JP2010222695A - Alloy-saving two-phase stainless steel material having excellent corrosion resistance, and method for manufacturing the same - Google Patents

Alloy-saving two-phase stainless steel material having excellent corrosion resistance, and method for manufacturing the same Download PDF

Info

Publication number
JP2010222695A
JP2010222695A JP2009074717A JP2009074717A JP2010222695A JP 2010222695 A JP2010222695 A JP 2010222695A JP 2009074717 A JP2009074717 A JP 2009074717A JP 2009074717 A JP2009074717 A JP 2009074717A JP 2010222695 A JP2010222695 A JP 2010222695A
Authority
JP
Japan
Prior art keywords
less
stainless steel
corrosion resistance
steel material
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009074717A
Other languages
Japanese (ja)
Other versions
JP5511208B2 (en
Inventor
Yusuke Oikawa
雄介 及川
Shinji Tsuge
信二 柘植
Haruhiko Kajimura
治彦 梶村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2009074717A priority Critical patent/JP5511208B2/en
Publication of JP2010222695A publication Critical patent/JP2010222695A/en
Application granted granted Critical
Publication of JP5511208B2 publication Critical patent/JP5511208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive Ni-saving type two-phase stainless steel material having corrosion resistance and superior impact toughness. <P>SOLUTION: This stainless steel material includes, by mass%, 0.06% or less C, 0.1-1.5% Si, 0.1-6.0% Mn, 0.05% or less P, 0.005% or less S, 0.25-4.0% Ni, 19.0-23.0% Cr, 0.05-1.0% Mo, 3.0% or less Cu, 0.15-0.25% N, 0.003-0.050% Al and 0.007% or less O, while controlling Ni-bal. represented by expression <1>: Ni-bal.=(Ni+0.5Mn+0.5Cu+30C+30N)-1.1(Cr+1.5Si+Mo+W)+8.2, to -8 to -4, wherein each element name in the expression represents the content (%) and includes 40-70% by an area rate of austenite phases. In the austenite phase, 50 pieces or more of crystal grains, each of which has the major axis of 1-20 μm, exist in the observed visual field of 0.1 mm<SP>2</SP>in a plane parallel to the surface of the steel material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、大気環境、水環境、および塩化物環境で使用されるオーステナイト相とフェライト相の二相を有する二相ステンレス鋼のうち、Ni,Mo等の高価な合金の含有量を抑えた省合金二相ステンレス鋼材に係わる。詳しくは溶体化熱処理を施した二相ステンレス圧延鋼材であり、たとえばダム、水門、真空設備用材料、海水淡水化用材料、石油精製、化学工業などのプラントにおける配管や熱交換器等として従来オーステナイト系ステンレス鋼が使われていた分野の一部に代替して本発明鋼材を用いることができる。   The present invention reduces the content of expensive alloys such as Ni and Mo among duplex stainless steels having two phases of an austenite phase and a ferrite phase used in an atmospheric environment, an aqueous environment, and a chloride environment. Related to alloy duplex stainless steel. Specifically, it is a duplex stainless steel rolled with solution heat treatment. For example, conventional austenite as piping and heat exchangers in plants such as dams, sluices, vacuum equipment materials, seawater desalination materials, petroleum refining and chemical industries. The steel of the present invention can be used in place of a part of the field where the stainless steel has been used.

二相ステンレス鋼は、鋼の組織にオーステナイト相とフェライト相の両相を有し、高強度高耐食性の材料として以前から石油化学装置材料、ポンプ材料、ケミカルタンク用材料等に使用されている。更に、二相ステンレス鋼は、一般に低Niの成分系であることから、直近の金属原料高騰の状況に伴い、ステンレス鋼の主流であるオーステナイト系ステンレス鋼より合金コストが低く、かつ変動が少ない材料として注目を浴びている。
二相ステンレス鋼の直近のトピックとして省合金タイプの開発とその使用量増加がある。省合金タイプとは、従来の二相ステンレス鋼より高価な合金の含有量を抑え、低い合金コストであることのメリットを更に増大させた鋼種で、特許文献1〜3等に開示されている。これらはASTM-A240で規格化されており、それぞれS32001、S32101、S32304に対応する。従来の二相ステンレス鋼のメイン鋼種はJIS SUS329J3LやSUS329J4Lであるが、これらはオーステナイト系の高耐食鋼SUS316Lよりも更に高耐食であり、高価なNiやMoをそれぞれ約6〜7%,約3〜4%添加している。これに対し省合金二相ステンレス鋼は、耐食性をSUS316Lもしくは汎用鋼のSUS304Lに近いレベルとした代わりに、NiやMoをNやMnで代用し、NiやMoをS32304では約1〜4%,S32101では約0〜1%と大幅に低減している。
特にNは、オーステナイト相を安定にしかつオーステナイト相に固溶して強度、耐食性を高める有効な元素であり、特に二相ステンレス鋼の場合、Cr、Moはフェライト相に濃化するためオーステナイト相の耐食性を確保するためにはNの添加は重要である。更に、溶接される鋼材の場合、二相ステンレス鋼では溶接熱影響部において加熱によりフェライト相割合が増加するが、冷却時に冷却速度が大きいため拡散が追いつかず、オーステナイトに変態しきらずに高フェライト量のままとなり、耐食性を大きく低下させることがあるが、拡散速度の大きいNを添加することにより、このような場合でもオーステナイト相を確保出来る効果があることから、積極的に添加される。
Duplex stainless steel has both an austenite phase and a ferrite phase in the steel structure, and has been used as a high-strength, high-corrosion-resistant material for petrochemical equipment materials, pump materials, chemical tank materials, and the like. Furthermore, since duplex stainless steel is generally a low Ni component system, it has a lower alloy cost and less fluctuation than the austenitic stainless steel, which is the mainstream of stainless steel, due to the recent surge in metal raw materials. Has attracted attention as.
The latest topic of duplex stainless steel is the development of an alloy-saving type and an increase in its usage. The alloy-saving type is a steel type that suppresses the content of an alloy that is more expensive than conventional duplex stainless steel and further increases the merit of low alloy costs, and is disclosed in Patent Documents 1 to 3 and the like. These are standardized by ASTM-A240 and correspond to S32001, S32101, and S32304, respectively. The main types of conventional duplex stainless steels are JIS SUS329J3L and SUS329J4L, but these are more corrosion resistant than austenitic high corrosion resistant steel SUS316L, and expensive Ni and Mo are about 6-7% and about 3 respectively. Add ~ 4%. In contrast, alloy-saving duplex stainless steel uses Ni or Mo for N or Mn instead of SUS316L or general-purpose steel SUS304L for corrosion resistance, and Ni or Mo is about 1-4% for S32304. In S32101, it is greatly reduced to about 0 to 1%.
In particular, N is an effective element that stabilizes the austenite phase and improves the strength and corrosion resistance by forming a solid solution in the austenite phase. Particularly in the case of duplex stainless steel, Cr and Mo are concentrated in the ferrite phase, so In order to ensure corrosion resistance, addition of N is important. Furthermore, in the case of steel materials to be welded, the ratio of ferrite phase increases due to heating in the heat affected zone of duplex stainless steel, but the cooling rate is high during cooling, so diffusion cannot catch up, and high ferrite content does not completely transform into austenite. However, the corrosion resistance may be greatly reduced. However, the addition of N having a high diffusion rate has an effect of securing an austenite phase even in such a case, so it is actively added.

US/4828630号公報US / 4828630 特開昭61−56267号公報JP-A 61-56267 WO2002/27056号公報WO2002 / 27056

これらの省合金二相ステンレス鋼においては、本来、SUS304やSUS316Lと比べ遜色ない耐食性を有するように設計されているにもかかわらず、耐食性が本来対応するオーステナイト系鋼種、例えば、S32101はSUS304、S32304はSUS316Lより低くなる現象が、特にNiをNで代替して高Nとなった省合金二相ステンレス鋼でしばしば発生した。
本発明は、省合金タイプの二相ステンレス鋼について、成分設計を変えず合金コストを極力抑えた上で、上述のような耐食性の低下を生じない省合金二相ステンレス鋼を提供することを目的とする。
These alloy-saving duplex stainless steels are originally designed to have corrosion resistance comparable to that of SUS304 or SUS316L, but the austenitic steel grades with which corrosion resistance originally corresponds, for example, S32101 is SUS304, S32304. The phenomenon of lower than SUS316L often occurred especially in alloy-saving duplex stainless steels with high N by substituting Ni for N.
An object of the present invention is to provide an alloy-saving duplex stainless steel that does not cause a decrease in corrosion resistance as described above, while keeping the cost of the alloy as low as possible without changing the component design of the alloy-saving duplex stainless steel. And

本発明者らは、21Cr−1.5Ni−5Mn−0.21%N系を含むNi節減型二相ステンレス鋼と種々の実験室溶製鋼の鋼片を用いて熱間圧延・溶体化熱処理実験を行い、耐食性評価と組織観察を進めた結果、金属組織観察により耐食性良好な鋼材を判別できること、また、熱間圧延後の溶体化熱処理の条件を特定することで、耐食性向上成分を付加せずに、省合金二相ステンレス鋼材の耐食性が改善されることを見出した。
まず、供試材の耐食性を評価し、かつその鋼材の組織を種々の方法で観察した結果、当該鋼材において耐食性低下をもたらすのはフェライト相粒界への窒化物の析出による鋭敏化であることを見出した。次に、窒化物の析出を抑制する手法について熱処理条件を種々変更し、鋭意検討した結果、二相ステンレス鋼に散在する粗大なフェライト相の中に微細なオーステナイトを晶出させることにより、フェライト相粒界への窒化物の析出を抑制できることが判明した。更に、当該微細オーステナイトを晶出することができる条件を検討した結果、溶体化熱処理の温度を比較的低温で短時間の、熱延時の鋳片もしくは鋼片の再加熱温度との関係で示される一定範囲とすることで実現できることを見出した。以下に詳細に説明する。
The present inventors have conducted hot rolling / solution heat treatment experiments using Ni-saving duplex stainless steel containing 21Cr-1.5Ni-5Mn-0.21% N and various laboratory molten steel pieces. As a result of proceeding with corrosion resistance evaluation and structure observation, it is possible to distinguish steel materials with good corrosion resistance by metal structure observation, and by specifying the conditions of solution heat treatment after hot rolling, without adding corrosion resistance improving components Furthermore, it has been found that the corrosion resistance of the alloy-saving duplex stainless steel material is improved.
First, as a result of evaluating the corrosion resistance of the test material and observing the structure of the steel material by various methods, it is the sensitization caused by precipitation of nitride at the ferrite phase grain boundary that brings about a decrease in corrosion resistance in the steel material. I found. Next, as a result of various changes in the heat treatment conditions for the method of suppressing the precipitation of nitrides and extensive studies, the ferrite phase was crystallized by crystallizing fine austenite in the coarse ferrite phase scattered in the duplex stainless steel. It has been found that the precipitation of nitrides at the grain boundaries can be suppressed. Furthermore, as a result of examining the conditions under which the fine austenite can be crystallized, the temperature of the solution heat treatment is shown in relation to the reheating temperature of the slab or steel slab during hot rolling at a relatively low temperature for a short time. It was found that it can be realized by making it within a certain range. Details will be described below.

窒素含有量を高くした省合金二相ステンレス鋼において、鋭敏化をもたらす機構は下記の通りである。溶体化熱処理によりフェライト相に窒素が固溶するが、元来フェライト相の窒素固溶限は比較的小さく、冷却時に固溶限を超えた分の窒素が窒化物として粒界に析出することにより鋭敏化を生じる。その析出速度は過飽和窒素量に対応するため、窒化物析出温度域の800℃以下になる際のフェライト相中に固溶している窒素量を低減しておくことにより、窒化物の析出を抑制できる。フェライト相の窒素固溶量を低減するには、フェライト相が窒化物析出温度域より高温となっている間に、フェライト相中の窒素をオーステナイト相中に移動させれば良い。この際に問題となるのが、フェライト相が粗大な結晶粒である場合に窒素が隣接するオーステナイト相へ到達し得ない場合があることである。フェライト相中の窒素の拡散速度はオーステナイト相よりも圧倒的に速いものの、二相鋼の場合、オーステナイト相におけるクロム炭化物の析出による鋭敏化を防止するために熱処理後、水冷を行うことから、このような急冷時に固溶Nを低減しうる十分な時間を確保できないことがある。   In the alloy-saving duplex stainless steel with a high nitrogen content, the mechanism causing sensitization is as follows. Nitrogen is dissolved in the ferrite phase by solution heat treatment, but originally the nitrogen solid solubility limit of the ferrite phase is relatively small, and the amount of nitrogen exceeding the solid solubility limit during cooling precipitates at the grain boundaries as nitrides. Causes sensitization. Since the precipitation rate corresponds to the amount of supersaturated nitrogen, the precipitation of nitride is suppressed by reducing the amount of nitrogen dissolved in the ferrite phase when the temperature of nitride precipitation is 800 ° C or lower. it can. In order to reduce the amount of nitrogen solid solution in the ferrite phase, nitrogen in the ferrite phase may be moved into the austenite phase while the ferrite phase is higher than the nitride precipitation temperature range. In this case, a problem is that when the ferrite phase is coarse crystal grains, nitrogen may not reach the adjacent austenite phase. Although the diffusion rate of nitrogen in the ferrite phase is overwhelmingly faster than that of the austenite phase, in the case of duplex steel, water cooling is performed after heat treatment to prevent sensitization due to precipitation of chromium carbide in the austenite phase. In such a rapid cooling, there may be a case where sufficient time for reducing the solid solution N cannot be secured.

これを防止する方法について検討したところ、当該鋼に観察される粗大なフェライト相中に微細なオーステナイト結晶粒を晶出させれば、窒素拡散に費やせる時間が短くても、当該微細オーステナイト結晶粒が近傍にあることにより吸収でき、フェライト中の窒素量を低下させることが出来ることが判った。具体的には、鋼材表面と平行な面を検鏡面とし少なくとも0.5mm2以上の観察視野で顕微鏡組織を観察した場合、結晶粒の長径が1μm以上20μm以下のオーステナイト相結晶粒が観察視野0.1mm2あたり50個以上存在していればよい。 When a method for preventing this was studied, if fine austenite crystal grains were crystallized in the coarse ferrite phase observed in the steel, the fine austenite crystal grains could be spent even if the time available for nitrogen diffusion was short. It can be absorbed by being in the vicinity and the amount of nitrogen in the ferrite can be reduced. Specifically, when the microscopic structure is observed in an observation field of at least 0.5 mm 2 with a plane parallel to the steel surface as the spectroscopic surface, the austenite phase grains having a major axis of 1 μm or more and 20 μm or less are observed in an observation field of 0.1 mm. 50 or more per 2 need only exist.

更に、当該組織を実現する方法として下記の通り明確化した。まず、オーステナイト相を低温で確実に晶出させるために、二相鋼の中でもオーステナイトが比較的安定である成分系とする必要がある。そのため、オーステナイト量を推定する式として広く使用されているNi−bal.を規定した。
このNi−bal.を規定した成分系を前提として、溶体化熱処理条件に関しては以下の方法を見出した。一般に二相鋼の場合、熱処理温度を低温化するほど平衡フェライト量が低下し、オーステナイトの量が増加する。従って、熱処理温度における平衡フェライト量が熱延後で熱処理前のフェライト量より少なくなる低温で熱処理を行うと、オーステナイト相が生じることになる。
具体的には、溶体化熱処理温度を930℃以上で、かつ熱延時における鋳片もしくは鋼片の再加熱温度より150℃低い温度以下とすればよいことが判明した。この場合、熱延による転位と冷却時に析出した析出物がフェライト粒内に散在しているため、これを核として微細なオーステナイト相が生成する。但し、熱処理を長時間行うと、微細オーステナイト粒が結合し粗大となり、その結果として、フェライト相からオーステナイト相への窒素移動距離が長くなるため、熱処理条件に上限を設ける必要がある。具体的には、熱処理時間T(hr)が下記の<2>式を満足するように設定すれば良いことが判明した。
LMP=(t+273)×(20+log10T)≦25200・・・<2>
但し、tは熱処理温度(℃)、Tは熱処理時間(hr)である。
以上の結果、Ni節減型二相ステンレス鋼材の化学組成と組織および製造方法について明示した本発明に至った。
Furthermore, it was clarified as a method for realizing the organization as follows. First, in order to reliably crystallize the austenite phase at a low temperature, it is necessary to use a component system in which austenite is relatively stable among the duplex stainless steels. Therefore, Ni-bal., Which is widely used as a formula for estimating the amount of austenite. Stipulated.
This Ni-bal. Assuming a component system that defines the following, the following method has been found for solution heat treatment conditions. In general, in the case of duplex steel, the lower the heat treatment temperature, the lower the amount of equilibrium ferrite and the more austenite. Accordingly, when heat treatment is performed at a low temperature where the amount of equilibrium ferrite at the heat treatment temperature is less than the amount of ferrite before heat treatment after hot rolling, an austenite phase is generated.
Specifically, it has been found that the solution heat treatment temperature may be 930 ° C. or higher and 150 ° C. or lower than the reheating temperature of the slab or steel slab during hot rolling. In this case, since dislocations caused by hot rolling and precipitates precipitated during cooling are scattered in the ferrite grains, a fine austenite phase is generated using this as a nucleus. However, if the heat treatment is performed for a long time, fine austenite grains are combined and become coarse, and as a result, the nitrogen moving distance from the ferrite phase to the austenite phase becomes long, so it is necessary to set an upper limit for the heat treatment conditions. Specifically, it has been found that the heat treatment time T (hr) may be set so as to satisfy the following formula <2>.
LMP = (t + 273) × (20 + log 10 T) ≦ 25200... <2>
Where t is the heat treatment temperature (° C.) and T is the heat treatment time (hr).
As a result, the present invention has been clarified with respect to the chemical composition, structure and manufacturing method of the Ni-saving duplex stainless steel material.

すなわち、本発明の要旨とするところは以下の通りである。
(1)質量%で、C:0.06%以下,Si:0.1〜1.5%,Mn:0.1〜6.0%,P:0.05%以下,S:0.005%以下,Ni:0.25〜4.0%,Cr:19.0〜23.0%,Mo:1.0%以下,Cu:3.0%以下,N:0.15〜0.25%、Al:0.003〜0.050%、O:0.007%以下を含有し、残部がFeおよび不可避的不純物である組成を有し、<1>式で表されるNi−bal.が−8以上−4以下であり、オーステナイト相面積率が40〜70%であり、鋼材表面と平行な面を検鏡面とし、少なくとも0.5mm2以上の観察視野で顕微鏡組織を観察した場合、結晶粒の長径が1μm以上20μm以下のオーステナイト相結晶粒が観察視野0.1mm2あたり50個以上存在していることを特徴とする、耐食性の良好な省合金二相ステンレス鋼材
Ni−bal.=(Ni+0.5Mn+0.5Cu+30C+30N)
−1.1(Cr+1.5Si+Mo+W)+8.2・・・・・・<1>
上記の式において各元素名は何れもその含有量(%)を表す。
(2)更に、質量%でTi:0.003〜0.05%、Nb:0.02〜0.15%、V:0.05〜0.5%のうちの1種または2種以上を含有することを特徴とする(1)に記載の耐食性の良好な省合金二相ステンレス鋼材。
(3)更に、質量%でW:0.03〜1.0%、Co:0.02〜1.0%のうちの1種または2種以上を含有することを特徴とする(1)または(2)に記載の耐食性の良好な省合金二相ステンレス鋼材。
(4)更に、質量%で、B:0.0005〜0.0040%、Ca:0.0005〜0.0050%、Mg:0.0001〜0.0030%、REM:0.005〜0.050%のうちの1種または2種以上を含有することを特徴とする(1)〜(3)のいずれか1項に記載の耐食性の良好な省合金二相ステンレス鋼材。
That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.06% or less, Si: 0.1 to 1.5%, Mn: 0.1 to 6.0%, P: 0.05% or less, S: 0.005 %: Ni: 0.25-4.0%, Cr: 19.0-23.0%, Mo: 1.0% or less, Cu: 3.0% or less, N: 0.15-0.25 %, Al: 0.003 to 0.050%, O: 0.007% or less, with the balance being Fe and unavoidable impurities, Ni-bal. Is -8 or more and -4 or less, the austenite phase area ratio is 40 to 70%, the plane parallel to the steel material surface is used as the spectroscopic surface, and the microscopic structure is observed in an observation field of at least 0.5 mm 2 or more. The austenite phase crystal grains having a major axis of 1 μm or more and 20 μm or less are present in an amount of 50 or more per observation field of 0.1 mm 2. The alloy-saving duplex stainless steel material Ni-bal. = (Ni + 0.5Mn + 0.5Cu + 30C + 30N)
-1.1 (Cr + 1.5Si + Mo + W) +8.2... <1>
In the above formula, each element name represents its content (%).
(2) Further, by mass%, Ti: 0.003 to 0.05%, Nb: 0.02 to 0.15%, V: 0.05 to 0.5%, or one or more of them The alloy-saving duplex stainless steel material having good corrosion resistance as described in (1).
(3) Further, it contains one or more of W: 0.03 to 1.0% and Co: 0.02 to 1.0% by mass% (1) or The alloy-saving duplex stainless steel material having good corrosion resistance as described in (2).
(4) Further, by mass%, B: 0.0005 to 0.0040%, Ca: 0.0005 to 0.0050%, Mg: 0.0001 to 0.0030%, REM: 0.005 to 0.00. The alloy-saving duplex stainless steel material with good corrosion resistance according to any one of (1) to (3), which contains one or more of 050%.

(5)(1)〜(4)のいずれか1項に記載の組成を有する二相ステンレス鋼の鋳片もしくは鋼片を再加熱後熱延し、その後溶体化熱処理する工程において、溶体化熱処理の温度を、930℃以上、かつ鋳片もしくは鋼片の再加熱温度より150℃低い温度以下とし、熱処理時間T(hr)を下記式<2>で示す範囲とすることを特徴とする(1)〜(4)のいずれか1項に記載の耐食性の良好な省合金二相ステンレス鋼材の製造方法。
LMP=(t+273)×(20+log10T)≦25200・・・<2>
但し、tは熱処理温度(℃)、Tは熱処理時間(hr)である。
(5) In the step of re-heating and then hot-rolling the duplex stainless steel slab or steel slab having the composition described in any one of (1) to (4), followed by solution heat treatment The temperature of 930 ° C. or more and 150 ° C. or less lower than the reheating temperature of the slab or steel slab, and the heat treatment time T (hr) is in the range represented by the following formula <2> (1) ) To (4), the method for producing an alloy-saving duplex stainless steel material having good corrosion resistance.
LMP = (t + 273) × (20 + log 10 T) ≦ 25200... <2>
Where t is the heat treatment temperature (° C.) and T is the heat treatment time (hr).

本発明により、Ni節減型二相ステンレス鋼におけるフェライト粒界の鋭敏化に起因する耐食性の劣化を回避することができた。これにより、大気環境、水環境、および塩化物環境で使用される耐食性を有すると共に衝撃靭性に優れた安価なNi節減型二相ステンレス熱間圧延鋼材を提供することが可能となり、ダム、水門、真空設備用材料、海水淡水化用材料、石油精製、化学工業などのプラントにおける配管や熱交換器等として従来オーステナイト系ステンレス鋼が使われていた分野の一部に代替して本発明鋼材を用いることができるなど産業上寄与するところは極めて大である。   According to the present invention, deterioration in corrosion resistance due to sensitization of ferrite grain boundaries in Ni-saving duplex stainless steel could be avoided. This makes it possible to provide an inexpensive Ni-saving duplex stainless steel hot rolled steel with corrosion resistance and excellent impact toughness that is used in atmospheric, water, and chloride environments. The steel material of the present invention is used in place of some of the fields where austenitic stainless steel has been conventionally used as piping and heat exchangers in plants for vacuum equipment, seawater desalination, petroleum refining, chemical industry, etc. There are significant industrial contributions such as being able to do so.

本発明の二相ステンレス鋼材の組織写真の例であり、微細オーステナイト粒を白い矢印で示した。It is an example of the structure | tissue photograph of the duplex stainless steel material of this invention, and the fine austenite grain was shown with the white arrow. 本発明における溶体化熱処理の温度及び時間の適正範囲を示す図である。It is a figure which shows the appropriate range of the temperature and time of solution heat treatment in this invention.

以下に、先ず、本発明の(1)に記載の鋼組成の限定理由について説明する。
Cは、ステンレス鋼の耐食性を確保するために、0.06%以下の含有量に制限する。0.06%を越えて含有させるとCr炭化物が生成して、耐食性,靱性が劣化する。
Below, the reason for limitation of the steel composition as described in (1) of this invention is demonstrated first.
C limits the content to 0.06% or less in order to ensure the corrosion resistance of the stainless steel. If the content exceeds 0.06%, Cr carbide is generated and the corrosion resistance and toughness deteriorate.

Siは、脱酸のため0.1%以上添加する。しかしながら、1.5%を超えて添加すると靱性が劣化する。そのため、上限を1.5%に限定する。好ましい範囲は、0.2〜1.0%である。   Si is added in an amount of 0.1% or more for deoxidation. However, if added over 1.5%, the toughness deteriorates. Therefore, the upper limit is limited to 1.5%. A preferable range is 0.2 to 1.0%.

Mnは、脱酸のため0.1%以上添加する。さらに1%以上の添加によりオーステナイト相を増加させ靭性を改善するとともに、Nの固溶度を上げ窒化物を析出し難くし、耐食性を向上させる効果を有する。しかしながら、6.0%を超えて添加すると上記効果が飽和するとともに不動態被膜を弱体化させ耐食性が劣化する。そのため、上限を6%に限定する。好ましい含有量は2.0〜6.0%であり、耐食性の点から最も好ましい範囲は2.0超〜4.0%未満である。   Mn is added in an amount of 0.1% or more for deoxidation. Furthermore, addition of 1% or more has the effect of increasing the austenite phase and improving toughness, increasing the solid solubility of N, making it difficult to precipitate nitrides, and improving corrosion resistance. However, if it is added over 6.0%, the above effect is saturated and the passive film is weakened to deteriorate the corrosion resistance. Therefore, the upper limit is limited to 6%. The preferable content is 2.0 to 6.0%, and the most preferable range from the point of corrosion resistance is more than 2.0 to less than 4.0%.

Pは、熱間加工性および靱性を劣化させるため、0.05%以下に限定する。好ましくは、0.03%以下である。   P is limited to 0.05% or less in order to deteriorate hot workability and toughness. Preferably, it is 0.03% or less.

Sは、熱間加工性、靱性および耐食性をも劣化させるため、0.005%以下に限定する。好ましくは、0.0020%以下である。   S degrades hot workability, toughness, and corrosion resistance, so it is limited to 0.005% or less. Preferably, it is 0.0020% or less.

Niは、二相ステンレス鋼中のオーステナイト相を増加させること、および加工誘起マルテンサイトの生成を抑制し靱性を向上させること、更に各種酸に対する耐食性を改善するのに有効な元素であり、0.25%以上は必須であるが、高価な合金であるため本発明では可能な限り抑制し4.0%以下とする。好ましい範囲は、1.0〜3.0%未満である。   Ni is an element effective for increasing the austenite phase in duplex stainless steel, suppressing the formation of work-induced martensite and improving toughness, and further improving the corrosion resistance against various acids. 25% or more is essential, but since it is an expensive alloy, it is suppressed as much as possible in the present invention to 4.0% or less. A preferable range is 1.0 to less than 3.0%.

Crは、基本的な耐食性を確保するため19.0%以上含有させる。一方23.0%を超えて含有させるとフェライト相分率が増加し靭性および溶接部の耐食性を阻害する。このためCrの含有量を19%以上23%以下とした。好ましい含有量は19.0〜22.0%である。   Cr is contained in an amount of 19.0% or more to ensure basic corrosion resistance. On the other hand, if the content exceeds 23.0%, the ferrite phase fraction increases and the toughness and the corrosion resistance of the weld zone are impaired. Therefore, the Cr content is set to 19% or more and 23% or less. A preferable content is 19.0 to 22.0%.

Moは、ステンレス鋼の耐食性を付加的に高める非常に有効な元素である。本発明鋼ではコストの点より1.0%以下の含有量を上限とするが、非常に高価な元素であり、さらには0.5%以下とすることが望ましい。   Mo is a very effective element that additionally increases the corrosion resistance of stainless steel. In the steel of the present invention, the upper limit is 1.0% or less in terms of cost, but it is an extremely expensive element, and more preferably 0.5% or less.

Cuは、ステンレス鋼の酸に対する耐食性を付加的に高める元素であり、かつオーステナイト相を安定にし靭性を改善する効果を有する。3.0%を越えて含有させると固溶度を超えてεCuが析出し脆化を発生するので上限を3.0%とした。好ましい含有量は0.5〜2.0%である。   Cu is an element that additionally enhances the corrosion resistance of stainless steel to acids, and has the effect of stabilizing the austenite phase and improving toughness. If the content exceeds 3.0%, εCu precipitates exceeding the solid solubility and embrittlement occurs, so the upper limit was made 3.0%. A preferable content is 0.5 to 2.0%.

Nは、前述のように、オーステナイト相を安定にしかつオーステナイト相に固溶して強度、耐食性を高め、特に溶接される鋼材の場合、溶接熱影響部の耐食性を高める有効な元素であり、積極的に添加される。
一方、Nの固溶限度を高めるCr,Moの少ない省合金二相ステンレス鋼の場合、高Nとすると前述のような粒界への窒化物析出による特性低下の問題が生じ、本発明に示される製造条件の最適化を必要とするようになる。その問題を生じるN量は、本発明鋼においては0.15%を超えた場合であり、これを本発明のN量の下限とした。一方、0.25%を越えて含有させると熱処理条件に関係なくCr窒化物を析出して靭性および耐食性を阻害するようになるため含有量の上限を0.25%とした。
As described above, N is an effective element that stabilizes the austenite phase and dissolves it in the austenite phase to increase the strength and corrosion resistance. In particular, in the case of a steel material to be welded, N is an effective element that increases the corrosion resistance of the weld heat affected zone. Added.
On the other hand, in the case of an alloy-saving duplex stainless steel with a small amount of Cr and Mo that increases the solid solution limit of N, if it is high N, the problem of characteristic deterioration due to nitride precipitation at the grain boundary as described above occurs, which is shown in the present invention. It will be necessary to optimize the manufacturing conditions. The amount of N that causes the problem is the case of exceeding 0.15% in the steel of the present invention, and this is the lower limit of the N amount of the present invention. On the other hand, if the content exceeds 0.25%, Cr nitride is precipitated regardless of the heat treatment conditions and the toughness and corrosion resistance are impaired, so the upper limit of the content was made 0.25%.

Alは、鋼の脱酸のための重要な元素であり、鋼中の酸素を低減するためにSiとあわせて含有させる。Si含有量が0.3%を越える場合は添加しなくて良い場合もあるが、酸素量の低減は靭性確保のために必須であり、このために0.003%以上の含有が必要である。一方でAlはNとの親和力が比較的大きな元素であり、過剰に添加するとAlNを生じてステンレス鋼の靭性を阻害する。その程度はN含有量にも依存するが、Alが0.050%を越えると靭性低下が著しくなるためその含有量の上限を0.050%と定めた。好ましくは0.030%以下である。   Al is an important element for deoxidation of steel, and is contained together with Si in order to reduce oxygen in the steel. When the Si content exceeds 0.3%, it may not be necessary to add, but the reduction of the oxygen content is essential for securing toughness, and for this reason, a content of 0.003% or more is necessary. . On the other hand, Al is an element having a relatively large affinity with N, and if added excessively, AlN is generated and inhibits the toughness of stainless steel. The degree depends on the N content, but when Al exceeds 0.050%, the toughness deteriorates remarkably, so the upper limit of the content is set to 0.050%. Preferably it is 0.030% or less.

O(酸素)は、非金属介在物の代表である酸化物を構成する重要な元素であり、過剰な含有は靭性を阻害する。また粗大なクラスター状酸化物が生成すると表面疵の原因となる。このためその含有量の上限を0.007%と定めた。好ましくは0.005%以下である。   O (oxygen) is an important element constituting an oxide that is representative of non-metallic inclusions, and excessive inclusion inhibits toughness. In addition, the formation of coarse clustered oxides causes surface defects. For this reason, the upper limit of the content was set to 0.007%. Preferably it is 0.005% or less.

次に、本発明の二相鋼において良好な特性を得るためにはオーステナイト相面積率を40〜70%の範囲にすることが必要である。40%未満では靱性不良が、70%超では熱間加工性、応力腐食割れの問題が出てくる。また、何れの場合も耐食性が不良となる。特に本発明鋼ではオーステナイト相を可能な限り多めにした方がよい。当該オーステナイト量を確保するには、本発明の規定範囲内でオーステナイト相増加元素とフェライト相増加元素の含有割合を調整することによって行う事が出来る。具体的には、下記<1>式で示すNi―bal.式を−8〜−4の範囲とする。好ましくは−7.1〜−4である。
Ni−bal.=(Ni+0.5Cu+0.5Mn+30C+30N)
−1.1(Cr+1.5Si+Mo+W)+8.2・・・・・<1>
Next, in order to obtain good characteristics in the duplex stainless steel of the present invention, the austenite phase area ratio needs to be in the range of 40 to 70%. If it is less than 40%, poor toughness occurs, and if it exceeds 70%, problems of hot workability and stress corrosion cracking occur. In either case, the corrosion resistance is poor. In particular, in the steel of the present invention, it is better to increase the austenite phase as much as possible. The austenite amount can be secured by adjusting the content ratio of the austenite increasing element and the ferrite phase increasing element within the specified range of the present invention. Specifically, Ni-bal. The expression is in the range of −8 to −4. Preferably it is -7.1--4.
Ni-bal. = (Ni + 0.5Cu + 0.5Mn + 30C + 30N)
-1.1 (Cr + 1.5Si + Mo + W) +8.2 ... <1>

オーステナイト結晶粒の分布は本発明の圧延鋼材の耐食性を判定するための重要因子である。本発明者らは、21Cr−1.5Ni−5Mn−0.21%N系を含むNi節減型二相ステンレス鋼と種々の実験室溶製鋼の鋼片を用いて熱間圧延・溶体化熱処理実験をおこない、金属組織観察と耐食性を評価し、鋼材表面と平行な面を検鏡面とし少なくとも0.1mm2以上の観察視野で顕微鏡組織を観察した場合、結晶粒の長径が1μm以上20μm以下の微細なオーステナイト相結晶粒が観察視野0.1mm2あたり50個以上存在していれば、耐食性が良好であることを見出した。 The distribution of austenite crystal grains is an important factor for determining the corrosion resistance of the rolled steel material of the present invention. The present inventors have conducted hot rolling / solution heat treatment experiments using Ni-saving duplex stainless steel containing 21Cr-1.5Ni-5Mn-0.21% N and various laboratory molten steel pieces. When the microstructure is observed in an observation field of at least 0.1 mm 2 with the plane parallel to the steel surface as the specular surface, the crystal grain length is 1 μm or more and 20 μm or less. It was found that the corrosion resistance was good when 50 or more austenite phase grains were present per observation field of 0.1 mm 2 .

その設定根拠は下記の通りである。検鏡面を鋼材表面と平行な面とするのは、加工方向と直角の断面とした場合より、下記の点で優れているためである。二相鋼は圧延を行うと組織が厚み方向に圧縮され、非常に薄いα相とγ相が交互に並んだ形となっている。それに対し鋼材表面と平行な面は組織の圧縮がなされておらず、比較的粗大な組織が観察され、以下の測定をしやすい。更に当該面は、実際に腐食環境に晒される面であるため直接的な評価になることもあり、当該面を選定した。   The grounds for setting are as follows. The reason why the specular surface is a plane parallel to the steel surface is because the following points are superior to the case where the cross section is perpendicular to the processing direction. When duplex is rolled, the structure is compressed in the thickness direction, and very thin α and γ phases are arranged alternately. On the other hand, the structure parallel to the steel surface is not compressed, a relatively coarse structure is observed, and the following measurement is easy. Furthermore, since the surface is a surface that is actually exposed to a corrosive environment, it may be directly evaluated, and the surface was selected.

検鏡面をバフ研磨し、例えば10%しゅう酸溶液中における電解エッチング等により、オーステナイト粒界を表出するエッチングを行った後、顕微鏡観察を行う。観察視野は少なくとも0.5mm2以上とする。これは、二相ステンレス鋼の鋼材表面は、場所によっては数十μmレベルの粗大なフェライト相、オーステナイト相が見られ、微細オーステナイト結晶粒は粗大フェライト中の方に観察されるため、明確にカウントするためにはある程度広い面積を観察する必要があるためである。 The specular surface is buffed, and after performing etching that exposes austenite grain boundaries by, for example, electrolytic etching in a 10% oxalic acid solution, observation with a microscope is performed. The observation visual field is at least 0.5 mm 2 or more. This is because the surface of the duplex stainless steel has a coarse ferrite phase and austenite phase of several tens of μm depending on the location, and fine austenite grains are observed in the coarse ferrite. This is because it is necessary to observe a certain area.

ここでカウント対象とする微細なオーステナイト相結晶粒としては、その長径が1μm以上20μm以下のものに限定する。上限値は評価実験を行い、耐食性向上効果のあった材料に見られた微細オーステナイト結晶粒の径を測定することで導き出した。下限値は光学顕微鏡でオーステナイト相と明確に観察しうる限度として規定した。   The fine austenite crystal grains to be counted here are limited to those having a major axis of 1 μm or more and 20 μm or less. The upper limit value was derived by conducting an evaluation experiment and measuring the diameter of fine austenite grains found in a material having an effect of improving corrosion resistance. The lower limit was defined as the limit that can be clearly observed with the austenite phase with an optical microscope.

図1に組織写真の例を示す。白い矢印で示したものが微細オーステナイト粒である。この微細なオーステナイト相結晶粒の数として、実施例に示すように観察視野0.1mm2あたり50個以上存在していれば、耐食性が良好であることを見出した。具体的な評価手順としては、例えばJIS規定と同様の500倍で、12視野の組織写真を撮影した場合、Lサイズ89mm×127mmの写真12視野分で0.5425mm2となるからその中で50×(0.5425÷0.1)=272個以上微細オーステナイト粒があることを確認すればよい。 FIG. 1 shows an example of a tissue photograph. The ones indicated by white arrows are fine austenite grains. As the number of fine austenite crystal grains, as shown in the examples, it was found that the corrosion resistance was good if 50 or more particles were present per observation field of 0.1 mm 2 . As a specific evaluation procedure, for example, when a tissue photograph of 12 fields of view is taken at 500 times the same as the JIS standard, it becomes 0.5425 mm 2 for 12 fields of view of an L size 89 mm x 127 mm. (0.5425 ÷ 0.1) = 272 or more fine austenite grains may be confirmed.

次に、本発明の(2)に記載の省合金二相ステンレス鋼材の鋼組成の限定理由について説明する。
Tiは、極微量で窒化物を形成しCr窒化物の析出を抑制する効果があり、必要に応じて添加される。上記効果を発揮するには0.003%以上の添加が必要である。
一方0.05%を越えて二相ステンレス鋼に含有させると粗大なTiNが生成して鋼の靭性を阻害するようになる。このためその含有量を0.003〜0.05%と定めた。Tiの好適な含有率は0.003〜0.020%である。
Next, the reason for limiting the steel composition of the alloy-saving duplex stainless steel material described in (2) of the present invention will be described.
Ti has an effect of forming a nitride in a very small amount and suppressing the precipitation of Cr nitride, and is added as necessary. Addition of 0.003% or more is necessary to exert the above effect.
On the other hand, if it exceeds 0.05% and is contained in the duplex stainless steel, coarse TiN is generated and the toughness of the steel is inhibited. For this reason, the content was defined as 0.003 to 0.05%. A suitable content of Ti is 0.003 to 0.020%.

Nbは、同様にCr窒化物の析出を抑制し耐食性を高める作用も有する。また、Nbが形成する窒化物、炭化物は熱間加工および熱処理の過程で生成し、結晶粒成長を抑制し、鋼材を強化する作用を有する。このために0.02%以上含有させる。一方過剰な添加は熱間圧延前の加熱時に未固溶析出物として析出するようになって靭性を阻害するようになるためその含有量の上限を0.15%と定めた。添加する場合の好ましい含有率範囲は、0.03%〜0.10%である。   Nb also has the effect of suppressing the precipitation of Cr nitride and increasing the corrosion resistance. Further, nitrides and carbides formed by Nb are generated in the course of hot working and heat treatment, and have the action of suppressing crystal grain growth and strengthening the steel material. For this reason, it is contained by 0.02% or more. On the other hand, excessive addition causes precipitation as an undissolved precipitate during heating before hot rolling, which impairs toughness, so the upper limit of its content was set to 0.15%. The preferable content range in the case of adding is 0.03% to 0.10%.

Vも同様に耐食性を高める目的のために0.05%以上含有させるが、0.5%を超えて含有させると粗大なV系炭窒化物が生成し、靱性が劣化する。そのため、上限を0.5%に限定する。添加する場合の好ましい含有量は0.06〜0.30%の範囲である。   V is also contained in an amount of 0.05% or more for the purpose of improving the corrosion resistance. However, if V is contained in an amount exceeding 0.5%, coarse V-based carbonitrides are produced and the toughness deteriorates. Therefore, the upper limit is limited to 0.5%. The preferable content when added is in the range of 0.06 to 0.30%.

次に、本発明の(3)に記載の省合金二相ステンレス鋼材の鋼組成の限定理由について説明する。
Wは、Moと同様にステンレス鋼の耐食性を付加的に向上させる元素であり、Vに比べて固溶度が大きい。本発明鋼において耐食性を高める目的のためには0.03〜1.0%を含有させる。
Next, the reason for limiting the steel composition of the alloy-saving duplex stainless steel material described in (3) of the present invention will be described.
W, like Mo, is an element that additionally improves the corrosion resistance of stainless steel, and has a higher solid solubility than V. For the purpose of enhancing the corrosion resistance in the steel of the present invention, 0.03 to 1.0% is contained.

Coは、鋼の靭性と耐食性を高めるために有効な元素であり、選択的に添加される。その含有量が0.02%未満であると効果が少なく、1.0%を越えて含有させると高価な元素であるためにコストに見合った効果が発揮されないようになる。そのため添加する場合の含有量を0.02〜1.0%と定めた。   Co is an element effective for enhancing the toughness and corrosion resistance of steel, and is selectively added. If the content is less than 0.02%, the effect is small. If the content exceeds 1.0%, the element is an expensive element, so that the effect corresponding to the cost is not exhibited. Therefore, the content when added is determined to be 0.02 to 1.0%.

更に、本発明の(4)に記載の省合金二相ステンレス鋼材の鋼組成の限定理由について説明する。
B,Ca,Mg,REMは、いずれも鋼の熱間加工性を改善する元素であり、その目的で1種または2種以上添加される。B,Ca,Mg,REMいずれも過剰な添加は逆に熱間加工性および靭性を低下するためその含有量の上下限を次のように定めた。Bについては0.0005〜0.0040%、Caについては0.0005〜0.0050%、Mgについては0.0001〜0.0030%、REMについては0.005〜0.050%である。ここでREMはLaやCe等のランタノイド系希土類元素の含有量の総和とする。
Furthermore, the reason for limiting the steel composition of the alloy-saving duplex stainless steel material described in (4) of the present invention will be described.
B, Ca, Mg, and REM are all elements that improve the hot workability of steel, and one or more of them are added for that purpose. In any case, excessive addition of B, Ca, Mg, and REM lowers the hot workability and toughness, so the upper and lower limits of the content were determined as follows. B is 0.0005 to 0.0040%, Ca is 0.0005 to 0.0050%, Mg is 0.0001 to 0.0030%, and REM is 0.005 to 0.050%. Here, REM is the total content of lanthanoid rare earth elements such as La and Ce.

更に、本発明の(5)に記載の省合金二相ステンレス鋼材の製造方法の限定理由について説明する。
本発明の鋼材の製造方法としては、上記(1)〜(4)のいずれか1項に記載の組成を有する二相ステンレス鋼の鋳片もしくは鋼片を再加熱後熱延し、その後溶体化熱処理を施すものである。
溶体化熱処理は熱間圧延中に析出したCrの析出物を固溶し、加工結晶粒を再結晶させ、更に本発明に必要な微細オーステナイトを晶出させるために実施する。このためには、930℃以上の温度が必要である。また、微細オーステナイト相を晶出させるには、熱処理温度を、平衡フェライト量が熱延材のフェライト量より低くなるように制御する。熱延まま材のフェライト量はおおよそ、熱延時の鋳片,鋼片の再加熱時の平衡フェライト量に左右されると考えられ、実験の結果、再加熱温度より150℃低い温度以下で熱処理すれば微細オーステナイト粒を晶出しうることが判った。析出物の固溶と再結晶は熱処理温度が高いほど進行するが、過度に高くなると、本発明の狙いの微細オーステナイト粒が粗大化してしまう。その条件を規定するためには、<2>式で示すLMPが25200以下となるような条件で温度、時間を規定すればよい。LMPの式はラーソン・ミラーパラメーターとして知られており、例えば特開平7−316744号公報にあるように温度と時間で表される拡散の指標である。この値が大きくなるほど拡散が進行し、従って粒成長が進行し微細オーステナイト粒の粒径が大きくなる。従って、この値に上限を設けることで微細オーステナイト粒の粗大化を抑止する。実験の結果、当該値が25200以下の場合、微細オーステナイト粒を20μm以下に抑えうることが判明した。具体的な熱処理条件は図2のようになる。なお、図2は、以下に述べる実施例の表2の鋼No.1と2の実験結果をプロットしたものである。
Furthermore, the reason for limitation of the manufacturing method of the alloy-saving duplex stainless steel material as described in (5) of this invention is demonstrated.
As a manufacturing method of the steel material of the present invention, a slab or a slab of duplex stainless steel having the composition described in any one of the above (1) to (4) is reheated and hot-rolled, and then solutionized. Heat treatment is performed.
The solution heat treatment is carried out in order to dissolve Cr precipitates precipitated during hot rolling, recrystallize the processed crystal grains, and further crystallize the fine austenite necessary for the present invention. For this purpose, a temperature of 930 ° C. or higher is necessary. In order to crystallize the fine austenite phase, the heat treatment temperature is controlled so that the equilibrium ferrite content is lower than the ferrite content of the hot-rolled material. It is considered that the amount of ferrite in the hot-rolled material is roughly affected by the amount of equilibrium ferrite during reheating of the cast slab and steel slab during hot rolling. It has been found that fine austenite grains can be crystallized. The solid solution and recrystallization of the precipitate proceed as the heat treatment temperature is increased, but if it is excessively high, the fine austenite grains targeted by the present invention become coarse. In order to define the conditions, the temperature and the time may be specified under such conditions that the LMP represented by the formula <2> is 25200 or less. The LMP equation is known as the Larson-Miller parameter, and is an index of diffusion expressed by temperature and time as disclosed in, for example, Japanese Patent Application Laid-Open No. 7-316744. As this value increases, diffusion proceeds, and therefore grain growth proceeds and the grain size of fine austenite grains increases. Therefore, by setting an upper limit to this value, coarsening of the fine austenite grains is suppressed. As a result of experiments, it was found that when the value is 25200 or less, fine austenite grains can be suppressed to 20 μm or less. Specific heat treatment conditions are as shown in FIG. 2 shows the steel No. in Table 2 of the examples described below. The experimental results of 1 and 2 are plotted.

以下に実施例について説明する。表1に供試鋼の化学組成を示す。空欄は無添加ゆえ分析していないことを示す。なお表1に記載されている成分以外はFeおよび不可避的不純物元素である。また表中のREMはランタノイド系希土類元素を意味し、含有量はそれら元素の合計を示している。これらの鋼は実験室の50kg真空誘導炉によりMgOるつぼ中で溶製され、厚さが約100mmの扁平鋼塊に鋳造した。鋼塊の本体部分より熱間圧延用素材を加工した。この素材を表2の「再加熱温度」で示す温度で1〜2h加熱後、仕上温度約950℃の条件にて圧延し、12mm厚×約700mm長の熱間圧延鋼板を得た。なお、圧延直後の鋼材温度が800℃以上の状態より200℃以下までスプレー冷却を実施した。溶体化熱処理については、表2の「熱処理温度」および「熱処理時間」に示す条件で均熱後、水冷した。   Examples will be described below. Table 1 shows the chemical composition of the test steel. A blank column indicates that no analysis was performed because no additive was added. The components other than those listed in Table 1 are Fe and unavoidable impurity elements. REM in the table means lanthanoid rare earth elements, and the content indicates the total of these elements. These steels were melted in a MgO crucible by a laboratory 50 kg vacuum induction furnace and cast into a flat steel ingot having a thickness of about 100 mm. The material for hot rolling was processed from the main body of the steel ingot. This material was heated for 1 to 2 hours at the temperature indicated by “reheating temperature” in Table 2, and then rolled under a finishing temperature of about 950 ° C. to obtain a hot-rolled steel sheet 12 mm thick × about 700 mm long. In addition, spray cooling was implemented from 200 degreeC or less to the steel material temperature immediately after rolling from 800 degreeC or more. The solution heat treatment was soaked under the conditions shown in “Heat treatment temperature” and “Heat treatment time” in Table 2 and then cooled with water.

次に、以下の通り特性評価を行った。熱間加工性の評価は圧延材約700mmのうち最も長い耳割れの長さを耳割れ長さとし、この大小を比較した。オーステナイト面積率については、圧延方向と平行な断面を埋込み鏡面研磨し、KOH水溶液中で電解エッチングを行った後、光学顕微鏡観察により画像解析を行うことによってフェライト面積率を測定し、残りの部分をオーステナイト面積率とした。更に耐食性を評価すべく、表層から各サンプルより8枚ずつ採取した試験片の表面を#600研磨し、ASTM G48 のE法に規定されたCPT(臨界孔食発生温度)測定を行った。
更に、表層から採取した試験片の表面を、凹凸を除去した後樹脂に埋め込み鏡面研磨したものに、10%シュウ酸溶液中で電解エッチングを行い組織を表出させた。当該材を500倍で光顕観察し、Lサイズ12枚の写真を撮影し、画像解析装置にて長径が1μm以上20μm以下のオーステナイト粒の個数をカウントした。
Next, the characteristics were evaluated as follows. In the evaluation of hot workability, the length of the longest ear crack of about 700 mm of the rolled material was regarded as the ear crack length, and the sizes were compared. As for the austenite area ratio, the cross section parallel to the rolling direction is embedded and mirror polished, electrolytic etching is performed in an aqueous KOH solution, and then the ferrite area ratio is measured by image analysis through observation with an optical microscope. The austenite area ratio was used. Further, in order to evaluate the corrosion resistance, the surface of each test piece collected from each sample from the surface layer was polished by # 600, and CPT (critical pitting corrosion temperature) measurement defined by ASTM G48 method E was performed.
Furthermore, the surface of the test piece collected from the surface layer was subjected to electrolytic etching in a 10% oxalic acid solution to remove the irregularities and then embedded in a resin and mirror polished to expose the structure. The material was observed under a light microscope at a magnification of 500 times, 12 L-size photographs were taken, and the number of austenite grains having a major axis of 1 μm or more and 20 μm or less was counted with an image analyzer.

評価結果を表2に示す。本発明の鋼組成と溶体化熱処理条件を満足する鋼No.1〜13の発明例は、いずれも良好な耐食性と靭性を示した。なお、靭性については、母材の−20℃でのVノッチシャルピー値が170J/cm2以上を良好と判定した。
鋼No.1,2,Aについては、溶体化熱処理条件を種々変更して評価した。それによってオーステナイト粒の個数が異なっていた。オーステナイト粒の個数が50個/0.1mm2を超えるとCPTが10℃を超え、鋼の耐食性を良好に維持できることが判った。また、図1に示すような範囲で熱処理を行うことで、微細オーステナイト粒の個数を50個/0.1mm2以上に出来た。900℃熱処理では耐食性は良好だが、再結晶が不良であった。発明例の他の鋼はいずれも1180℃再加熱−1000℃×20分熱処理で微細オーステナイト粒の個数を確保しCPTを良好に出来た。なお、鋼組成が本発明に該当しない、Nの低い鋼No.Aでは、高温熱処理でも耐食性を維持した。
The evaluation results are shown in Table 2. Steel No. 1 satisfying the steel composition and solution heat treatment conditions of the present invention. Inventive examples 1 to 13 all showed good corrosion resistance and toughness. In addition, about toughness, the V notch Charpy value at −20 ° C. of the base material was determined to be 170 J / cm 2 or more as good.
Steel No. For 1, 2, and A, the solution heat treatment conditions were variously changed and evaluated. As a result, the number of austenite grains was different. It was found that when the number of austenite grains exceeds 50 / 0.1 mm 2 , the CPT exceeds 10 ° C. and the corrosion resistance of the steel can be maintained well. Further, by performing heat treatment in the range shown in FIG. 1, the number of fine austenite grains could be increased to 50 / 0.1 mm 2 or more. The heat resistance at 900 ° C. was good in corrosion resistance but poor in recrystallization. All the other steels of the inventive examples were able to secure the number of fine austenite grains by 1180 ° C. reheating-1000 ° C. × 20 minutes heat treatment and good CPT. In addition, steel composition No. which steel composition does not correspond to this invention and whose N is low. In A, corrosion resistance was maintained even at high temperature heat treatment.

熱間加工性については、P,S,Cuが過剰な場合に低下し、耳割れが25mm以上となった(鋼No.F,G,J)。また、B,Ca,Mg,REMの添加(表2の鋼No.2,5,6,7,9)によって向上し耳割れが非常に少なくなった。
靭性については、Si,Alの高い鋼NoD,L、および逆に少なすぎて脱酸不良でOが高い鋼No.C,Kは介在物により低靭性であった。鋼No.IはCrが高すぎるため、また鋼No.NはNi−bal.が低すぎるためフェライト安定性が高く、微細オーステナイト粒を少量しか得られなかった。
耐食性については、C,Mn,Sが過剰の鋼No.B,E,GおよびCrの少なすぎる鋼No.Hは不良であった。高Nの鋼No.Mは1180℃再加熱−1000℃×20分熱処理でも窒化物析出により耐食性が低下した。
以上の実施例からわかるように本発明により耐食性が良好な省合金型二相ステンレス鋼が得られることが明確となった。
About hot workability, when P, S, Cu was excessive, it fell, and the ear crack became 25 mm or more (steel No. F, G, J). Moreover, it improved by addition of B, Ca, Mg, and REM (steel No. 2, 5, 6, 7, 9 of Table 2), and the ear crack became very few.
Regarding toughness, steels No. D and L with high Si and Al, and steel No. with high O due to poor deoxidation due to too little. C and K had low toughness due to inclusions. Steel No. I is too high in Cr. N is Ni-bal. Is too low, ferrite stability is high, and only a small amount of fine austenite grains can be obtained.
Regarding corrosion resistance, steel No. 1 containing excess C, Mn and S was used. Steel No. with too little B, E, G and Cr H was bad. High N steel No. Even when M was heat-treated at 1180 ° C.-1000 ° C. × 20 minutes, the corrosion resistance decreased due to nitride precipitation.
As can be seen from the above examples, it has become clear that the present invention can provide an alloy-saving duplex stainless steel with good corrosion resistance.

本発明により、ダム、水門、真空設備用材料、海水淡水化用材料、石油精製、化学工業などのプラントにおける配管や熱交換器等として従来オーステナイト系ステンレス鋼が使われていた分野の一部に代替して安価なNi節減型二相ステンレス鋼材を用いることができるなど産業上寄与するところは極めて大である。   According to the present invention, some of the fields where austenitic stainless steel has been conventionally used as piping and heat exchangers in plants such as dams, sluices, vacuum equipment materials, seawater desalination materials, petroleum refining, chemical industries, etc. The industrial contribution such as the use of inexpensive Ni-saving type duplex stainless steel material instead is very great.

Claims (5)

質量%で、C:0.06%以下、Si:0.1〜1.5%、Mn:0.1〜6.0%、P:0.05%以下、S:0.005%以下、Ni:0.25〜4.0%、Cr:19.0〜23.0%、Mo:1.0%以下、Cu:3.0%以下、N:0.15〜0.25%、Al:0.003〜0.050%、O:0.007%以下を含有し残部がFeおよび不可避的不純物である組成を有し、<1>式で表されるNi−bal.が−8以上−4以下であり、オーステナイト相面積率が40〜70%であり、鋼材表面と平行な面を検鏡面とし、少なくとも0.5mm2以上の観察視野で顕微鏡組織を観察した場合、結晶粒の長径が1μm以上20μm以下のオーステナイト相結晶粒が観察視野0.1mm2あたり50個以上存在していることを特徴とする、耐食性の良好な省合金二相ステンレス鋼材。
Ni−bal.=(Ni+0.5Mn+0.5Cu+30C+30N)
−1.1(Cr+1.5Si+Mo+W)+8.2・・・・・・<1>
上記の式において各元素名は何れもその含有量(%)を表す。
In mass%, C: 0.06% or less, Si: 0.1 to 1.5%, Mn: 0.1 to 6.0%, P: 0.05% or less, S: 0.005% or less, Ni: 0.25 to 4.0%, Cr: 19.0 to 23.0%, Mo: 1.0% or less, Cu: 3.0% or less, N: 0.15 to 0.25%, Al : 0.003 to 0.050%, O: 0.007% or less, with the balance being Fe and unavoidable impurities, Ni-bal. Is -8 or more and -4 or less, the austenite phase area ratio is 40 to 70%, the plane parallel to the steel material surface is used as the spectroscopic surface, and the microscopic structure is observed in an observation field of at least 0.5 mm 2 or more. An alloy-saving duplex stainless steel material with good corrosion resistance, characterized in that 50 or more austenite phase grains having a major axis of 1 μm or more and 20 μm or less are present per observation field of 0.1 mm 2 .
Ni-bal. = (Ni + 0.5Mn + 0.5Cu + 30C + 30N)
-1.1 (Cr + 1.5Si + Mo + W) +8.2... <1>
In the above formula, each element name represents its content (%).
更に,質量%で、Ti:0.003〜0.05%、Nb:0.02〜0.15%、V:0.05〜0.5%のうちの1種または2種以上を含有することを特徴とする請求項1に記載の耐食性の良好な省合金二相ステンレス鋼材。   Furthermore, it contains one or more of Ti: 0.003-0.05%, Nb: 0.02-0.15%, and V: 0.05-0.5% by mass%. The alloy-saving duplex stainless steel material having good corrosion resistance according to claim 1. 更に,質量%で、W:0.03〜1.0%、Co:0.02〜1.0%のうちの1種または2種以上を含有することを特徴とする請求項1または2に記載の耐食性の良好な省合金二相ステンレス鋼材。   Furthermore, it contains one or more of W: 0.03 to 1.0% and Co: 0.02 to 1.0% by mass%. The alloy-saving duplex stainless steel material with good corrosion resistance as described. 更に,質量%で、B:0.0005〜0.0040%、Ca:0.0005〜0.0050%、Mg:0.0001〜0.0030%、REM:0.005〜0.050%のうちの1種または2種以上を含有することを特徴とする請求項1ないし3のいずれか1項に記載の耐食性の良好な省合金二相ステンレス鋼材。   Furthermore, by mass%, B: 0.0005 to 0.0040%, Ca: 0.0005 to 0.0050%, Mg: 0.0001 to 0.0030%, REM: 0.005 to 0.050% The alloy-saving duplex stainless steel material with good corrosion resistance according to any one of claims 1 to 3, characterized by containing one or more of them. 請求項1〜4のいずれか1項に記載の組成を有する二相ステンレス鋼の鋳片もしくは鋼片を再加熱後熱延し、その後溶体化熱処理する工程において、溶体化熱処理温度t(℃)を、930℃以上かつ鋳片もしくは鋼片の再加熱温度より150℃低い温度以下とし、溶体化熱処理時間T(hr)を下記式<2>で示す範囲とすることを特徴とする請求項1ないし4のいずれか1項に記載の耐食性の良好な省合金二相ステンレス鋼材の製造方法。
LMP=(t+273)×(20+log10T)≦25200・・・<2>
但し、tは熱処理温度(℃)、Tは熱処理時間(hr)である。
A solution heat treatment temperature t (° C) in the step of re-heating and casting the duplex stainless steel slab or steel slab having the composition according to any one of claims 1 to 4, followed by solution heat treatment. Is not less than 930 ° C and not more than 150 ° C lower than the reheating temperature of the slab or steel slab, and the solution heat treatment time T (hr) is in the range represented by the following formula <2>. 5. The method for producing an alloy-saving duplex stainless steel material having good corrosion resistance according to any one of items 4 to 4.
LMP = (t + 273) × (20 + log 10 T) ≦ 25200... <2>
Where t is the heat treatment temperature (° C.) and T is the heat treatment time (hr).
JP2009074717A 2009-03-25 2009-03-25 Alloy-saving duplex stainless steel material with good corrosion resistance and its manufacturing method Active JP5511208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009074717A JP5511208B2 (en) 2009-03-25 2009-03-25 Alloy-saving duplex stainless steel material with good corrosion resistance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009074717A JP5511208B2 (en) 2009-03-25 2009-03-25 Alloy-saving duplex stainless steel material with good corrosion resistance and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2010222695A true JP2010222695A (en) 2010-10-07
JP5511208B2 JP5511208B2 (en) 2014-06-04

Family

ID=43040194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009074717A Active JP5511208B2 (en) 2009-03-25 2009-03-25 Alloy-saving duplex stainless steel material with good corrosion resistance and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5511208B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140689A (en) * 2011-01-06 2012-07-26 Sanyo Special Steel Co Ltd Duplex stainless steel excellent in toughness
JP2012193432A (en) * 2011-03-17 2012-10-11 Nippon Steel & Sumikin Stainless Steel Corp Two phase stainless steel for chemical tanker excellent in performance in linear heating
WO2013048181A3 (en) * 2011-09-28 2013-05-23 주식회사 포스코 Low-alloy duplex stainless steel having outstanding corrosion resistance and hot working properties
JP2013535567A (en) * 2010-07-07 2013-09-12 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Austenitic-ferritic stainless steel with improved machinability
CN103469051A (en) * 2013-08-16 2013-12-25 广东华鳌合金新材料有限公司 Duplex stainless steel master alloy and preparation method thereof
CN103757555A (en) * 2014-01-02 2014-04-30 上海大学 Economical double-phase stainless steel with excellent sheet breakage elongation
KR101454517B1 (en) * 2012-12-24 2014-10-23 주식회사 포스코 Lean duplex stainless steel and manufacturing method using the same
JP2015511272A (en) * 2012-02-03 2015-04-16 クラウス クーン エーデルシュタールギーセライ ゲーエムベーハー Duplex steel with improved notched impact strength and machinability
KR101514601B1 (en) * 2014-05-07 2015-04-23 주식회사 포스코 Lean duplex stainless steel excellent in corrosion resistance and hot workability
KR101562645B1 (en) 2011-03-09 2015-10-23 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Two-phase stainless steel exhibiting excellent corrosion resistance in weld
EP2669397A4 (en) * 2011-01-27 2016-08-10 Nippon Steel & Sumikin Sst Alloying element-saving hot rolled duplex stainless steel material, clad steel sheet having duplex stainless steel as mating material therefor, and production method for same
EP3008222A4 (en) * 2013-06-13 2017-02-15 Outokumpu Oyj Duplex ferritic austenitic stainless steel
CN107075639A (en) * 2014-10-24 2017-08-18 新日铁住金株式会社 Two phase stainless steel and its manufacture method
JP2018059207A (en) * 2016-10-06 2018-04-12 新日鐵住金ステンレス株式会社 Two-phase stainless steel excellent in corrosion resistance of shear processing surface, two-phase stainless steel sheet and two-phase stainless linear steel material
US9975170B2 (en) 2014-12-11 2018-05-22 Posco Method for manufacturing duplex stainless steel sheet having high nitrogen content and good surface quality
US20190292619A1 (en) * 2016-06-01 2019-09-26 Nippon Steel & Sumitomo Metal Corporation Duplex Stainless Steel and Method of Manufacturing Duplex Stainless Steel
CN114346142A (en) * 2022-01-18 2022-04-15 山西太钢不锈钢股份有限公司 Forging method for improving low-temperature impact toughness of S32750 super duplex stainless steel round steel
CN115029616A (en) * 2022-08-11 2022-09-09 垣曲县晋锋机械铸造有限公司 Heat-resistant, wear-resistant and corrosion-resistant iron casting

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052523A (en) * 1983-09-01 1985-03-25 Nippon Stainless Steel Co Ltd Production of ferrite-austenite two-phase stainless steel
JPH0379742A (en) * 1989-08-22 1991-04-04 Nippon Yakin Kogyo Co Ltd Production of duplex stainless steel excellent in corrosion resistance and sheet of same
JP2006169622A (en) * 2004-01-29 2006-06-29 Jfe Steel Kk Austenitic-ferritic stainless steel with excellent formability
JP2006193823A (en) * 2004-03-16 2006-07-27 Jfe Steel Kk Ferritic-austenitic stainless steel excellent in corrosion resistance of welded zone
JP2007270265A (en) * 2006-03-31 2007-10-18 Sumitomo Metal Ind Ltd Method for manufacturing duplex stainless steel seamless pipe
JP2008038214A (en) * 2006-08-08 2008-02-21 Nippon Steel & Sumikin Stainless Steel Corp Duplex stainless steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052523A (en) * 1983-09-01 1985-03-25 Nippon Stainless Steel Co Ltd Production of ferrite-austenite two-phase stainless steel
JPH0379742A (en) * 1989-08-22 1991-04-04 Nippon Yakin Kogyo Co Ltd Production of duplex stainless steel excellent in corrosion resistance and sheet of same
JP2006169622A (en) * 2004-01-29 2006-06-29 Jfe Steel Kk Austenitic-ferritic stainless steel with excellent formability
JP2006193823A (en) * 2004-03-16 2006-07-27 Jfe Steel Kk Ferritic-austenitic stainless steel excellent in corrosion resistance of welded zone
JP2007270265A (en) * 2006-03-31 2007-10-18 Sumitomo Metal Ind Ltd Method for manufacturing duplex stainless steel seamless pipe
JP2008038214A (en) * 2006-08-08 2008-02-21 Nippon Steel & Sumikin Stainless Steel Corp Duplex stainless steel

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535567A (en) * 2010-07-07 2013-09-12 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Austenitic-ferritic stainless steel with improved machinability
JP2012140689A (en) * 2011-01-06 2012-07-26 Sanyo Special Steel Co Ltd Duplex stainless steel excellent in toughness
US9862168B2 (en) 2011-01-27 2018-01-09 Nippon Steel & Sumikin Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
EP3693121A1 (en) * 2011-01-27 2020-08-12 NIPPON STEEL Stainless Steel Corporation Clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
EP3685952A1 (en) * 2011-01-27 2020-07-29 NIPPON STEEL Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material, and production method for same
EP2669397A4 (en) * 2011-01-27 2016-08-10 Nippon Steel & Sumikin Sst Alloying element-saving hot rolled duplex stainless steel material, clad steel sheet having duplex stainless steel as mating material therefor, and production method for same
KR101562645B1 (en) 2011-03-09 2015-10-23 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Two-phase stainless steel exhibiting excellent corrosion resistance in weld
JP2012193432A (en) * 2011-03-17 2012-10-11 Nippon Steel & Sumikin Stainless Steel Corp Two phase stainless steel for chemical tanker excellent in performance in linear heating
EP2762597A4 (en) * 2011-09-28 2015-08-19 Posco Low-alloy duplex stainless steel having outstanding corrosion resistance and hot working properties
US10280491B2 (en) 2011-09-28 2019-05-07 Posco Low-alloy duplex stainless steel having outstanding corrosion resistance and hot working properties
WO2013048181A3 (en) * 2011-09-28 2013-05-23 주식회사 포스코 Low-alloy duplex stainless steel having outstanding corrosion resistance and hot working properties
JP2015511272A (en) * 2012-02-03 2015-04-16 クラウス クーン エーデルシュタールギーセライ ゲーエムベーハー Duplex steel with improved notched impact strength and machinability
KR101454517B1 (en) * 2012-12-24 2014-10-23 주식회사 포스코 Lean duplex stainless steel and manufacturing method using the same
EP3008222A4 (en) * 2013-06-13 2017-02-15 Outokumpu Oyj Duplex ferritic austenitic stainless steel
US11566309B2 (en) 2013-06-13 2023-01-31 Outokumpu Oyj Duplex ferritic austenitic stainless steel
CN103469051A (en) * 2013-08-16 2013-12-25 广东华鳌合金新材料有限公司 Duplex stainless steel master alloy and preparation method thereof
CN103757555A (en) * 2014-01-02 2014-04-30 上海大学 Economical double-phase stainless steel with excellent sheet breakage elongation
KR101514601B1 (en) * 2014-05-07 2015-04-23 주식회사 포스코 Lean duplex stainless steel excellent in corrosion resistance and hot workability
CN107075639A (en) * 2014-10-24 2017-08-18 新日铁住金株式会社 Two phase stainless steel and its manufacture method
US9975170B2 (en) 2014-12-11 2018-05-22 Posco Method for manufacturing duplex stainless steel sheet having high nitrogen content and good surface quality
US20190292619A1 (en) * 2016-06-01 2019-09-26 Nippon Steel & Sumitomo Metal Corporation Duplex Stainless Steel and Method of Manufacturing Duplex Stainless Steel
US11066719B2 (en) * 2016-06-01 2021-07-20 Nippon Steel Corporation Duplex stainless steel and method of manufacturing duplex stainless steel
JP2018059207A (en) * 2016-10-06 2018-04-12 新日鐵住金ステンレス株式会社 Two-phase stainless steel excellent in corrosion resistance of shear processing surface, two-phase stainless steel sheet and two-phase stainless linear steel material
CN114346142A (en) * 2022-01-18 2022-04-15 山西太钢不锈钢股份有限公司 Forging method for improving low-temperature impact toughness of S32750 super duplex stainless steel round steel
CN114346142B (en) * 2022-01-18 2023-07-14 山西太钢不锈钢股份有限公司 Forging method for improving low-temperature impact toughness of S32750 super duplex stainless steel round steel
CN115029616A (en) * 2022-08-11 2022-09-09 垣曲县晋锋机械铸造有限公司 Heat-resistant, wear-resistant and corrosion-resistant iron casting

Also Published As

Publication number Publication date
JP5511208B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5511208B2 (en) Alloy-saving duplex stainless steel material with good corrosion resistance and its manufacturing method
JP5366609B2 (en) Alloy-saving duplex stainless steel material with good corrosion resistance and its manufacturing method
JP6437062B2 (en) Duplex stainless steel and clad steel for clad steel
JP5072285B2 (en) Duplex stainless steel
JP6966006B2 (en) Martensitic stainless steel
JP5337473B2 (en) Ferritic / austenitic stainless steel sheet with excellent ridging resistance and workability and method for producing the same
JP5288980B2 (en) Duplex stainless steel with excellent impact toughness and its manufacturing method
EP2770076B1 (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
KR102349888B1 (en) Two-phase stainless steel and its manufacturing method
JP5156293B2 (en) Ferritic / austenitic stainless steel with excellent corrosion resistance and workability and manufacturing method thereof
WO2017138050A1 (en) High strength stainless steel seamless pipe for oil well and manufacturing method therefor
US20190284666A1 (en) NiCrFe Alloy
JP5406233B2 (en) Clad steel plate made of duplex stainless steel and method for producing the same
JP2006233308A (en) Austenitic-ferritic stainless steel having excellent grain boundary corrosion resistance
JPWO2018105510A1 (en) High Mn steel sheet and method for producing the same
WO2014148540A1 (en) Clad steel plate having as mating material duplex stainless steel having good linear heating performance, and method for manufacturing same
JP6018364B2 (en) Duplex stainless steel for chemical tankers with excellent linear heatability
WO2012176802A1 (en) Method for producing austenitic stainless steel and austenitic stainless steel material
US11578394B2 (en) Nickel-containing steel for low temperature
WO2010110003A1 (en) Austenitic stainless steel
JP5018863B2 (en) Duplex stainless steel with excellent alkali resistance
KR101539520B1 (en) Duplex stainless steel sheet
WO2018146783A1 (en) Austenitic heat-resistant alloy and method for producing same
JP5329632B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
KR20180125566A (en) Ni-Fe-Cr alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140325

R150 Certificate of patent or registration of utility model

Ref document number: 5511208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250