JP2010222566A - Resin molded product and method for producing the same - Google Patents

Resin molded product and method for producing the same Download PDF

Info

Publication number
JP2010222566A
JP2010222566A JP2010030921A JP2010030921A JP2010222566A JP 2010222566 A JP2010222566 A JP 2010222566A JP 2010030921 A JP2010030921 A JP 2010030921A JP 2010030921 A JP2010030921 A JP 2010030921A JP 2010222566 A JP2010222566 A JP 2010222566A
Authority
JP
Japan
Prior art keywords
bubbles
mpa
resin
less
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010030921A
Other languages
Japanese (ja)
Inventor
Ryuichiro Hiranabe
隆一郎 平鍋
Hirokado Nakamura
博門 仲村
Masahiro Kimura
将弘 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010030921A priority Critical patent/JP2010222566A/en
Publication of JP2010222566A publication Critical patent/JP2010222566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine foam resin molded product, thereby obtaining a molded product containing a plurality of fine foam inside, and especially to provide a foamable composition excellent in extrusion moldability and injection moldability. <P>SOLUTION: The molded product obtained from a thermoplastic resin has a minor axis of 30 μm or more and contains foam of 1,000 pieces/mm<SP>2</SP>or more. Also, the foam having a foam diameter of less than 0.5 μm is 30% or more of the total foam number. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内部に複数の微細気泡を含有した成形体に関するものである。   The present invention relates to a molded body containing a plurality of fine bubbles inside.

従来、発泡体は、住宅などの断熱材として用いられており、近年高まる省エネルギー意識の中で、冷暖房エネルギーを削減するという非常に重要な役割を担うものである。このような断熱材は一般に、発泡体内部のごく小容積に低熱伝導率の気体を内包することで優れた断熱性能を発現するものである。また、比重が小さいため、発泡体の欠点である機械強度の低下を抑制することができれば、自動車用部材といった軽量化が要求される分野において、有用なものとなる。光学用途としても、微細な発泡体は光を反射するため、液晶表示装置や照明器具などのバックライトに用いられ、さらに微細な発泡体は光を透過するため、透明性を必要とする部材への展開が期待される。   Conventionally, the foam has been used as a heat insulating material for houses and the like, and plays an extremely important role of reducing air conditioning energy in the energy saving consciousness that has been increasing in recent years. Such a heat insulating material generally expresses excellent heat insulating performance by enclosing a gas having low thermal conductivity in a very small volume inside the foam. In addition, since the specific gravity is small, if the reduction in mechanical strength, which is a defect of the foam, can be suppressed, it will be useful in fields that require weight reduction, such as automobile members. For optical applications, fine foams reflect light, so they are used in backlights for liquid crystal display devices and lighting fixtures, etc., and fine foams transmit light, so they need to be transparent. Is expected.

機械強度の高い発泡体として、マサチューセッツ工科大学のN.P.Suhらにより提案されたマイクロセルラープラスチック(以下MCPと略することがある)が知られている。MCPとは平均気泡径が0.1〜10μm、気泡密度が109〜1015個/cm3の独立気泡を有する発泡体のことであり、従来の発泡体以上の機械強度を持つとされている。しかしながら、この方法においても安定して製造できる平均気泡径の最小値は1μm程度が限界であり、機械強度も十分なものではないため、さらなる気泡の微細化が求められている。 As a foam having high mechanical strength, a microcellular plastic (hereinafter sometimes abbreviated as MCP) proposed by NP Suh et al. Of Massachusetts Institute of Technology is known. MCP is a foam having closed cells with an average cell diameter of 0.1 to 10 μm and a cell density of 10 9 to 10 15 / cm 3 , and is said to have mechanical strength higher than that of conventional foams. Yes. However, the minimum value of the average bubble diameter that can be stably produced in this method is limited to about 1 μm, and the mechanical strength is not sufficient. Therefore, further bubble miniaturization is required.

ここで発泡体の主な製造方法を簡単に説明する。発泡する方法としては高分子材料中に発泡剤を混入する方法が主流であり、分解反応を利用した化学発泡による方法と、ガスを発泡剤として溶融した樹脂中に混入する物理発泡剤による方法に分かれている。   Here, the main manufacturing method of a foam is demonstrated easily. As a foaming method, a method in which a foaming agent is mixed in a polymer material is the mainstream, and a method by chemical foaming using a decomposition reaction and a method by a physical foaming agent mixed in a resin melted with gas as a foaming agent. I know.

化学発泡による方法で用いられる分解反応としては、光分解、加水分解、熱分解、酸またはアルカリによる分解、紫外線照射による分解、微生物などによる生分解が挙げられ、分解対象樹脂によって、種々の方法を用いることができる。例えば、分解対象樹脂がポリメチルメタクリレートであれば、樹脂発泡体に紫外線を照射することで分解することができ、ポリ乳酸であれば、加水分解、生分解などで分解することができる。   Examples of the decomposition reaction used in the chemical foaming method include photolysis, hydrolysis, thermal decomposition, decomposition by acid or alkali, decomposition by ultraviolet irradiation, biodegradation by microorganisms, etc. Can be used. For example, if the resin to be decomposed is polymethyl methacrylate, it can be decomposed by irradiating the resin foam with ultraviolet rays, and if it is polylactic acid, it can be decomposed by hydrolysis, biodegradation or the like.

化学発泡による方法として、ポリエチレンテレフタレートシート上に、熱硬化性樹脂をコーティングした後、活性エネルギー線を照射することによって酸または塩基を発生させ、熱効果樹脂を分解することによって微細な気泡を発生させる方法が開示されている(特許文献1)。   As a method by chemical foaming, after coating a thermosetting resin on a polyethylene terephthalate sheet, acid or base is generated by irradiating active energy rays, and fine bubbles are generated by decomposing the thermal effect resin. A method is disclosed (Patent Document 1).

一方、物理発泡による方法では、物理発泡剤を圧力や温度を制御して高分子材料中に含浸した後、常温・常圧状態に開放させることによって、液相物質が急激に気相化し、膨張して発泡体を得ることができる。化学発泡よりも環境に低負荷である点も特徴である。   On the other hand, in the method using physical foaming, the liquid phase substance rapidly vaporizes and expands by impregnating the physical foaming agent into the polymer material by controlling the pressure and temperature and then releasing it to normal temperature and normal pressure. Thus, a foam can be obtained. It is also characterized by a lower environmental impact than chemical foaming.

物理発泡による方法としては、2時間以上の熱処理を施すことで結晶化させ、発泡剤の含有領域を限定したポリ乳酸に100℃・30MPaの高温・高圧で発泡剤を含浸させ、次いで5MPa/sec以上の急激な速度で発泡剤の放圧をすることで平均気泡径の小さな発泡体を得る方法が提示されている(特許文献2)。   As a method by physical foaming, crystallization is performed by heat treatment for 2 hours or more, polylactic acid with a limited foaming agent content region is impregnated with a foaming agent at a high temperature and high pressure of 100 ° C./30 MPa, and then 5 MPa / sec. There has been proposed a method of obtaining a foam having a small average cell diameter by releasing the foaming agent at such a rapid rate (Patent Document 2).

また、物理発泡を用いて気泡の微細化とは違った方法で透明な発泡体を得る方法が提示されている。それは、厚み方向の発泡セルを1〜4個とする方法であり、軽量、かつ、透明性に優れるとしている(特許文献3)。   In addition, a method for obtaining a transparent foam by a method different from the refinement of bubbles using physical foaming has been proposed. It is a method of forming 1 to 4 foam cells in the thickness direction, and is lightweight and excellent in transparency (Patent Document 3).

特開2004−66638号公報JP 2004-66638 A 特開2007−46019号公報JP 2007-46019 A 特開2008−56863号公報JP 2008-56863 A

活性エネルギーによって発生する酸または塩基によって、微細な気泡を形成する方法は、微小な泡状の気泡が形成出来るものの、発泡層の厚みが10μm程度までしか厚く出来ないため、用途が限られたものであり、断熱性、軽量性に関しても十分なものではなかった。   The method of forming fine bubbles by the acid or base generated by the active energy is capable of forming fine bubble-like bubbles, but the thickness of the foamed layer can only be increased to about 10 μm, so the use is limited However, the thermal insulation and lightness were not sufficient.

また結晶化させて発泡剤を含浸させる方法は、結晶化させることによって平均気泡径は0.5μm未満になるものの、気泡ごとの大きさは不均一であり、また、気泡の形状も結晶の方向に沿って楕円状であることから、長径が0.5μmを大きく超える気泡が多数存在するものであった。そのため、長径の大きな気泡に起因する機械強度が特に結晶の方向に沿って大きく低下してしまう問題があった。また、長径が0.5μm以上である気泡が不均一に多数存在することで色むらが発生する問題もあった。   In addition, the method of crystallizing and impregnating the foaming agent causes the average bubble diameter to be less than 0.5 μm by crystallization, but the size of each bubble is not uniform, and the shape of the bubble is also the direction of the crystal Therefore, there were many bubbles whose major axis greatly exceeded 0.5 μm. For this reason, there is a problem that the mechanical strength due to the bubbles having a large major diameter is greatly reduced particularly along the crystal direction. In addition, there is a problem that uneven color occurs due to a large number of air bubbles having a major axis of 0.5 μm or more in a non-uniform manner.

また、厚み方向の気泡数を4個以下とする方法に関しても、気泡が少なすぎるために、断熱性、軽量性が十分に得られなかった。   In addition, regarding the method of setting the number of bubbles in the thickness direction to 4 or less, heat insulation and light weight were not sufficiently obtained because there were too few bubbles.

本発明は、内部に独立した複数の微細気泡を形成させた成形体に関するもので、特に押出成形性、射出成形性に優れる微細気泡を有する成形体に関するものである。本発明において、微細気泡を有する成形体とは、気泡の長径0.5μm未満、さらには0.1μm未満の気泡を含有する成形体をさす。本発明の微細気泡を含有する成形体は、断熱性、低誘電率性、透明性、白色性、不透明性、光散乱性、光反射性、隠蔽性、波長選択的反射および透過性、軽量性、浮揚性、遮音性、吸音性、緩衝性、クッション性、吸収性、吸着性、貯蔵性、透過性、濾過性などの特性を自在に制御できる素材である。   The present invention relates to a molded body in which a plurality of independent fine bubbles are formed, and particularly relates to a molded body having fine bubbles excellent in extrusion moldability and injection moldability. In the present invention, the molded body having fine bubbles refers to a molded body containing bubbles having a major axis of less than 0.5 μm and further less than 0.1 μm. The molded article containing fine bubbles of the present invention has a heat insulating property, a low dielectric constant, a transparency, a whiteness, an opacity, a light scattering property, a light reflecting property, a concealing property, a wavelength selective reflection and transparency, and a light weight. It is a material that can freely control characteristics such as buoyancy, sound insulation, sound absorption, buffering, cushioning, absorption, adsorption, storage, permeability, and filterability.

(1) 熱可塑性樹脂を主として含む、短径が30μm以上の成形体であり、1000個/mm以上の気泡を含有し、かつ、気泡径0.5μm未満の気泡数が気泡数全体の30%以上である、成形体。
(2) 光線透過率が50%以上である前記(1)に記載の成形体。
(3) 前記熱可塑性樹脂が、メタクリル酸系樹脂および/又はポリ乳酸系樹脂である前記(1)または(2)に記載の成形体。
(4) 熱可塑性樹脂を主として含む、短径が30μm以上の成形体の製造方法であって、熱可塑性樹脂と発泡剤の混合物を、Tg−5度以上Tm−20度以下(Tgとは、熱可塑性樹脂のガラス転移温度を意味する。Tmとは、熱可塑性樹脂の融点を意味する。)、3MPa以上70MPa以下にする工程1、Tg−5度より低い温度まで冷却する工程2、大気圧まで放圧する工程3、を有する成形体の製造方法。
(5) 前記工程3において放圧するに際し、放圧速度が0.001MPa/sec以上5MPa/sec未満であることを特徴とする前記(4)に記載の成形体の製造方法。
(6) 前記工程1から工程3の放圧までの間において、発泡剤が超臨界状態であることを特徴とする前記(4)又は(5)に記載の成形体の製造方法。
(1) A molded body mainly containing a thermoplastic resin and having a short diameter of 30 μm or more, containing 1000 / mm 2 or more bubbles, and the number of bubbles having a bubble diameter of less than 0.5 μm is 30 of the total number of bubbles. % Of molded product.
(2) The molded article according to (1), wherein the light transmittance is 50% or more.
(3) The molded product according to (1) or (2), wherein the thermoplastic resin is a methacrylic acid resin and / or a polylactic acid resin.
(4) A method for producing a molded article mainly containing a thermoplastic resin and having a minor axis of 30 μm or more, wherein a mixture of a thermoplastic resin and a foaming agent is Tg−5 degrees or more and Tm−20 degrees or less (Tg is (Tm means the melting point of the thermoplastic resin.) Step 1 to 3 MPa or more and 70 MPa or less, Step 2 to cool to a temperature lower than Tg-5 degrees, atmospheric pressure The manufacturing method of the molded object which has process 3 which releases pressure to.
(5) The method for producing a molded article according to (4), wherein the pressure release rate is 0.001 MPa / sec or more and less than 5 MPa / sec when releasing the pressure in the step 3.
(6) The method for producing a molded article according to (4) or (5), wherein the foaming agent is in a supercritical state between the step 1 and the pressure release in the step 3.

本発明は、かかる従来技術の問題点を解決し、材料を削減でき、軽量化が可能であり、透明性もしくは反射性などの光学特性を付与可能な微細気泡を有する成形体、および該成形体の製造方法を提供することができる。   The present invention solves the problems of the prior art, can reduce the material, can be reduced in weight, and has a fine bubble capable of imparting optical properties such as transparency or reflectivity, and the molded body The manufacturing method of can be provided.

本発明は、熱可塑性樹脂を主として含む、短径が30μm以上の成形体であり、1000個/mm以上の気泡を含有し、かつ、気泡径0.5μm未満の気泡数が気泡数全体の30%以上である、成形体である。つまり本発明の成形体は、微細な気泡を特定の割合で含有していることに特徴がある。 The present invention is a molded article mainly containing a thermoplastic resin and having a short diameter of 30 μm or more, contains 1000 / mm 2 or more bubbles, and the number of bubbles having a bubble diameter of less than 0.5 μm is the total number of bubbles. The molded body is 30% or more. That is, the molded product of the present invention is characterized by containing fine bubbles at a specific ratio.

微細な気泡のサイズは、小さければ小さいほど好ましいが、具体的には気泡径(以下、気泡の長径と略することがある)が0.5μm未満であることが重要である。気泡径は、好ましくは0.3μm未満、より好ましくは0.1μm未満、さらに好ましくは0.05μm未満である。気泡径が0.5μm以上の場合、機械物性が低下する可能性があるため好ましくない。また気泡径(気泡の長径)の下限に特に制限はないが、技術的に0.001μm未満とすることは困難であることから、下限は0.001μm程度と思われ、また下限として0.001μm程度あれば、断熱性や軽量化といった効果の点からも十分である。なお下限としては0.005μm以上であることが好ましく、0.01μm以上であることがより好ましく、0.02μm以上であることがさらに好ましい。なお、長径(気泡径)が0.5μm未満の気泡を、以下微細気泡とする。   The size of the fine bubbles is preferably as small as possible, but specifically, it is important that the bubble diameter (hereinafter sometimes abbreviated as the long diameter of the bubbles) is less than 0.5 μm. The bubble diameter is preferably less than 0.3 μm, more preferably less than 0.1 μm, and even more preferably less than 0.05 μm. When the bubble diameter is 0.5 μm or more, the mechanical properties may be lowered, which is not preferable. The lower limit of the bubble diameter (the longer diameter of the bubbles) is not particularly limited, but technically it is difficult to make it less than 0.001 μm, so the lower limit seems to be about 0.001 μm, and the lower limit is 0.001 μm. If it is enough, it is sufficient also from the point of the effect, such as heat insulation and weight reduction. The lower limit is preferably 0.005 μm or more, more preferably 0.01 μm or more, and further preferably 0.02 μm or more. Hereinafter, bubbles having a major axis (bubble diameter) of less than 0.5 μm are referred to as fine bubbles.

また、微細気泡の含有率は高ければ高いほど好ましいが、具体的には微細気泡(気泡径0.5μm未満の気泡)の数が、気泡数全体100%に対して30%以上であることが重要である。気泡数全体100%における、気泡径0.5μm未満の気泡の数(微細気泡の含有率)は、好ましくは50%以上100%以下、より好ましくは70%以上100%以下、さらに好ましくは90%以上100%以下である。微細気泡(気泡径0.5μm未満の気泡)の数が、気泡数全体100%に対して30%未満の場合、成形体の機械物性が低下する場合がある。   Further, the higher the content of fine bubbles, the better. However, specifically, the number of fine bubbles (bubbles having a bubble diameter of less than 0.5 μm) is 30% or more with respect to 100% of the total number of bubbles. is important. The number of bubbles having a bubble diameter of less than 0.5 μm in 100% of the total number of bubbles (content of fine bubbles) is preferably 50% to 100%, more preferably 70% to 100%, and still more preferably 90%. It is 100% or less. When the number of fine bubbles (bubbles having a bubble diameter of less than 0.5 μm) is less than 30% with respect to the total number of bubbles of 100%, the mechanical properties of the molded article may be deteriorated.

本発明の成形体において、微細気泡(気泡径0.5μm未満の気泡)の数を、気泡数全体100%に対して30%以上とするためには、後述する樹脂に発泡剤を特定の圧力・温度で含浸させ、さらに温度を変化させた後、含浸圧力を開放させる工程を含んだ製造方法や、気泡増核剤を含有させる方法、気泡増核剤の粒径を最適化する方法などを挙げることができる。   In the molded product of the present invention, in order to make the number of fine bubbles (bubbles having a bubble diameter less than 0.5 μm) 30% or more with respect to the total number of bubbles of 100%, a foaming agent is added to the resin described later with a specific pressure.・ Manufacturing method including the step of impregnating at temperature and changing the temperature and then releasing the impregnation pressure, the method of containing bubble nucleating agent, the method of optimizing the particle size of bubble nucleating agent, etc. Can be mentioned.

気泡径のサイズ(微細気泡のサイズ)と微細気泡の数(含有率)は、上述のように微細気泡が気泡径0.5μm未満の気泡であり、その微細気泡の数が気泡数全体100%に対して30%以上であれば、用途によって微細気泡のサイズや微細気泡の含有率を適宜選択することが可能である。例えば透明性が必要な用途に使用するのであれば、気泡径0.5μm未満の気泡の数が、気泡数全体100%の70%以上100%以下であることが好ましい。一方、不透明性、とりわけ反射性などが必要な用途に用いるのであれば、気泡径0.5μm未満の気泡の数が、気泡数全体100%の30%以上50%未満であり、同時に気泡径0.5μm以上3μm未満の気泡の数が、気泡数全体100%の50%以上70%であることが好ましい。   As described above, the size of the bubble diameter (size of the fine bubbles) and the number of fine bubbles (content ratio) are fine bubbles having a bubble diameter of less than 0.5 μm, and the number of fine bubbles is 100% of the total number of bubbles. If it is 30% or more, the size of fine bubbles and the content of fine bubbles can be appropriately selected depending on the application. For example, when used for applications requiring transparency, the number of bubbles having a bubble diameter of less than 0.5 μm is preferably 70% or more and 100% or less of 100% of the total number of bubbles. On the other hand, if it is used for applications that require opacity, especially reflectivity, the number of bubbles having a bubble diameter of less than 0.5 μm is 30% to less than 50% of the total number of bubbles of 100%, and the bubble diameter is 0 at the same time. It is preferable that the number of bubbles of 5 μm or more and less than 3 μm is 50% or more and 70% of the total number of bubbles of 100%.

特に、高い透明性を必要とする場合、気泡径0.001μm以上0.1μm未満の気泡の数が、気泡数全体100%に対して90%以上100%以下であることが好ましい。より好ましくは、95%以上100%以下である。このような微細気泡の数(含有率)とすることにより可視光線の散乱を少なくし、高い光線透過率を得ることができる。このような特に優れた光線透過率の成形体とするための方法は、後述する好適な製造方法(熱可塑性樹脂と発泡剤の混合物を、温度Tg−5度以上Tm−20度以下、圧力3MPa以上70MPa以下の高温・高圧状態にする工程1、Tg−5度より低い温度まで冷却する工程2、冷却した状態で、大気圧にまで放圧する工程3)において、発泡剤として窒素を使用し、前記工程1から工程3の放圧までの間、発泡剤を超臨界状態として、さらに工程3の大気圧までの放圧速度を0.001MPa/sec以上5MPa/sec未満とする方法を挙げることができる。   In particular, when high transparency is required, the number of bubbles having a bubble diameter of 0.001 μm or more and less than 0.1 μm is preferably 90% or more and 100% or less with respect to 100% of the total number of bubbles. More preferably, it is 95% or more and 100% or less. By setting the number (content ratio) of such fine bubbles, scattering of visible light can be reduced and high light transmittance can be obtained. A method for producing such a molded article having particularly excellent light transmittance is a suitable production method described later (a mixture of a thermoplastic resin and a foaming agent is used at a temperature of Tg−5 degrees to Tm−20 degrees and a pressure of 3 MPa. In the step 1 of making the high temperature / high pressure state of 70 MPa or less, the step 2 of cooling to a temperature lower than Tg-5 degrees, the step 3) of releasing the pressure to the atmospheric pressure in the cooled state, nitrogen is used as a blowing agent, Examples include a method in which the foaming agent is in a supercritical state from step 1 to step 3 and the pressure release rate to atmospheric pressure in step 3 is 0.001 MPa / sec or more and less than 5 MPa / sec. it can.

なお、ここでいう気泡径(気泡の長径)とは、走査型電子顕微鏡(SEM)を用いて試料断面を観察した画像中の気泡の長さにおいて、最も長い部分の長さのことを言う。   Here, the bubble diameter (bubble long diameter) refers to the length of the longest portion of the bubbles in the image obtained by observing the cross section of the sample using a scanning electron microscope (SEM).

本発明の成形体は大気泡が少ないことが好ましい。ここでいう大気泡とは、気泡径(気泡の長径)が5μm以上のものをいう。大気泡が多数含まれていると、成形体の機械物性が低下する場合がある。また、気泡数全体100%に対する大気泡の数(大気泡の含有率)は、好ましくは0%以上50%以下であり、より好ましくは0%以上20%以下であり、さらに好ましくは0%以上5%以下である。気泡数全体100%に対する大気泡の数が50%を超える場合には、成形体の機械強度が劣る場合があるために好ましくない。   The molded body of the present invention preferably has few large bubbles. The large bubble here means a bubble having a bubble diameter (bubble long diameter) of 5 μm or more. If a large number of large bubbles are contained, the mechanical properties of the molded product may be deteriorated. In addition, the number of large bubbles (content ratio of large bubbles) with respect to 100% of the total number of bubbles is preferably 0% or more and 50% or less, more preferably 0% or more and 20% or less, and further preferably 0% or more. 5% or less. When the number of large bubbles with respect to 100% of the total number of bubbles exceeds 50%, the mechanical strength of the molded article may be inferior.

本発明の成形体は独立気泡率が高いほど好ましい。具体的には、独立気泡率は80%以上であることが好ましく、より好ましくは90%以上、さらに好ましくは95%以上である。独立気泡率が80%に満たない場合、機械物性が低下する場合がある。尚、成形体内部の気泡の独立気泡率は、ASTM−D2856(1998)に準拠して測定した値のことである。   The molded body of the present invention is preferably as the closed cell ratio is higher. Specifically, the closed cell ratio is preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more. When the closed cell ratio is less than 80%, the mechanical properties may be deteriorated. In addition, the closed cell ratio of the bubble inside a molded object is the value measured based on ASTM-D2856 (1998).

本発明の成形体は、1000個/mm以上の密度で気泡(ここでいう気泡とは、前述の微細気泡や大気泡などの全ての気泡を含む)を含有していることが重要である。また、5000個/mm以上1000000個/mm未満であることが好ましく、より好ましくは10000個/mm以上500000個/mm未満であり、さらに好ましくは50000個/mm以上100000個/mm未満である。気泡径にもよるが、気泡の密度が1000個/mm未満の場合、断熱性、軽量化といった気泡を含有することによる効果が十分に得られない場合がある。一方で気泡の密度が高すぎる場合、具体的には1000000個/mm以上の場合には、成形体の機械強度が低下する場合がある。本発明の成形体は、含有される気泡を前述のように微細(気泡径0.5μm未満)にした上で、気泡の数を増やすことによって、初めて達成できる。 It is important that the molded body of the present invention contains air bubbles at a density of 1000 / mm 2 or more (herein, the air bubbles include all the air bubbles such as the aforementioned fine air bubbles and large air bubbles). . Further, it is preferably 5000 / mm 2 or more and less than 1000000 / mm 2 , more preferably 10,000 / mm 2 or more and less than 500000 / mm 2 , and further preferably 50000 / mm 2 or more and 100,000 / less than mm 2 . Although depending on the bubble diameter, if the density of the bubbles is less than 1000 / mm 2 , the effects of including bubbles such as heat insulation and weight reduction may not be sufficiently obtained. On the other hand, when the density of the bubbles is too high, specifically when it is 1000000 / mm 2 or more, the mechanical strength of the molded product may be lowered. The molded body of the present invention can be achieved for the first time by increasing the number of bubbles after making the contained bubbles fine (bubble diameter less than 0.5 μm) as described above.

本発明の成形体において、成形体中の気泡数を1000個/mm以上の密度とするためには、後述する樹脂に発泡剤を特定の圧力・温度で含浸させ、さらに温度を変化させた後、含浸圧力を開放させる工程を含んだ製造方法や、気泡増核剤を含有させる方法、気泡増核剤の粒径を最適化する方法などを挙げることができる。 In the molded body of the present invention, in order to 1000 / mm 2 or more densities number of bubbles in the molded body, a foaming agent to the resin to be described later is impregnated at a specific pressure and temperature, it was further changing the temperature Thereafter, a production method including a step of releasing the impregnation pressure, a method of containing a bubble nucleating agent, a method of optimizing the particle size of the bubble nucleating agent, and the like can be mentioned.

本発明の成形体は、その短径が30μm以上であることが重要である。短径が30μm未満である場合、気泡を含有することによる軽量化や断熱性向上といった効果が十分に得られなくなるからである。また、成形体の短径はその用途に応じて適宜設定可能であるため、特に上限はないが、成形体の短径が10cm以上である場合には、製造する際に発泡剤を十分含浸するのに時間がかかり生産性が悪化する場合がある。そのため成形体の短径は10cm未満であることが好ましい。なおここでいう短径とは、成形体を構成する3次元の長さで最も短い部分のことを言う。例えば、成形体がシートであれば、成形体の短径とはシートの厚みを意味するものとする。   It is important that the molded product of the present invention has a minor axis of 30 μm or more. This is because if the minor axis is less than 30 μm, the effects of weight reduction and heat insulation improvement due to the inclusion of bubbles cannot be obtained sufficiently. In addition, since the minor axis of the molded body can be appropriately set according to the application, there is no particular upper limit. However, when the minor axis of the molded body is 10 cm or more, the foaming agent is sufficiently impregnated during production. It may take a long time to deteriorate productivity. Therefore, the minor axis of the molded body is preferably less than 10 cm. In addition, a short axis here means the shortest part in the three-dimensional length which comprises a molded object. For example, if the formed body is a sheet, the minor axis of the formed body means the thickness of the sheet.

また成形体がウインドウフィルムなどの透明性、半透明性が必要な部材として使用される場合には、成形体の短径は50μm以上5mm以下であることが好ましく、より好ましくは100μm以上1mm以下である。成形体が5mmより厚い場合には、透明性を十分得られない場合がある。   When the molded body is used as a member requiring transparency and translucency such as a window film, the minor axis of the molded body is preferably 50 μm to 5 mm, more preferably 100 μm to 1 mm. is there. When the molded body is thicker than 5 mm, transparency may not be sufficiently obtained.

一方、成形体が自動車用部材や建材などの用途で使用される場合には、成形体の短径は100μm以上10cm以下であることが好ましく、より好ましくは300μm以上3cm以下である。   On the other hand, when the molded body is used in applications such as automobile members and building materials, the minor axis of the molded body is preferably 100 μm or more and 10 cm or less, more preferably 300 μm or more and 3 cm or less.

本発明の成形体は、上述のようにウインドウフィルムなどの透明性を必要とする用途に使用することも可能である。該用途に使用する場合、その好ましい光線透過率は50%以上であり、より好ましくは70%以上98%未満、さらに好ましくは80%以上95%未満である。   The molded body of the present invention can also be used for applications requiring transparency such as window films as described above. When used in the application, the preferable light transmittance is 50% or more, more preferably 70% or more and less than 98%, and still more preferably 80% or more and less than 95%.

光線透過率を50%以上にする方法としては、樹脂を最適化する方法(好ましい例としてはポリ乳酸など)、気泡増核剤を最適化する方法(好ましい例としてはエチレンビスラウリン酸アミド)、粒径の小さな気泡増核剤を使用すること(好ましい例としては数平均粒径が0.001μm以上10μm未満)などが挙げられる。   As a method of making the light transmittance 50% or more, a method of optimizing the resin (preferred example is polylactic acid), a method of optimizing the bubble nucleating agent (preferably example is ethylene bislauric acid amide), Use of a cell nucleating agent having a small particle size (a preferred example is a number average particle size of 0.001 μm or more and less than 10 μm).

本発明の成形体を製造する際に使用される発泡剤としては、二酸化炭素、窒素、空気などの無機ガス、およびエタン、ブタン、プロパン、ペンタン、ヘキサン、ヘプタンなどの炭化水素類、塩化メチル、モノクロルトリフルオロメタン、ジクロルフルオロメタン、ジクロルテトラフルオロメタンなどのハロゲン化炭化水素などの揮発性発泡剤が挙げられる。これらの揮発性発泡剤は、単独で用いても良いし、2種類上を組み合わせて用いても良い。これらの中でも、二酸化炭素と窒素が安全性、環境負荷(特に地球温暖化)の面から最も好ましい。また二酸化炭素や窒素を超臨界状態として用いることは、質量平均分子量が100万以上の高分子量ポリマ(熱可塑性樹脂)を使用した場合でも、これを均一に溶解し、相溶性も向上するので、発泡成形性が良好となる点で好ましい製造方法である。   Examples of the blowing agent used in producing the molded article of the present invention include inorganic gases such as carbon dioxide, nitrogen and air, and hydrocarbons such as ethane, butane, propane, pentane, hexane and heptane, methyl chloride, Examples thereof include volatile blowing agents such as halogenated hydrocarbons such as monochlorotrifluoromethane, dichlorofluoromethane, and dichlorotetrafluoromethane. These volatile foaming agents may be used alone or in combination of two types. Among these, carbon dioxide and nitrogen are most preferable from the viewpoints of safety and environmental burden (particularly global warming). In addition, using carbon dioxide or nitrogen as a supercritical state means that even when a high molecular weight polymer (thermoplastic resin) having a mass average molecular weight of 1,000,000 or more is used, it is uniformly dissolved and compatibility is improved. This is a preferable production method from the viewpoint of good foam moldability.

本発明の成形体を製造する際は、気泡増核剤を樹脂に添加して分散させることが好ましい。気泡増核剤を含有させることで、気泡数が増え、それにより1000個/mm以上の密度で気泡を含有した成形体とすることができる。また気泡増核剤を樹脂に添加して分散させる製造方法によれば、気泡径が大きくなることを抑制することができ、それにより気泡径0.5μm未満の気泡の数を、成形体の気泡数全体100%において30%以上とすることができる。 When producing the molded article of the present invention, it is preferable to add and disperse the cell nucleating agent in the resin. By containing a bubble nucleating agent, the number of bubbles increases, and thereby a molded body containing bubbles at a density of 1000 / mm 2 or more can be obtained. Further, according to the production method in which the cell nucleating agent is added to the resin and dispersed, it is possible to suppress the increase in the bubble diameter, thereby reducing the number of bubbles having a bubble diameter of less than 0.5 μm. It can be 30% or more in the whole number 100%.

気泡増核剤としては、亜リン酸、ホスホン酸などのリン化合物、カーボンブラックやグラファイトなどの炭素系微粒子、層状珪酸塩、酸化マグネシウム、酸化チタン等の金属酸化物、タルク、シリカ、アルミナ、カオリン、石膏等の無機質微粒子、ラウリン酸アミド、パルミチン酸アミド、オレイン酸アミド、ステアリン酸アミドなどの脂肪族カルボン酸アミド、酢酸ナトリウム、ステアリン酸バリウム、オレイン酸カルシウムなどの脂肪族カルボン酸塩、ペンタデシルアルコール、ステアリルアルコール、1,6−ヘキサンジオールなどの脂肪族アルコール、エチレングリコールジステアレート、ラウリン酸セチルエステル、モノパルミチン酸グリセリンエステルなどの脂肪族カルボン酸エステル、ソルビトール系化合物が挙げられる。本発明で特に好適に用いられる、少量の添加によって多量の微細気泡を発生させることができる気泡増核剤としては、金属酸化物としては酸化チタンや酸化マグネシウム、無機粒子としてはタルクやシリカ、脂肪族カルボン酸アミドとしてはラウリン酸アミドやステアリン酸アミドを挙げることができる。   Examples of the bubble nucleating agent include phosphorous compounds such as phosphorous acid and phosphonic acid, carbon-based fine particles such as carbon black and graphite, metal oxides such as layered silicate, magnesium oxide, and titanium oxide, talc, silica, alumina, and kaolin. , Inorganic fine particles such as gypsum, aliphatic carboxylic acid amides such as lauric acid amide, palmitic acid amide, oleic acid amide, stearic acid amide, aliphatic carboxylate such as sodium acetate, barium stearate, calcium oleate, pentadecyl Examples thereof include aliphatic alcohols such as alcohol, stearyl alcohol and 1,6-hexanediol, aliphatic carboxylic acid esters such as ethylene glycol distearate, lauric acid cetyl ester and monopalmitic acid glycerin ester, and sorbitol compounds. Particularly suitable for use in the present invention, as a bubble nucleating agent that can generate a large amount of fine bubbles by addition of a small amount, titanium oxide or magnesium oxide as a metal oxide, talc or silica as an inorganic particle, fat Examples of the group carboxylic acid amide include lauric acid amide and stearic acid amide.

本発明の成形体に用いられる気泡増核剤の数平均粒径(1次粒径)は、0.001μm以上10μm未満が好ましく、より好ましくは0.005μm以上2μm以下であり、さらに好ましくは0.02μm以上1μm以下である。気泡増核剤の数平均粒径が、0.001μm未満であると、比表面積が大きくなるため、凝集による粗大異物の発生や高い表面活性によるポリマーの分解の恐れがあるので好ましくない。気泡増核剤の数平均粒径が10μm以上であると、破泡が生じるために、成形体中に微細な気泡の数が少なくなり、欠点も多くなるので好ましくない。   The number average particle size (primary particle size) of the cell nucleating agent used in the molded article of the present invention is preferably 0.001 μm or more and less than 10 μm, more preferably 0.005 μm or more and 2 μm or less, and still more preferably 0. 0.02 μm or more and 1 μm or less. If the number average particle diameter of the cell nucleating agent is less than 0.001 μm, the specific surface area becomes large, which may cause generation of coarse foreign matters due to aggregation and decomposition of the polymer due to high surface activity. When the number average particle diameter of the cell nucleating agent is 10 μm or more, bubble breakage occurs, which is not preferable because the number of fine bubbles in the molded body is reduced and defects are increased.

本発明の成形体中の気泡増核剤の含有量は、成形体中の熱可塑性樹脂の全成分100質量部に対して0.01質量部以上10質量部未満であることが好ましく、より好ましくは0.1質量部以上5質量部未満であり、さらに好ましくは0.2質量部以上2質量部未満である。気泡増核剤の含有量が、成形体中の全ての熱可塑性樹脂の合計100質量部に対して0.01質量部未満であると、発生する気泡の数が少なくなり、1000個/mm以上の気泡を有する成形体とすることが困難となり、また、気泡径が大きくなりやすいために、気泡径0.5μm未満の気泡の数を気泡数全体100%において30%以上とすることが困難となるために好ましくない。気泡増核剤の含有量が、成形体中の全ての熱可塑性樹脂の合計100質量部において10質量部以上の場合、熱可塑性樹脂の結晶化度が増加してしまうため、発泡剤のガス抜けが生じやすくなるため好ましくない。 The content of the cell nucleating agent in the molded article of the present invention is preferably 0.01 parts by mass or more and less than 10 parts by mass with respect to 100 parts by mass of all components of the thermoplastic resin in the molded article. Is 0.1 to 5 parts by mass, more preferably 0.2 to 2 parts by mass. When the content of the bubble nucleating agent is less than 0.01 parts by mass with respect to a total of 100 parts by mass of all the thermoplastic resins in the molded body, the number of generated bubbles decreases, and 1000 / mm 2 Since it becomes difficult to obtain a molded body having the above-mentioned bubbles, and the bubble diameter tends to be large, it is difficult to set the number of bubbles having a bubble diameter of less than 0.5 μm to 30% or more in the total number of bubbles of 100%. This is not preferable. When the content of the bubble nucleating agent is 10 parts by mass or more in a total of 100 parts by mass of all the thermoplastic resins in the molded body, the crystallization degree of the thermoplastic resin is increased. Is not preferred because it tends to occur.

本発明の成形体に用いられる熱可塑性樹脂は、発泡剤が溶解するものであれば特に制限なく使用することができるが、発泡剤の溶解性に優れた熱可塑性樹脂としては、非晶性樹脂及び/又は生分解性樹脂が好ましい。非晶性樹脂及び/又は生分解性樹脂としては、ポリスチレン系樹脂、ポリカーボネート系樹脂、メタクリル系樹脂、塩化ビニル系樹脂、ポリ乳酸系樹脂、環状オレフィン系樹脂、フルオレン系樹脂、熱可塑性エラストマー等が挙げられる。この中でも特に、ポリ乳酸系樹脂やメタクリル酸系樹脂が好ましい。   The thermoplastic resin used in the molded article of the present invention can be used without particular limitation as long as the foaming agent is soluble, but as a thermoplastic resin excellent in solubility of the foaming agent, an amorphous resin can be used. And / or biodegradable resins are preferred. Amorphous resins and / or biodegradable resins include polystyrene resins, polycarbonate resins, methacrylic resins, vinyl chloride resins, polylactic acid resins, cyclic olefin resins, fluorene resins, thermoplastic elastomers, etc. Can be mentioned. Among these, polylactic acid resin and methacrylic acid resin are particularly preferable.

ここでいう非晶性樹脂とは、加熱すると軟化し、冷却すると固化する特徴を有する熱可塑性樹脂のうち、結晶状態となりえないか、結晶化しても結晶融解熱量が10J/g以下となる結晶化度が極めて低い熱可塑性樹脂を示す。   As used herein, an amorphous resin is a thermoplastic resin that has the characteristics of softening when heated and solidifying when cooled, or a crystal that cannot be crystallized or has a heat of crystal melting of 10 J / g or less even when crystallized. A thermoplastic resin having a very low degree of conversion.

また本発明の成形体は、熱可塑性樹脂を2種類以上使用することも可能であり、特に発泡剤に対する溶解特性が異なる2種類以上の熱可塑性樹脂を使用することにより、成形体中の気泡の気泡径を小さくすることができる。樹脂の種類としては、非晶性樹脂及び/又は生分解性樹脂が少なくとも1種類以上含まれていることが好ましく、より好ましい例としては、ポリ乳酸系樹脂とメタクリル酸系樹脂の併用であり、成形体中の熱可塑性樹脂の全成分100質量%において、ポリ乳酸系樹脂が50質量%以上90質量%以下、メタクリル酸系樹脂が10質量%以上50質量%以下であることがより好ましく、ポリ乳酸系樹脂が80質量%以上90質量%以下、メタクリル酸系樹脂が10質量%以上20質量%以下であることがさらに好ましい。成形体中の熱可塑性樹脂の全成分100質量%において、ポリ乳酸系樹脂を50質量%以上90質量%以下、メタクリル酸系樹脂を10質量%以上50質量%以下の範囲とすることで、成形体中の気泡の気泡径を小さくしやすくなり、透明性などを付与しやすくなる。また、これらの樹脂を溶融押出しする場合に、剪断力を高くするなどの樹脂の分散径を小さくする方法を使用するとさらに好ましい。   Further, the molded article of the present invention can use two or more kinds of thermoplastic resins, and in particular, by using two or more kinds of thermoplastic resins having different solubility characteristics with respect to the foaming agent, The bubble diameter can be reduced. As the type of resin, it is preferable that at least one kind of amorphous resin and / or biodegradable resin is contained, and a more preferable example is a combined use of a polylactic acid resin and a methacrylic acid resin, More preferably, the polylactic acid resin is 50% by mass or more and 90% by mass or less, and the methacrylic acid resin is 10% by mass or more and 50% by mass or less in 100% by mass of all the thermoplastic resin components in the molded body. More preferably, the lactic acid resin is 80% by mass or more and 90% by mass or less, and the methacrylic acid resin is 10% by mass or more and 20% by mass or less. In 100% by mass of all components of the thermoplastic resin in the molded body, the polylactic acid resin is in the range of 50% by mass to 90% by mass, and the methacrylic acid resin is in the range of 10% by mass to 50% by mass. It becomes easy to make the bubble diameter of bubbles in the body small, and it becomes easy to impart transparency and the like. Further, when these resins are melt-extruded, it is more preferable to use a method of reducing the dispersion diameter of the resin such as increasing the shearing force.

なお、本発明の成形体は、熱可塑性樹脂を主として含むが、これは成形体を構成する全成分において、熱可塑性樹脂の質量割合が最も大きいことを意味する。そして本発明の成形体は、成形体の全成分100質量%において、熱可塑性樹脂成分を70質量%以上100質量%以下含有することが好ましい。そして前述の気泡増核剤や、その他の添加剤を、成形体の全成分100質量%において0質量%以上30質量%以下含有することができる。   In addition, although the molded object of this invention mainly contains a thermoplastic resin, this means that the mass ratio of a thermoplastic resin is the largest in all the components which comprise a molded object. And it is preferable that the molded object of this invention contains 70 mass% or more and 100 mass% or less of a thermoplastic resin component in 100 mass% of all the components of a molded object. And the above-mentioned bubble nucleating agent and other additives can be contained in an amount of 0% by mass to 30% by mass in 100% by mass of all the components of the molded body.

本発明の成形体は、発泡剤のガス抜けを防止する目的で、成形体の一部もしくは全面に、金属あるいは金属酸化物の蒸着層を積層した樹脂フィルム(蒸着フィルム)でシールすることもできる。蒸着フィルムでシールすることにより、発泡剤のガス抜けによる成形体の断熱性の径時低下や緩衝性の径時低下を防ぐことができ、成形体の使用年数を長くすることができる。蒸着フィルムの蒸着層として用いる金属としては、アルミニウム、インジウム、亜鉛、金、銀、プラチナ、ニッケル、クロムなどが挙げられ、蒸着フィルムの蒸着層として用いる金属酸化物としては、チタン、ジルコニウム、ケイ素、マグネシウムなどの酸化物が挙げられる。中でも、炭酸ガス/水蒸気透過性が低く、幅広く用いられているアルミニウムが好適に用いられる。樹脂フィルムにこれらの蒸着層を形成することで、炭酸ガス/水蒸気バリア性が向上し、炭酸ガス/水蒸気バリアフィルムとして好適に用いられる。   The molded body of the present invention can be sealed with a resin film (deposited film) in which a vapor deposition layer of metal or metal oxide is laminated on a part or the entire surface of the molded body for the purpose of preventing the blowing agent from degassing. . By sealing with a vapor-deposited film, it is possible to prevent a decrease in the heat insulating property and the buffering property of the molded product due to outgassing of the foaming agent, and the service life of the molded product can be extended. Examples of the metal used as the vapor deposition layer of the vapor deposition film include aluminum, indium, zinc, gold, silver, platinum, nickel, and chromium. Examples of the metal oxide used as the vapor deposition layer of the vapor deposition film include titanium, zirconium, silicon, Examples thereof include oxides such as magnesium. Among them, aluminum that has a low carbon dioxide gas / water vapor permeability and is widely used is preferably used. By forming these vapor deposition layers on the resin film, the carbon dioxide gas / water vapor barrier property is improved, and the resin film is suitably used as a carbon dioxide gas / water vapor barrier film.

また、樹脂フィルムに金属あるは金属酸化物の蒸着層を積層する方法としては、真空蒸着法、EB蒸着法、スパッタリング法、イオンプレーティング法などの物理的蒸着法、プラズマCVDなどの化学蒸着法などを用いることができるが、生産性の観点からは真空蒸着法が特に好ましく用いられる。   In addition, as a method of laminating a metal or metal oxide vapor deposition layer on a resin film, a vacuum vapor deposition method, an EB vapor deposition method, a sputtering method, a physical vapor deposition method such as an ion plating method, or a chemical vapor deposition method such as plasma CVD. From the viewpoint of productivity, the vacuum evaporation method is particularly preferably used.

蒸着層を積層した樹脂フィルム(蒸着フィルム)の樹脂フィルムに用いる樹脂は、熱可塑性樹脂であれば特に限定されないが、炭酸ガス透過率および水蒸気透過率が低いものが好ましく、ポリスチレン系樹脂、ポリプロピレン系樹脂、ポリ乳酸系樹脂やポリグリコール酸樹脂などのポリエステル系樹脂、メタクリル系樹脂、ポリカーボネート系樹脂などが好ましく用いられる。また、同じ構成の蒸着フィルムを複数枚貼り合わせてもよく、異なる構成の蒸着フィルムを複数枚重ねて貼り合わせてもよい。   The resin used for the resin film of the resin film (deposited film) laminated with a vapor deposition layer is not particularly limited as long as it is a thermoplastic resin, but those having low carbon dioxide gas permeability and water vapor permeability are preferred. Polystyrene resin, polypropylene resin Resins, polyester resins such as polylactic acid resins and polyglycolic acid resins, methacrylic resins, and polycarbonate resins are preferably used. Further, a plurality of vapor deposition films having the same configuration may be bonded together, or a plurality of vapor deposition films having different configurations may be stacked and bonded together.

本発明の成形体の好適な製造方法は、熱可塑性樹脂に発泡剤を特定の圧力・温度で含浸させる工程1、温度を変化させる工程2、含浸圧力を開放させることにより、熱可塑性樹脂内部の発泡剤を放圧する工程3が含まれる。具体的製造方法としては、熱可塑性樹脂と発泡剤を押出機に供給し、スリットダイなどから金型内に吐出して発泡体(成形体)を得る押出発泡法、一度熱可塑性樹脂をビーズ、シート状に加工したのち、オートクレーブなどの耐圧容器で発泡剤を含浸して発泡体(成形体)を得るバッチ発泡法が挙げられる。   A preferred production method of the molded body of the present invention includes a step 1 of impregnating a thermoplastic resin with a foaming agent at a specific pressure and temperature, a step 2 of changing the temperature, and releasing the impregnation pressure to thereby improve the inside of the thermoplastic resin. Step 3 of releasing the foaming agent is included. Specific manufacturing methods include an extrusion foaming method in which a thermoplastic resin and a foaming agent are supplied to an extruder and discharged into a mold from a slit die or the like to obtain a foam (molded product). Once the thermoplastic resin is beaded, There is a batch foaming method in which a foam (molded body) is obtained by impregnating a foaming agent with a pressure vessel such as an autoclave after processing into a sheet.

以下に、本発明の成形体を得るための方法について、原料熱可塑性樹脂としてポリ乳酸(以下PLAと略することがある)を用い、気泡増核剤としてエチレンビスラウリン酸アミド(以下EBLAと略することがある)を該PLAに練りこみ、オートクレーブにて発泡させる製造方法の例を説明するが、本発明の成形体の製造方法は以下の方法に限定されるものではない。   Hereinafter, regarding a method for obtaining the molded article of the present invention, polylactic acid (hereinafter sometimes abbreviated as PLA) is used as a raw material thermoplastic resin, and ethylene bislauric acid amide (hereinafter abbreviated as EBLA) is used as a cell nucleator. However, the method for producing the molded article of the present invention is not limited to the following method.

まず、原料熱可塑性樹脂としてPLAと、気泡増核剤としてEBLA粒子とを、ベントを備えた二軸混練押出機に供給し、溶融混練して粒子含有組成物を得る。   First, PLA as a raw material thermoplastic resin and EBLA particles as a bubble nucleating agent are supplied to a twin-screw kneading extruder equipped with a vent, and melt-kneaded to obtain a particle-containing composition.

次に、該粒子含有組成物と原料熱可塑性樹脂たるPLAとを、気泡増核剤の濃度が所望の値となるように混合し、120〜180℃で2〜4時間減圧乾燥後、溶融押出機に供給し、押出機に具備されたT型ダイ口金からシート状に溶融押出しし、キャスティングドラムを一定速度で回転させながら、キャスティングドラムの前方に着地させる。このとき溶融ポリマーとキャスティングドラムの角度は0°〜90°が好ましく、さらに好ましくは10°〜60°である。溶融ポリマーを静電印加法および/またはエアーナイフ法により密着固化し、未配向(未延伸)シートを得る。   Next, the particle-containing composition and PLA, which is a raw material thermoplastic resin, are mixed so that the concentration of the bubble nucleating agent becomes a desired value, dried under reduced pressure at 120 to 180 ° C. for 2 to 4 hours, and then melt-extruded. It is supplied to a machine, melt-extruded into a sheet form from a T die die provided in the extruder, and landed in front of the casting drum while rotating the casting drum at a constant speed. At this time, the angle between the molten polymer and the casting drum is preferably 0 ° to 90 °, more preferably 10 ° to 60 °. The molten polymer is adhered and solidified by an electrostatic application method and / or an air knife method to obtain an unoriented (unstretched) sheet.

必要に応じて、得られた未配向シートを、複数のロール群を備えた延伸機で、ロール間の周速差を利用して長手方向に延伸する。この際の延伸温度は80〜170℃が好ましい。より好ましくは100〜160℃、さらに好ましくは120〜150℃である。延伸倍率は1.1〜4倍が好ましく、より好ましくは1.5〜3倍である。こうして得られた、長手方向に一軸配向(一軸延伸)されたシートの両端をクリップで把持して、加熱したテンター内で必要に応じて幅方向に延伸を行う。延伸倍率は1.1〜4倍が好ましく、より好ましくは1.5〜3倍である。また、延伸温度は85〜180℃が好ましい。より好ましくは、100℃〜170℃、さらに好ましくは120℃〜160℃である。   If necessary, the obtained unoriented sheet is stretched in the longitudinal direction by using a circumferential speed difference between rolls by a stretching machine having a plurality of roll groups. In this case, the stretching temperature is preferably 80 to 170 ° C. More preferably, it is 100-160 degreeC, More preferably, it is 120-150 degreeC. The draw ratio is preferably 1.1 to 4 times, more preferably 1.5 to 3 times. The both ends of the sheet thus obtained uniaxially oriented (uniaxially stretched) in the longitudinal direction are held with clips, and stretched in the width direction as necessary in a heated tenter. The draw ratio is preferably 1.1 to 4 times, more preferably 1.5 to 3 times. The stretching temperature is preferably 85 to 180 ° C. More preferably, it is 100 degreeC-170 degreeC, More preferably, it is 120 degreeC-160 degreeC.

なお、幅方向に延伸した後、さらに長手方向および/または幅方向に110〜180℃の延伸温度範囲で1.01〜2.5倍に延伸してもよい。   In addition, after extending | stretching to the width direction, you may extend | stretch 1.01-2.5 times in the extending | stretching temperature range of 110-180 degreeC further to a longitudinal direction and / or the width direction.

また、延伸後にシートの融点以下の温度で熱固定を加えることが好ましく、より好ましい温度範囲は190〜245℃であり、弾性率を減少させるには220〜245℃であることがさらに好ましい。熱固定時間は、1〜60秒間であることが好ましい。   Moreover, it is preferable to heat-set at the temperature below the melting | fusing point of a sheet | seat after extending | stretching, and a more preferable temperature range is 190-245 degreeC, and it is further more preferable that it is 220-245 degreeC in order to reduce an elasticity modulus. The heat setting time is preferably 1 to 60 seconds.

ここで、本発明の成形体(シート)の熱可塑性樹脂の融点とは、示差走査熱量計(セイコー電子工業製RDC220)を用いて、シート5mgをサンプルに用い、25℃から20℃/分の昇温速度で300℃まで昇温し、測定を行った際の融解現象で発現する吸熱ピーク温度である。なお、本発明の成形体(シート)は異なる組成の熱可塑性樹脂を用いてなることがあるため、シートとした場合に熱可塑性の融解に伴う吸熱ピークが複数現れる場合があるが、その場合、最も高温側に現われる吸熱ピーク温度を本発明の成形体の融点とする。   Here, the melting point of the thermoplastic resin of the molded article (sheet) of the present invention is a differential scanning calorimeter (RDC220 manufactured by Seiko Denshi Kogyo Co., Ltd.), using 5 mg of a sheet as a sample, and from 25 ° C. to 20 ° C./min. This is the endothermic peak temperature that is manifested by the melting phenomenon when the temperature is raised to 300 ° C. at the rate of temperature rise. In addition, since the molded body (sheet) of the present invention may be formed using thermoplastic resins having different compositions, there may be a case where a plurality of endothermic peaks associated with the melting of the thermoplastic when the sheet is used. The endothermic peak temperature appearing on the highest temperature side is defined as the melting point of the molded article of the present invention.

また、熱固定工程の前後または同時に弛緩処理を行ってもよく、その後100〜160℃の温度で中間冷却を行ってもよい。より好ましくは、熱固定と弛緩処理を同時に行うことである。弛緩処理の倍率は、幅方向及び/または長手方向に1〜15%であることが好ましく、より好ましくは3〜10%である。   In addition, relaxation treatment may be performed before or after or simultaneously with the heat setting step, and then intermediate cooling may be performed at a temperature of 100 to 160 ° C. More preferably, the heat fixation and the relaxation treatment are performed simultaneously. The relaxation treatment magnification is preferably 1 to 15% in the width direction and / or the longitudinal direction, and more preferably 3 to 10%.

なお、幅方向の弛緩処理は幅方向の延伸が完了した後の最大フィルム幅に対してテンター出口の幅を縮めることによって行うことが好ましく、幅方向の弛緩処理の倍率Rwは、弛緩開始直前におけるシートの幅方向のクリップ間隔をDw1、弛緩終了直後のクリップ間隔をDw2として、
Rw=(Dw1−Dw2)/Dw1×100[%]
で表される。
The widthwise relaxation treatment is preferably performed by reducing the width of the tenter outlet with respect to the maximum film width after the stretching in the widthwise direction is completed, and the magnification Rw of the widthwise relaxation treatment is just before the start of relaxation. The clip interval in the width direction of the sheet is Dw1, the clip interval immediately after the end of relaxation is Dw2,
Rw = (Dw1-Dw2) / Dw1 × 100 [%]
It is represented by

また、長手方向の弛緩処理は、テンタークリップのレール上の走行速度を徐々に減速することによって行うことが好ましく、長手方向の弛緩処理の倍率Rlは、弛緩開始直前のクリップと、そのクリップと同じレール上で隣接する進行方向手前のクリップとの間隔をDl1、弛緩終了直後のクリップと、そのクリップと同じレール上で隣接する進行方向奥のクリップとの間隔をDl2として、
Rl=(Dl1−Dl2)/Dl1×100[%]
で表される。
In addition, the longitudinal relaxation process is preferably performed by gradually reducing the traveling speed of the tenter clip on the rail, and the longitudinal relaxation process magnification Rl is the same as that of the clip immediately before the start of the relaxation and the clip. The distance between the adjacent clip in the forward direction adjacent to the rail on the rail is Dl1, and the distance between the clip immediately after the end of the relaxation and the clip adjacent to the rear in the forward direction on the same rail as the clip is Dl2,
Rl = (Dl1−Dl2) / Dl1 × 100 [%]
It is represented by

続いて、得られたシートから短径が30μm以上の本発明の成形体を製造する方法を以下で説明する。   Then, the method to manufacture the molded object of this invention whose minor axis is 30 micrometers or more from the obtained sheet | seat is demonstrated below.

本発明の成形体の製造方法は特に限定されないが、発泡剤を封入した後に、熱可塑性樹脂と発泡剤の混合物を、温度Tg−5度以上Tm−20度以下、圧力3MPa以上70MPa以下の高温・高圧状態にする工程1(ここでTgとは、熱可塑性樹脂のガラス転移温度を意味する。またTmとは、熱可塑性樹脂の融点を意味する。)、Tg−5度より低い温度まで冷却する工程2、冷却した状態で、大気圧にまで放圧する工程3、といった3つの工程を有する製造方法が好ましい。ここで工程1においては、熱可塑性樹脂を、温度Tg−5度以上Tm−20度以下、圧力3MPa以上70MPa以下の高温・高圧状態にした後に、発泡剤を混入することも可能である。また工程2と3は、同時に行なうことも可能である。また前記工程3で放圧するに際しては、放圧速度が0.001MPa/sec以上5MPa/sec未満であることが好ましい。さらに前記工程1から工程3の放圧までの間において、発泡剤が超臨界状態であることが好ましい。このような本発明の製造方法について、以下説明する。   The method for producing the molded body of the present invention is not particularly limited, but after encapsulating the foaming agent, the mixture of the thermoplastic resin and the foaming agent is heated to a temperature of Tg-5 ° to Tm-20 ° C and a pressure of 3 MPa to 70 MPa. Step 1 for bringing to a high pressure state (here, Tg means the glass transition temperature of the thermoplastic resin, and Tm means the melting point of the thermoplastic resin), cooling to a temperature lower than Tg-5 degrees The manufacturing method which has three processes of the process 2 to perform, and the process 3 of releasing pressure to atmospheric pressure in the cooled state is preferable. Here, in step 1, it is possible to mix the foaming agent after bringing the thermoplastic resin into a high-temperature and high-pressure state at a temperature of Tg-5 ° to Tm-20 ° and a pressure of 3 MPa to 70 MPa. Steps 2 and 3 can be performed simultaneously. Further, when releasing the pressure in the step 3, it is preferable that the pressure release rate is 0.001 MPa / sec or more and less than 5 MPa / sec. Furthermore, it is preferable that the foaming agent is in a supercritical state between the step 1 and the pressure release in the step 3. Such a production method of the present invention will be described below.

発泡剤を封入する方法としては特に制限がないが、工程1において圧力を3MPa以上70MPa以下にするためには、超臨界状態で封入することが好ましい。つまり工程1においては、発泡剤が超臨界状態であることが好ましい。ここで、超臨界状態について簡単に説明する。一般に物質は温度や圧力などの変化により、気体・液体・固体の異なる三つの状態を取ることができる。横軸に温度、縦軸に圧力をとって物質の状態図を考えると、固体と液体の境界が存在する限界は実験的に得られていないが、液体と気体の境界は臨界点が限界である。温度、圧力を上げていき臨界点を超えると一相の流体となり、それ以上加圧圧縮しても液体とならず、昇温しても気体にはならない。この状態を超臨界状態とよび、この状態の流体を超臨界流体という。超臨界流体の有する溶媒特性の一つとして、その優れた溶解能力が挙げられる。工程1において、発泡剤を超臨界状態とする利点は、この優れた溶解能力により、熱可塑性樹脂に対して短時間で発泡剤を含浸できる点にある。二酸化炭素や窒素は超臨界状態が比較的得やすいことが知られており、例えば二酸化炭素は、臨界温度31.1℃、臨界圧力7.4MPa、窒素は、臨界温度が−147.0℃、臨界圧力3.4MPaである。超臨界流体を封入させる方法としては、シートを入れたオートクレーブを0℃以下に冷却した後、加圧して(二酸化炭素なら4.3MPa程度)封入する方法などがある。   Although there is no restriction | limiting in particular as a method of enclosing a foaming agent, In order to make a pressure into 3 Mpa or more and 70 Mpa or less in the process 1, it is preferable to enclose in a supercritical state. That is, in step 1, the foaming agent is preferably in a supercritical state. Here, the supercritical state will be briefly described. In general, substances can take three different states: gas, liquid, and solid depending on changes in temperature, pressure, and the like. Considering the phase diagram of a substance with temperature on the horizontal axis and pressure on the vertical axis, the limit of the boundary between solid and liquid has not been experimentally obtained, but the boundary between liquid and gas has a critical point limit. is there. When the temperature and pressure are raised and the critical point is exceeded, it becomes a one-phase fluid. This state is called a supercritical state, and the fluid in this state is called a supercritical fluid. One of the solvent properties of a supercritical fluid is its excellent dissolving ability. The advantage of making the foaming agent in the supercritical state in the step 1 is that the thermoplastic resin can be impregnated with the foaming agent in a short time due to this excellent dissolving ability. Carbon dioxide and nitrogen are known to be relatively easily obtained in a supercritical state. For example, carbon dioxide has a critical temperature of 31.1 ° C., a critical pressure of 7.4 MPa, and nitrogen has a critical temperature of −147.0 ° C. The critical pressure is 3.4 MPa. As a method for enclosing the supercritical fluid, there is a method in which the autoclave containing the sheet is cooled to 0 ° C. or lower and then pressurized (about 4.3 MPa for carbon dioxide) and encapsulated.

熱可塑性樹脂と発泡剤の混合物は、3MPa以上70MPa以下とすることが好ましい。つまり、前述の方法により得られたシート(熱可塑性樹脂)に発泡剤を含浸させる圧力としては、3MPa以上70MPa以下であることが好ましい。より好ましくは5MPa以上40MPa未満であり、さらに好ましくは10MPa以上25MPa未満である。含浸圧力が3MPa未満の場合には、発泡剤の含浸量が少なすぎて十分な数の気泡が発生しない場合があり、70Mpaを超えると、気泡を小さくすることが難しくなる。   The mixture of the thermoplastic resin and the foaming agent is preferably 3 MPa or more and 70 MPa or less. That is, the pressure for impregnating the foaming agent into the sheet (thermoplastic resin) obtained by the above-described method is preferably 3 MPa or more and 70 MPa or less. More preferably, it is 5 MPa or more and less than 40 MPa, More preferably, it is 10 MPa or more and less than 25 MPa. When the impregnation pressure is less than 3 MPa, the impregnation amount of the foaming agent may be too small to generate a sufficient number of bubbles, and when it exceeds 70 MPa, it is difficult to reduce the bubbles.

また、熱可塑性樹脂と発泡剤の混合物は、温度Tg−5度以上Tm−20度以下にすることが好ましい。つまり前述の方法により得られたシート(熱可塑性樹脂)に発泡剤を含浸させる温度としては、原料である熱可塑性樹脂のTg−5度以上Tm−20度以下であることが好ましく、より好ましくはTg度以上Tm−50度以下であり、さらに好ましくはTg+5度以上Tm−80度以下である。温度がTg−5度より低い場合、熱可塑性樹脂に対して発泡剤の含浸が難しくなる。一方で発泡剤が熱可塑性樹脂に含浸されると可塑化するためTgやTmが降下する。しかし発泡剤が熱可塑性樹脂に含浸している最中の熱可塑性樹脂のTgは測定が困難である。そのため、熱可塑性樹脂のTg−5度以上、さらにはTg度以上とすることで十分含浸が可能であることを検討によって算出した。また、Tm―20度より大きい場合は、成形体が変形してしまう場合がある。なお熱可塑性樹脂に対して発泡剤を含浸させるためには、1時間以上保持することが好ましく、より好ましくは3時間以上、さらに好ましくは10時間以上である。保持時間が短い場合、熱可塑性樹脂に対する発泡剤の含浸量が少なく、表面しか気泡が含有しない場合がある。   Moreover, it is preferable that the mixture of a thermoplastic resin and a foaming agent shall be temperature Tg-5 degree or more and Tm-20 degree or less. That is, the temperature at which the sheet (thermoplastic resin) obtained by the above-described method is impregnated with the foaming agent is preferably Tg−5 degrees or more and Tm−20 degrees or less, more preferably the raw material thermoplastic resin. It is Tg degree or more and Tm-50 degree or less, More preferably, it is Tg + 5 degree or more and Tm-80 degree or less. When the temperature is lower than Tg-5 °, it becomes difficult to impregnate the thermoplastic resin with the foaming agent. On the other hand, when the foaming agent is impregnated in the thermoplastic resin, Tg and Tm decrease because of plasticization. However, it is difficult to measure the Tg of the thermoplastic resin while the foaming agent is impregnating the thermoplastic resin. Therefore, it was calculated by examination that sufficient impregnation was possible by setting the thermoplastic resin to Tg−5 degrees or more, and further to Tg degree or more. Moreover, when it is larger than Tm−20 degrees, the molded body may be deformed. In order to impregnate the thermoplastic resin with the foaming agent, it is preferably held for 1 hour or longer, more preferably 3 hours or longer, and even more preferably 10 hours or longer. When the holding time is short, the amount of the foaming agent impregnated into the thermoplastic resin is small, and bubbles may be contained only on the surface.

熱可塑性樹脂と発泡剤の混合物を、温度Tg−5度以上Tm−20度以下、圧力3MPa以上70MPa以下の高温・高圧状態にする工程1に続いては、工程2として熱可塑性樹脂と発泡剤の混合物をTg−5度より低い温度まで冷却することが好ましい。つまり前述のように高温・高圧にしたシート(熱可塑性樹脂)と発泡剤の混合物を、熱可塑性樹脂のTg−5度より低い温度まで冷却する。工程2における冷却後の温度としては、0度以上Tg−5度未満がより好ましく、さらに好ましくは15度以上Tg−5度未満である。   Subsequent to Step 1 in which the mixture of the thermoplastic resin and the foaming agent is brought to a high temperature / high pressure state at a temperature of Tg−5 ° C. to Tm−20 ° C. and a pressure of 3 MPa to 70 MPa, Step 2 is a thermoplastic resin and a foaming agent. Is preferably cooled to a temperature below Tg-5 degrees. That is, as described above, the mixture of the sheet (thermoplastic resin) and the foaming agent at high temperature and high pressure is cooled to a temperature lower than Tg-5 degrees of the thermoplastic resin. The temperature after cooling in the step 2 is more preferably 0 degree or more and less than Tg-5 degree, and further preferably 15 degree or more and less than Tg-5 degree.

なお、工程2において、発泡剤がシート(熱可塑性樹脂)に対して均一に含浸された状態を維持するために、発泡剤の状態は超臨界状態であることが好ましい。工程2において、発泡剤が超臨界状態でない状態(液体もしくは固体)となった場合、発泡剤のシート(熱可塑性樹脂)への含浸状態が局在化する可能性があり、局在化した状態で続く工程3を行うと、気泡径が不均一なものとなり、透明性などの物性面のバラツキが大きくなる。そのため工程2を含む、工程1から工程3の放圧までの間においては、発泡剤が超臨界状態であることが好ましい。   In Step 2, in order to maintain a state where the foaming agent is uniformly impregnated into the sheet (thermoplastic resin), the state of the foaming agent is preferably a supercritical state. In step 2, when the foaming agent is in a non-supercritical state (liquid or solid), the impregnation state of the foaming agent sheet (thermoplastic resin) may be localized, and the localized state When Step 3 is followed, the bubble diameter becomes non-uniform, and variations in physical properties such as transparency increase. Therefore, it is preferable that the foaming agent is in a supercritical state during the period from Step 1 to Step 3 including the pressure release including Step 2.

続いて工程3として、気泡核を形成し、発泡させるために、大気圧まで放圧する。なお、前述の工程2と工程3は同時に行うことも可能である。発泡剤を放圧する温度が低すぎる場合、ガス抜きが生じてしまい、気泡が生成しない場合があり、発泡剤を放圧する温度が高すぎる場合には、大きく発泡してしまう可能性がある。そのため工程3における温度は、工程2における温度と同程度が好ましく、具体的にはTg−5度未満の温度であることが好ましく、0度以上Tg−5度未満がより好ましく、15度以上Tg−5度未満であることが更に好ましい。   Subsequently, in Step 3, in order to form bubble nuclei and foam them, the pressure is released to atmospheric pressure. Note that Step 2 and Step 3 described above can be performed simultaneously. If the temperature at which the blowing agent is released is too low, degassing may occur, and bubbles may not be generated. If the temperature at which the blowing agent is released is too high, foaming may occur greatly. Therefore, the temperature in the step 3 is preferably the same as the temperature in the step 2, specifically, preferably a temperature of less than Tg-5 degrees, more preferably 0 degrees or more and less than Tg-5 degrees, and 15 degrees or more Tg. More preferably, it is less than −5 degrees.

また、工程3として含浸圧力を放圧する速度は、0.001MPa/sec以上5MPa/sec未満であることが好ましく、より好ましくは0.005MPa/sec以上1MPa/sec未満、さらに好ましくは0.01MPa/sec以上0.1MPa/sec未満である。5MPa/sec以上の場合には、得られる成形体中の気泡径の分布が大きくなり、機械物性のバラツキを引き起こす恐れがある。放圧の初期段階において気泡の核が生成し、続いて気泡の成長が生じるため、放圧の速度と気泡数、気泡径とは密接な関係がある。1μm〜10μm程度の気泡を高密度に形成するには、放圧の速度を高くすることが有効であることが知られている。しかし、本発明の成形体に含有されているような気泡径0.5μm未満の微細気泡の場合はこの限りではない。一方、放圧する速度が0.001MPa/sec未満の場合には、成形体中の気泡数が少なくなるために好ましくない。気泡の成長段階においては、放圧の速度を上記0.001MPa/sec以上5MPa/sec未満の範囲にすることによって、気泡径を0.5μm未満にしやすくなる。   Further, the rate of releasing the impregnation pressure in Step 3 is preferably 0.001 MPa / sec or more and less than 5 MPa / sec, more preferably 0.005 MPa / sec or more and less than 1 MPa / sec, and still more preferably 0.01 MPa / sec. sec or more and less than 0.1 MPa / sec. In the case of 5 MPa / sec or more, the bubble diameter distribution in the resulting molded article becomes large, which may cause variations in mechanical properties. Bubble nuclei are generated at the initial stage of pressure release, and subsequent bubble growth occurs. Therefore, the speed of pressure release, the number of bubbles, and the bubble diameter are closely related. It is known that increasing the pressure release rate is effective for forming bubbles of about 1 μm to 10 μm at high density. However, this is not the case in the case of fine bubbles having a bubble diameter of less than 0.5 μm as contained in the molded article of the present invention. On the other hand, when the pressure release rate is less than 0.001 MPa / sec, the number of bubbles in the molded body is decreased, which is not preferable. In the bubble growth stage, the bubble diameter is easily reduced to less than 0.5 μm by setting the pressure release rate within the range of 0.001 MPa / sec to less than 5 MPa / sec.

前述の理由のために、工程1から工程3の放圧までの間は、発泡剤は超臨界状態であることが好ましい。工程1または工程2において、発泡剤が超臨界状態を維持していた場合には、工程3の大気圧への放圧過程において、発泡剤は超臨界状態から液体もしくは気体の状態となる。超臨界状態でなくなる圧力・温度条件は、使用した発泡剤の種類によって異なる。   For the above-mentioned reason, it is preferable that the foaming agent is in a supercritical state during the period from step 1 to release pressure in step 3. In Step 1 or Step 2, when the foaming agent is maintained in the supercritical state, the foaming agent is changed from the supercritical state to a liquid or gas state in the process of releasing the pressure to the atmospheric pressure in Step 3. The pressure and temperature conditions at which the supercritical state ceases are different depending on the type of blowing agent used.

本発明の成形体は、気泡径や成形体の短径を制御することによって、建築部材、自動車部材、電気・電子部品、各種容器、日用品など各種用途に利用することができる。具体的な用途としては、結露を防止出来る程度の断熱性を持ち、透明性もしくは半透明性を持つウインドウフィルムや、耐衝撃性の高い外張り断熱材、断熱性をもった壁紙といった建築部材、光拡散フィルム、反射フィルム、反射防止フィルム、防眩フィルム、輝度向上フィルム、プリズムシートなどの光学フィルム、軽量性、もしくは緩衝性をもつ自動車部材、ソケットなどの照明部品、導電性テープなどの電気・電子部品、各種ケース、チューブ、タンク、コンテナーなど各種容器や日用品といった用途に有用である。   The molded body of the present invention can be used for various applications such as building members, automobile members, electric / electronic parts, various containers, daily necessities, etc. by controlling the bubble diameter and the short diameter of the molded body. Specific applications include building materials such as window films with transparency or semi-transparency, high-impact outer heat insulating materials, and heat-insulating wallpaper. Light diffusion film, reflection film, antireflection film, antiglare film, brightness enhancement film, prismatic sheet and other optical films, lightweight or buffered automotive parts, sockets and other lighting parts, conductive tape, etc. It is useful for applications such as electronic parts, various cases, tubes, tanks, containers and various containers and daily necessities.

[特性の測定方法および効果の評価方法]
本発明において説明に使用した特性値の測定方法および効果の評価方法は、次のとおりである。
[Characteristic measurement method and effect evaluation method]
The characteristic value measurement method and effect evaluation method used in the description of the present invention are as follows.

(1)熱可塑性樹脂のガラス転移温度Tg、融点Tm、結晶融解エネルギー△Hmの測定
示差走査熱量計(DSC)として、セイコー電子工業株式会社製ロボットDSC「RDSC220」を用い、データ解析装置として、同社製ディスクステーション「SSC/5200」を用いてJIS K7121(1987)に従い測定した。
(1) Measurement of glass transition temperature Tg, melting point Tm, crystal melting energy ΔHm of thermoplastic resin As a differential scanning calorimeter (DSC), a robot DSC “RDSC220” manufactured by Seiko Denshi Kogyo Co., Ltd. is used. Measurement was performed according to JIS K7121 (1987) using a disk station “SSC / 5200” manufactured by the same company.

まず、アルミニウム製受皿に5mgの発泡前の樹脂サンプルを充填する。このサンプルを常温から300℃まで、20℃/分の昇温速度で昇温し、1stRunのDSC曲線を得た。得られたDSC曲線から、ベースラインが吸熱側へ0.001mW/mg以上の段差が生じている場合にガラス転移温度Tg(℃)が存在しているとして、成形体の熱可塑性樹脂のガラス転移温度TgをJISK−7121(1987)に従い、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線が交わる点の温度をTg(℃)とした。なお、本発明の成形体の熱可塑性樹脂は、ベースラインの段差が複数現れる場合があるが、その場合、最も低温側に現われる段差を本発明の成形体の熱可塑性樹脂のTg(℃)とした。また、ガラス転移温度Tg以上の温度領域において、吸熱ピーク(ap)と吸熱ピーク面積(a)(J/g)を得た。ここで、吸熱ピークとは、昇温することによりベースラインから吸熱側にずれ、さらに昇温を続けるとベースラインの位置へ戻ろうとする曲線の頂点のことであり、吸熱ピーク面積(a)(J/g)とは、吸熱ピークの低温側、高温側それぞれから引ける2本の接線と、高温側のベースラインを低温側に延長したラインに囲まれる面積のことである。   First, 5 mg of a resin sample before foaming is filled in an aluminum tray. The sample was heated from room temperature to 300 ° C. at a rate of temperature increase of 20 ° C./min to obtain a 1stRun DSC curve. From the obtained DSC curve, it is assumed that a glass transition temperature Tg (° C.) exists when a step of 0.001 mW / mg or more is present on the base line toward the endothermic side. According to JISK-7121 (1987), the temperature Tg is the temperature at the point where the straight line that is equidistant from the straight line extended from each base line in the vertical axis direction and the curve of the stepwise change portion of the glass transition intersect with Tg (° C). did. The thermoplastic resin of the molded body of the present invention may have a plurality of steps in the baseline. In this case, the level difference that appears on the lowest temperature side is the Tg (° C.) of the thermoplastic resin of the molded body of the present invention. did. Further, an endothermic peak (ap) and an endothermic peak area (a) (J / g) were obtained in a temperature range equal to or higher than the glass transition temperature Tg. Here, the endothermic peak is an apex of a curve that deviates from the baseline to the endothermic side as the temperature rises, and further returns to the baseline position when the temperature rises further. The endothermic peak area (a) ( J / g) is an area surrounded by two tangent lines that can be drawn from the low temperature side and the high temperature side of the endothermic peak and a line that extends the base line on the high temperature side to the low temperature side.

次いで、同じ条件で、In(インジウム)を測定し、1st RunのDSC曲線を得た。1stRunのDSC曲線からInの吸熱ピーク面積(b)(J/g)を求め、次式により結晶融解エネルギーΔHm(J/g)を求めた。
ΔHm=28.5(J/g)×a/b
このときの△Hmが観測されないか、10J/g以下であるときに、熱可塑性樹脂を非晶性とした。本発明の原料として用いられる熱可塑性樹脂は、吸熱ピークが複数現れる場合があるが、その場合、吸熱ピークの頂点の温度で最も低いものを熱可塑性樹脂の融点Tm(℃)とし、吸熱ピーク面積(a)の合計を熱可塑性樹脂の結晶融解エネルギーΔHm(J/g)とした。
Next, In (indium) was measured under the same conditions to obtain a 1st Run DSC curve. The In endothermic peak area (b) (J / g) was determined from the DSC curve of 1stRun, and the crystal melting energy ΔHm (J / g) was determined by the following equation.
ΔHm = 28.5 (J / g) × a / b
When ΔHm at this time was not observed or was 10 J / g or less, the thermoplastic resin was made amorphous. The thermoplastic resin used as the raw material of the present invention may have a plurality of endothermic peaks. In this case, the lowest endothermic peak temperature is the melting point Tm (° C.) of the thermoplastic resin, and the endothermic peak area. The sum of (a) was defined as the crystal melting energy ΔHm (J / g) of the thermoplastic resin.

(2)1mm当たりの気泡数
日本電子社製走査型電子顕微鏡(FE−SEM)を用いて、成形体の厚さ方向断面を50000倍に拡大した画像を取り込んだ。画像を取り込む位置は任意とした。得られた画像の中心から上下左右5μmの範囲をトリミングし、10μm四方(拡大後20cm四方)の画像を得た。その画像内に観測される気泡数を計測し、1mm当たりの気泡数に換算した。尚、画像端で切られて気泡の一部のみが写っているものに関しては計測しなかった。
(2) Number of bubbles per 1 mm 2 Using a scanning electron microscope (FE-SEM) manufactured by JEOL Ltd., an image obtained by enlarging the cross section in the thickness direction of the molded article to 50000 times was captured. The position for capturing the image was arbitrary. A range of 5 μm in the vertical and horizontal directions from the center of the obtained image was trimmed to obtain an image of 10 μm square (20 cm square after enlargement). The number of bubbles observed in the image was measured and converted to the number of bubbles per mm 2 . It should be noted that the measurement was not performed for the case where only a part of the bubbles was cut off at the edge of the image.

(3)気泡径
日本電子社製走査型電子顕微鏡(FE−SEM)を用いて、成形体の厚さ方向断面を50000倍に拡大した画像を取り込んだ。画像を取り込む位置は任意とした。この画像中で気泡100個を無作為に選び出し、顕微鏡を用いてそれらの気泡の断面図中における最も長い長さをそれぞれ採寸した。なお、1つの画像中に気泡の数が100個未満の場合には、新たに違う位置の画像を取り込んで100個になるまで採寸した。以下の基準に準じて径の大きさを分類し、0.001μm未満、0.001μm以上0.1μm未満、0.1μm以上0.5μm未満、0.5μm以上3μm未満、及び3μm以上に分類された気泡の数の各分類毎の合計を100で割って、気泡径0.5μm未満の気泡の割合を算出した。なお、いずれの実施例および比較例においても0.001μm未満の気泡は観測できなかったが、50000倍に拡大した画像から0.001μm未満の気泡を観測することは、現時的に困難と思われる。
0.001μm未満
0.001μm以上0.1μm未満
0.1 μm以上0.5μm未満
0.5 μm以上3μm未満
3 μm以上
(4)成形体の短径
成形体の短径は、(株)ミツトヨ製デジマチックマイクロメーターMDC−MJ/PJを用い、下記の方法で求めた。
(i)まず、成形体の任意の位置から平滑な部分を選び、4cm×5cmの寸法に切り出したものをサンプルとし、サンプルの長辺方向を上下方向、短辺方向を左右方向とした。
(ii)上端から1cm、左端から1cmの位置を測定始点とする。
(iii)測定始点の厚みを測定し、その位置から右方向に測定位置を0.5cmずつ移動させながら、測定始点も含め、計5点の厚みを測定した。
(iv)次に、成形体の上端から1.5cm、左端から1cmの位置を測定始点し、(iii)と同様の測定を行った(すなわち、測定位置を右方向に0.5cmずつ移動させながら計5点の厚みを測定した)。
(v)以下同様に、測定始点を下方向に0.5cmずつずらしながら(iii)と同様の測定を測定始点も含めて計7回行い、合計35点の測定値を得た。なお、測定位置の終点は上端から4cm、左端から3cmの地点となる。
(vi)35点の合計値を35で割ることにより成形体の短径を得た。
(3) Bubble diameter Using a scanning electron microscope (FE-SEM) manufactured by JEOL Ltd., an image obtained by enlarging the cross section in the thickness direction of the molded article to 50000 times was captured. The position for capturing the image was arbitrary. In this image, 100 bubbles were selected at random, and the longest length in the sectional view of these bubbles was measured using a microscope. In addition, when the number of bubbles in one image was less than 100, new images were taken at different positions, and measurements were taken until the number reached 100. The diameters are classified according to the following criteria, and are classified into less than 0.001 μm, 0.001 μm or more and less than 0.1 μm, 0.1 μm or more and less than 0.5 μm, 0.5 μm or more and less than 3 μm, and 3 μm or more. The ratio of bubbles having a bubble diameter of less than 0.5 μm was calculated by dividing the total number of bubbles in each classification by 100. In all of the examples and comparative examples, bubbles of less than 0.001 μm could not be observed, but it seems that it is currently difficult to observe bubbles of less than 0.001 μm from an image magnified 50000 times. .
Less than 0.001 μm 0.001 μm or more but less than 0.1 μm 0.1 μm or more but less than 0.5 μm 0.5 μm or more but less than 3 μm 3 μm or more (4) The short diameter of the molded body It calculated | required with the following method using the manufactured Digimatic micrometer MDC-MJ / PJ.
(I) First, a smooth part was selected from an arbitrary position of the molded body, and a sample cut into a size of 4 cm × 5 cm was used as a sample. The long side direction of the sample was set as the vertical direction, and the short side direction was set as the horizontal direction.
(Ii) A measurement start point is a position 1 cm from the upper end and 1 cm from the left end.
(Iii) The thickness at the measurement start point was measured, and the thickness at a total of five points including the measurement start point was measured while moving the measurement position 0.5 cm from the position to the right.
(Iv) Next, the measurement was started at a position 1.5 cm from the upper end of the molded body and 1 cm from the left end, and the same measurement as (iii) was performed (that is, the measurement position was moved 0.5 cm to the right). A total of five thicknesses were measured.
(V) Similarly, the same measurement as (iii) including the measurement start point was performed a total of seven times while shifting the measurement start point by 0.5 cm downward, and a total of 35 measurement values were obtained. The end point of the measurement position is 4 cm from the upper end and 3 cm from the left end.
(Vi) The short diameter of the compact was obtained by dividing the total value of 35 points by 35.

(5)成形体の光線透過率
成形体の任意の位置から平滑な部分を選び、4cm×5cmの寸法に切り出したものをサンプルとし、日本電色工業(株)製濁度計NDH2000を用いて、23℃での全光線透過率(%)を3回測定し、平均値で透明性を評価した。光源にはハロゲンランプ(12V50W)を用い、全光線透過率はJIS−K7361−1997に準じて測定を行った。
(5) Light transmittance of the molded body A smooth part is selected from an arbitrary position of the molded body, a sample cut into a size of 4 cm × 5 cm is used as a sample, and a turbidimeter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. is used. The total light transmittance (%) at 23 ° C. was measured three times, and the transparency was evaluated by the average value. A halogen lamp (12V50W) was used as the light source, and the total light transmittance was measured according to JIS-K7361-1997.

(6)軽量性
軽量性は比重の変化より判定した。成形体を3cm×4cmの大きさに切取ったものをサンプルとし、電子比重計(ミラージュ貿易(株)製SD−120L)を用いて、室温23℃、相対湿度65%の雰囲気にて測定を行った。測定は3回行い平均値をその成形体の比重とした。同様に発泡処理前の成形体(例えばシート)の比重も測定し、発泡処理後の比重を発泡処理前の比重で割ることによって、軽量化の評価を下記の基準に則り◎〜×で判定した。
0.8未満 :◎
0.8以上0.9未満 :○
0.9以上0.95未満 :△
0.95以上 :×
(7)気泡増核剤の数平均粒径
走査型電子顕微鏡(SEM)を用いて、倍率1000000倍で観察した画像中の粒子について、円相当粒子径を求めた。円相当粒子径が0.0005〜15μmであった粒子から無作為に100個の粒子を選び、それら100個の粒子の円相当粒子径の平均値を求め、気泡増核剤の数平均粒径とした。なお、観察には発泡成形体の厚さ方向断面を用いてもかまわないが、発泡処理前の未発泡樹脂成形体の厚さ方向断面を用いることが好ましい。
(6) Lightness Lightness was determined from the change in specific gravity. Samples obtained by cutting the molded body into a size of 3 cm × 4 cm were used as samples, and measurement was performed in an atmosphere of room temperature 23 ° C. and relative humidity 65% using an electronic hydrometer (SD-120L manufactured by Mirage Trading Co., Ltd.). went. The measurement was performed three times, and the average value was taken as the specific gravity of the molded body. Similarly, the specific gravity of a molded body (for example, a sheet) before foaming treatment is also measured, and the specific gravity after foaming treatment is divided by the specific gravity before foaming treatment, whereby the evaluation of weight reduction is determined by ◎ to × according to the following criteria. .
Less than 0.8: ◎
0.8 or more and less than 0.9: ○
0.9 or more and less than 0.95: △
0.95 or more: ×
(7) Number average particle diameter of bubble nucleating agent Using a scanning electron microscope (SEM), the equivalent circle particle diameter was determined for the particles in the image observed at a magnification of 1,000,000. Randomly select 100 particles from particles having an equivalent circle particle diameter of 0.0005 to 15 μm, determine the average value of equivalent circle particle diameters of these 100 particles, and obtain the number average particle diameter of the bubble nucleating agent. It was. In addition, although the thickness direction cross section of a foaming molding may be used for observation, it is preferable to use the thickness direction cross section of the unfoamed resin molding before foaming.

(実施例1)
原料樹脂としてPLA(ネイチャーワークス(株)製 4042D)100質量部を140℃で3時間乾燥した。その後、T型口金を備えた押出機に供給し、25℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発泡樹脂成形体を得た。
Example 1
100 parts by mass of PLA (4042D manufactured by Nature Works Co., Ltd.) as a raw material resin was dried at 140 ° C. for 3 hours. Then, it supplied to the extruder provided with the T-type nozzle | cap | die, kneading | extruding and cooling was performed on the casting drum cooled at 25 degreeC, applying an electrostatic, and the unfoamed resin molding was obtained.

得られた未発泡樹脂成形体をオートクレーブ中に投入し、二酸化炭素を封入し、65℃、15MPa(超臨界状態)の条件で、4時間含浸させた。その後、オートクレーブ内の温度を50℃まで冷却し、0.1MPa/secの速度で大気圧まで放圧することにより、成形体を得た。得られた成形体の気泡特性、成形体特性を表1−1に示す。   The obtained unfoamed resin molded article was put into an autoclave, carbon dioxide was enclosed, and impregnation was performed at 65 ° C. and 15 MPa (supercritical state) for 4 hours. Thereafter, the temperature in the autoclave was cooled to 50 ° C. and released to atmospheric pressure at a rate of 0.1 MPa / sec to obtain a molded body. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-1.

(実施例2)
原料樹脂としてPLA(ネイチャーワークス(株)製 4042D)20質量部と、気泡増核剤としてEBLA(日本化成(株)製)1質量部を、二軸混練機を用いて、混練温度200℃で混練し、粒子含有組成物を得た。該粒子含有組成物と、希釈用原料樹脂としてPLA(ネイチャーワークス(株)製 4042D)80質量部を、それぞれ140℃で3時間乾燥した。その後、T型口金を備えた押出機に供給し、25℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発泡樹脂成形体を得た。
(Example 2)
20 parts by mass of PLA (manufactured by Nature Works 4042D) as a raw material resin and 1 part by mass of EBLA (manufactured by Nippon Kasei Co., Ltd.) as a bubble nucleator at a kneading temperature of 200 ° C. using a biaxial kneader The mixture was kneaded to obtain a particle-containing composition. The particle-containing composition and 80 parts by mass of PLA (4042D manufactured by Nature Works Co., Ltd.) as a raw material resin for dilution were each dried at 140 ° C. for 3 hours. Then, it supplied to the extruder provided with the T-type nozzle | cap | die, kneading | extruding and cooling was performed on the casting drum cooled at 25 degreeC, applying an electrostatic, and the unfoamed resin molding was obtained.

得られた未発泡樹脂成形体をオートクレーブ中に投入し、二酸化炭素を封入し、70℃、15MPa(超臨界状態)の条件で、2時間含浸させた。その後、オートクレーブ内の温度を60℃まで冷却し、4MPa/secの速度で大気圧まで放圧することにより、成形体を得た。得られた成形体の気泡特性、成形体特性を表1−1に示す。   The obtained unfoamed resin molded article was put into an autoclave, carbon dioxide was enclosed, and impregnation was performed at 70 ° C. and 15 MPa (supercritical state) for 2 hours. Thereafter, the temperature inside the autoclave was cooled to 60 ° C., and the pressure was released to atmospheric pressure at a rate of 4 MPa / sec to obtain a molded body. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-1.

(実施例3)
原料樹脂としてPLA(ネイチャーワークス(株)製 4042D)95質量部と原料樹脂としてPMMA(住友化学(株)製 LG−21)5質量部を、それぞれ80℃で3時間乾燥した。その後、T型口金を備えた押出機に供給し、25℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発泡樹脂成形体を得た。
Example 3
95 parts by mass of PLA (Nature Works, Inc. 4042D) as a raw material resin and 5 parts by mass of PMMA (LG-21, manufactured by Sumitomo Chemical Co., Ltd.) as a raw material resin were each dried at 80 ° C. for 3 hours. Then, it supplied to the extruder provided with the T-type nozzle | cap | die, kneading | extruding and cooling was performed on the casting drum cooled at 25 degreeC, applying an electrostatic, and the unfoamed resin molding was obtained.

得られた未発泡樹脂成形体をオートクレーブ中に投入し、二酸化炭素を封入し、70℃、15MPa(超臨界状態)の条件で、3時間含浸させた。その後、10MPaまで10MPa/secの速度で放圧した後、オートクレーブ内の温度を40℃まで冷却し、0.01MPa/secの速度で大気圧まで放圧することにより、成形体を得た。得られた成形体の気泡特性、成形体特性を表1−1に示す。   The obtained unfoamed resin molded product was put into an autoclave, carbon dioxide was enclosed, and impregnation was performed at 70 ° C. and 15 MPa (supercritical state) for 3 hours. Then, after releasing pressure to 10 MPa at a rate of 10 MPa / sec, the temperature in the autoclave was cooled to 40 ° C. and released to atmospheric pressure at a rate of 0.01 MPa / sec to obtain a molded body. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-1.

(実施例4)
原料樹脂としてPMMA(住友化学(株)製 LG−21)100質量部を80℃で3時間乾燥した。その後、T型口金を備えた押出機に供給し、25℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発泡樹脂成形体を得た。
Example 4
100 parts by mass of PMMA (LG-21 manufactured by Sumitomo Chemical Co., Ltd.) as a raw material resin was dried at 80 ° C. for 3 hours. Then, it supplied to the extruder provided with the T-type nozzle | cap | die, kneading | extruding and cooling was performed on the casting drum cooled at 25 degreeC, applying an electrostatic, and the unfoamed resin molding was obtained.

得られた未発泡樹脂成形体をオートクレーブ中に投入し、二酸化炭素を封入し、70℃、15MPa(超臨界状態)の条件で、3時間含浸させた。その後、0.1MPa/secの速度で大気圧まで放圧することにより、成形体を得た。このとき、圧力が10MPaの時点で温度は50℃であった。得られた成形体の気泡特性、成形体特性を表1−1に示す。   The obtained unfoamed resin molded product was put into an autoclave, carbon dioxide was enclosed, and impregnation was performed at 70 ° C. and 15 MPa (supercritical state) for 3 hours. Then, the molded object was obtained by releasing to atmospheric pressure at a speed | rate of 0.1 MPa / sec. At this time, the temperature was 50 ° C. when the pressure was 10 MPa. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-1.

(実施例5)
原料樹脂としてPET−G(DIC(株)製 F82D)40質量部と、気泡増核剤として酸化チタン(繊維状、長径3μm、短径0.1μm)2質量部を、二軸混練機を用いて、混練温度260℃で混練し、粒子含有組成物を得た。該粒子含有組成物と、希釈用原料樹脂としてPET−G(DIC(株)製 F82D)60質量部を、それぞれ140℃で3時間乾燥した。その後、T型口金を備えた押出機に供給し、25℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発泡樹脂成形体を得た。
(Example 5)
Using a biaxial kneader, 40 parts by mass of PET-G (F82D manufactured by DIC Corporation) as a raw material resin and 2 parts by mass of titanium oxide (fibrous, major axis: 3 μm, minor axis: 0.1 μm) as a bubble nucleating agent And kneading at a kneading temperature of 260 ° C. to obtain a particle-containing composition. The particle-containing composition and 60 parts by mass of PET-G (F82D manufactured by DIC Corporation) as a dilution raw material resin were each dried at 140 ° C. for 3 hours. Then, it supplied to the extruder provided with the T-type nozzle | cap | die, kneading | extruding and cooling was performed on the casting drum cooled at 25 degreeC, applying an electrostatic, and the unfoamed resin molding was obtained.

得られた未発泡樹脂成形体をオートクレーブ中に投入し、二酸化炭素を封入し、70℃、15MPa(超臨界状態)の条件で、3時間含浸させた。その後、1MPa/secの速度で大気圧まで放圧することにより、成形体を得た。得られた成形体の気泡特性、成形体特性を表1−1に示す。   The obtained unfoamed resin molded product was put into an autoclave, carbon dioxide was enclosed, and impregnation was performed at 70 ° C. and 15 MPa (supercritical state) for 3 hours. Then, the molded object was obtained by releasing to atmospheric pressure at a speed | rate of 1 MPa / sec. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-1.

(実施例6)
原料樹脂としてPLA(ネイチャーワークス(株)製 4042D)40質量部と、気泡増核剤としてカーボンブラック(東海カーボン(株)製 平均粒径0.02μm)1質量部を、二軸混練機を用いて、混練温度200℃で混練し、粒子含有組成物を得た。該粒子含有組成物と、希釈用原料樹脂としてポリプロピレン(日本ポリプロ(株)製 ニューフォーマーFB5100)60質量部を、それぞれ140℃で3時間乾燥した。その後、T型口金を備えた押出機に供給し、25℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発砲樹脂成形体を得た。
得られた未発泡樹脂成形体をオートクレーブ中に投入し、二酸化炭素を封入し、50℃、15MPa(超臨界状態)の条件で、3時間含浸させた。その後、オートクレーブ内の温度を20℃まで冷却し、0.1MPa/secの速度で大気圧まで放圧することにより、成形体を得た。得られた成形体の気泡特性、成形体特性を表1−1に示す。
(Example 6)
Using a biaxial kneader, 40 parts by mass of PLA (manufactured by Nature Works 4042D) as a raw material resin and 1 part by mass of carbon black (average particle size 0.02 μm by Tokai Carbon Co., Ltd.) as a bubble nucleating agent Were kneaded at a kneading temperature of 200 ° C. to obtain a particle-containing composition. The particle-containing composition and 60 parts by weight of polypropylene (New Former FB5100, manufactured by Nippon Polypro Co., Ltd.) as a raw material resin for dilution were each dried at 140 ° C. for 3 hours. Then, it supplied to the extruder provided with the T-type nozzle | cap | die, kneading | mixing extrusion and cooling was performed on the casting drum cooled at 25 degreeC, applying electrostatic, and the unfoamed resin molding was obtained.
The obtained unfoamed resin molded body was put into an autoclave, carbon dioxide was enclosed, and impregnation was performed at 50 ° C. and 15 MPa (supercritical state) for 3 hours. Thereafter, the temperature in the autoclave was cooled to 20 ° C. and released to atmospheric pressure at a rate of 0.1 MPa / sec to obtain a molded body. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-1.

(実施例7)
原料樹脂としてポリスチレン樹脂(カネカ(株)製 カネライトPS)40質量部と、気泡増核剤としてステアリン酸バリウム(ナカライテスク(株)製)3質量部を、二軸混練機を用いて、混練温度260℃で混練し、粒子含有組成物を得た。該粒子含有組成物と、希釈用樹脂としてポリスチレン樹脂(カネカ(株)製 カネライトPS)60質量部を、それぞれ100℃で3時間乾燥した。その後、T型口金を備えた押出機に供給し、25℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発泡樹脂成形体を得た。
(Example 7)
40 parts by mass of polystyrene resin (Kanelite PS manufactured by Kaneka Corp.) as a raw material resin and 3 parts by mass of barium stearate (manufactured by Nacalai Tesque Co., Ltd.) as a bubble nucleating agent were mixed using a biaxial kneader. The particle-containing composition was obtained by kneading at 260 ° C. The particle-containing composition and 60 parts by mass of a polystyrene resin (Kanelite PS manufactured by Kaneka Corporation) as a dilution resin were each dried at 100 ° C. for 3 hours. Then, it supplied to the extruder provided with the T-type nozzle | cap | die, kneading | extruding and cooling was performed on the casting drum cooled at 25 degreeC, applying an electrostatic, and the unfoamed resin molding was obtained.

得られた未発泡樹脂成形体をオートクレーブ中に投入し、二酸化炭素を封入し、80℃、20MPa(超臨界状態)の条件で、3時間含浸させた。その後、オートクレーブ内の温度を50℃まで冷却し、0.1MPa/secの速度で大気圧まで放圧することにより、成形体を得た。得られた成形体の気泡特性、成形体特性を表1−1に示す。   The obtained unfoamed resin molded product was put into an autoclave, carbon dioxide was enclosed, and impregnation was performed at 80 ° C. and 20 MPa (supercritical state) for 3 hours. Thereafter, the temperature in the autoclave was cooled to 50 ° C. and released to atmospheric pressure at a rate of 0.1 MPa / sec to obtain a molded body. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-1.

(実施例8)
原料樹脂としてポリカーボネート樹脂(三菱エンジニアプラスチック(株)製 H−4000)80質量部と、ポリトリメチレンテレフタレート(DuPont製 コルテラ ブライト)20質量部を、それぞれ140℃で3時間乾燥した。その後、T型口金を備えた押出機に供給し、25℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発砲樹脂成形体を得た。
(Example 8)
As raw material resins, 80 parts by mass of polycarbonate resin (H-4000 manufactured by Mitsubishi Engineer Plastics Co., Ltd.) and 20 parts by mass of polytrimethylene terephthalate (Corterra Bright manufactured by DuPont) were each dried at 140 ° C. for 3 hours. Then, it supplied to the extruder provided with the T-type nozzle | cap | die, kneading | mixing extrusion and cooling was performed on the casting drum cooled at 25 degreeC, applying electrostatic, and the unfoamed resin molding was obtained.

得られた未発泡樹脂成形体をオートクレーブ中に投入し、二酸化炭素を封入し、120℃、30MPa(超臨界状態)の条件で、3時間含浸させた。その後、冷却しながら3MPa/secの速度で大気圧まで放圧することにより、成形体を得た。このとき、圧力が20MPaの時点で温度は100℃であった。得られた成形体の気泡特性、成形体特性を表1−1に示す。   The obtained unfoamed resin molded article was put into an autoclave, carbon dioxide was enclosed, and impregnation was performed at 120 ° C. and 30 MPa (supercritical state) for 3 hours. Then, a molded body was obtained by releasing the pressure to atmospheric pressure at a rate of 3 MPa / sec while cooling. At this time, the temperature was 100 ° C. when the pressure was 20 MPa. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-1.

(実施例9)
原料樹脂としてポリカーボネート樹脂(三菱エンジニアプラスチック(株)製 H−4000)20質量部と、気泡増核剤としてシリカ粒子(触媒化成(株)製 平均粒径0.06μm)0.1質量部を、二軸混練機を用いて、混練温度280℃で混練し、粒子含有組成物を得た。該粒子含有組成物と、希釈用原料樹脂としてポリカーボネート樹脂(三菱エンジニアプラスチック(株)製 H−4000)80質量部を、それぞれ140℃で3時間乾燥した。その後、T型口金を備えた押出機に供給し、25℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発泡樹脂成形体を得た。
Example 9
20 parts by mass of polycarbonate resin (H-4000 manufactured by Mitsubishi Engineer Plastics Co., Ltd.) as the raw material resin and 0.1 part by mass of silica particles (average particle size 0.06 μm manufactured by Catalyst Chemicals Co., Ltd.) as the bubble nucleating agent, Using a biaxial kneader, the mixture was kneaded at a kneading temperature of 280 ° C. to obtain a particle-containing composition. The particle-containing composition and 80 parts by mass of a polycarbonate resin (H-4000 manufactured by Mitsubishi Engineer Plastics) as a raw material resin for dilution were each dried at 140 ° C. for 3 hours. Then, it supplied to the extruder provided with the T-type nozzle | cap | die, kneading | extruding and cooling was performed on the casting drum cooled at 25 degreeC, applying an electrostatic, and the unfoamed resin molding was obtained.

得られた未発泡樹脂成形体をオートクレーブ中に投入し、窒素を封入し、150℃、20MPa(超臨界状態)の条件で、3時間含浸させた。その後、オートクレーブ内の温度を80℃まで冷却し、1MPa/secの速度で大気圧まで放圧することにより、成形体を得た。得られた成形体の気泡特性、成形体特性を表1−1に示す。   The obtained unfoamed resin molded article was put into an autoclave, filled with nitrogen, and impregnated for 3 hours under conditions of 150 ° C. and 20 MPa (supercritical state). Thereafter, the temperature in the autoclave was cooled to 80 ° C. and released to atmospheric pressure at a rate of 1 MPa / sec to obtain a molded body. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-1.

(実施例10)
原料樹脂としてポリエチレンテレフタレート樹脂(固有粘度0.65)40質量部を、それぞれ180℃で3時間乾燥した。その後、T型口金を備えた押出機に供給し、25℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発泡樹脂成形体を得た。
(Example 10)
40 parts by mass of polyethylene terephthalate resin (inherent viscosity 0.65) as a raw material resin was dried at 180 ° C. for 3 hours. Then, it supplied to the extruder provided with the T-type nozzle | cap | die, kneading | extruding and cooling was performed on the casting drum cooled at 25 degreeC, applying an electrostatic, and the unfoamed resin molding was obtained.

得られた未発泡樹脂成形体をオートクレーブ中に投入し、窒素を封入し、100℃、30MPa(超臨界状態)の条件で、24時間含浸させた。その後、オートクレーブ内の温度を50℃まで冷却し、0.01MPa/secの速度で大気圧まで放圧することにより、成形体を得た。得られた成形体の気泡特性、成形体特性を表1−1に示す。   The obtained unfoamed resin molded product was put into an autoclave, nitrogen was sealed, and impregnation was performed at 100 ° C. and 30 MPa (supercritical state) for 24 hours. Thereafter, the temperature in the autoclave was cooled to 50 ° C. and released to atmospheric pressure at a rate of 0.01 MPa / sec to obtain a molded body. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-1.

(実施例11)
原料樹脂としてPLA(ネイチャーワークス(株)製 4042D)50質量部とPMMA(住友化学(株)製 LG−21)50質量部を、それぞれ80℃で3時間乾燥した。その後、T型口金を備えた押出機に供給し、25℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発泡樹脂成形体を得た。
(Example 11)
As raw material resins, 50 parts by mass of PLA (manufactured by Nature Works 4042D) and 50 parts by mass of PMMA (manufactured by Sumitomo Chemical Co., Ltd. LG-21) were each dried at 80 ° C. for 3 hours. Then, it supplied to the extruder provided with the T-type nozzle | cap | die, kneading | extruding and cooling was performed on the casting drum cooled at 25 degreeC, applying an electrostatic, and the unfoamed resin molding was obtained.

得られた未発泡樹脂成形体をオートクレーブ中に投入し、二酸化炭素を封入し、60℃、15MPa(超臨界状態)の条件で、3時間含浸させた。その後、オートクレーブ内の温度を50℃まで冷却し、0.1MPa/secの速度で大気圧まで放圧することにより、成形体を得た。得られた成形体の気泡特性、成形体特性を表1−2に示す。   The obtained unfoamed resin molded article was put into an autoclave, carbon dioxide was enclosed, and impregnation was performed at 60 ° C. and 15 MPa (supercritical state) for 3 hours. Thereafter, the temperature in the autoclave was cooled to 50 ° C. and released to atmospheric pressure at a rate of 0.1 MPa / sec to obtain a molded body. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-2.

(実施例12)
原料樹脂としてPMMA(住友化学(株)製 LG−21)20質量部と、気泡増核剤としてタルク(日本タルク(株)製 平均粒径0.1μm)1質量部を、二軸混練機を用いて、混練温度280℃で混練し、粒子含有組成物を得た。該粒子含有組成物と、希釈用原料樹脂としてPLA(ネイチャーワークス(株)製 4042D)80質量部を、それぞれ80℃で3時間乾燥した。その後、T型口金を備えた押出機に供給し、25℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発泡樹脂成形体を得た。
Example 12
20 parts by mass of PMMA (LG-21 manufactured by Sumitomo Chemical Co., Ltd.) as the raw material resin, 1 part by mass of talc (average particle size 0.1 μm manufactured by Nippon Talc Co., Ltd.) as the bubble nucleating agent, And kneading at a kneading temperature of 280 ° C. to obtain a particle-containing composition. The particle-containing composition and 80 parts by mass of PLA (4042D manufactured by Nature Works Co., Ltd.) as a raw material resin for dilution were each dried at 80 ° C. for 3 hours. Then, it supplied to the extruder provided with the T-type nozzle | cap | die, kneading | extruding and cooling was performed on the casting drum cooled at 25 degreeC, applying an electrostatic, and the unfoamed resin molding was obtained.

得られた未発泡樹脂成形体をオートクレーブ中に投入し、二酸化炭素を封入し、70℃、15MPa(超臨界状態)の条件で、2時間含浸させた。その後、冷却しながら、5MPa/secの速度で大気圧まで放圧することにより、成形体を得た。このとき、圧力が10MPaの時点で温度は50℃であった。得られた成形体の気泡特性、成形体特性を表1−2に示す。   The obtained unfoamed resin molded article was put into an autoclave, carbon dioxide was enclosed, and impregnation was performed at 70 ° C. and 15 MPa (supercritical state) for 2 hours. Then, a molded body was obtained by releasing the pressure to atmospheric pressure at a rate of 5 MPa / sec while cooling. At this time, the temperature was 50 ° C. when the pressure was 10 MPa. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-2.

(実施例13)
原料樹脂としてPLA(ネイチャーワークス(株)製 4042D)40質量部とPMMA(住友化学(株)製 LG−21)60質量部を2台の押出機を直列に接続したタンデム押出機に供給した。押出機の構成は、1台目が、スクリュー長さと口径の比L/D=30、2台目がL/D=20のものを用いた。1台目の押出機においては、L/D=15の地点のスクリューにリング状のシールを施し、L/D=18の地点に発泡剤供給口を設けた。1台目の押出機において220℃で溶融状態とし、ガス供給口より発泡剤として炭酸ガスを11MPaで圧入し、2台目の押出機の設定温度を180℃として押し出した。押出機から押し出された溶融樹脂は、短管を介してフィルタパックで濾過された後、圧力調整弁を経て口金からシート状に成形して吐出した。圧力調整弁直前の溶融樹脂圧力を22MPaになるように設定して、口金から吐出する際、溶解していた炭酸ガスが発泡し、成形体中に多数の気泡を発生させた。口金から押し出されたシートを、口金から1cm離れた位置に設置した表面温度20℃に保たれたキャスティングドラムを用いて急冷固化せしめ巻き取った。得られた成形体の気泡特性、成形体特性を表1−2に示す。
(Example 13)
As a raw material resin, 40 parts by mass of PLA (manufactured by Nature Works 4042D) and 60 parts by mass of PMMA (manufactured by Sumitomo Chemical Co., Ltd. LG-21) were supplied to a tandem extruder in which two extruders were connected in series. The configuration of the extruder was such that the first unit had a screw length to aperture ratio L / D = 30, and the second unit had L / D = 20. In the first extruder, a ring-shaped seal was applied to the screw at the point of L / D = 15, and a blowing agent supply port was provided at the point of L / D = 18. The first extruder was melted at 220 ° C., carbon dioxide was injected as a foaming agent at 11 MPa from the gas supply port, and the second extruder was set at a set temperature of 180 ° C. and extruded. The molten resin extruded from the extruder was filtered by a filter pack through a short tube, then formed into a sheet from a die through a pressure regulating valve and discharged. When the molten resin pressure immediately before the pressure regulating valve was set to 22 MPa, and discharging from the die, the dissolved carbon dioxide gas foamed, and a large number of bubbles were generated in the molded body. The sheet extruded from the die was rapidly cooled and solidified by using a casting drum maintained at a surface temperature of 20 ° C. installed at a position 1 cm away from the die. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-2.

(実施例14)
実施例1で得られた未発泡樹脂成形体を、加熱ロールにて温度を上昇させ、予熱温度を110℃、延伸温度を105℃として、長手方向に3.0倍延伸し、次いでテンター式横延伸機にて予熱温度95℃、延伸温度120℃で幅方向に3.1倍延伸し、そのままテンター内にて幅方向に4%の弛緩処理を行いながら、温度230℃で5秒間の熱固定を行い、未発泡樹脂成形体を得た。
得られた未発泡樹脂成形体をオートクレーブ中に投入し、二酸化炭素を封入し、70℃、15MPa(超臨界状態)の条件で、3時間含浸させた。その後、オートクレーブ内の温度を50℃まで冷却し、0.1MPa/secの速度で大気圧まで放圧することにより、成形体を得た。得られた成形体の気泡特性、成形体特性を表1−2に示す。
(Example 14)
The unfoamed resin molded body obtained in Example 1 was stretched 3.0 times in the longitudinal direction at a preheating temperature of 110 ° C. and a stretching temperature of 105 ° C. with a heating roll. The film was stretched 3.1 times in the width direction at a preheating temperature of 95 ° C and a stretching temperature of 120 ° C using a stretching machine, and heat-fixed at 230 ° C for 5 seconds while performing a 4% relaxation treatment in the width direction. To obtain an unfoamed resin molded body.
The obtained unfoamed resin molded product was put into an autoclave, carbon dioxide was enclosed, and impregnation was performed at 70 ° C. and 15 MPa (supercritical state) for 3 hours. Thereafter, the temperature in the autoclave was cooled to 50 ° C. and released to atmospheric pressure at a rate of 0.1 MPa / sec to obtain a molded body. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-2.

(実施例15)
原料樹脂としてPLA(ネイチャーワークス(株)製 4042D)100質量部を140℃で3時間減圧乾燥した後、T型口金を備えた押出機に供給し、25℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発泡樹脂成形体(シート)を得た。
(Example 15)
100 parts by mass of PLA (4042D manufactured by Nature Works Co., Ltd.) as a raw material resin was dried under reduced pressure at 140 ° C. for 3 hours, then supplied to an extruder equipped with a T-shaped die, and electrostatically placed on a casting drum cooled to 25 ° C. While applying, kneading extrusion and cooling were performed to obtain an unfoamed resin molded body (sheet).

得られた未発泡樹脂成形体(シート)をオートクレーブ中に投入し、窒素を封入し、65℃、20MPa(超臨界状態)の条件で、4時間含浸させた。その後、オートクレーブ内の温度を40℃まで冷却し、0.1MPa/secの速度で大気圧まで放圧することにより、成形体を得た。得られた成形体の気泡特性、成形体特性を表1−2に示す。   The obtained unfoamed resin molded body (sheet) was put into an autoclave, nitrogen was sealed, and impregnation was performed at 65 ° C. and 20 MPa (supercritical state) for 4 hours. Thereafter, the temperature in the autoclave was cooled to 40 ° C. and released to atmospheric pressure at a rate of 0.1 MPa / sec to obtain a molded body. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-2.

(実施例16)
原料樹脂としてPLA(ネイチャーワークス(株)製 4042D)95質量部と原料樹脂としてPMMA(住友化学(株)製 LG−21)5質量部を、それぞれ80℃で3時間乾燥した。その後、T型口金を備えた押出機に供給し、25℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発泡樹脂成形体を得た。
(Example 16)
95 parts by mass of PLA (Nature Works, Inc. 4042D) as a raw material resin and 5 parts by mass of PMMA (LG-21, manufactured by Sumitomo Chemical Co., Ltd.) as a raw material resin were each dried at 80 ° C. for 3 hours. Then, it supplied to the extruder provided with the T-type nozzle | cap | die, kneading | extruding and cooling was performed on the casting drum cooled at 25 degreeC, applying an electrostatic, and the unfoamed resin molding was obtained.

得られた未発泡樹脂成形体をオートクレーブ中に投入し、窒素を封入し、65℃、20MPa(超臨界状態)の条件で、4時間含浸させた。その後、オートクレーブ内の温度を40℃まで冷却し、0.01MPa/secの速度で大気圧まで放圧することにより、成形体を得た。得られた成形体の気泡特性、成形体特性を表1−2に示す。
(実施例17)
原料樹脂としてPLA(ネイチャーワークス(株)製 4042D)100質量部を140℃で3時間減圧乾燥した後、T型口金を備えた押出機に供給し、25℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発泡樹脂成形体(シート)を得た。
The obtained unfoamed resin molded article was put into an autoclave, nitrogen was sealed, and impregnation was performed at 65 ° C. and 20 MPa (supercritical state) for 4 hours. Thereafter, the temperature in the autoclave was cooled to 40 ° C. and released to atmospheric pressure at a rate of 0.01 MPa / sec to obtain a molded body. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-2.
(Example 17)
100 parts by mass of PLA (4042D manufactured by Nature Works Co., Ltd.) as a raw material resin was dried under reduced pressure at 140 ° C. for 3 hours, then supplied to an extruder equipped with a T-shaped die, and electrostatically placed on a casting drum cooled to 25 ° C. While applying, kneading extrusion and cooling were performed to obtain an unfoamed resin molded body (sheet).

得られた未発泡樹脂成形体をオートクレーブ中に投入し、二酸化炭素と窒素を封入し、65℃、20MPa(超臨界状態)の条件で、4時間含浸させた。その後、オートクレーブ内の温度を40℃まで冷却し、0.1MPa/secの速度で大気圧まで放圧することにより、成形体を得た。得られた成形体の気泡特性、成形体特性を表1−2に示す。   The obtained unfoamed resin molded article was put into an autoclave, carbon dioxide and nitrogen were enclosed, and impregnated for 4 hours under conditions of 65 ° C. and 20 MPa (supercritical state). Thereafter, the temperature in the autoclave was cooled to 40 ° C. and released to atmospheric pressure at a rate of 0.1 MPa / sec to obtain a molded body. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-2.

(実施例18)
原料樹脂としてPLA(ネイチャーワークス(株)製 4042D)100質量部を140℃で3時間減圧乾燥した後、T型口金を備えた押出機に供給し、25℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発泡樹脂成形体(シート)を得た。
(Example 18)
100 parts by mass of PLA (4042D manufactured by Nature Works Co., Ltd.) as a raw material resin was dried under reduced pressure at 140 ° C. for 3 hours, then supplied to an extruder equipped with a T-shaped die, and electrostatically placed on a casting drum cooled to 25 ° C. While applying, kneading extrusion and cooling were performed to obtain an unfoamed resin molded body (sheet).

得られた未発泡樹脂成形体(シート)をオートクレーブ中に投入し、イソブタンを封入し、65℃、15MPaの条件で、4時間含浸させた。その後、オートクレーブ内の温度を40℃まで冷却し、0.1MPa/secの速度で大気圧まで放圧することにより、成形体を得た。得られた成形体の気泡特性、成形体特性を表1−2に示す。
(比較例1)
原料樹脂としてPLA(ネイチャーワークス(株)製 4042D)40質量部と、気泡増核剤としてタルク(日本タルク(株)製 平均粒径2.5μm)2質量部を、二軸混練機を用いて、混練温度280℃で混練し、粒子含有組成物を得た。該粒子含有組成物と、希釈用原料としてPLA(ネイチャーワークス(株)製 4042D〕60質量部を、それぞれ140℃で3時間乾燥した。その後、T型口金を備えた押出機に供給し、20℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発泡樹脂成形体を得た。
The obtained unfoamed resin molded body (sheet) was put into an autoclave, isobutane was sealed, and impregnation was performed at 65 ° C. and 15 MPa for 4 hours. Thereafter, the temperature in the autoclave was cooled to 40 ° C. and released to atmospheric pressure at a rate of 0.1 MPa / sec to obtain a molded body. The cell characteristics and molded product characteristics of the obtained molded product are shown in Table 1-2.
(Comparative Example 1)
Using a biaxial kneader, 40 parts by mass of PLA (4042D manufactured by Nature Works Co., Ltd.) as the raw material resin and 2 parts by mass of talc (Nippon Talc Co., Ltd. average particle size 2.5 μm) as the bubble nucleating agent The mixture was kneaded at a kneading temperature of 280 ° C. to obtain a particle-containing composition. The particle-containing composition and 60 parts by mass of PLA (manufactured by Nature Works 4042D) as a raw material for dilution were each dried for 3 hours at 140 ° C. Thereafter, the mixture was supplied to an extruder equipped with a T-type die. An unfoamed resin molded article was obtained by kneading, extruding and cooling on a casting drum cooled to 0 ° C. while applying electrostatic force.

得られた未発泡樹脂成形体をオートクレーブ中に投入し、二酸化炭素を封入し、100℃、30MPa(超臨界状態)の条件で、3時間含浸させた。その後、温度がTg以下に下がらないように加温しながら5MPa/secの速度で大気圧まで放圧することにより、成形体を得た。得られた成形体はもろく、耐撃性に劣るものであった。気泡特性、成形体特性を表1−3に示す。   The obtained unfoamed resin molded article was put into an autoclave, carbon dioxide was enclosed, and impregnation was performed at 100 ° C. and 30 MPa (supercritical state) for 3 hours. Thereafter, the molded body was obtained by releasing the pressure up to atmospheric pressure at a rate of 5 MPa / sec while heating so that the temperature did not drop below Tg. The obtained molded body was fragile and inferior in impact resistance. Table 1-3 shows the bubble characteristics and the molded article characteristics.

(比較例2)
原料樹脂としてPET−G(DIC(株)製 F82D)100質量部を、140℃で3時間乾燥した。その後、T型口金を備えた押出機に供給し、25℃に冷却したキャスティングドラム上に静電印加を行いながら混練押出・冷却して未発泡樹脂成形体を得た。
(Comparative Example 2)
100 parts by mass of PET-G (F82D manufactured by DIC Corporation) as a raw material resin was dried at 140 ° C. for 3 hours. Then, it supplied to the extruder provided with the T-type nozzle | cap | die, kneading | extruding and cooling was performed on the casting drum cooled at 25 degreeC, applying an electrostatic, and the unfoamed resin molding was obtained.

得られた未発泡樹脂成形体をオートクレーブ中に投入し、二酸化炭素を封入し、70℃、15MPa(超臨界状態)の条件で、3時間含浸させた。その後、0℃まで冷却し、0.1MPa/secの速度で大気圧まで放圧することにより、成形体を得た。得られた成形体には発泡が見られなかった。気泡特性、成形体特性を表1−3に示す。   The obtained unfoamed resin molded product was put into an autoclave, carbon dioxide was enclosed, and impregnation was performed at 70 ° C. and 15 MPa (supercritical state) for 3 hours. Then, it cooled to 0 degreeC and the molded object was obtained by releasing to atmospheric pressure at the speed | rate of 0.1 MPa / sec. Foaming was not observed in the obtained molded body. Table 1-3 shows the bubble characteristics and the molded article characteristics.

(比較例3)
ポリエチレンテレフタラートフィルム(“ルミラー”(R)S105、厚み25μm:東レ(株)製)のフィルムの一方の面に空気中でコロナ放電処理を施し、メタリングバー(#12)を用いて、塗液1をコーティングした後、160℃に設定した熱風乾燥機で発泡処理をして、厚み29μmの成形体を得た。得られた成形体の軽量性は不十分であった。気泡特性、成形体特性を表1−3に示す。
・塗液1
水68質量部
ウレタンアクリレート(大日本インキ(株)製 AP201)15質量部
アゾジカルボンアミド(分解開始温度126℃、分解ピーク温度143℃)15質量部
界面活性剤(信越化学製 4051F)2質量部
(比較例4)
実施例15においてキャスティングドラムを口金から3cmの位置に移動し、表面温度を25℃に変更した以外は実施例15と同様の方法で未発泡樹脂成形体を作成した。得られた成形体はもろく、耐衝撃性におとるものであった。泡特性、成形体特性を表1−3に示す。
(Comparative Example 3)
One side of a polyethylene terephthalate film (“Lumirror” (R) S105, thickness 25 μm: manufactured by Toray Industries, Inc.) was subjected to corona discharge treatment in the air, and coated with a metalling bar (# 12). After coating liquid 1, foaming treatment was performed with a hot air dryer set at 160 ° C. to obtain a molded body having a thickness of 29 μm. The resulting molded article was insufficient in lightness. Table 1-3 shows the bubble characteristics and the molded article characteristics.
・ Coating liquid 1
Water 68 parts by mass Urethane acrylate (AP201 manufactured by Dainippon Ink Co., Ltd.) 15 parts by mass Azodicarbonamide (decomposition start temperature 126 ° C., decomposition peak temperature 143 ° C.) 15 parts by mass Surfactant (Shin-Etsu Chemical 4051F) 2 parts by mass (Comparative Example 4)
In Example 15, an unfoamed resin molded article was prepared in the same manner as in Example 15 except that the casting drum was moved to a position 3 cm from the die and the surface temperature was changed to 25 ° C. The obtained molded body was brittle and had good impact resistance. Foam characteristics and molded body characteristics are shown in Table 1-3.

Figure 2010222566
Figure 2010222566

Figure 2010222566
Figure 2010222566

Figure 2010222566
Figure 2010222566

本発明は、内部に複数の微細気泡を含有した成形体を得ることができる微細発泡樹脂成形体に関するもので、特に押出成形性、射出成形性に優れる発泡性組成物に関するものである。 The present invention relates to a finely foamed resin molded body capable of obtaining a molded body containing a plurality of fine bubbles therein, and particularly to a foamable composition excellent in extrusion moldability and injection moldability.

Claims (6)

熱可塑性樹脂を主として含む、短径が30μm以上の成形体であり、1000個/mm以上の気泡を含有し、かつ、気泡径0.5μm未満の気泡数が気泡数全体の30%以上である、成形体。 A molded body mainly containing a thermoplastic resin and having a short diameter of 30 μm or more, contains 1000 / mm 2 or more bubbles, and the number of bubbles having a bubble diameter of less than 0.5 μm is 30% or more of the total number of bubbles. There is a molded body. 光線透過率が50%以上である請求項1に記載の成形体。   The molded article according to claim 1, which has a light transmittance of 50% or more. 前記熱可塑性樹脂が、メタクリル酸系樹脂および/又はポリ乳酸系樹脂である請求項1または2に記載の成形体。   The molded article according to claim 1 or 2, wherein the thermoplastic resin is a methacrylic acid resin and / or a polylactic acid resin. 熱可塑性樹脂を主として含む、短径が30μm以上の成形体の製造方法であって、
熱可塑性樹脂と発泡剤の混合物を、Tg−5度以上Tm−20度以下(Tgとは、熱可塑性樹脂のガラス転移温度を意味する。Tmとは、熱可塑性樹脂の融点を意味する。)、3MPa以上70MPa以下にする工程1、Tg−5度より低い温度まで冷却する工程2、大気圧まで放圧する工程3、を有する成形体の製造方法。
A method for producing a molded body mainly containing a thermoplastic resin and having a minor axis of 30 μm or more,
The mixture of the thermoplastic resin and the foaming agent is Tg−5 degrees or more and Tm−20 degrees or less (Tg means the glass transition temperature of the thermoplastic resin. Tm means the melting point of the thermoplastic resin.) The manufacturing method of the molded object which has the process 1 which makes it 3 MPa or more and 70 MPa or less, the process 2 which cools to temperature lower than Tg-5 degree | times, and the process 3 which releases pressure to atmospheric pressure.
前記工程3において放圧するに際し、放圧速度が0.001MPa/sec以上5MPa/sec未満であることを特徴とする、請求項4に記載の成形体の製造方法。   5. The method for producing a molded body according to claim 4, wherein the pressure release rate is 0.001 MPa / sec or more and less than 5 MPa / sec when releasing the pressure in Step 3. 前記工程1から工程3の放圧までの間において、発泡剤が超臨界状態であることを特徴とする請求項4又は5に記載の成形体の製造方法。   The method for producing a molded article according to claim 4 or 5, wherein the foaming agent is in a supercritical state between the step 1 and the pressure release in the step 3.
JP2010030921A 2009-02-24 2010-02-16 Resin molded product and method for producing the same Pending JP2010222566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010030921A JP2010222566A (en) 2009-02-24 2010-02-16 Resin molded product and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009040430 2009-02-24
JP2010030921A JP2010222566A (en) 2009-02-24 2010-02-16 Resin molded product and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010222566A true JP2010222566A (en) 2010-10-07

Family

ID=43040091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010030921A Pending JP2010222566A (en) 2009-02-24 2010-02-16 Resin molded product and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010222566A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043347A1 (en) * 2010-09-29 2012-04-05 東レ株式会社 Porous body and production method therefor
JP2012092318A (en) * 2010-09-29 2012-05-17 Toray Ind Inc Porous body and method for producing the same
JP2013147566A (en) * 2012-01-19 2013-08-01 Mitsui Chemicals Inc Foaming nucleating agent, composition for foam, foam, and method for manufacturing the same
WO2014024882A1 (en) * 2012-08-09 2014-02-13 古河電気工業株式会社 Thermoplastic-resin-microfoam reflective sheet, optical reflection plate, backlight panel, and method for producing foam reflective sheet
JP2014129447A (en) * 2012-12-28 2014-07-10 Sekisui Chem Co Ltd Thermoplastic resin foam, thermoplastic resin foam sheet, and method for manufacturing a thermoplastic resin foam
JP2015151461A (en) * 2014-02-14 2015-08-24 コニカミノルタ株式会社 Method for manufacturing micro-foam molded article, and micro-foam molded article
JP2015533893A (en) * 2012-09-25 2015-11-26 ダウ グローバル テクノロジーズ エルエルシー Nanocellular thermoplastic foam and its fabrication process
CN113577383A (en) * 2021-07-21 2021-11-02 西南交通大学 Metal-organic/inorganic hybrid coating for promoting bone regeneration and regulating corrosion on degradable metal surface and preparation method thereof
WO2023190679A1 (en) * 2022-03-31 2023-10-05 マクセル株式会社 Extrusion-foamed sheet, and inspection method and inspection device for extrusion-foamed sheet

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9149790B2 (en) 2010-09-29 2015-10-06 Toray Industries, Inc. Porous body and production method therefor
JP2012092318A (en) * 2010-09-29 2012-05-17 Toray Ind Inc Porous body and method for producing the same
WO2012043347A1 (en) * 2010-09-29 2012-04-05 東レ株式会社 Porous body and production method therefor
JP2013147566A (en) * 2012-01-19 2013-08-01 Mitsui Chemicals Inc Foaming nucleating agent, composition for foam, foam, and method for manufacturing the same
WO2014024882A1 (en) * 2012-08-09 2014-02-13 古河電気工業株式会社 Thermoplastic-resin-microfoam reflective sheet, optical reflection plate, backlight panel, and method for producing foam reflective sheet
JPWO2014024882A1 (en) * 2012-08-09 2016-07-25 古河電気工業株式会社 Thermoplastic resin fine foamed reflective sheet, light reflective plate, backlight panel, and foamed reflective sheet manufacturing method
TWI554386B (en) * 2012-08-09 2016-10-21 Furukawa Electric Co Ltd Production method of thermoplastic resin microfoil reflection sheet, light reflection plate, backlight panel and foam reflection sheet
US9908300B2 (en) 2012-08-09 2018-03-06 Furukawa Electric Co., Ltd. Thermoplastic resin finely-foamed reflective sheet, light-reflecting plate, backlight panel, and method of producing the foamed reflective sheet
JP2015533893A (en) * 2012-09-25 2015-11-26 ダウ グローバル テクノロジーズ エルエルシー Nanocellular thermoplastic foam and its fabrication process
JP2014129447A (en) * 2012-12-28 2014-07-10 Sekisui Chem Co Ltd Thermoplastic resin foam, thermoplastic resin foam sheet, and method for manufacturing a thermoplastic resin foam
JP2015151461A (en) * 2014-02-14 2015-08-24 コニカミノルタ株式会社 Method for manufacturing micro-foam molded article, and micro-foam molded article
CN113577383A (en) * 2021-07-21 2021-11-02 西南交通大学 Metal-organic/inorganic hybrid coating for promoting bone regeneration and regulating corrosion on degradable metal surface and preparation method thereof
WO2023190679A1 (en) * 2022-03-31 2023-10-05 マクセル株式会社 Extrusion-foamed sheet, and inspection method and inspection device for extrusion-foamed sheet

Similar Documents

Publication Publication Date Title
JP2010222566A (en) Resin molded product and method for producing the same
JP5414162B2 (en) Light-shielding plastic container
JP5454137B2 (en) Insulation
JP5974010B2 (en) Aromatic polyester resin foamed particles for in-mold foam molding and method for producing the same, in-mold foam molded body, composite structure member, and automotive member
JP5941052B2 (en) Method for producing polylactic acid-based resin expanded particles, and method for producing a molded article thereof
JP2004269583A (en) Thermoplastic resin composition for foaming and its foamed product
WO2006030640A1 (en) Thermoplastic resin foam
JP5986096B2 (en) Method for producing foamed polylactic acid resin particles
JPWO2007083720A1 (en) Polyester foam sheet and method for producing the same
JP3619154B2 (en) Crystalline aromatic polyester resin pre-foamed particles, in-mold foam molded article and foam laminate using the same
JP4784149B2 (en) Container preform and plastic container
JP6583909B2 (en) Polylactic acid resin foamed molded article
JP2010241946A (en) Polycarbonate resin foam and method for producing the same
JP2008088209A (en) Polyester resin composition foam sheet and method for producing the same
JP5645292B2 (en) Light reflection sheet
WO2013094461A1 (en) Polyester resin foam body, light reflecting material using same, and method of producing polyester resin foam body
EP3124527B1 (en) Expanded polylactic acid resin beads and molded article of expanded polylactic acid resin beads
JP2008303236A (en) Manufacturing method for cellular material, and cellular material
JP2016069471A (en) Foam particle
JP6338211B2 (en) Polystyrene / silica composite foam manufacturing method and heat insulating material using the same
JP2012140630A (en) Method for manufacturing foam, and foam
JP2008158135A (en) Method of manufacturing reflection sheet
JP2013014681A (en) Automotive trim
JP5502778B2 (en) Polylactic acid resin foam and method for producing the same
JP5725124B2 (en) Manufacturing method of light-shielding plastic container