JP2010185739A - Thee-axis detection angular velocity sensor - Google Patents

Thee-axis detection angular velocity sensor Download PDF

Info

Publication number
JP2010185739A
JP2010185739A JP2009029434A JP2009029434A JP2010185739A JP 2010185739 A JP2010185739 A JP 2010185739A JP 2009029434 A JP2009029434 A JP 2009029434A JP 2009029434 A JP2009029434 A JP 2009029434A JP 2010185739 A JP2010185739 A JP 2010185739A
Authority
JP
Japan
Prior art keywords
axis
axis direction
angular velocity
detection
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009029434A
Other languages
Japanese (ja)
Inventor
Koji Yamamoto
幸二 山本
Takashi Kawai
孝士 川井
Noriyuki Jitosho
典行 地頭所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009029434A priority Critical patent/JP2010185739A/en
Publication of JP2010185739A publication Critical patent/JP2010185739A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-axis detection angular velocity sensor having stable output signals since output signals by angular velocities on an X-axis and a Y-axis do not interfere with each other in the three-axis detection angular velocity sensor. <P>SOLUTION: The three-axis detection angular velocity sensor for achieving this purpose is constituted in such a way that the drive frequencies of a mass part 21, which can be displaced in three directions of the X-axis, the Y-axis, and a Z-axis, may be made different in the direction of the X-axis, the direction of the Y-axis, and the direction of the Z-axis. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、特に、X軸、Y軸およびZ軸の3軸方向の角速度を検出することが可能な3軸検出角速度センサに関するものである。   In particular, the present invention relates to a triaxial detection angular velocity sensor capable of detecting angular velocities in the triaxial directions of the X axis, the Y axis, and the Z axis.

従来のこの種の3軸検出角速度センサは、図13、図14に示すように構成されていた。   Conventional three-axis detection angular velocity sensors of this type are configured as shown in FIGS.

図13は従来の3軸検出角速度センサの側断面図、図14は同3軸検出角速度センサの上面図である。   FIG. 13 is a side sectional view of a conventional triaxial detection angular velocity sensor, and FIG. 14 is a top view of the triaxial detection angular velocity sensor.

図13、図14において、1はSiからなる直方体形状の質量部である。そして、この質量部1は、X軸方向およびY軸方向の共振周波数が略同一になるように構成されている。2は内周および外周が8角形状をなし、かつその全周にわたって延出されたSiからなる支持部材で、この支持部材2は、前記質量部1を外方全周から支持するとともに、上面に複数のPZTからなる外側駆動圧電体3および内側駆動圧電体4を設けている。また、支持部材2の上面には、前記外側駆動圧電体3および内側駆動圧電体4の間に位置して、外側検出圧電体5および内側検出圧電体6を設けている。7はSiからなる四角形筒状の枠体で、この枠体7は前記支持部材2を一体に支持している。   13 and 14, reference numeral 1 denotes a rectangular parallelepiped mass portion made of Si. And this mass part 1 is comprised so that the resonant frequency of a X-axis direction and a Y-axis direction may become substantially the same. Reference numeral 2 denotes a support member made of Si, the inner periphery and the outer periphery of which are octagonal and extended over the entire periphery. The support member 2 supports the mass portion 1 from the entire outer periphery, and a plurality of support members on the upper surface. An outer drive piezoelectric body 3 and an inner drive piezoelectric body 4 made of PZT are provided. An outer detection piezoelectric member 5 and an inner detection piezoelectric member 6 are provided on the upper surface of the support member 2 between the outer drive piezoelectric member 3 and the inner drive piezoelectric member 4. Reference numeral 7 denotes a rectangular cylindrical frame made of Si. The frame 7 integrally supports the support member 2.

以上のように構成された従来の3軸検出角速度センサについて、次に、その動作を説明する。   Next, the operation of the conventional three-axis detection angular velocity sensor configured as described above will be described.

支持部材2における外側駆動圧電体3および内側駆動圧電体4に交流電圧を印加すると、振動子1がZ軸方向およびY軸方向に振動駆動する。そして、その状態において、振動子1のX軸、Y軸およびZ軸周りに角速度が発生すると、振動子1が振動駆動する方向および角速度が発生する方向の両者と垂直な方向にF=2mV×ωのコリオリ力が発生する。そして、このコリオリ力により外側検出圧電体5および内側検出圧電体6から発生する電荷をIV変換した後、同期検波することにより、X軸方向、Y軸方向およびZ軸方向の角速度を検出するものであった。   When an AC voltage is applied to the outer drive piezoelectric body 3 and the inner drive piezoelectric body 4 in the support member 2, the vibrator 1 is driven to vibrate in the Z-axis direction and the Y-axis direction. In this state, when an angular velocity is generated around the X axis, Y axis, and Z axis of the vibrator 1, F = 2 mV × in the direction perpendicular to both the direction in which the vibrator 1 is driven to vibrate and the direction in which the angular speed is generated. ω Coriolis force is generated. Then, the electric charges generated from the outer detection piezoelectric member 5 and the inner detection piezoelectric member 6 are IV-converted by this Coriolis force, and then detected synchronously to detect angular velocities in the X axis direction, the Y axis direction, and the Z axis direction. Met.

なお、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1が知られている。
特開平8−145683号公報
As prior art document information relating to the invention of this application, for example, Patent Document 1 is known.
JP-A-8-145683

しかしながら、上記した従来の構成では、質量部1のX軸方向の駆動周波数とY軸方向の駆動周波数とが略同一であるため、質量部1のX軸方向の検知周波数とY軸方向の検知周波数とが略同一となり、これにより、X軸周りおよびY軸周りの角速度が相互に干渉することになって、X軸周りおよびY軸周りの角速度による出力信号が変動してしまうという課題を有していた。   However, in the above-described conventional configuration, the driving frequency in the X-axis direction of the mass unit 1 and the driving frequency in the Y-axis direction are substantially the same, so the detection frequency in the X-axis direction of the mass unit 1 and the detection in the Y-axis direction. As a result, the angular velocities around the X axis and the Y axis interfere with each other, and the output signal due to the angular velocities around the X axis and the Y axis fluctuates. Was.

本発明は上記従来の課題を解決するもので、X軸周りおよびY軸周りの角速度による出力信号が相互に干渉するということはなく、出力信号が安定している3軸検出角速度センサを提供することを目的とするものである。   The present invention solves the above-described conventional problems, and provides a three-axis detection angular velocity sensor in which output signals due to angular velocities around the X axis and the Y axis do not interfere with each other and the output signals are stable. It is for the purpose.

上記目的を達成するために、本発明は以下の構成を有するものである。   In order to achieve the above object, the present invention has the following configuration.

本発明の請求項1に記載の発明は、X軸、Y軸およびZ軸の3軸方向に変位可能な質量部と、この質量部を支持するとともにX軸方向に延出されかつ上面に少なくとも1つの駆動圧電体と少なくとも1つの検出圧電体とを設けたX軸方向支持部材と、前記質量部を支持するとともにY軸方向に延出されかつ上面に少なくとも1つの駆動圧電体と少なくとも1つの検出圧電体とを設けたY軸方向支持部材とを備え、前記質量部のX軸方向、Y軸方向およびZ軸方向の駆動周波数を互いに異ならせるようにしたもので、この構成によれば、質量部のX軸方向の検知周波数とY軸方向の検知周波数が略同一になるということはなくなり、これにより、X軸周りおよびY軸周りの角速度が相互に干渉するということはなくなるため、X軸周りおよびY軸周りの角速度による出力信号が安定しているという作用効果を有するものである。   According to the first aspect of the present invention, a mass part that is displaceable in the three axial directions of the X axis, the Y axis, and the Z axis, and supports the mass part, is extended in the X axis direction, and is provided at least on the upper surface. An X-axis direction support member provided with one drive piezoelectric body and at least one detection piezoelectric body, and supporting the mass portion, extending in the Y-axis direction, and having at least one drive piezoelectric body and at least one on the upper surface And a Y-axis direction support member provided with a detection piezoelectric body, wherein the drive frequencies of the mass portion in the X-axis direction, the Y-axis direction, and the Z-axis direction are made different from each other. Since the detection frequency in the X-axis direction and the detection frequency in the Y-axis direction of the mass part are not substantially the same, the angular velocities around the X-axis and the Y-axis do not interfere with each other. Around axis and Y Output signals by angular velocity around are those having the effect that is stable.

本発明の請求項2に記載の発明は、特に、X軸、Y軸、Z軸方向の駆動周波数を比較して、中央の駆動周波数値の軸方向に振動駆動させるとともに、他の2軸方向の角速度により発生する出力信号を中央の駆動周波数で同期検波することにより、他の2軸方向の各々の角速度を検出し、さらに他の2軸方向のうちのいずれか一方を振動駆動させるとともに、中央の駆動周波数の軸方向の角速度により発生する出力信号を他の2軸方向のいずれか一方の駆動周波数で同期検波することにより、中央の駆動周波数の軸方向の角速度を検出するようにしたもので、この構成によれば、中央の駆動周波数の軸方向の角速度により発生する出力信号を他の2軸方向のいずれか一方の駆動周波数で同期検波することにより、中央の駆動周波数の軸方向の角速度を検出するようにしているため、駆動と検知の周波数が近づくことになり、これにより、3軸の角速度による出力信号の感度が大きくなるという作用効果を有するものである。   In the invention according to claim 2 of the present invention, in particular, the drive frequencies in the X-axis, Y-axis, and Z-axis directions are compared, and the vibration is driven in the axial direction of the central drive frequency value, and the other two-axis directions By detecting synchronously the output signal generated by the angular velocity at the center drive frequency, each angular velocity in the other two axial directions is detected, and any one of the other two axial directions is driven to vibrate, The output signal generated by the angular velocity in the axial direction of the central driving frequency is detected synchronously at either one of the other two axial directions, thereby detecting the angular velocity in the axial direction of the central driving frequency. Thus, according to this configuration, the output signal generated by the angular velocity in the axial direction of the central driving frequency is synchronously detected at one of the other two axial directions, so that the axial frequency of the central driving frequency is Corner Because you have to detect the degree, it will be driving the frequency of detection approaches, thereby, those having the effect that the sensitivity of the output signal by a 3-axis angular velocity increases.

本発明の請求項3に記載の発明は、特に、他の2軸方向のうちのいずれか一方の振動駆動信号の逆位相からなる出力信号を、他の2軸方向のうちの他方の軸方向に加わる角速度により発生するコリオリ力による出力信号に注入するようにしたもので、この構成によれば、他の2軸方向のうちのいずれか一方の振動駆動信号の逆位相からなる出力信号を、他の2軸方向のうちの他方の軸方向に加わる角速度により発生するコリオリ力による出力信号に注入するようにしているため、他の2軸方向のうちのいずれか一方の振動駆動信号によって、他方の軸周りの角速度を検出する出力信号に発生する変動を防止することができるという作用効果を有するものである。   In the invention according to claim 3 of the present invention, in particular, the output signal composed of the opposite phase of any one of the other two axial directions is output to the other axial direction of the other two axial directions. Is injected into an output signal due to the Coriolis force generated by the angular velocity applied to the output signal, and according to this configuration, an output signal consisting of the opposite phase of one of the other two axial directions is obtained, Since the output signal is generated by the Coriolis force generated by the angular velocity applied in the other axial direction of the other two axes, the other is driven by the vibration drive signal in one of the other two axes. This has the effect of preventing fluctuations that occur in the output signal that detects the angular velocity around the axis.

以上のように本発明の3軸検出角速度センサは、X軸、Y軸およびZ軸の3軸方向に変位可能な質量部と、この質量部を支持するとともにX軸方向に延出されかつ上面に少なくとも1つの駆動圧電体と少なくとも1つの検出圧電体とを設けたX軸方向支持部材と、前記質量部を支持するとともにY軸方向に延出されかつ上面に少なくとも1つの駆動圧電体と少なくとも1つの検出圧電体とを設けたY軸方向支持部材とを備え、前記質量部のX軸方向、Y軸方向およびZ軸方向の駆動周波数を互いに異ならせるようにしているため、X軸方向の検知周波数とY軸方向の検知周波数が略同一になるということはなくなり、これにより、X軸周りおよびY軸周りの角速度が相互に干渉するということはなくなるため、X軸周りおよびY軸周りの角速度による出力信号が安定している3軸検出角速度センサを提供することができるという優れた効果を有するものである。   As described above, the three-axis detection angular velocity sensor of the present invention has a mass part that can be displaced in the three-axis directions of the X-axis, the Y-axis, and the Z-axis, and supports the mass part and extends in the X-axis direction. An X-axis direction support member provided with at least one drive piezoelectric body and at least one detection piezoelectric body, and supporting the mass portion and extending in the Y-axis direction, and at least one drive piezoelectric body on the upper surface and at least And a Y-axis direction support member provided with one detection piezoelectric body, and the drive frequencies of the mass portion in the X-axis direction, the Y-axis direction, and the Z-axis direction are different from each other. Since the detection frequency and the detection frequency in the Y-axis direction are not substantially the same, the angular velocities around the X-axis and the Y-axis do not interfere with each other. Angular velocity Output signal by is one that has an excellent effect that it is possible to provide a three-axis angular velocities detected sensor is stable.

以下、本発明の一実施の形態における3軸検出角速度センサについて、図面を参照しながら説明する。   Hereinafter, a three-axis detection angular velocity sensor according to an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施の形態における3軸検出角速度センサの側断面図、図2は同3軸検出角速度センサの上面図、図3は同3軸検出角速度センサにおける第1のX軸方向支持部材の側断面図、図4は同3軸検出角速度センサの回路図である。   1 is a side sectional view of a triaxial detection angular velocity sensor according to an embodiment of the present invention, FIG. 2 is a top view of the triaxial detection angular velocity sensor, and FIG. 3 is a first X-axis direction of the triaxial detection angular velocity sensor. FIG. 4 is a circuit diagram of the triaxial detection angular velocity sensor.

図1〜図4において、21はSiからなる直方体形状の質量部である。22はSiからなる第1のX軸方向支持部材で、この第1のX軸方向支持部材22は、前記質量部21における一側面の上部を支持するとともに、上面の外側に一対のPZTからなる外側駆動圧電体23を設け、さらに上面の内側に一対のPZTからなる内側駆動圧電体24を設けているものである。また、前記第1のX軸方向支持部材22の上面には、前記一対の外側駆動圧電体23の間に位置して、外側検出圧電体25を設けており、さらに前記内側駆動圧電体24の間に位置して、内側検出圧電体26を設けているものである。   1-4, 21 is a rectangular parallelepiped mass part which consists of Si. Reference numeral 22 denotes a first X-axis direction support member made of Si. The first X-axis direction support member 22 supports an upper portion of one side surface of the mass portion 21 and a pair of PZTs on the outer side of the upper surface. An outer drive piezoelectric body 23 is provided, and an inner drive piezoelectric body 24 made of a pair of PZTs is provided inside the upper surface. Further, on the upper surface of the first X-axis direction support member 22, an outer detection piezoelectric member 25 is provided between the pair of outer drive piezoelectric members 23. An inner detection piezoelectric body 26 is provided between them.

27はSiからなる第2のX軸方向支持部材で、この第2のX軸方向支持部材27は、前記質量部21における前記第1のX軸方向支持部材22を設けた側と反対側の一側面の上部を支持するとともに、上面の外側に一対のPZTからなる外側駆動圧電体28を設け、さらに上面の内側に一対のPZTからなる内側駆動圧電体29を設けているものである。また、前記第2のX軸方向支持部材27の上面には、前記一対の外側駆動圧電体28の間に位置して、外側検出圧電体30を設けており、さらに前記内側駆動圧電体29の間に位置して、内側検出圧電体31を設けているものである。   Reference numeral 27 denotes a second X-axis direction support member made of Si. The second X-axis direction support member 27 is on the opposite side of the mass portion 21 from the side on which the first X-axis direction support member 22 is provided. While supporting the upper part of one side, the outer side drive piezoelectric material 28 which consists of a pair of PZT is provided in the outer side of the upper surface, and the inner side drive piezoelectric material 29 which consists of a pair of PZT is further provided inside the upper surface. Further, on the upper surface of the second X-axis direction support member 27, an outer detection piezoelectric body 30 is provided between the pair of outer drive piezoelectric bodies 28. The inner detection piezoelectric body 31 is provided between them.

32はSiからなる第1のY軸方向支持部材で、この第1のY軸方向支持部材32は、前記質量部21における一側面の上部を支持するとともに、上面の外側に一対のPZTからなる外側駆動圧電体33を設け、さらに上面の内側に一対のPZTからなる内側駆動圧電体34を設けているものである。また、前記第1のY軸方向支持部材32の上面には、前記一対の外側駆動圧電体33の間に位置して、外側検出圧電体35を設けており、さらに前記内側駆動圧電体34の間に位置して、内側検出圧電体36を設けているものである。そしてまた、前記第1のY軸方向支持部材32の上面には、前記外側駆動圧電体33の外側に位置して外側モニタ圧電体37を設けるとともに、内側駆動圧電体34の外側に位置して内側モニタ圧電体38を設けているものである。   Reference numeral 32 denotes a first Y-axis direction support member made of Si. The first Y-axis direction support member 32 supports the upper part of one side surface of the mass portion 21 and is made of a pair of PZTs on the outer side of the upper surface. An outer drive piezoelectric body 33 is provided, and an inner drive piezoelectric body 34 made of a pair of PZTs is provided inside the upper surface. Further, on the upper surface of the first Y-axis direction support member 32, an outer detection piezoelectric body 35 is provided between the pair of outer drive piezoelectric bodies 33. An inner detection piezoelectric body 36 is provided between them. Further, on the upper surface of the first Y-axis direction support member 32, an outer monitor piezoelectric body 37 is provided outside the outer drive piezoelectric body 33 and is positioned outside the inner drive piezoelectric body 34. An inner monitor piezoelectric body 38 is provided.

39はSiからなる第2のY軸方向支持部材で、この第2のY軸方向支持部材39は、前記質量部21における前記第1のY軸方向支持部材32を設けた側と反対側の一側面の上部を支持するとともに、上面の外側に一対のPZTからなる外側駆動圧電体40を設け、さらに上面の内側に一対のPZTからなる内側駆動圧電体41を設けているものである。また、前記第2のY軸方向支持部材39の上面には、前記一対の外側駆動圧電体40の間に位置して、外側検出圧電体42を設けており、さらに前記内側駆動圧電体41の間に位置して、内側検出圧電体43を設けているものである。そしてまた、前記第2のY軸方向支持部材39の上面には、一対の内側駆動圧電体41の外側に位置して一対の内側モニタ圧電体67を設けているものである。   39 is a second Y-axis direction support member made of Si, and this second Y-axis direction support member 39 is on the opposite side of the mass portion 21 from the side where the first Y-axis direction support member 32 is provided. While supporting the upper part of one side, the outer side drive piezoelectric material 40 which consists of a pair of PZT is provided in the outer side of the upper surface, and the inner side drive piezoelectric material 41 which consists of a pair of PZT is further provided inside the upper surface. Further, on the upper surface of the second Y-axis direction support member 39, an outer detection piezoelectric body 42 is provided between the pair of outer drive piezoelectric bodies 40, and the inner drive piezoelectric body 41 is further provided. An inner detection piezoelectric body 43 is provided between them. Further, a pair of inner monitor piezoelectric bodies 67 are provided on the upper surface of the second Y-axis direction support member 39 so as to be located outside the pair of inner drive piezoelectric bodies 41.

また、前記第1のX軸方向支持部材22の上面に位置する外側駆動圧電体23および外側検出圧電体25は、図3に示すように、Siからなる第1のX軸方向支持部材22の上面に設けたPtとTiとの合金薄膜からなる共通GND電極44の上面に設けられ、そして、外側駆動圧電体23の上面に駆動電極45を設けるとともに、外側検出圧電体25の上面に検出電極46を設けているものである。そしてまた、前記質量部21は、第1のX軸方向支持部材22、第2のX軸方向支持部材27、第1のY軸方向支持部材32および第2のY軸方向支持部材39で支持することにより、X軸方向の駆動周波数が39kHz、Y軸方向の駆動周波数が41kHz、Z軸方向の駆動周波数が40kHzになるように構成されているものである。すなわち、質量部21の駆動周波数がX軸方向、Y軸方向およびZ軸方向でそれぞれ異なるようにするとともに、Z軸方向の駆動周波数が中央の値になるように設定されているものである。   Further, as shown in FIG. 3, the outer drive piezoelectric body 23 and the outer detection piezoelectric body 25 located on the upper surface of the first X-axis direction support member 22 are formed of the first X-axis direction support member 22 made of Si. Provided on the upper surface of the common GND electrode 44 made of an alloy thin film of Pt and Ti provided on the upper surface, and provided with a drive electrode 45 on the upper surface of the outer drive piezoelectric member 23 and a detection electrode on the upper surface of the outer detection piezoelectric member 25. 46 is provided. The mass portion 21 is supported by the first X-axis direction support member 22, the second X-axis direction support member 27, the first Y-axis direction support member 32, and the second Y-axis direction support member 39. By doing so, the drive frequency in the X-axis direction is 39 kHz, the drive frequency in the Y-axis direction is 41 kHz, and the drive frequency in the Z-axis direction is 40 kHz. That is, the driving frequency of the mass portion 21 is set to be different in the X-axis direction, the Y-axis direction, and the Z-axis direction, and the driving frequency in the Z-axis direction is set to a central value.

そして、前記第1のX軸方向支持部材22、第2のX軸方向支持部材27、第1のY軸方向支持部材32および第2のY軸方向支持部材39は、図2に示すように、それらの間に4つの孔68を有するとともに、外周側を一体に接続した外周部69を有し、さらに前記外周部69の上面にはICからなる処理回路48を設けているものである。   The first X-axis direction support member 22, the second X-axis direction support member 27, the first Y-axis direction support member 32, and the second Y-axis direction support member 39 are as shown in FIG. In addition, there are four holes 68 between them, an outer peripheral portion 69 integrally connected on the outer peripheral side, and a processing circuit 48 made of an IC is provided on the upper surface of the outer peripheral portion 69.

47はSiからなる四角形筒状の枠体で、この枠体47は前記第1のX軸方向支持部材22、第2のX軸方向支持部材27、第1のY軸方向支持部材32および第2のY軸方向支持部材39と連接された外周部69を支持しているものである。   Reference numeral 47 denotes a rectangular cylindrical frame made of Si. The frame 47 includes the first X-axis direction support member 22, the second X-axis direction support member 27, the first Y-axis direction support member 32, and the first X-axis direction support member 32. The outer peripheral part 69 connected to the two Y-axis direction support members 39 is supported.

前記外周部69の上面に設けた処理回路48は、前記外側駆動圧電体23,28,33,40、内側駆動圧電体24,29,34,41、外側検出圧電体25,30,35,42および内側検出圧電体26,31,36,43と回路パターン(図示せず)により電気的に接続しており、さらに、この処理回路48からの出力信号を回路パターン(図示せず)を介して外部回路(図示せず)に出力しているものである。   The processing circuit 48 provided on the upper surface of the outer peripheral portion 69 includes the outer driving piezoelectric bodies 23, 28, 33, 40, the inner driving piezoelectric bodies 24, 29, 34, 41, and the outer detection piezoelectric bodies 25, 30, 35, 42. And the inner detection piezoelectric bodies 26, 31, 36, 43 are electrically connected to each other by a circuit pattern (not shown), and an output signal from the processing circuit 48 is passed through a circuit pattern (not shown). The output is to an external circuit (not shown).

また、前記処理回路48は、図4に示すように、駆動回路49と検出回路50で構成され、そして、駆動回路49は、Z軸方向駆動回路51aと、Y軸方向駆動回路51bとで構成されているものである。そしてまた、前記Z軸方向駆動回路51aは第1のY軸方向支持部材32における外側モニタ圧電体37と第2のY軸方向支持部材39における内側モニタ圧電体67とからの出力信号の差動値をZ軸方向駆動回路51aにおけるIV変換器52、バンドパスフィルター53およびAGC回路54を介して外側駆動圧電体23,28,33,40および内側駆動圧電体24,29,34,41に入力することにより、質量部21をZ軸方向に一定の振幅で振動駆動させているものである。また、これと同様に、前記Y軸方向駆動回路51bは第1のY軸方向支持部材32における内側モニタ圧電体38と第2のY軸方向支持部材39における内側モニタ圧電体67とからの出力信号の差動値をY軸方向駆動回路51bにおけるIV変換器52、バンドパスフィルター56およびAGC回路57を介して外側駆動圧電体33、40および内側駆動圧電体34、41に入力することにより、質量部21をY軸方向に一定の振幅で駆動振動させているものである。   Further, as shown in FIG. 4, the processing circuit 48 includes a drive circuit 49 and a detection circuit 50, and the drive circuit 49 includes a Z-axis direction drive circuit 51a and a Y-axis direction drive circuit 51b. It is what has been. Further, the Z-axis direction drive circuit 51a performs differential output signals from the outer monitor piezoelectric body 37 in the first Y-axis direction support member 32 and the inner monitor piezoelectric body 67 in the second Y-axis direction support member 39. Values are input to the outer drive piezoelectric bodies 23, 28, 33, 40 and the inner drive piezoelectric bodies 24, 29, 34, 41 via the IV converter 52, the band pass filter 53 and the AGC circuit 54 in the Z-axis direction drive circuit 51a. Thus, the mass portion 21 is driven to vibrate with a constant amplitude in the Z-axis direction. Similarly, the Y-axis direction drive circuit 51b outputs from the inner monitor piezoelectric body 38 in the first Y-axis direction support member 32 and the inner monitor piezoelectric body 67 in the second Y-axis direction support member 39. By inputting the differential value of the signal to the outer driving piezoelectric bodies 33 and 40 and the inner driving piezoelectric bodies 34 and 41 via the IV converter 52, the band pass filter 56 and the AGC circuit 57 in the Y-axis direction driving circuit 51b, The mass portion 21 is driven to vibrate with a constant amplitude in the Y-axis direction.

そしてまた、前記検出回路50はY方向コリオリ力検出回路58とX方向コリオリ力検出回路59とで構成され、そして、Y方向コリオリ力検出回路58は、第1のY軸方向支持部材32における外側検出圧電体35および内側検出圧電体36の出力信号をIV変換器60に入力するとともに、第2のY軸方向支持部材39における外側検出圧電体42および内側検出圧電体43の出力信号をIV変換器61に入力し、両者の差動を取った後、同期検波器62によって、Z軸方向の駆動周波数で同期検波することにより、X軸周りの角速度を検出するものである。また、前記X方向コリオリ力検出回路59は、第1のX軸方向支持部材22における外側検出圧電体25および内側検出圧電体26の出力信号を入力するIV変換器63と、第2のX軸方向支持部材27における外側検出圧電体30および内側検出圧電体31からの出力信号を入力するIV変換器64からの出力信号との差動値を同期検波器65によって、Z軸方向の駆動周波数で同期検波することにより、Y軸周りの角速度を検出するものである。さらに、これらと同様にして、同期検波器66によって、Y軸方向の駆動周波数で同期検波することにより、Z軸周りの角速度を検出するものである。   The detection circuit 50 includes a Y-direction Coriolis force detection circuit 58 and an X-direction Coriolis force detection circuit 59. The Y-direction Coriolis force detection circuit 58 is outside the first Y-axis direction support member 32. The output signals of the detection piezoelectric member 35 and the inner detection piezoelectric member 36 are input to the IV converter 60, and the output signals of the outer detection piezoelectric member 42 and the inner detection piezoelectric member 43 in the second Y-axis direction support member 39 are IV converted. After the input to the detector 61 and the difference between the two, the synchronous detector 62 detects the angular velocity around the X axis by synchronous detection at the drive frequency in the Z-axis direction. The X-direction Coriolis force detection circuit 59 includes an IV converter 63 for inputting output signals of the outer detection piezoelectric body 25 and the inner detection piezoelectric body 26 in the first X-axis direction support member 22, and a second X-axis. The differential value of the output signal from the IV converter 64 that receives the output signals from the outer detection piezoelectric member 30 and the inner detection piezoelectric member 31 in the direction support member 27 is obtained by the synchronous detector 65 at the drive frequency in the Z-axis direction. By detecting synchronously, the angular velocity around the Y axis is detected. Further, similarly to these, the synchronous detector 66 detects the angular velocity around the Z-axis by performing synchronous detection at the drive frequency in the Y-axis direction.

以上のように構成された本発明の一実施の形態における3軸検出角速度センサについて、次に、その組立方法を説明する。   Next, a method for assembling the three-axis detection angular velocity sensor according to the embodiment of the present invention configured as described above will be described.

まず、予め準備したSiからなる基材(図示せず)の上面に、PtとTiの合金薄膜からなる共通GND電極44を蒸着により形成し、その後、共通GND電極44の上面にPZT薄膜からなる外側駆動圧電体23,28,33,40、内側駆動圧電体24,29,34,41、外側検出圧電体25,30,35,42、内側検出圧電体26,31,36,43、外側モニタ圧電体37および内側モニタ圧電体38,67を蒸着により形成する。   First, a common GND electrode 44 made of an alloy thin film of Pt and Ti is formed by vapor deposition on the upper surface of a substrate (not shown) made of Si prepared in advance, and then made of a PZT thin film on the upper surface of the common GND electrode 44. Outer drive piezoelectric elements 23, 28, 33, 40, inner drive piezoelectric elements 24, 29, 34, 41, outer detection piezoelectric elements 25, 30, 35, 42, inner detection piezoelectric elements 26, 31, 36, 43, outer monitor The piezoelectric body 37 and the inner monitor piezoelectric bodies 38 and 67 are formed by vapor deposition.

次に、外側駆動圧電体23,28,33,40、内側駆動圧電体24,29,34,41、外側検出圧電体25,30,35,42、内側検出圧電体26,31,36,43、外側モニタ圧電体37および内側モニタ圧電体38,67の上面にTiとAuの合金薄膜からなる駆動電極45、検出電極46およびモニタ電極(図示せず)を形成する。   Next, the outer drive piezoelectric members 23, 28, 33, 40, the inner drive piezoelectric members 24, 29, 34, 41, the outer detection piezoelectric members 25, 30, 35, 42, the inner detection piezoelectric members 26, 31, 36, 43. The drive electrode 45, the detection electrode 46, and the monitor electrode (not shown) made of an alloy thin film of Ti and Au are formed on the upper surfaces of the outer monitor piezoelectric member 37 and the inner monitor piezoelectric members 38 and 67.

次に、共通GND電極44側に電圧を印加するとともに、駆動電極45、検出電極46およびモニタ電極(図示せず)を接地することにより、外側駆動圧電体23,28,33,40、内側駆動圧電体24,29,34,41、外側検出圧電体25,30,35,42、内側検出圧電体26,31,36,43、外側モニタ圧電体37および内側モニタ圧電体38,67を分極する。   Next, while applying a voltage to the common GND electrode 44 side and grounding the drive electrode 45, the detection electrode 46, and the monitor electrode (not shown), the outer drive piezoelectric bodies 23, 28, 33, 40, the inner drive The piezoelectric bodies 24, 29, 34 and 41, the outer detection piezoelectric bodies 25, 30, 35 and 42, the inner detection piezoelectric bodies 26, 31, 36 and 43, the outer monitor piezoelectric body 37 and the inner monitor piezoelectric bodies 38 and 67 are polarized. .

最後に、基材(図示せず)における不要な箇所を除去することにより、質量部21、第1のX軸方向支持部材22、第2のX軸方向支持部材27、第1のY軸方向支持部材32、第2のY軸方向支持部材39、外周部69および枠体47を形成した後、回路パターン(図示せず)にICからなる処理回路48を半田付けする。   Finally, by removing unnecessary portions in the base material (not shown), the mass portion 21, the first X-axis direction support member 22, the second X-axis direction support member 27, and the first Y-axis direction After forming the support member 32, the second Y-axis direction support member 39, the outer peripheral portion 69, and the frame body 47, a processing circuit 48 made of IC is soldered to a circuit pattern (not shown).

以上のように構成され、かつ組み立てられた本発明の一実施の形態における3軸検出角速度センサについて、次に、その動作を説明する。   Next, the operation of the three-axis detection angular velocity sensor according to the embodiment of the present invention constructed and assembled as described above will be described.

まず、最初に質量部21にX軸周りの角速度が付加される場合を説明する。   First, a case where an angular velocity around the X axis is first added to the mass portion 21 will be described.

まず、内側駆動圧電体24,29,34,41に正電圧を印加すると同時に、外側駆動圧電体23,28,33,40に負電圧を印加すると、図5に示すように、内側駆動圧電体24,29,34,41は伸びるとともに外側駆動圧電体23,28,33,40は縮むことになり、その結果、質量部21は上方に向かって移動する。次に、内側駆動圧電体24,29,34,41に負電圧を印加すると同時に、外側駆動圧電体23,28,33,40に正電圧を印加すると、内側駆動圧電体24,29,34,41は縮むとともに外側駆動圧電体23,28,33,40は伸びることになり、その結果、質量部21は下方に向かって移動する。すなわち、質量部21はZ軸方向の駆動周波数で速度Vの振動駆動をするものである。そして、この質量部21の振動駆動は外側モニタ圧電体37および内側モニタ圧電体67から発生する出力信号が一定になるように、内側駆動圧電体24,29,34,41および外側駆動圧電体23,28,33,40に印加する電圧を調整することにより、振動駆動の振幅を制御している。   First, when a positive voltage is applied to the inner driving piezoelectric bodies 24, 29, 34, and 41, and a negative voltage is applied to the outer driving piezoelectric bodies 23, 28, 33, and 40, as shown in FIG. 24, 29, 34, and 41 are extended, and the outer drive piezoelectric bodies 23, 28, 33, and 40 are contracted. As a result, the mass portion 21 moves upward. Next, when a negative voltage is applied to the inner drive piezoelectric bodies 24, 29, 34, and 41 and a positive voltage is applied to the outer drive piezoelectric bodies 23, 28, 33, and 40, the inner drive piezoelectric bodies 24, 29, 34, and 41 shrinks and the outer drive piezoelectric bodies 23, 28, 33, and 40 extend, and as a result, the mass portion 21 moves downward. That is, the mass unit 21 is driven to vibrate at a speed V at a drive frequency in the Z-axis direction. The vibration drive of the mass portion 21 causes the inner drive piezoelectric bodies 24, 29, 34, 41 and the outer drive piezoelectric body 23 so that output signals generated from the outer monitor piezoelectric body 37 and the inner monitor piezoelectric body 67 are constant. , 28, 33, and 40 are adjusted to control the amplitude of vibration drive.

そしてまた、質量部21がZ軸方向の駆動周波数で振動駆動をしている状態において、質量部21がX軸方向の中心軸周りに角速度ωで回転すると、図6に示すように、質量部21にY軸方向のF=2mV×ωのコリオリ力が発生する。このコリオリ力により、質量部21はY軸方向に振動駆動するため、この振動駆動によって、例えば、図7に示すように、第1のY軸方向支持部材32における外側検出圧電体35および内側検出圧電体36が伸びることにより正電荷が発生するとともに、第2のY軸方向支持部材39における外側検出圧電体42および内側検出圧電体43が縮むことにより負電荷が発生する。そして、外側検出圧電体35および内側検出圧電体36から発生する電荷をIV変換器60により出力信号に変換するとともに、外側検出圧電体42および内側検出圧電体43から発生する電荷をIV変換器61により出力信号に変換し、両者の差動を取った後、図8に示すように、Z軸方向の振動駆動の周波数で、同期検波器62によって同期検波することにより、X軸周りの角速度を検出するものである。   Further, when the mass portion 21 rotates at an angular velocity ω around the central axis in the X-axis direction in a state where the mass portion 21 is driven to vibrate at a drive frequency in the Z-axis direction, as shown in FIG. 21 generates a Coriolis force of F = 2 mV × ω in the Y-axis direction. Due to this Coriolis force, the mass portion 21 is driven to vibrate in the Y-axis direction. Therefore, as shown in FIG. 7, for example, the outer detection piezoelectric body 35 and the inner detection in the first Y-axis direction support member 32 by this vibration drive. A positive charge is generated by the expansion of the piezoelectric body 36, and a negative charge is generated by the contraction of the outer detection piezoelectric element 42 and the inner detection piezoelectric element 43 in the second Y-axis direction support member 39. The electric charges generated from the outer detection piezoelectric member 35 and the inner detection piezoelectric member 36 are converted into output signals by the IV converter 60, and the electric charges generated from the outer detection piezoelectric member 42 and the inner detection piezoelectric member 43 are converted into the IV converter 61. After the output signal is converted into the output signal and the difference between the two is obtained, the synchronous velocity is detected by the synchronous detector 62 at the vibration drive frequency in the Z-axis direction as shown in FIG. It is to detect.

このとき、質量部21のX軸方向とY軸方向の駆動周波数を互いに異ならせるようにしているため、X軸方向の検知周波数とY軸方向の検知周波数が略同一になるということはなくなり、これにより、X軸周りおよびY軸周りの角速度が相互に干渉するということはなくなるため、X軸周りおよびY軸周りの角速度による出力信号が安定しているという効果を有するものである。   At this time, since the driving frequency of the mass part 21 in the X-axis direction and the Y-axis direction is made different from each other, the detection frequency in the X-axis direction and the detection frequency in the Y-axis direction are not substantially the same. As a result, the angular velocities around the X axis and the Y axis do not interfere with each other, so that the output signal due to the angular velocities around the X axis and the Y axis is stable.

次に、質量部21にY軸周りの角速度が付加される場合を説明する。この場合も、前述したX軸周りの角速度を検出する場合と同様に、質量部21がZ軸方向に振動駆動をしている状態において、質量部21がY軸方向の中心軸周りに角速度ωで回転すると、図9に示すように、質量部21にX軸方向のF=2mV×ωのコリオリ力が発生する。このコリオリ力により、質量部21はX軸方向に振動駆動するため、この振動駆動によって、第1のX軸方向支持部材22における外側検出圧電体23および内側検出圧電体25が伸びることにより正電荷が発生するとともに、第2のX軸方向支持部材27における外側検出圧電体30および内側検出圧電体31が縮むことにより負電荷が発生する。そして、外側検出圧電体23および内側検出圧電体26から発生する電荷をIV変換器63により出力信号に変換するとともに、外側検出圧電体30および内側検出圧電体31から発生する電荷をIV変換器64により出力信号に変換し、両者の差動を取った後、図10に示すように、Z軸方向の振動駆動の周波数で、同期検波器66によって同期検波することにより、Y軸周りの角速度を検出するものである。   Next, a case where an angular velocity around the Y axis is added to the mass unit 21 will be described. Also in this case, as in the case where the angular velocity around the X axis is detected, the mass portion 21 is angularly rotated around the central axis in the Y axis direction when the mass portion 21 is driven to vibrate in the Z axis direction. 9, a Coriolis force of F = 2 mV × ω in the X-axis direction is generated in the mass portion 21 as shown in FIG. 9. Due to this Coriolis force, the mass portion 21 is driven to vibrate in the X-axis direction, so that the outer detection piezoelectric member 23 and the inner detection piezoelectric member 25 in the first X-axis direction support member 22 are extended by this vibration drive. Is generated, and the outer detection piezoelectric member 30 and the inner detection piezoelectric member 31 of the second X-axis direction support member 27 are contracted to generate a negative charge. The electric charges generated from the outer detection piezoelectric member 23 and the inner detection piezoelectric member 26 are converted into output signals by the IV converter 63, and the electric charges generated from the outer detection piezoelectric member 30 and the inner detection piezoelectric member 31 are converted into the IV converter 64. 10, and after taking the differential between them, as shown in FIG. 10, the synchronous velocity is detected by the synchronous detector 66 at the frequency of the vibration drive in the Z-axis direction, whereby the angular velocity around the Y-axis is obtained. It is to detect.

次に、質量部21にZ軸周りの角速度が付加される場合を説明する。Z軸周りの角速度を検出するためには、図11に示すように、質量部21がY軸方向に振動駆動をするようにする。   Next, a case where an angular velocity around the Z axis is added to the mass portion 21 will be described. In order to detect the angular velocity around the Z-axis, the mass unit 21 is driven to vibrate in the Y-axis direction as shown in FIG.

まず、第1のY軸方向支持部材32における外側駆動圧電体33および内側駆動圧電体34に正電圧を印加すると同時に、第2のY軸方向支持部材39における外側駆動圧電体40および内側駆動圧電体41に負電圧を印加すると、外側駆動圧電体33および内側駆動圧電体34は伸びるとともに外側駆動圧電体40および内側駆動圧電体41は縮むことになり、その結果、質量部21は第1のY軸方向支持部材32に向かって移動する。   First, a positive voltage is applied to the outer drive piezoelectric body 33 and the inner drive piezoelectric body 34 in the first Y-axis direction support member 32, and at the same time, the outer drive piezoelectric body 40 and the inner drive piezoelectric element in the second Y-axis direction support member 39. When a negative voltage is applied to the body 41, the outer driving piezoelectric member 33 and the inner driving piezoelectric member 34 are extended, and the outer driving piezoelectric member 40 and the inner driving piezoelectric member 41 are contracted. It moves toward the Y-axis direction support member 32.

次に、第1のY軸方向支持部材32における外側駆動圧電体33および内側駆動圧電体34に負電圧を印加すると同時に、第2のY軸方向支持部材39における外側駆動圧電体40および内側駆動圧電体41に正電圧を印加すると、外側駆動圧電体33および内側駆動圧電体34は縮むとともに外側駆動圧電体40および内側駆動圧電体41は伸びることになり、その結果、質量部21は第2のY軸方向支持部材39に向かって移動する。すなわち、質量部21はY軸方向の駆動周波数で速度Vの振動駆動をするものである。そして、この質量部21の振動駆動は内側モニタ圧電体38,67から発生する出力信号が一定になるように、外側駆動圧電体33、内側駆動圧電体34、外側駆動圧電体40および内側駆動圧電体41に印加する電圧を調整することにより、振動駆動の振幅を制御している。   Next, a negative voltage is applied to the outer drive piezoelectric body 33 and the inner drive piezoelectric body 34 in the first Y-axis direction support member 32, and at the same time, the outer drive piezoelectric body 40 and the inner drive in the second Y-axis direction support member 39. When a positive voltage is applied to the piezoelectric body 41, the outer driving piezoelectric body 33 and the inner driving piezoelectric body 34 contract, and the outer driving piezoelectric body 40 and the inner driving piezoelectric body 41 extend, and as a result, the mass unit 21 has the second portion. It moves toward the Y-axis direction support member 39. That is, the mass unit 21 is driven to vibrate at a speed V at a drive frequency in the Y-axis direction. The vibration drive of the mass portion 21 is such that the output signals generated from the inner monitor piezoelectric members 38 and 67 are constant, so that the outer drive piezoelectric member 33, the inner drive piezoelectric member 34, the outer drive piezoelectric member 40, and the inner drive piezoelectric member. The amplitude of vibration drive is controlled by adjusting the voltage applied to the body 41.

そして、質量部21がY軸方向に振動駆動をしている状態において、質量部21がZ軸方向の中心軸周りに角速度ωで回転すると、質量部21にX軸方向のF=2mV×ωのコリオリ力が発生する。このコリオリ力により、質量部21はX軸方向に振動駆動するため、この振動駆動によって、第1のX軸方向支持部材22における外側検出圧電体25および内側検出圧電体26が伸びることにより正電荷が発生するとともに、第2のX軸方向支持部材27における外側検出圧電体30および内側検出圧電体31が縮むことにより負電荷が発生する。そして、外側検出圧電体25および内側検出圧電体26から発生する電荷をIV変換器63により出力信号に変換するとともに、外側検出圧電体30および内側検出圧電体31から発生する電荷をIV変換器64により出力信号に変換し、両者の差動を取った後、図12に示すように、Y軸方向の振動駆動の周波数で、同期検波器66によって同期検波することにより、Z軸周りの角速度を検出するものである。   When the mass unit 21 is driven to vibrate in the Y-axis direction and the mass unit 21 rotates at an angular velocity ω around the central axis in the Z-axis direction, the mass unit 21 has F = 2 mV × ω in the X-axis direction. Coriolis force is generated. Due to the Coriolis force, the mass portion 21 is driven to vibrate in the X-axis direction, so that the outer detection piezoelectric body 25 and the inner detection piezoelectric body 26 in the first X-axis direction support member 22 are extended by the vibration drive, thereby causing positive charge. Is generated, and the outer detection piezoelectric member 30 and the inner detection piezoelectric member 31 of the second X-axis direction support member 27 are contracted to generate a negative charge. The electric charges generated from the outer detection piezoelectric member 25 and the inner detection piezoelectric member 26 are converted into output signals by the IV converter 63, and the electric charges generated from the outer detection piezoelectric member 30 and the inner detection piezoelectric member 31 are converted into the IV converter 64. After the output signal is converted to the output signal and the difference between the two is obtained, the synchronous velocity is detected by the synchronous detector 66 at the vibration drive frequency in the Y-axis direction as shown in FIG. It is to detect.

上記したように、Z軸周りの角速度を検出するためには、質量部21がY軸方向に振動駆動をするようにする必要があるが、この振動駆動信号の逆位相をY軸方向コリオリ力検出回路58における同期検波器62の前段に注入することにより、駆動回路49によるY軸方向の振動駆動によって、X軸周りの角速度を検出する出力信号に発生する変動を防止することができるという効果が得られるものである。   As described above, in order to detect the angular velocity around the Z-axis, it is necessary for the mass portion 21 to be driven to vibrate in the Y-axis direction. By injecting the detection circuit 58 before the synchronous detector 62, the fluctuation generated in the output signal for detecting the angular velocity around the X axis can be prevented by the vibration drive in the Y axis direction by the drive circuit 49. Is obtained.

また、中央の駆動周波数値であるZ軸方向に振動駆動させるとともに、X軸およびY軸の2軸方向の角速度により発生する出力信号をZ軸方向の駆動周波数で同期検波することにより、X軸およびY軸の2軸方向の各々の角速度を検出し、さらに他のY軸方向に振動駆動させるとともに、Z軸周りの角速度により発生する出力信号をY軸方向の駆動周波数で同期検波することにより、Z軸周りの軸方向の角速度を検出するようにしているため、駆動と検知の周波数が近づくことになり、これにより、3軸の角速度による出力信号の感度が大きくなるという効果が得られるものである。   In addition, while driving in the Z-axis direction, which is the center drive frequency value, and synchronously detecting the output signal generated by the angular velocity in the two-axis direction of the X-axis and the Y-axis at the drive frequency in the Z-axis direction, By detecting the angular velocities in the two axis directions of the Y axis and the Y axis, and further driving the vibration in the other Y axis direction, and synchronously detecting the output signal generated by the angular velocity around the Z axis at the driving frequency in the Y axis direction Since the angular velocity in the axial direction around the Z axis is detected, the drive and detection frequencies are close to each other, thereby obtaining the effect of increasing the sensitivity of the output signal due to the angular velocity of the three axes. It is.

本発明に係る3軸検出角速度センサは、X軸周りおよびY軸周りの角速度による出力信号が相互に干渉するということはなく、出力信号が安定している3軸検出角速度センサを提供することができるという効果を有するものであり、特にX軸、Y軸およびZ軸の3軸方向の角速度を検出することが可能な3軸検出角速度センサに適用して有用なものである。   The triaxial detection angular velocity sensor according to the present invention provides a triaxial detection angular velocity sensor in which output signals due to angular velocities around the X axis and the Y axis do not interfere with each other and the output signals are stable. In particular, the present invention is useful when applied to a three-axis detection angular velocity sensor capable of detecting angular velocities in the three-axis directions of the X, Y, and Z axes.

本発明の一実施の形態における3軸検出角速度センサの側断面図Side sectional view of a three-axis detection angular velocity sensor in one embodiment of the present invention 同3軸検出角速度センサの上面図Top view of the 3-axis detection angular velocity sensor 同3軸検出角速度センサにおける第1のX軸方向支持部材の側断面図Side sectional view of the first X-axis direction support member in the same three-axis detection angular velocity sensor 同3軸検出角速度センサの回路図Circuit diagram of the 3-axis detection angular velocity sensor 同3軸検出角速度センサをZ軸方向に振動駆動させる状態を示す側断面図Side sectional view showing a state in which the triaxial detection angular velocity sensor is driven to vibrate in the Z axis direction 同3軸検出角速度センサのX軸周りの角速度を検出する状態を示す図The figure which shows the state which detects the angular velocity around the X-axis of the same 3-axis detection angular velocity sensor 同3軸検出角速度センサがY軸方向のコリオリ力により動作する状態を示す側断面図Side sectional view showing a state in which the three-axis detection angular velocity sensor is operated by the Coriolis force in the Y-axis direction. 同3軸検出角速度センサからの出力信号をZ軸方向の駆動周波数で同期検波をする状態を示す波形図Waveform diagram showing the state of synchronous detection of the output signal from the 3-axis detection angular velocity sensor at the drive frequency in the Z-axis direction 同3軸検出角速度センサのY軸周りの角速度を検出する状態を示す図The figure which shows the state which detects the angular velocity around the Y-axis of the same 3-axis detection angular velocity sensor 同3軸検出角速度センサからの出力信号をZ軸方向の駆動周波数で同期検波をする状態を示す波形図Waveform diagram showing the state of synchronous detection of the output signal from the 3-axis detection angular velocity sensor at the drive frequency in the Z-axis direction 同3軸検出角速度センサのZ軸周りの角速度を検出する状態を示す図The figure which shows the state which detects the angular velocity around the Z-axis of the same 3-axis detection angular velocity sensor 同3軸検出角速度センサからの出力信号をY軸方向の駆動周波数で同期検波をする状態を示す波形図Waveform diagram showing the state of synchronous detection of the output signal from the 3-axis detection angular velocity sensor at the drive frequency in the Y-axis direction 従来の3軸検出角速度センサの側断面図Side sectional view of a conventional 3-axis detection angular velocity sensor 同3軸検出角速度センサの上面図Top view of the 3-axis detection angular velocity sensor

21 質量部
22,27 X軸方向支持部材
23,24,28,29,33,34,40,41 駆動圧電体
25,26,30,31,35,36,42,43 検出圧電体
32,39 Y軸方向支持部材
37,38,67 モニタ圧電体
21 Mass part 22, 27 X-axis direction support member 23, 24, 28, 29, 33, 34, 40, 41 Drive piezoelectric body 25, 26, 30, 31, 35, 36, 42, 43 Detection piezoelectric body 32, 39 Y-axis direction support member 37, 38, 67 Monitor piezoelectric body

Claims (3)

X軸、Y軸およびZ軸の3軸方向に変位可能な質量部と、この質量部を支持するとともにX軸方向に延出されかつ上面に少なくとも1つの検出圧電体を設けたX軸方向支持部材と、前記質量部を支持するとともにY軸方向に延出されかつ上面に少なくとも1つの駆動圧電体と少なくとも1つの検出圧電体と少なくとも1つのモニタ圧電体とを設けたY軸方向支持部材とを備え、前記質量部のX軸方向、Y軸方向およびZ軸方向の駆動周波数を互いに異ならせるように構成した3軸検出角速度センサ。 An X-axis direction support that supports a mass part that is displaceable in the X-axis, Y-axis, and Z-axis directions, and that supports the mass part and that extends in the X-axis direction and is provided with at least one detection piezoelectric body on the upper surface. A member, and a Y-axis direction supporting member that supports the mass portion and extends in the Y-axis direction, and includes at least one drive piezoelectric body, at least one detection piezoelectric body, and at least one monitor piezoelectric body on the upper surface. A three-axis detection angular velocity sensor configured to vary the drive frequencies of the mass part in the X-axis direction, the Y-axis direction, and the Z-axis direction. X軸、Y軸、Z軸方向の駆動周波数を比較して、中央の駆動周波数値の軸方向に振動駆動させるとともに、他の2軸方向の角速度により発生する出力信号を中央の駆動周波数で同期検波することにより、他の2軸方向の各々の角速度を検出し、さらに他の2軸方向のうちのいずれか一方を振動駆動させるとともに、中央の駆動周波数の軸方向の角速度により発生する出力信号を他の2軸方向のいずれか一方の駆動周波数で同期検波することにより、中央の駆動周波数の軸方向の角速度を検出するようにした請求項1記載の3軸検出角速度センサ。 Compares the drive frequencies in the X-axis, Y-axis, and Z-axis directions, and drives them to vibrate in the axial direction of the central drive frequency value, and synchronizes the output signal generated by the angular velocity in the other two-axis directions with the central drive frequency By detecting each angular velocity in the other two axial directions, and driving one of the other two axial directions in vibration, and an output signal generated by the axial angular velocity of the central driving frequency 2. The three-axis detection angular velocity sensor according to claim 1, wherein the angular velocity in the axial direction of the central drive frequency is detected by synchronously detecting at a drive frequency in one of the other two-axis directions. 他の2軸方向のうちのいずれか一方の振動駆動信号の逆位相からなる出力信号を、他の2軸方向のうちの他方の軸方向に加わる角速度により発生するコリオリ力による出力信号に注入するようにした請求項2記載の3軸検出角速度センサ。 An output signal consisting of the opposite phase of the vibration drive signal in one of the other two axial directions is injected into the output signal due to the Coriolis force generated by the angular velocity applied in the other axial direction of the other two axial directions. The triaxial detection angular velocity sensor according to claim 2 which was made.
JP2009029434A 2009-02-12 2009-02-12 Thee-axis detection angular velocity sensor Pending JP2010185739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009029434A JP2010185739A (en) 2009-02-12 2009-02-12 Thee-axis detection angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009029434A JP2010185739A (en) 2009-02-12 2009-02-12 Thee-axis detection angular velocity sensor

Publications (1)

Publication Number Publication Date
JP2010185739A true JP2010185739A (en) 2010-08-26

Family

ID=42766487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009029434A Pending JP2010185739A (en) 2009-02-12 2009-02-12 Thee-axis detection angular velocity sensor

Country Status (1)

Country Link
JP (1) JP2010185739A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049825A1 (en) * 2010-10-15 2012-04-19 日立オートモティブシステムズ株式会社 Physical quantity detector
US20140224015A1 (en) * 2011-09-02 2014-08-14 Hokuriku Electric Industry Co., Ltd. Angular velocity sensor
JP2018522242A (en) * 2015-07-17 2018-08-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Yaw rate sensor and yaw rate sensor operation at various frequencies and directions

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049825A1 (en) * 2010-10-15 2012-04-19 日立オートモティブシステムズ株式会社 Physical quantity detector
JPWO2012049825A1 (en) * 2010-10-15 2014-02-24 日立オートモティブシステムズ株式会社 Physical quantity detection device
US8659101B2 (en) 2010-10-15 2014-02-25 Hitachi Automotive Systems, Ltd. Physical quantity detector
JP5643327B2 (en) * 2010-10-15 2014-12-17 日立オートモティブシステムズ株式会社 Physical quantity detection device
US20140224015A1 (en) * 2011-09-02 2014-08-14 Hokuriku Electric Industry Co., Ltd. Angular velocity sensor
US9726490B2 (en) * 2011-09-02 2017-08-08 Hokuriku Electric Industry Co., Ltd. Angular velocity sensor
JP2018522242A (en) * 2015-07-17 2018-08-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Yaw rate sensor and yaw rate sensor operation at various frequencies and directions

Similar Documents

Publication Publication Date Title
JP4874067B2 (en) Angular velocity sensor
JP5627582B2 (en) Angular velocity sensor
CN103620343B (en) Oscillator and vibratory gyroscope
US7673529B2 (en) Method for processing detection signal of vibratory inertial force sensor and vibratory inertial force sensor
JP2007315830A (en) Angular-velocity sensor
JP2010217165A (en) Microelectromechanical gyroscope with enhanced rejection of acceleration noise
JPH08145683A (en) Acceleration/angular acceleration detector
US10001372B2 (en) Angular velocity detection device
JP3135181U (en) Sensor that detects both acceleration and angular velocity
JP2010185739A (en) Thee-axis detection angular velocity sensor
CN102679967B (en) Piezoelectric biaxial micro gyroscope with rocking mass block
JP2017156313A (en) Angular velocity detection circuit, angular velocity detection device, electronic apparatus and mobile body
JP2010190705A (en) Three-axis detecting angular velocity sensor
CN115265510A (en) Sensor and electronic device
JP2010223854A (en) Three-axis detection angular velocity sensor
JP2017156312A (en) Angular velocity detection circuit, angular velocity detection device, electronic apparatus and mobile body
JP2001183144A (en) Angular velocity sensor
JP2003240557A (en) Angular velocity sensor
WO2018092449A1 (en) Gyro sensor and electronic device
WO2019017277A1 (en) Vibration type angular velocity sensor
JP2012163477A (en) Angular velocity sensor
JP2005098892A (en) Angular velocity sensor
JP6702053B2 (en) Gyro sensor and electronic equipment
JP2010286329A (en) Biaxial detection angular velocity sensor
JP2016161451A (en) Gyro sensor, electronic apparatus, mobile body, and method for manufacturing the gyro sensor