40を設け、さらに上面の内側に一対のPZTからなる内側駆動圧電体41を設けているものである。また、前記第2のY軸方向支持部材39の上面には、前記一対の外側駆動圧電体40の間に位置して、外側検出圧電体42を設けており、さらに前記内側駆動圧電体41の間に位置して、内側検出圧電体43を設けているものである。そしてまた、前記第2のY軸方向支持部材39の上面には、一対の内側駆動圧電体41の外側に位置して一対の内側モニタ圧電体70を設けているものである。   39 is a second Y-axis direction support member made of Si, and this second Y-axis direction support member 39 is on the opposite side of the mass portion 21 from the side where the first Y-axis direction support member 32 is provided. While supporting the upper part of one side, the outer side drive piezoelectric material 40 which consists of a pair of PZT is provided in the outer side of the upper surface, and the inner side drive piezoelectric material 41 which consists of a pair of PZT is further provided inside the upper surface. Further, on the upper surface of the second Y-axis direction support member 39, an outer detection piezoelectric body 42 is provided between the pair of outer drive piezoelectric bodies 40, and the inner drive piezoelectric body 41 is further provided. An inner detection piezoelectric body 43 is provided between them. Further, on the upper surface of the second Y-axis direction support member 39, a pair of inner monitor piezoelectric bodies 70 are provided outside the pair of inner drive piezoelectric bodies 41.

また、前記第1のX軸方向支持部材22の上面に位置する外側駆動圧電体23および外側検出圧電体25は、図3に示すように、Siからなる第1のX軸方向支持部材22の上面に設けたPtとTiとの合金薄膜からなる共通GND電極44の上面に設けられ、そして、外側駆動圧電体23の上面に駆動電極45を設けるとともに、外側検出圧電体25の上面に検出電極46を設けているものである。そしてまた、前記質量部21は、第1のX軸方向支持部材22、第2のX軸方向支持部材27、第1のY軸方向支持部材32および第2のY軸方向支持部材39で支持することにより、X軸方向、Y軸方向およびZ軸方向の駆動周波数が各々40kHzになるように構成されているものである。そして、前記第1のX軸方向支持部材22、第2のX軸方向支持部材27、第1のY軸方向支持部材32および第2のY軸方向支持部材39は、図2に示すように、それらの間に4つの孔71を有するとともに、外周側を一体に接続した外周部72を有し、さらに前記外周部72の上面にはICからなる処理回路48を設けているものである。   Further, as shown in FIG. 3, the outer drive piezoelectric body 23 and the outer detection piezoelectric body 25 located on the upper surface of the first X-axis direction support member 22 are formed of the first X-axis direction support member 22 made of Si. Provided on the upper surface of the common GND electrode 44 made of an alloy thin film of Pt and Ti provided on the upper surface, and provided with a drive electrode 45 on the upper surface of the outer drive piezoelectric member 23 and a detection electrode on the upper surface of the outer detection piezoelectric member 25. 46 is provided. The mass portion 21 is supported by the first X-axis direction support member 22, the second X-axis direction support member 27, the first Y-axis direction support member 32, and the second Y-axis direction support member 39. Thus, the drive frequencies in the X-axis direction, the Y-axis direction, and the Z-axis direction are each set to 40 kHz. The first X-axis direction support member 22, the second X-axis direction support member 27, the first Y-axis direction support member 32, and the second Y-axis direction support member 39 are as shown in FIG. In addition, there are four holes 71 between them, an outer peripheral portion 72 integrally connected on the outer peripheral side, and a processing circuit 48 made of an IC is provided on the upper surface of the outer peripheral portion 72.

47はSiからなる四角形筒状の枠体で、この枠体47は前記第1のX軸方向支持部材22、第2のX軸方向支持部材27、第1のY軸方向支持部材32および第2のY軸方向支持部材39と連接された外周部72を支持しているものである。   Reference numeral 47 denotes a rectangular cylindrical frame made of Si. The frame 47 includes the first X-axis direction support member 22, the second X-axis direction support member 27, the first Y-axis direction support member 32, and the first X-axis direction support member 32. The outer peripheral portion 72 connected to the two Y-axis direction support members 39 is supported.

前記外周部72の上面に設けた処理回路48は、前記外側駆動圧電体23,28,33,40、内側駆動圧電体24,29,34,41、外側検出圧電体25,30,35,42および内側検出圧電体26,31,36,43と回路パターン(図示せず)により電気的に接続しており、さらに、この処理回路48からの出力信号を回路パターン(図示せず)を介して外部回路(図示せず)に出力しているものである。   The processing circuit 48 provided on the upper surface of the outer peripheral portion 72 includes the outer driving piezoelectric bodies 23, 28, 33, 40, the inner driving piezoelectric bodies 24, 29, 34, 41, and the outer detection piezoelectric bodies 25, 30, 35, 42. And the inner detection piezoelectric bodies 26, 31, 36, 43 are electrically connected to each other by a circuit pattern (not shown), and an output signal from the processing circuit 48 is passed through a circuit pattern (not shown). The output is to an external circuit (not shown).

また、前記処理回路48は、図4に示すように、駆動回路49と検出回路50で構成され、そして、駆動回路49は、Z軸方向駆動回路51aと、Y軸方向駆動回路51bとで構成されているものである。そしてまた、前記Z軸方向駆動回路51aは第1のY軸方向支持部材32における外側モニタ圧電体37と第2のY軸方向支持部材39における内側モニタ圧電体70とからの出力信号の差動値をZ軸方向駆動回路51aにおけるIV変換器52、バンドパスフィルター53およびAGC回路54を介して、駆動信号を外側駆動圧電体23,28,33,40および内側駆動圧電体24,29,34,41に入力することにより、質量部21をZ軸方向に一定の振幅で振動駆動させているものである。また、これと同様に、駆動回路49におけるY軸方向駆動回路51bは、乗算器55aと駆動用位相シフト回路55bとで構成されており、前記Z軸方向駆動回路51aにおけるAGC回路54からの出力信号を、乗算器55aにより定数倍した後、駆動用位相シフト回路55bにより、位相を45度遅らせて、外側駆動圧電体33、40および内側駆動圧電体34、41に入力することにより、質量部21をY軸方向に一定の振幅で駆動振動させているものである。また、前記Z軸方向駆動回路51aにおけるバンドパスフィルター53の後段には、第1の検出用位相シフト回路56および第2の検出用位相シフト回路57を並列に設けており、第1の検出用位相シフト回路により、バンドパスフィルター53からの出力信号を45度遅らせた信号を出力するとともに、第2の検出用位相シフト回路57により135度遅らせた信号を各々出力している。   Further, as shown in FIG. 4, the processing circuit 48 includes a drive circuit 49 and a detection circuit 50, and the drive circuit 49 includes a Z-axis direction drive circuit 51a and a Y-axis direction drive circuit 51b. It is what has been. Further, the Z-axis direction drive circuit 51a performs differential output signals from the outer monitor piezoelectric body 37 in the first Y-axis direction support member 32 and the inner monitor piezoelectric body 70 in the second Y-axis direction support member 39. The values are passed through the IV converter 52, the bandpass filter 53 and the AGC circuit 54 in the Z-axis direction drive circuit 51a, and the drive signals are sent to the outer drive piezoelectric bodies 23, 28, 33, 40 and the inner drive piezoelectric bodies 24, 29, 34. , 41, the mass portion 21 is driven to vibrate with a constant amplitude in the Z-axis direction. Similarly, the Y-axis direction drive circuit 51b in the drive circuit 49 includes a multiplier 55a and a drive phase shift circuit 55b, and an output from the AGC circuit 54 in the Z-axis direction drive circuit 51a. After the signal is multiplied by a constant by the multiplier 55a, the phase is delayed by 45 degrees by the driving phase shift circuit 55b and input to the outer driving piezoelectric bodies 33 and 40 and the inner driving piezoelectric bodies 34 and 41, so that the mass part 21 is driven and oscillated with a constant amplitude in the Y-axis direction. Further, a first detection phase shift circuit 56 and a second detection phase shift circuit 57 are provided in parallel at the subsequent stage of the band-pass filter 53 in the Z-axis direction drive circuit 51a, and the first detection phase shift circuit 57 is provided. The phase shift circuit outputs a signal obtained by delaying the output signal from the bandpass filter 53 by 45 degrees, and the second detection phase shift circuit 57 outputs a signal delayed by 135 degrees.

そしてまた、前記検出回路50はY方向コリオリ力検出回路58とX方向コリオリ力検出回路59とで構成され、そして、Y方向コリオリ力検出回路58は、第1のY軸方向支持部材32における外側検出圧電体35および内側検出圧電体36の出力信号をIV変換器60に入力するとともに、第2のY軸方向支持部材39における外側検出圧電体42および内側検出圧電体43の出力信号をIV変換器61に入力し、両者の差動を取った後、同期検波器62によって、第2の検出用位相シフト回路57からの出力信号を基準として位相検波した後、ローパスフィルター63により平滑することにより、X軸周りの角速度を検出するものである。また、前記X方向コリオリ力検出回路59は、第1のX軸方向支持部材22における外側検出圧電体25および内側検出圧電体26の出力信号を入力するIV変換器64と、第2のX軸方向支持部材27における外側検出圧電体30および内側検出圧電体31からの出力信号を入力するIV変換器65からの出力信号との差動値を同期検波器66によって、第1の検出用位相シフト回路56からの出力信号を基準として、位相検波した後、ローパスフィルター67により平滑することにより、Y軸周りの角速度を検出するものである。さらに、これらと同様にして、同期検波器68によって、Z軸方向駆動回路51aにおけるバンドパスフィルタ53からの直接の出力信号を基準として位相検波した後、ローパスフィルター69により平滑することにより、Z軸周りの角速度を検出するものである。   The detection circuit 50 includes a Y-direction Coriolis force detection circuit 58 and an X-direction Coriolis force detection circuit 59. The Y-direction Coriolis force detection circuit 58 is outside the first Y-axis direction support member 32. The output signals of the detection piezoelectric member 35 and the inner detection piezoelectric member 36 are input to the IV converter 60, and the output signals of the outer detection piezoelectric member 42 and the inner detection piezoelectric member 43 in the second Y-axis direction support member 39 are IV converted. After being input to the detector 61 and taking the difference between the two, the synchronous detector 62 performs phase detection based on the output signal from the second detection phase shift circuit 57 and then smoothes it by the low-pass filter 63. The angular velocity around the X axis is detected. The X-direction Coriolis force detection circuit 59 includes an IV converter 64 for inputting output signals of the outer detection piezoelectric body 25 and the inner detection piezoelectric body 26 in the first X-axis direction support member 22, and a second X-axis. The differential value of the output signal from the IV converter 65 that inputs the output signals from the outer detection piezoelectric member 30 and the inner detection piezoelectric member 31 in the direction support member 27 is converted into a first detection phase shift by the synchronous detector 66. The phase velocity is detected by using the output signal from the circuit 56 as a reference and then smoothed by a low-pass filter 67 to detect the angular velocity around the Y axis. Further, similarly to these, the synchronous detector 68 performs phase detection on the basis of the direct output signal from the bandpass filter 53 in the Z-axis direction drive circuit 51a as a reference, and then smoothes it by the low-pass filter 69, whereby the Z-axis The angular velocity around is detected.

以上のように構成された本発明の一実施の形態における3軸検出角速度センサについて、次に、その組立方法を説明する。   Next, a method for assembling the three-axis detection angular velocity sensor according to the embodiment of the present invention configured as described above will be described.

まず、予め準備したSiからなる基材(図示せず)の上面に、PtとTiの合金薄膜からなる共通GND電極44を蒸着により形成し、その後、共通GND電極44の上面にPZT薄膜からなる外側駆動圧電体23,28,33,40、内側駆動圧電体24,29,34,41、外側検出圧電体25,30,35,42、内側検出圧電体26,31,36,43、外側モニタ圧電体37および内側モニタ圧電体38,70を蒸着により形成する。   First, a common GND electrode 44 made of an alloy thin film of Pt and Ti is formed by vapor deposition on the upper surface of a substrate (not shown) made of Si prepared in advance, and then made of a PZT thin film on the upper surface of the common GND electrode 44. Outer drive piezoelectric elements 23, 28, 33, 40, inner drive piezoelectric elements 24, 29, 34, 41, outer detection piezoelectric elements 25, 30, 35, 42, inner detection piezoelectric elements 26, 31, 36, 43, outer monitor The piezoelectric body 37 and the inner monitor piezoelectric bodies 38 and 70 are formed by vapor deposition.

次に、外側駆動圧電体23,28,33,40、内側駆動圧電体24,29,34,41、外側検出圧電体25,30,35,42、内側検出圧電体26,31,36,43、外側モニタ圧電体37および内側モニタ圧電体38,70の上面にTiとAuの合金薄膜からなる駆動電極45、検出電極46およびモニタ電極(図示せず)を形成する。   Next, the outer drive piezoelectric members 23, 28, 33, 40, the inner drive piezoelectric members 24, 29, 34, 41, the outer detection piezoelectric members 25, 30, 35, 42, the inner detection piezoelectric members 26, 31, 36, 43. The drive electrode 45, the detection electrode 46, and the monitor electrode (not shown) made of an alloy thin film of Ti and Au are formed on the upper surfaces of the outer monitor piezoelectric member 37 and the inner monitor piezoelectric members 38 and 70.

次に、共通GND電極44側に電圧を印加するとともに、駆動電極45、検出電極46およびモニタ電極(図示せず)を接地することにより、外側駆動圧電体23,28,33,40、内側駆動圧電体24,29,34,41、外側検出圧電体25,30,35,42、内側検出圧電体26,31,36,43、外側モニタ圧電体37および内側モニタ圧電体38,70を分極する。   Next, while applying a voltage to the common GND electrode 44 side and grounding the drive electrode 45, the detection electrode 46, and the monitor electrode (not shown), the outer drive piezoelectric bodies 23, 28, 33, 40, the inner drive Piezoelectric bodies 24, 29, 34, 41, outer detection piezoelectric bodies 25, 30, 35, 42, inner detection piezoelectric bodies 26, 31, 36, 43, outer monitor piezoelectric bodies 37, and inner monitor piezoelectric bodies 38, 70 are polarized. .

最後に、基材(図示せず)における不要な箇所を除去することにより、質量部21、第1のX軸方向支持部材22、第2のX軸方向支持部材27、第1のY軸方向支持部材32、第2のY軸方向支持部材39、外周部72および枠体47を形成した後、回路パターン(図示せず)にICからなる処理回路48を半田付けする。   Finally, by removing unnecessary portions in the base material (not shown), the mass portion 21, the first X-axis direction support member 22, the second X-axis direction support member 27, and the first Y-axis direction After forming the support member 32, the second Y-axis direction support member 39, the outer peripheral portion 72, and the frame body 47, a processing circuit 48 made of IC is soldered to a circuit pattern (not shown).

以上のように構成され、かつ組み立てられた本発明の一実施の形態における3軸検出角速度センサについて、次に、その動作を説明する。   Next, the operation of the three-axis detection angular velocity sensor according to the embodiment of the present invention constructed and assembled as described above will be described.

まず、最初に質量部21にX軸周りの角速度が付加される場合を説明する。   First, a case where an angular velocity around the X axis is first added to the mass portion 21 will be described.

内側駆動圧電体24,29,34,41に正電圧を印加すると同時に、外側駆動圧電体23,28,33,40に負電圧を印加すると、図5に示すように、内側駆動圧電体24,29,34,41は伸びるとともに外側駆動圧電体23,28,33,40は縮むことになり、その結果、質量部21は上方に向かって移動する。次に、内側駆動圧電体24,29,34,41に負電圧を印加すると同時に、外側駆動圧電体23,28,33,40に正電圧を印加すると、内側駆動圧電体24,29,34,41は縮むとともに外側駆動圧電体23,28,33,40は伸びることになり、その結果、質量部21は下方に向かって移動する。すなわち、図6(a)に示すような、正弦波からなる交流電圧を外側駆動圧電体23,28,33,40および内側駆動圧電体24,29,34,41に印加することにより、質量部21はZ軸方向の駆動周波数で速度Vの振動駆動するものである。そして、この質量部21の振動駆動は外側モニタ圧電体37および内側モニタ圧電体70から発生する出力信号が一定になるように、内側駆動圧電体24,29,34,41および外側駆動圧電体23,28,33,40に印加する電圧を調整することにより、振動駆動の振幅を制御している。   When a positive voltage is applied to the inner driving piezoelectric bodies 24, 29, 34, and 41 and a negative voltage is applied to the outer driving piezoelectric bodies 23, 28, 33, and 40, as shown in FIG. 29, 34, and 41 extend, and the outer drive piezoelectric bodies 23, 28, 33, and 40 contract, and as a result, the mass portion 21 moves upward. Next, when a negative voltage is applied to the inner drive piezoelectric bodies 24, 29, 34, and 41 and a positive voltage is applied to the outer drive piezoelectric bodies 23, 28, 33, and 40, the inner drive piezoelectric bodies 24, 29, 34, and 41 shrinks and the outer drive piezoelectric bodies 23, 28, 33, and 40 extend, and as a result, the mass portion 21 moves downward. That is, by applying an AC voltage composed of a sine wave as shown in FIG. 6A to the outer drive piezoelectric bodies 23, 28, 33, and 40 and the inner drive piezoelectric bodies 24, 29, 34, and 41, 21 is a vibration drive at a speed V at a drive frequency in the Z-axis direction. The vibration drive of the mass portion 21 causes the inner drive piezoelectric bodies 24, 29, 34, 41 and the outer drive piezoelectric body 23 so that output signals generated from the outer monitor piezoelectric body 37 and the inner monitor piezoelectric body 70 are constant. , 28, 33, and 40 are adjusted to control the amplitude of vibration drive.

また、同様に、質量部21はY軸方向にも振動駆動している。すなわち、第1のY軸方向支持部材32における外側駆動圧電体33および内側駆動圧電体34に正電圧を印加すると同時に、第2のY軸方向支持部材39における外側駆動圧電体40および内側駆動圧電体41に負電圧を印加すると、外側駆動圧電体33および内側駆動圧電体34は伸びるとともに外側駆動圧電体40および内側駆動圧電体41は縮むことになり、その結果、質量部21は第1のY軸方向支持部材32に向かって移動する。   Similarly, the mass unit 21 is also driven to vibrate in the Y-axis direction. That is, a positive voltage is applied to the outer drive piezoelectric body 33 and the inner drive piezoelectric body 34 in the first Y-axis direction support member 32, and at the same time, the outer drive piezoelectric body 40 and the inner drive piezoelectric element in the second Y-axis direction support member 39. When a negative voltage is applied to the body 41, the outer driving piezoelectric member 33 and the inner driving piezoelectric member 34 are extended, and the outer driving piezoelectric member 40 and the inner driving piezoelectric member 41 are contracted. It moves toward the Y-axis direction support member 32.

次に、第1のY軸方向支持部材32における外側駆動圧電体33および内側駆動圧電体34に負電圧を印加すると同時に、第2のY軸方向支持部材39における外側駆動圧電体40および内側駆動圧電体41に正電圧を印加すると、外側駆動圧電体33および内側駆動圧電体34は縮むとともに外側駆動圧電体40および内側駆動圧電体41は伸びることになり、その結果、質量部21は第2のY軸方向支持部材39に向かって移動する。すなわち、駆動用位相シフト回路55bにより、図6(a)よりも45度位相の遅れた図6(b)に示すような、正弦波からなる交流電圧を外側駆動圧電体23,28,33,40および内側駆動圧電体24,29,34,41に印加することにより、質量部21はY軸方向の駆動周波数で速度Vの振動駆動するものである。そして実際には、質量部21はYZ平面状に楕円軌道を描くように、駆動することになる。この質量部21の振動駆動は内側モニタ圧電体38,70から発生する出力信号が一定になるように、外側駆動圧電体33、内側駆動圧電体34、外側駆動圧電体40および内側駆動圧電体41に印加する電圧を調整することにより、振動駆動の振幅を制御している。   Next, a negative voltage is applied to the outer drive piezoelectric body 33 and the inner drive piezoelectric body 34 in the first Y-axis direction support member 32, and at the same time, the outer drive piezoelectric body 40 and the inner drive in the second Y-axis direction support member 39. When a positive voltage is applied to the piezoelectric body 41, the outer driving piezoelectric body 33 and the inner driving piezoelectric body 34 contract, and the outer driving piezoelectric body 40 and the inner driving piezoelectric body 41 extend, and as a result, the mass unit 21 has the second portion. It moves toward the Y-axis direction support member 39. That is, the driving phase shift circuit 55b applies an AC voltage composed of a sine wave as shown in FIG. 6 (b) delayed by 45 degrees from FIG. 6 (a) to the outer driving piezoelectric bodies 23, 28, 33, 40 and the inner drive piezoelectric bodies 24, 29, 34, 41 are applied so that the mass portion 21 is driven to vibrate at a speed V at a drive frequency in the Y-axis direction. Actually, the mass unit 21 is driven so as to draw an elliptical orbit on the YZ plane. The vibration drive of the mass unit 21 is such that the output signals generated from the inner monitor piezoelectric members 38 and 70 are constant, the outer drive piezoelectric member 33, the inner drive piezoelectric member 34, the outer drive piezoelectric member 40, and the inner drive piezoelectric member 41. The amplitude of the vibration drive is controlled by adjusting the voltage applied to.

そしてまた、質量部21がZ軸方向の駆動周波数で振動駆動をしている状態において、質量部21がX軸方向の中心軸周りに角速度ωで回転すると、図7に示すように、質量部21にY軸方向のF=2mV×ωのコリオリ力が発生する。このコリオリ力により、質量部21はY軸方向に振動駆動するため、この振動駆動によって、例えば、図8に示すように、第1のY軸方向支持部材32における外側検出圧電体35および内側検出圧電体36が伸びることにより正電荷が発生するとともに、第2のY軸方向支持部材39における外側検出圧電体42および内側検出圧電体43が縮むことにより負電荷が発生する。そして、外側検出圧電体35および内側検出圧電体36から発生する電荷をIV変換器60により出力信号に変換するとともに、外側検出圧電体42および内側検出圧電体43から発生する電荷をIV変換器61により出力信号に変換し、両者の差動を取ることにより、図9(b)に示す出力信号が発生する。このとき、前述の如く、質量部21はY軸方向に駆動振動しているため、外側検出圧電体42および内側検出圧電体43には、図6(b)と同じ波形である図9(a)に示す出力信号も発生しており、図9(a)および図9(b)を合成した図9(c)に示す出力信号が出力される。そして、第2の検出用位相シフト回路57を基準信号として、同期検波器62が位相検波することにより、図9(b)に示す信号成分は図9(e)に示すように、一方、図9(a)に示す出力信号は、図9(f)に示すようになる。したがって、ローパスフィルター63により、平滑化することにより、図9(f)に示す信号は零値となり、X軸周りの角速度成分のみを検出することができるものである。   Further, when the mass unit 21 rotates at an angular velocity ω around the central axis in the X-axis direction in a state where the mass unit 21 is driven to vibrate at a drive frequency in the Z-axis direction, as shown in FIG. 21 generates a Coriolis force of F = 2 mV × ω in the Y-axis direction. Due to this Coriolis force, the mass portion 21 is driven to vibrate in the Y-axis direction. Therefore, as shown in FIG. 8, for example, as shown in FIG. A positive charge is generated by the expansion of the piezoelectric body 36, and a negative charge is generated by the contraction of the outer detection piezoelectric element 42 and the inner detection piezoelectric element 43 in the second Y-axis direction support member 39. The electric charges generated from the outer detection piezoelectric member 35 and the inner detection piezoelectric member 36 are converted into output signals by the IV converter 60, and the electric charges generated from the outer detection piezoelectric member 42 and the inner detection piezoelectric member 43 are converted into the IV converter 61. The output signal shown in FIG. 9B is generated by converting the output signal into the output signal and taking the difference between the two. At this time, as described above, since the mass portion 21 is driven and oscillated in the Y-axis direction, the outer detection piezoelectric body 42 and the inner detection piezoelectric body 43 have the same waveform as FIG. ) Is also generated, and the output signal shown in FIG. 9C, which is a combination of FIG. 9A and FIG. 9B, is output. Then, the synchronous detector 62 performs phase detection using the second detection phase shift circuit 57 as a reference signal, so that the signal component shown in FIG. 9B becomes as shown in FIG. The output signal shown in 9 (a) is as shown in FIG. 9 (f). Therefore, by smoothing with the low-pass filter 63, the signal shown in FIG. 9F becomes a zero value, and only the angular velocity component around the X axis can be detected.

次に、質量部21にY軸周りの角速度が付加される場合を説明する。この場合も、前述したX軸周りの角速度を検出する場合と同様に、質量部21がZ軸方向に振動駆動をしている状態において、質量部21がY軸方向の中心軸周りに角速度ωで回転すると、図10に示すように、質量部21にX軸方向のF=2mV×ωのコリオリ力が発生する。このコリオリ力により、質量部21はX軸方向に振動駆動するため、この振動駆動によって、第1のX軸方向支持部材22における外側検出圧電体23および内側検出圧電体25が伸びることにより正電荷が発生するとともに、第2のX軸方向支持部材27における外側検出圧電体30および内側検出圧電体31が縮むことにより負電荷が発生する。そして、外側検出圧電体23および内側検出圧電体26から発生する電荷をIV変換器64により出力信号に変換するとともに、外側検出圧電体30および内側検出圧電体31から発生する電荷をIV変換器65により出力信号に変換し、両者の差動を取ることにより、図11(a)に示す出力信号が発生する。   Next, a case where an angular velocity around the Y axis is added to the mass unit 21 will be described. Also in this case, as in the case where the angular velocity around the X axis is detected, the mass portion 21 is angularly rotated around the central axis in the Y axis direction when the mass portion 21 is driven to vibrate in the Z axis direction. As shown in FIG. 10, a Coriolis force of F = 2 mV × ω in the X-axis direction is generated in the mass portion 21 as shown in FIG. Due to this Coriolis force, the mass portion 21 is driven to vibrate in the X-axis direction, so that the outer detection piezoelectric member 23 and the inner detection piezoelectric member 25 in the first X-axis direction support member 22 are extended by this vibration drive. Is generated, and the outer detection piezoelectric member 30 and the inner detection piezoelectric member 31 of the second X-axis direction support member 27 are contracted to generate a negative charge. The electric charge generated from the outer detection piezoelectric member 23 and the inner detection piezoelectric member 26 is converted into an output signal by the IV converter 64, and the electric charge generated from the outer detection piezoelectric member 30 and the inner detection piezoelectric member 31 is converted into the IV converter 65. The output signal shown in FIG. 11A is generated by converting the signal into an output signal and taking the difference between the two.

次に、質量部21にZ軸周りの角速度が付加される場合を説明する。質量部21がY軸方向に振動駆動をしている状態において、質量部21がZ軸方向の中心軸周りに角速度ωで回転すると、図12に示すように、質量部21にX軸方向のF=2mV×ωのコリオリ力が発生する。このコリオリ力により、質量部21はX軸方向に振動駆動するため、この振動駆動によって、第1のX軸方向支持部材22における外側検出圧電体25および内側検出圧電体26が伸びることにより正電荷が発生するとともに、第2のX軸方向支持部材27における外側検出圧電体30および内側検出圧電体31が縮むことにより負電荷が発生する。そして、外側検出圧電体25および内側検出圧電体26から発生する電荷をIV変換器64により出力信号に変換するとともに、外側検出圧電体30および内側検出圧電体31から発生する電荷をIV変換器65により出力信号に変換し、両者の差動を取ることにより、図11(a)よりも位相が45度遅れた、図11(b)に示す出力信号が出力される。したがって、実際に、差動された出力信号は、図11(a)と図11(b)とを合成した図11(c)に示す出力信号が出力される。そして、Z軸方向駆動回路51aにおけるバンドパスフィルタ53からの出力信号図11(d)を基準信号として、同期検波器68が位相検波することにより、図11(a)に示す信号成分は図11(e)に示すように、一方、図11(b)に示す出力信号は、図11(f)に示すようになる。したがって、ローパスフィルター69により、平滑化することにより、図11(e)に示す信号は零値となり、Z軸周りの角速度成分のみを検出することができるものである。   Next, a case where an angular velocity around the Z axis is added to the mass portion 21 will be described. When the mass unit 21 is driven to vibrate in the Y-axis direction and the mass unit 21 rotates at the angular velocity ω around the central axis in the Z-axis direction, as shown in FIG. A Coriolis force of F = 2 mV × ω is generated. Due to the Coriolis force, the mass portion 21 is driven to vibrate in the X-axis direction, so that the outer detection piezoelectric body 25 and the inner detection piezoelectric body 26 in the first X-axis direction support member 22 are extended by the vibration drive, thereby causing positive charge. Is generated, and the outer detection piezoelectric member 30 and the inner detection piezoelectric member 31 of the second X-axis direction support member 27 are contracted to generate a negative charge. The electric charges generated from the outer detection piezoelectric member 25 and the inner detection piezoelectric member 26 are converted into output signals by the IV converter 64, and the electric charges generated from the outer detection piezoelectric member 30 and the inner detection piezoelectric member 31 are converted into the IV converter 65. The output signal shown in FIG. 11B is output with the phase delayed by 45 degrees from that in FIG. 11A. Therefore, the output signal shown in FIG. 11C obtained by synthesizing FIG. 11A and FIG. 11B is actually output as the differential output signal. Then, the output signal from the bandpass filter 53 in the Z-axis direction drive circuit 51a is phase-detected by the synchronous detector 68 using FIG. 11 (d) as a reference signal, so that the signal components shown in FIG. On the other hand, as shown in FIG. 11E, the output signal shown in FIG. 11B is as shown in FIG. Therefore, by smoothing with the low-pass filter 69, the signal shown in FIG. 11E becomes a zero value, and only the angular velocity component around the Z axis can be detected.

また、第1の検出用位相シフト回路56からの出力信号図11(g)を基準信号として、同期検波器66が位相検波することにより、図11(a)に示す信号成分は図11(h)に示すように、一方、図11(b)に示す出力信号は、図11(i)に示すようになる。したがって、ローパスフィルター67により、平滑化することにより、図11(i)に示す信号は零値となり、Y軸周りの角速度成分のみを検出することができるものである。   Further, when the synchronous detector 66 performs phase detection using the output signal from the first detection phase shift circuit 56 shown in FIG. 11G as a reference signal, the signal component shown in FIG. On the other hand, the output signal shown in FIG. 11 (b) is as shown in FIG. 11 (i). Therefore, by smoothing with the low-pass filter 67, the signal shown in FIG. 11 (i) becomes a zero value, and only the angular velocity component around the Y axis can be detected.

なお、本発明の一実施の形態における3軸検出角速度センサにおいては、駆動用位相シフト回路55bにより、Y軸方向に振動駆動させる駆動信号をZ軸方向に振動駆動させる駆動信号より、略45度遅らせる構成としたが、略45度進ませる構成としても同様の効果を有するものである。   In the three-axis detection angular velocity sensor according to the embodiment of the present invention, the drive signal for driving vibration in the Y-axis direction by the driving phase shift circuit 55b is approximately 45 degrees from the drive signal for driving vibration in the Z-axis direction. Although it is configured to delay, the same effect can be achieved by a configuration that advances about 45 degrees.

本発明に係る3軸検出角速度センサは、Y軸方向の駆動信号とZ軸方向の駆動でかつX軸周りの角速度により発生するY軸方向のコリオリ力による検出信号とが同一位相となることのないX軸方向、Y軸方向およびZ軸方向の角速度を正確に検出可能な3軸検出角速度センサを提供することができるという効果を有するものであり、特にX軸、Y軸およびZ軸の3軸方向の角速度を検出することが可能な3軸検出角速度センサに適用して有用なものである。   In the three-axis detection angular velocity sensor according to the present invention, the drive signal in the Y-axis direction and the detection signal due to the Coriolis force in the Y-axis direction generated by the angular velocity around the X-axis driven in the Z-axis direction have the same phase. It is possible to provide a three-axis detection angular velocity sensor that can accurately detect the angular velocities in the X-axis direction, the Y-axis direction, and the Z-axis direction. The present invention is useful when applied to a three-axis detection angular velocity sensor capable of detecting an axial angular velocity.

本発明の一実施の形態における3軸検出角速度センサの側断面図Side sectional view of a three-axis detection angular velocity sensor in one embodiment of the present invention 同3軸検出角速度センサの上面図Top view of the 3-axis detection angular velocity sensor 同3軸検出角速度センサにおける第1のX軸方向支持部材の側断面図Side sectional view of the first X-axis direction support member in the same three-axis detection angular velocity sensor 同3軸検出角速度センサの回路図Circuit diagram of the 3-axis detection angular velocity sensor 同3軸検出角速度センサをZ軸方向に振動駆動させる状態を示す側断面図Side sectional view showing a state in which the 3-axis detection angular velocity sensor is driven to vibrate in the Z-axis direction 同3軸検出角速度センサを駆動する信号を示す図The figure which shows the signal which drives the same 3 axis detection angular velocity sensor 同3軸検出角速度センサのX軸周りの角速度を検出する状態を示す図The figure which shows the state which detects the angular velocity around the X-axis of the same 3-axis detection angular velocity sensor 同3軸検出角速度センサがY軸方向のコリオリ力により動作する状態を示す側断面図Side sectional view showing a state in which the three-axis detection angular velocity sensor is operated by the Coriolis force in the Y-axis direction. 同3軸検出角速度センサが動作したときの出力信号を示す図The figure which shows an output signal when the same 3 axis detection angular velocity sensor operates 同3軸検出角速度センサのY軸周りの角速度を検出する状態を示す図The figure which shows the state which detects the angular velocity around the Y-axis of the same 3-axis detection angular velocity sensor 同3軸検出角速度センサが動作したときの出力信号を示す図The figure which shows an output signal when the same 3 axis detection angular velocity sensor operates 同3軸検出角速度センサのZ軸周りの角速度を検出する状態を示す図The figure which shows the state which detects the angular velocity around the Z-axis of the same 3-axis detection angular velocity sensor 従来の3軸検出角速度センサの側断面図Side sectional view of a conventional 3-axis detection angular velocity sensor 同3軸検出角速度センサの上面図Top view of the 3-axis detection angular velocity sensor 従来の3軸検出角速度センサを駆動する信号を示す図The figure which shows the signal which drives the conventional 3-axis detection angular velocity sensor 従来の3軸検出角速度センサが動作する状態を示す図The figure which shows the state which the conventional 3 axis | shaft detection angular velocity sensor operate | moves. 従来の3軸検出角速度センサが動作したときの出力信号を示す図The figure which shows an output signal when the conventional 3-axis detection angular velocity sensor operate | moves

21 質量部
22,27 X軸方向支持部材
23,24,28,29,33,34,40,41 駆動圧電体
25,26,30,31,35,36,42,43 検出圧電体
32,39 Y軸方向支持部材
37,38,70 モニタ圧電体
49 駆動回路
50 検出回路
55b 位相シフト回路
21 Mass part 22, 27 X-axis direction support member 23, 24, 28, 29, 33, 34, 40, 41 Drive piezoelectric body 25, 26, 30, 31, 35, 36, 42, 43 Detection piezoelectric body 32, 39 Y-axis direction support member 37, 38, 70 Monitor piezoelectric body 49 Drive circuit 50 Detection circuit 55b Phase shift circuit

Claims (3)

X軸、Y軸およびZ軸の3軸方向に変位可能な質量部と、この質量部を支持するとともに少なくとも1つの駆動圧電体と少なくとも1つの検出圧電体と少なくとも1つのモニタ圧電体とを設けた支持部材と、前記質量部をY軸方向およびZ軸方向に振動駆動する駆動回路と、前記質量部に付加される角速度により、支持部材における検出圧電体に発生する出力信号を検出する検出回路とを備え、前記駆動回路に位相シフト回路を設け、Z軸方向に振動駆動させる駆動信号とY軸方向に振動駆動させる駆動信号とが90度以外の互いに異なる位相差となるように構成した3軸検出角速度センサ。 A mass part that is displaceable in the X-axis, Y-axis, and Z-axis directions, and at least one drive piezoelectric element, at least one detection piezoelectric element, and at least one monitor piezoelectric element are provided to support the mass part. A support circuit, a drive circuit that vibrates and drives the mass part in the Y-axis direction and the Z-axis direction, and a detection circuit that detects an output signal generated in the detection piezoelectric body in the support member by an angular velocity added to the mass part The drive circuit is provided with a phase shift circuit so that the drive signal for driving vibration in the Z-axis direction and the drive signal for driving vibration in the Y-axis direction have different phase differences other than 90 degrees. Axis detection angular velocity sensor. X軸、Y軸およびZ軸の3軸方向に変位可能な質量部と、この質量部を支持するとともにX軸方向に延出されかつ上面に少なくとも1つの検出圧電体を設けたX軸方向支持部材と、前記質量部を支持するとともにY軸方向に延出されかつ上面に少なくとも一対の駆動圧電体と少なくとも1つの検出圧電体と少なくとも1つのモニタ圧電体とを設けたY軸方向支持部材と、前記質量部をY軸方向およびZ軸方向に振動駆動する駆動回路と、前記質量部に付加される角速度により、X軸方向支持部材またはY軸方向支持部材のうちのいずれか一方または両方の検出圧電体に発生する出力信号を検出する検出回路とを備え、前記駆動回路に位相シフト回路を設け、Z軸方向に振動駆動させる駆動信号と、Y軸方向に振動駆動させる駆動信号とが90度以外の互いに異なる位相となるように構成した3軸検出角速度センサ。 An X-axis direction support that supports a mass part that is displaceable in the X-axis, Y-axis, and Z-axis directions, and that supports the mass part and that extends in the X-axis direction and is provided with at least one detection piezoelectric body on the upper surface. A member, and a Y-axis direction support member that supports the mass portion and extends in the Y-axis direction, and includes at least a pair of drive piezoelectric bodies, at least one detection piezoelectric body, and at least one monitor piezoelectric body on the upper surface. The drive circuit that vibrates and drives the mass unit in the Y-axis direction and the Z-axis direction, and the angular velocity applied to the mass unit, either or both of the X-axis support member and the Y-axis support member A detection circuit for detecting an output signal generated in the detection piezoelectric body, a phase shift circuit is provided in the drive circuit, and a drive signal for driving vibration in the Z-axis direction and a drive signal for driving vibration in the Y-axis direction are 90 3 axis detecting angular velocity sensor configured as a different phase other than. 位相シフト回路により、Y軸方向に振動駆動させる駆動信号をZ軸方向に振動駆動させる駆動信号より、略45度遅らせるかまたは進ませるようにした請求項1記載の3軸検出角速度センサ。 2. The three-axis detection angular velocity sensor according to claim 1, wherein a drive signal for vibration driving in the Y-axis direction is delayed or advanced by about 45 degrees from a drive signal for vibration driving in the Z-axis direction by a phase shift circuit.
JP2009073303A 2009-03-25 2009-03-25 Three-axis detection angular velocity sensor Pending JP2010223854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073303A JP2010223854A (en) 2009-03-25 2009-03-25 Three-axis detection angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009073303A JP2010223854A (en) 2009-03-25 2009-03-25 Three-axis detection angular velocity sensor

Publications (1)

Publication Number Publication Date
JP2010223854A true JP2010223854A (en) 2010-10-07

Family

ID=43041186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073303A Pending JP2010223854A (en) 2009-03-25 2009-03-25 Three-axis detection angular velocity sensor

Country Status (1)

Country Link
JP (1) JP2010223854A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112325870A (en) * 2019-07-31 2021-02-05 精工爱普生株式会社 Gyro sensor, electronic apparatus, and moving object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112325870A (en) * 2019-07-31 2021-02-05 精工爱普生株式会社 Gyro sensor, electronic apparatus, and moving object
CN112325870B (en) * 2019-07-31 2024-03-26 精工爱普生株式会社 Gyroscope sensor, electronic device and moving body

Similar Documents

Publication Publication Date Title
JP4874067B2 (en) Angular velocity sensor
JP5682267B2 (en) Angular velocity sensor
JP5117716B2 (en) Mechanical quantity sensor
WO2010150736A1 (en) Angular velocity sensor, and synchronous detection circuit used therein
JP5458462B2 (en) Vibration type inertial force detection sensor
JP2009198206A (en) Angular velocity sensor
JP6693214B2 (en) Physical quantity detection device, electronic device and moving body
JP2008096138A (en) Angular velocity sensor and its manufacturing method
JP2007107909A5 (en)
JP2006170860A (en) Piezoelectric gyro element, and piezoelectric gyroscope
JP2010185739A (en) Thee-axis detection angular velocity sensor
CN102679967B (en) Piezoelectric biaxial micro gyroscope with rocking mass block
JP2010223854A (en) Three-axis detection angular velocity sensor
JP2006010408A (en) Vibratory gyro
WO2013051060A1 (en) Rotational vibration gyro
JP2009128020A (en) Piezoelectric vibration gyroscope using tuning fork type piezoelectric single crystal vibrator
JP2008070131A (en) Angular velocity sensor
JP2010190705A (en) Three-axis detecting angular velocity sensor
JP4942470B2 (en) 2-axis angular velocity sensor
JP2008190972A (en) Angular velocity sensor
JP2006226802A (en) Compound sensor
JP2016013009A (en) Driving method of vibrator, and electronic apparatus
JP2015141103A (en) Angular velocity sensor and electronic apparatus using angular velocity sensor
JP2006162495A (en) Mechanical quantity sensor
JP2010286329A (en) Biaxial detection angular velocity sensor