JP2012140630A - Method for manufacturing foam, and foam - Google Patents

Method for manufacturing foam, and foam Download PDF

Info

Publication number
JP2012140630A
JP2012140630A JP2012051104A JP2012051104A JP2012140630A JP 2012140630 A JP2012140630 A JP 2012140630A JP 2012051104 A JP2012051104 A JP 2012051104A JP 2012051104 A JP2012051104 A JP 2012051104A JP 2012140630 A JP2012140630 A JP 2012140630A
Authority
JP
Japan
Prior art keywords
component
foam
molded body
foaming
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012051104A
Other languages
Japanese (ja)
Inventor
Tomoyuki Nemoto
友幸 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2012051104A priority Critical patent/JP2012140630A/en
Publication of JP2012140630A publication Critical patent/JP2012140630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new foam in which a high-order structure (morphology) of a molded body before foaming and a foaming structure are easily controlled.SOLUTION: The molded body is obtained which contains an (a) component, and a (b) component as main components wherein the average size of the (b) component is controlled at 5 μm; a pressurized gas is impregnated in the molded body; and thereafter, the resultant molded body is foamed mainly in the region of the (b) component within such a temperature range that the elastic modulus of the molded body becomes ≤5.0×10Pa to obtain a sheet-shape molded body having a thickness of ≥50 μm and ≤500 μm.

Description

本発明は、発泡体の製造方法に関し、更に詳しくは発泡構造の制御が容易な発泡体の製造方法、及びその製造方法により得られた発泡体に関するものである。   The present invention relates to a method for producing a foam, and more particularly to a method for producing a foam in which the foam structure can be easily controlled, and a foam obtained by the production method.

従来、ポリオレフィン系樹脂、ポリスチレン系樹脂等に代表される熱可塑性樹脂からなる発泡体は、その優れた断熱性、緩衝性等により、食品容器や建築用材料等の分野で広く活用されている。
熱可塑性樹脂発泡体の代表的な製造方法としては、化学発泡法と物理発泡法がある。化学発泡法は、低分子量の化学発泡剤を混合し、発泡剤の分解温度以上に加熱することにより発泡成形する方法である。また物理発泡法は、ブタン等の低沸点有機化合物を供給して混練した後、低圧域に押出することにより発泡成形する方法である。この方法は、樹脂中への発泡剤の添加量を調整すれば、低倍率から高倍率までの種々の発泡体を容易に製造することができるのが特徴であるが、樹脂を溶融、押出しすると、得られる樹脂成形体の厚みや密度が不均一になる等、多孔構造の制御が困難であるといった問題があった。
Conventionally, foams made of thermoplastic resins typified by polyolefin resins, polystyrene resins and the like have been widely used in the fields of food containers, building materials, etc. due to their excellent heat insulation and buffering properties.
As a typical method for producing a thermoplastic resin foam, there are a chemical foaming method and a physical foaming method. The chemical foaming method is a method in which a low molecular weight chemical foaming agent is mixed and foamed by heating to a temperature higher than the decomposition temperature of the foaming agent. The physical foaming method is a method of foam molding by supplying a low boiling point organic compound such as butane and kneading and then extruding it into a low pressure region. This method is characterized in that various foams from low magnification to high magnification can be easily produced by adjusting the amount of foaming agent added to the resin, but when the resin is melted and extruded, However, there is a problem that it is difficult to control the porous structure, for example, the thickness and density of the obtained resin molding are not uniform.

一方、これまでの発泡法に対して、発泡体の気泡を微細化(例えば、平均気泡径が10μm以下)することにより、発泡材料の性能幅を拡大するために、具体的には、例えば発泡倍率の増加に伴う強度低下の抑制ないしは強度の向上などを図る技術としてマイクロセルラープラスチックと呼ばれる技術がある。この方法は、具体的には、(1)高圧容器内で熱可塑性樹脂に高圧下もしくは超臨界状態で窒素や二酸化炭素などのガスを含浸させ、次いで、(2)ガスを含浸させた熱可塑性樹脂を高圧容器より取り出し、オイルバス等で熱可塑性樹脂のガラス転移温度以上の温度まで昇温し、(3)核生成を誘発して気泡成長させることにより微細な気泡の発泡体を得るものである。   On the other hand, in order to expand the performance range of the foam material by refining the bubbles of the foam (for example, the average cell diameter is 10 μm or less) compared to the conventional foaming method, specifically, for example, foaming There is a technique called microcellular plastic as a technique for suppressing a reduction in strength accompanying an increase in magnification or improving a strength. Specifically, this method includes (1) impregnating a thermoplastic resin in a high-pressure vessel with a gas such as nitrogen or carbon dioxide under high pressure or in a supercritical state, and then (2) a thermoplastic impregnated with the gas. The resin is taken out from the high-pressure vessel, heated to a temperature higher than the glass transition temperature of the thermoplastic resin with an oil bath or the like, and (3) a fine bubble foam is obtained by inducing nucleation and growing bubbles. is there.

このような製造方法として、特許文献1には、加圧下において、少なくとも1種の結晶性熱可塑性樹脂と、少なくとも1種の非晶性熱可塑性樹脂とを混合、分散してなるポリマーアロイ中に非反応性ガスを含有させる工程と、非加圧下において、非反応性ガスを含有したポリマーアロイを加熱により発泡させる工程とを具備したことを特徴とする熱可塑性樹脂発泡体の製造方法が開示されている。また、特許文献2には2種類以上のモノマーの共重合体よりなるミクロ相分離構造を有する樹脂材料に、高圧ガスを接触させた後、発泡させることを特徴とする共重合樹脂発泡体の製造方法が開示されている。また、特許文献3には二酸化炭素の溶解度及び拡散係数が異なり、かつ互いに非相溶の樹脂(A)及び樹脂(B)からなり、(A)/(B)の質量比が1〜99/99〜1である樹脂成形体に、樹脂(A)及び樹脂(B)の融点以下の温度で、二酸化炭素を含浸させた後、発泡させることを特徴とする樹脂発泡成形体の製造方法、及びその製造方法により得られた樹脂成形体が開示されている。   As such a production method, Patent Document 1 discloses that in a polymer alloy obtained by mixing and dispersing at least one crystalline thermoplastic resin and at least one amorphous thermoplastic resin under pressure. Disclosed is a method for producing a thermoplastic resin foam, comprising: a step of containing a non-reactive gas; and a step of foaming a polymer alloy containing the non-reactive gas by heating under no pressure. ing. Patent Document 2 discloses the production of a copolymer resin foam characterized in that a high pressure gas is brought into contact with a resin material having a microphase separation structure made of a copolymer of two or more types of monomers and then foamed. A method is disclosed. Patent Document 3 includes a resin (A) and a resin (B) that are different in solubility and diffusion coefficient of carbon dioxide and incompatible with each other, and the mass ratio of (A) / (B) is 1 to 99 /. A method for producing a resin foam molded article, wherein the resin molded article 99-1 is impregnated with carbon dioxide at a temperature not higher than the melting points of the resin (A) and the resin (B), and then foamed. A resin molded body obtained by the manufacturing method is disclosed.

特開平6−55651号公報JP-A-6-55651 特開2001−151924号公報JP 2001-151924 A 特開2005−271504号公報JP 2005-271504 A

しかし、前述したいずれの製造方法においても、発泡前の成形体の高次構造(モルフォロジー)を積極的に制御し、発泡前の成形体の高次構造(モルフォロジー)を反映させる製造方法は開示されていない。   However, in any of the manufacturing methods described above, a manufacturing method that actively controls the higher-order structure (morphology) of the molded body before foaming and reflects the higher-order structure (morphology) of the molded body before foaming is disclosed. Not.

本発明は、上記問題点を解決すべくなされたものであり、本発明の目的は、発泡構造の制御が容易な発泡体の製造方法及び発泡体を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for producing a foam and a foam in which the foam structure can be easily controlled.

本発明者らは、鋭意検討を重ねた結果、発泡させる前の成形体の構造を制御した後に加圧ガスを含浸し、ある特定の温度域で発泡させることにより上記課題を解消できることを見出し、本発明を完成するに至った。   As a result of intensive studies, the inventors have found that the above problem can be solved by impregnating a pressurized gas after controlling the structure of the molded body before foaming and foaming in a specific temperature range, The present invention has been completed.

すなわち、本発明は以下のとおりである。
[1]主成分として、(a)成分及び(b)成分を質量比(a)/(b)=97/3〜60/40の範囲で含有し、かつ、(b)成分の平均サイズを5μm以下に制御してなる成形体を得、該成形体中に加圧ガスを含浸させた後、該成形体の弾性率が5.0×10Pa以下となる温度域で、主に(b)成分の領域で発泡させることを特徴とする発泡体の製造方法。
That is, the present invention is as follows.
[1] As a main component, the component (a) and the component (b) are contained in a mass ratio (a) / (b) = 97/3 to 60/40, and the average size of the component (b) After obtaining a molded product controlled to 5 μm or less and impregnating the molded product with a pressurized gas, mainly in the temperature range where the elastic modulus of the molded product is 5.0 × 10 8 Pa or less ( b) A method for producing a foam, characterized by foaming in the component region.

[2]前記(a)成分が結晶性樹脂であり、前記(b)成分が非晶性樹脂であり、かつ、前記(a)成分の融点Tmaと前記(b)成分のガラス転移温度Tgbとが下記(1)式を満足することを特徴とする[1]記載の発泡体の製造方法。
Tma>Tgb ・・・(1)
[2] The component (a) is a crystalline resin, the component (b) is an amorphous resin, the melting point Tma of the component (a), and the glass transition temperature Tgb of the component (b) Satisfies the following formula (1): The method for producing a foam according to [1].
Tma> Tgb (1)

[3][1]または[2]に記載の製造方法により得られた発泡体。   [3] A foam obtained by the production method according to [1] or [2].

本発明の発泡体の製造方法は、成形体の高次構造(モルフォロジー)を制御した後に加圧ガスを用いて発泡させる。このため、発泡体の多孔構造、発泡倍率等を容易に制御することができる。また得られた発泡体は、軽量高強度、光学的性質、断熱性、低誘電性、ガス透過性、イオン透過性を要求される分野に有効に活用することができる。   In the method for producing a foam of the present invention, foaming is performed using a pressurized gas after controlling the higher order structure (morphology) of the molded body. For this reason, the porous structure of the foam, the expansion ratio, and the like can be easily controlled. Further, the obtained foam can be effectively used in fields that require light weight and high strength, optical properties, heat insulation, low dielectric properties, gas permeability, and ion permeability.

実施例1で得られた成形体1のモルフォロジー観察像(倍率5000倍)である。2 is a morphological observation image (magnification 5000 times) of the molded body 1 obtained in Example 1. 実施例1で得られた成形体1の弾性率の温度依存性である。It is the temperature dependence of the elasticity modulus of the molded object 1 obtained in Example 1. FIG. 実施例1で得られた発泡体1の観察像(倍率3000倍)である。It is an observation image (magnification 3000 times) of the foam 1 obtained in Example 1. 実施例1で得られた発泡体2の観察像(倍率3000倍)である。It is an observation image (magnification 3000 times) of the foam 2 obtained in Example 1. 実施例1で得られた発泡体2にエッチング処理を施した発泡体の観察像(倍率6000倍)である。It is an observation image (magnification 6000 times) of the foam which performed the etching process to the foam 2 obtained in Example 1. FIG. 実施例2で得られた成形体2のモルフォロジー観察像(倍率10000倍)である。3 is a morphological observation image (magnification 10,000 times) of the molded body 2 obtained in Example 2. 実施例2で得られた成形体2、(a)成分及び(b)成分の弾性率の温度依存性である。It is the temperature dependence of the elasticity modulus of the molded object 2, the (a) component obtained in Example 2, and the (b) component. 実施例2で得られた発泡体3の観察像(倍率3000倍)である。It is an observation image (magnification 3000 times) of the foam 3 obtained in Example 2. 実施例3で得られた成形体3のモルフォロジー観察像(倍率2500倍)である。4 is a morphology observation image (magnification 2500 times) of the molded body 3 obtained in Example 3. FIG. 実施例3で得られた成形体3、(a)成分及び(b)成分の弾性率の温度依存性である。It is the temperature dependence of the elasticity modulus of the molded object 3, the (a) component obtained in Example 3, and the (b) component. 実施例3で得られた発泡体4の観察像(倍率3000倍)である。It is an observation image (magnification 3000 times) of the foam 4 obtained in Example 3. 比較例2で得られた成形体の弾性率の温度依存性である。It is the temperature dependence of the elastic modulus of the molded body obtained in Comparative Example 2. 実施例4で得られた成形体4の弾性率の温度依存性である。It is the temperature dependence of the elasticity modulus of the molded object 4 obtained in Example 4. FIG. 実施例4で得られた発泡体5の観察像(倍率3000倍)である。It is an observation image (magnification 3000 times) of the foam 5 obtained in Example 4. 実施例5で得られた成形体5のモルフォロジー観察像(倍率2500倍)である。6 is a morphological observation image (magnification 2500 times) of the molded body 5 obtained in Example 5. 実施例5で得られた成形体5の弾性率の温度依存性である。It is temperature dependence of the elasticity modulus of the molded object 5 obtained in Example 5. FIG. 実施例5で得られた成形体6のモルフォロジー観察像(倍率2500倍)である。6 is a morphology observation image (magnification 2500 times) of the molded body 6 obtained in Example 5. 実施例5で得られた発泡体6の観察像(倍率3000倍)である。It is an observation image (magnification 3000 times) of the foam 6 obtained in Example 5. 実施例5で得られた発泡体7の観察像(倍率3000倍)である。It is an observation image (magnification 3000 times) of the foam 7 obtained in Example 5. 比較例3、実施例6の成形体7のモルフォロジー観察像(倍率5000倍)である。It is a morphology observation image (magnification 5000 times) of the molded body 7 of Comparative Example 3 and Example 6. 比較例3、実施例6の成形体7の弾性率の温度依存性である。It is a temperature dependence of the elasticity modulus of the molded object 7 of the comparative example 3 and Example 6. FIG. 実施例6で得られた発泡体8の観察像(倍率3000倍)である。It is an observation image (magnification 3000 times) of the foam 8 obtained in Example 6. 実施例6で得られた発泡体9の観察像(倍率3000倍)である。It is an observation image (magnification 3000 times) of the foam 9 obtained in Example 6.

以下、本発明を詳しく説明する。
なお、本発明における数値範囲の上限値及び下限値は、本発明が特定する数値範囲内から僅かに外れる場合であっても、当該数値範囲内と同様の作用効果を備えている限り本発明の均等範囲に包含するものである。また、本発明における主成分とは、最も多量に含有されている成分のことであり、通常50質量%以上、好ましくは70質量%以上、更に好ましくは80質量%以上含有する成分のことである。
The present invention will be described in detail below.
It should be noted that the upper and lower limits of the numerical range in the present invention are those of the present invention as long as they have the same operational effects as those in the numerical range even if they are slightly outside the numerical range specified by the present invention. It is included in the equivalent range. In addition, the main component in the present invention is a component that is contained in the largest amount, and is usually a component that is 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more. .

また、本発明においては、特に断りのない限り、発泡前の状態は成形体、発泡後の状態は発泡体と称して両者を区別している。   In the present invention, unless otherwise specified, the state before foaming is referred to as a molded body, and the state after foaming is referred to as a foam to distinguish them.

本発明の発泡体の製造方法は、主成分として、(a)成分及び(b)成分を質量比(a)/(b)=97/3〜60/40の範囲で含有し、かつ、(b)成分の平均サイズを5μm以下に制御してなる成形体を得る工程と、該成形体中に加圧ガスを含浸させる工程と、加圧ガスを含有した該成形体を、該成形体の弾性率が5.0×10Pa以下となる温度域で発泡させる工程とを具備する。 The method for producing a foam of the present invention contains, as main components, the component (a) and the component (b) in a mass ratio (a) / (b) = 97/3 to 60/40, and ( b) a step of obtaining a molded product obtained by controlling the average size of the components to 5 μm or less; a step of impregnating the molded product with a pressurized gas; and a molded product containing the pressurized gas. And foaming in a temperature range where the elastic modulus is 5.0 × 10 8 Pa or less.

本発明の発泡体の製造方法の最初の工程として、主成分として、(a)成分及び(b)成分を質量比(a)/(b)=97/3〜60/40の範囲で含有し、かつ、(b)成分の平均サイズを5μm以下に制御してなる成形体を得ることが重要である。   As the first step of the method for producing a foam of the present invention, as a main component, the component (a) and the component (b) are contained in a mass ratio (a) / (b) = 97 / 3-60 / 40. In addition, it is important to obtain a molded article obtained by controlling the average size of the component (b) to 5 μm or less.

また、本発明における(a)成分及び(b)成分は、上記要件を満足すれば特に制限なく使用することができる。本発明に於いて使用する(a)成分及び(b)成分としては、(a)成分と(b)成分との共重合体や、(a)成分と(b)成分とのブレンド又はアロイなどが挙げられる。これらは1種のみを単独で、または2種以上を混合して用いても構わない。   In addition, the component (a) and the component (b) in the present invention can be used without particular limitation as long as the above requirements are satisfied. Examples of the component (a) and component (b) used in the present invention include a copolymer of the component (a) and the component (b), and a blend or alloy of the component (a) and the component (b). Is mentioned. These may be used alone or in combination of two or more.

(a)成分と(b)成分との共重合体としては、(a)成分と(b)成分との交互相互共重合体、ランダム共重合体、ブロック共重合体、グラフト共重合体等がある。本発明に好適な共重合の形態としては、(a)成分と(b)成分により構成される高次構造(モルフォロジー)が良好な相分離構造を有する点からブロック共重合体、グラフト共重合体、及びブロック性の高いランダム共重合体である。
本発明で用いられる共重合体としては、例えばプロピレンとエチレン、ブテン、ヘキセン等のα−オレフィンとの共重合体、エチレンとプロピレン、ブテン−1、ペンテン−1、ヘキセン−1、ヘプテン−1、オクテン−1などの炭素数3〜10のα−オレフィン;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル;アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチルなどの不飽和カルボン酸エステル、共役ジエンや非共役ジエンのような不飽和化合物の中から選ばれる1種または2種以上のコモノマーとの共重合体又は多元共重合体の他、スチレンとイソブチレン、ブタジエン、イソブテンとの共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、エチレンとメチルメタクリレート、エチルアクリレート、ブチルメタクリレート、ブチルアクリレート、フッ化ビニルとの共重合体、プロピレンとメチルメタクリレート、エチルアクリレート、ブチルメタクリレート、ブチルアクリレートとの共重合体、メチルメタクリレートとブチルメタクリレートとの共重合体、ジメチルシロキサン−イソブテン共重合体、プロピレンオキシド−ポリブタジエン共重合体、ポリスルホン−ポリジメチルシロキサン共重合体などを用いることができる。
Examples of the copolymer of the component (a) and the component (b) include an alternating copolymer of the component (a) and the component (b), a random copolymer, a block copolymer, and a graft copolymer. is there. As a copolymerization form suitable for the present invention, a block copolymer and a graft copolymer are preferred because the higher order structure (morphology) composed of the components (a) and (b) has a good phase separation structure. And a random copolymer having a high block property.
Examples of the copolymer used in the present invention include a copolymer of propylene and an α-olefin such as ethylene, butene and hexene, ethylene and propylene, butene-1, pentene-1, hexene-1, heptene-1, Α-olefins having 3 to 10 carbon atoms such as octene-1; vinyl esters such as vinyl acetate and vinyl propionate; unsaturated carboxylic acid esters such as methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate; conjugation A copolymer of one or two or more comonomers selected from unsaturated compounds such as dienes and non-conjugated dienes or a multi-component copolymer, a copolymer of styrene and isobutylene, butadiene and isobutene, Acrylonitrile-butadiene-styrene copolymer, ethylene and methyl methacrylate, ethyl acetate Acrylate, butyl methacrylate, butyl acrylate, copolymer of vinyl fluoride, copolymer of propylene and methyl methacrylate, ethyl acrylate, butyl methacrylate, butyl acrylate, copolymer of methyl methacrylate and butyl methacrylate, dimethylsiloxane An isobutene copolymer, a propylene oxide-polybutadiene copolymer, a polysulfone-polydimethylsiloxane copolymer, or the like can be used.

上記共重合体の製造方法は、特に限定されるものではなく、スラリー重合法、溶液重合法、塊状重合法、気相重合法、また、ラジカル開始剤を用いた塊状重合法等が適用できる。   The method for producing the copolymer is not particularly limited, and a slurry polymerization method, a solution polymerization method, a bulk polymerization method, a gas phase polymerization method, a bulk polymerization method using a radical initiator, and the like can be applied.

(a)成分と(b)成分とのブレンド又はアロイとしては、(a)成分と(b)成分からなり、かつ、(b)成分の平均サイズを5μm以下に制御できるものであれば、特に制限無く使用することができる。成形体の(b)成分の平均サイズを5μm以下に制御することにより、緻密で微細な発泡構造を有する発泡体が得られる。   As a blend or alloy of the component (a) and the component (b), particularly if it is composed of the component (a) and the component (b) and the average size of the component (b) can be controlled to 5 μm or less. Can be used without restriction. By controlling the average size of the component (b) of the molded body to 5 μm or less, a foam having a dense and fine foam structure can be obtained.

(a)成分と(b)成分とのブレンド又はアロイとしては、例えば、(a)成分、(b)成分ともに結晶性熱可塑性樹脂の組み合わせ、(a)成分が結晶性熱可塑性樹脂であり、(b)成分が非晶性熱可塑性樹脂の組み合わせ、(a)成分が非晶性熱可塑性樹脂であり、(b)成分が結晶性熱可塑性樹脂の組み合わせ、(a)成分、(b)成分ともに非晶性熱可塑性樹脂の組み合わせが挙げられる。ここでいう非晶性熱可塑性樹脂とは、加熱すると軟化し、冷却すると固化する特徴を有する熱可塑性樹脂のうち、結晶状態となりえないか、結晶化しても結晶融解熱量が10J/g以下となる結晶化度が極めて低い熱可塑性樹脂を示す。   As a blend or alloy of (a) component and (b) component, for example, (a) component, (b) component is a combination of crystalline thermoplastic resins, (a) component is a crystalline thermoplastic resin, (B) component is a combination of amorphous thermoplastic resins, (a) component is an amorphous thermoplastic resin, (b) component is a combination of crystalline thermoplastic resins, (a) component, (b) component Both include a combination of amorphous thermoplastic resins. The non-crystalline thermoplastic resin as used herein refers to a thermoplastic resin having a characteristic that it softens when heated and solidifies when cooled, or it cannot be in a crystalline state or has a heat of crystal melting of 10 J / g or less even when crystallized. A thermoplastic resin having a very low crystallinity.

結晶性熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン、アイオノマー、ポリエチレンテレフタレート、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、超高分子量ポリエチレン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン、又はこれらの共重合体などが挙げられる。   Examples of the crystalline thermoplastic resin include polyethylene, polypropylene, ionomer, polyethylene terephthalate, polyamide, polyacetal, polybutylene terephthalate, ultrahigh molecular weight polyethylene, polyphenylene sulfide, polyether ether ketone, polytetrafluoroethylene, or a copolymer thereof. Etc.

非晶性熱可塑性樹脂としては、ポリスチレン、ゴム強化ポリスチレン、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、スチレン−メチルアクリレート共重合体、スチレン−メチルメタクリレート−ブタジエン共重合体、ポリカーボネート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリ乳酸、ポリ塩化ビニル、ポリ塩化ビニリデン、塩化ビニル−エチレン共重合体、塩化ビニル−酢酸ビニル共重合体、スチレン−イソプレン−スチレン共重合体、スチレン−エチレン/ブチレン−スチレン共重合体、ポリブタジエン、ポリイソプレン、ポリクロロプレン、スチレン−ブタジエン共重合体、エチレン−α−オレフィン共重合体、エチレン−プロピレン−ジエン共重合体、シクロオレフィン、エチレン−テトラシクロドデセン共重合体、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキサイド、ポリビニルアセテート、ポリフェニレンエーテル、液晶熱可塑性樹脂などが挙げられる。   Amorphous thermoplastic resins include polystyrene, rubber reinforced polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, styrene-methyl acrylate copolymer, styrene-methyl methacrylate-butadiene copolymer, polycarbonate , Polymethyl acrylate, polymethyl methacrylate, polylactic acid, polyvinyl chloride, polyvinylidene chloride, vinyl chloride-ethylene copolymer, vinyl chloride-vinyl acetate copolymer, styrene-isoprene-styrene copolymer, styrene-ethylene / Butylene-styrene copolymer, polybutadiene, polyisoprene, polychloroprene, styrene-butadiene copolymer, ethylene-α-olefin copolymer, ethylene-propylene-diene copolymer, cycloolefin Emissions, ethylene - tetracyclododecene copolymer, polysulfone, polyether sulfone, polyphenylene oxide, polyvinyl acetate, polyphenylene ether, a liquid crystal thermoplastic resin.

(a)成分と(b)成分の質量比は(a)/(b)=97/3〜60/40の範囲であることが重要である。本発明における(a)成分は、主に発泡体の多孔構造を安定化させるための支持体の役割を果たし、(b)成分は、主に加圧ガスを含浸させて発泡する際の開始点となり、発泡領域を形成させるための役割を果たす。この観点から(a)成分がマトリックスを形成し、(b)成分がドメインを形成する高次構造(モルフォロジー)となることが好ましい。更に(a)/(b)=95/5〜70/30の範囲が好ましく、特には90/10〜75/25の範囲が好ましい。   It is important that the mass ratio of the component (a) to the component (b) is in the range of (a) / (b) = 97/3 to 60/40. The component (a) in the present invention mainly serves as a support for stabilizing the porous structure of the foam, and the component (b) is a starting point when foaming is mainly performed by impregnating a pressurized gas. And plays a role in forming a foamed region. From this viewpoint, it is preferable that the (a) component forms a matrix and the (b) component has a higher order structure (morphology) forming a domain. Furthermore, the range of (a) / (b) = 95/5 to 70/30 is preferable, and the range of 90/10 to 75/25 is particularly preferable.

(a)成分と(b)成分から構成される構造には、「球構造」、「シリンダー構造」、「ラメラ構造」等が挙げられるが、本発明においては、(b)成分の平均サイズを5μm以下に制御できるものであればいずれの構造であっても良い。尚、本発明における平均サイズとは、「球構造」の場合には平均粒径、「シリンダー構造」の場合には短径方向の平均粒径、「ラメラ構造」の場合にはラメラ厚みの平均値を指す。本発明における最も好ましい(b)成分の構造は「球構造」である。(b)成分を「球構造」とすることで独立性の高い発泡構造を有する発泡体を得ることができる。   Examples of the structure composed of the component (a) and the component (b) include “sphere structure”, “cylinder structure”, “lamella structure”, etc. In the present invention, the average size of the component (b) Any structure may be used as long as it can be controlled to 5 μm or less. The average size in the present invention is the average particle diameter in the case of “spherical structure”, the average particle diameter in the minor axis direction in the case of “cylinder structure”, and the average of the lamellar thickness in the case of “lamella structure”. Points to the value. The most preferable structure of the component (b) in the present invention is a “spherical structure”. By setting the component (b) to “spherical structure”, a foam having a highly independent foam structure can be obtained.

本発明においては、(b)成分の平均サイズを5μm以下に制御することにより、緻密で微細な発泡構造を有する発泡体が得られる。本発明における(b)成分は加圧ガスを含浸させ発泡する際の開始点となり、発泡領域を形成させるための役割を主に果たすため、(b)成分の平均サイズを5μm以下に制御することによって、発泡倍率の兼ね合いで発泡体の気泡径を制御できる。例えば発泡倍率が1.5倍程度であれば、発泡体の平均気泡径は7.5μm、発泡倍率が2倍程度であれば、発泡体の平均気泡径は10μm程度とすることが可能となると考えられる。   In the present invention, a foam having a dense and fine foam structure can be obtained by controlling the average size of the component (b) to 5 μm or less. The component (b) in the present invention serves as a starting point for foaming by impregnating a pressurized gas, and mainly plays a role in forming a foaming region. Therefore, the average size of the component (b) is controlled to 5 μm or less. Thus, the bubble diameter of the foam can be controlled in consideration of the expansion ratio. For example, if the expansion ratio is about 1.5 times, the average cell diameter of the foam is 7.5 μm, and if the expansion ratio is about 2 times, the average cell diameter of the foam can be about 10 μm. Conceivable.

次に、成形体の製造方法について説明する。前記成形体の製造方法としては公知の方法、例えば射出成形、異型押出、プレス成形、Tダイを用いる押出キャスト法やカレンダー法、インフレーション法などを採用することができ、特に限定されるものではないが、成形体の製膜性や安定生産性などの面からTダイを用いる押出キャスト法が好ましい。Tダイを用いる押出キャスト法での成形温度は組成物の流動特性や製膜性等によって適宜調整されるが、概ね各成分の流動開始温度、好ましくは各成分の流動開始温度+20℃以上の範囲が好適である。また、シート製膜時の冷却方法は特に限定されるものではないが、製膜したシートの結晶化度が多孔構造分布に影響を及ぼすため、出来る限り急冷することが好ましく、Tダイを用いる押出キャスト法でのキャスト温度は、各成分のガラス転移温度±10℃の範囲が好適である。   Next, the manufacturing method of a molded object is demonstrated. As the method for producing the molded body, known methods such as injection molding, profile extrusion, press molding, extrusion casting using T-die, calendar method, inflation method, etc. can be employed, and are not particularly limited. However, the extrusion casting method using a T-die is preferable from the viewpoint of film forming property and stable productivity of the molded body. The molding temperature in the extrusion casting method using a T-die is appropriately adjusted depending on the flow characteristics and film-forming properties of the composition, but is generally in the range of the flow start temperature of each component, preferably the flow start temperature of each component + 20 ° C or higher. Is preferred. In addition, the cooling method at the time of forming the sheet is not particularly limited. However, since the crystallinity of the formed sheet affects the porous structure distribution, the sheet is preferably cooled as quickly as possible. The casting temperature in the casting method is preferably in the range of the glass transition temperature ± 10 ° C. of each component.

また(a)成分と(b)成分からなる成形体の厚みは50μm以上が好適である。(a)成分と(b)成分からなる成形体の厚みが50μm以上であれば、加圧ガスを含有させた成形体を加熱させる工程時において、含浸した加圧ガスが成形体表面から拡散してしまうことがなく、良好な多孔構造が発現でき生産性も良好である。また成形体の厚みは、成形体の形状にもよるが10mm以下が好適である。成形体の厚みが10mm以下であれば、加圧ガスを含有させる際の保持時間が過剰となることがなく生産コストの面で有利である。尚、成形体がシート形状の場合には、成形体の厚みは500μm以下が良い。   Moreover, the thickness of the molded body comprising the component (a) and the component (b) is preferably 50 μm or more. If the thickness of the molded body comprising the component (a) and the component (b) is 50 μm or more, the impregnated pressurized gas diffuses from the surface of the molded body during the process of heating the molded body containing the pressurized gas. And a good porous structure can be expressed and productivity is also good. Moreover, although the thickness of a molded object is based also on the shape of a molded object, 10 mm or less is suitable. If the thickness of the molded body is 10 mm or less, the holding time when the pressurized gas is contained is not excessive, which is advantageous in terms of production cost. In addition, when a molded object is a sheet shape, the thickness of a molded object has good 500 micrometers or less.

次の工程として、得られた成形体に加圧ガスを含浸させる。この工程で言う含浸とは、例えば、成形体中に加圧ガスが溶解したのと同様の状態をいう。含浸条件は、成形体を構成する成分によるが、加圧ガスが含浸できる条件であれば良く、特に制限は無い。成形体に加圧ガスを含浸させる具体的な方法は公知の方法に従って良い。例えば、成形体をオートクレーブ等の耐圧容器に入れ、成形体と、気体状または液体状のガスとを封入する。次いで耐圧容器内の圧力を高めるバッチ式に処理する方法や、樹脂成形体を加圧ガスの処理帯内に導入して連続的に処理する方法などを採用できる。   As a next step, the obtained molded body is impregnated with a pressurized gas. The impregnation referred to in this step means, for example, the same state as when the pressurized gas is dissolved in the molded body. The impregnation conditions depend on the components constituting the molded body, but are not particularly limited as long as the pressurized gas can be impregnated. A specific method for impregnating the molded body with the pressurized gas may be in accordance with a known method. For example, the compact is placed in a pressure-resistant container such as an autoclave, and the compact and a gaseous or liquid gas are enclosed. Next, a batch processing method for increasing the pressure in the pressure vessel, a method in which a resin molded body is introduced into a processing zone of a pressurized gas and continuously processed, or the like can be adopted.

本発明に使用できる加圧ガスは、以下のものに限定されるものではないが、例えば、二酸化炭素、窒素、ヘリウム、アルゴン、亜酸化窒素、エチレン、エタン、テトラフルオロエチレン、パーフルオロエタン、テトラフルオロメタン、トリフルオロメタン、1,1−ジフルオロエチレン、トリフルオロアミドオキシド、シス−ジフルオロジアミン、トランス−ジフルオロジアミン、塩化二フッ化窒素、三重水素化リン、四フッ化二窒素、オゾン、ホスフィン、ニトロシルフルオライド、三フッ化窒素、塩化重水素、キセノン、六フッ化硫黄、フルオロメタン、ペンタフルオロエタン、1,1−ジフルオロエテン、ジボラン、水、テトラフルオロヒドラジン、シラン、四フッ化ケイ素、四水素化ゲルマニウム、三フッ化ホウ素、フッ化カルボニル、クロロトリフルオロメタン、ブロモトリフルオロメタン及びフッ化ビニル等が挙げられる。   The pressurized gas that can be used in the present invention is not limited to the following, but for example, carbon dioxide, nitrogen, helium, argon, nitrous oxide, ethylene, ethane, tetrafluoroethylene, perfluoroethane, tetra Fluoromethane, trifluoromethane, 1,1-difluoroethylene, trifluoroamide oxide, cis-difluorodiamine, trans-difluorodiamine, nitrogen difluoride, tritiated phosphorus, dinitrogen tetrafluoride, ozone, phosphine, nitrosyl Fluoride, nitrogen trifluoride, deuterium chloride, xenon, sulfur hexafluoride, fluoromethane, pentafluoroethane, 1,1-difluoroethene, diborane, water, tetrafluorohydrazine, silane, silicon tetrafluoride, tetrahydrogen Germanium fluoride, boron trifluoride, carbon fluoride fluoride , Chlorotrifluoromethane, bromotrifluoromethane and vinyl fluoride, and the like.

なかでも好ましい加圧ガスとしては、二酸化炭素、窒素、亜酸化窒素、エチレン、エタン、テトラフルオロエチレン、パーフルオロエタン、テトラフルオロメタン、トリフルオロメタン及び1,1−ジフルオロエチレンが挙げられる。   Among these, preferred pressurized gases include carbon dioxide, nitrogen, nitrous oxide, ethylene, ethane, tetrafluoroethylene, perfluoroethane, tetrafluoromethane, trifluoromethane, and 1,1-difluoroethylene.

このうち不活性ガスである二酸化炭素、窒素、ヘリウム、アルゴンは非可燃性であり好ましい。更に無毒性、安価、ほとんどの樹脂組成物に対して非反応であるという点から二酸化炭素や窒素が更に好ましく、中でも樹脂組成物への溶解度が比較的高い二酸化炭素が特に好ましい。   Of these, carbon dioxide, nitrogen, helium, and argon, which are inert gases, are nonflammable and are preferable. Further, carbon dioxide and nitrogen are more preferable from the viewpoint of non-toxicity, low cost, and non-reactivity with most resin compositions, and carbon dioxide having a relatively high solubility in the resin composition is particularly preferable.

加圧ガスを含浸させる時間は、(a)成分と(b)成分の組成、及び/又は混合割合や成形体の厚みなどにより異なるので一概には言えないが、5分以上であることが好ましく、より好ましくは30分以上である。5分未満であると、成形体への加圧ガスの拡散の関係で成形体の中心部までに十分含浸させることができない場合がある。上限値は、加圧ガスの含浸温度、及び/または含有圧力に影響されるが、生産効率の観点から48時間以下、好ましくは24時間以下、より好ましくは12時間以下である。   The time for impregnating the pressurized gas varies depending on the composition of component (a) and component (b), and / or the mixing ratio, the thickness of the molded article, etc. More preferably, it is 30 minutes or more. If it is less than 5 minutes, there may be a case where the central part of the molded body cannot be sufficiently impregnated due to the diffusion of the pressurized gas to the molded body. The upper limit is influenced by the impregnation temperature of the pressurized gas and / or the contained pressure, but is 48 hours or less, preferably 24 hours or less, more preferably 12 hours or less from the viewpoint of production efficiency.

次の工程として、加圧ガス中から成形体を開放させて、加圧ガスを含浸した成形体を発泡化させる。本工程では、成形体の弾性率が5.0×10Pa以下となる温度域で発泡させることが重要である。ここでいう成形体の弾性率とは、加圧ガスを含浸させる前の成形体のJIS K−7198 A法の動的粘弾性測定により、周波数10Hz、ひずみ0.1%にて測定した貯蔵弾性率をさす。上記成形体の弾性率がかかる範囲となる温度域で発泡させることで、発泡化させる前の(a)成分と(b)成分の高次構造(モルフォロジー)を反映した緻密で微細な多孔構造を有する発泡体を得ることができる。(a)成分と(b)成分の高次構造(モルフォロジー)を反映させる特に好ましい条件は、成形体の弾性率が2.0×10Pa〜1.0×10Paとなる温度域である。 As the next step, the molded body is released from the pressurized gas, and the molded body impregnated with the pressurized gas is foamed. In this step, it is important that foaming is performed in a temperature range where the elastic modulus of the molded body is 5.0 × 10 8 Pa or less. The elastic modulus of the molded product referred to here is storage elasticity measured at a frequency of 10 Hz and a strain of 0.1% by dynamic viscoelasticity measurement of the molded product before impregnation with pressurized gas according to JIS K-7198 A method. Point to the rate. By foaming in the temperature range in which the elastic modulus of the molded body is in such a range, a dense and fine porous structure reflecting the higher-order structure (morphology) of the component (a) and the component (b) before foaming is achieved. The foam which has can be obtained. Particularly preferable conditions for reflecting the higher-order structure (morphology) of the component (a) and the component (b) are in a temperature range where the elastic modulus of the molded body is 2.0 × 10 8 Pa to 1.0 × 10 7 Pa. is there.

更に、(a)成分及び(b)成分の発泡温度域における弾性率の値は、(a)成分の方が(b)成分よりも高いことが好ましい。前記したように本発明における(a)成分は発泡体の多孔構造を安定化させるための支持体の役割を、(b)成分は加圧ガスを含浸させ発泡する際の開始点となり、発泡領域を形成させるための役割を主に果たす。発泡温度域における(a)成分と(b)成分の弾性率の関係が、(a)成分の方が高ければ、発泡時に主に(b)成分が発泡するため好ましい。またその比が10倍以上であることが更に好ましく、特に好ましくは50倍以上である。   Furthermore, it is preferable that the value of the elastic modulus in the foaming temperature range of the component (a) and the component (b) is higher in the component (a) than in the component (b). As described above, the component (a) in the present invention serves as a support for stabilizing the porous structure of the foam, and the component (b) serves as a starting point for foaming by impregnating the pressurized gas. Mainly plays a role to form. If the relationship between the elastic modulus of the component (a) and the component (b) in the foaming temperature range is higher, the component (b) is preferably foamed at the time of foaming. Further, the ratio is more preferably 10 times or more, particularly preferably 50 times or more.

次に、本発明において、特に好ましい成形体は、(a)成分が結晶性樹脂であり、(b)成分が非晶性樹脂であるブレンド又はアロイであり、かつ(a)成分の融点Tmaと(b)成分のガラス転移温度Tgbが下記(1)式を満足する成形体である。
Tma>Tgb ・・・(1)
Next, in the present invention, a particularly preferable molded body is a blend or alloy in which the component (a) is a crystalline resin, the component (b) is an amorphous resin, and the melting point Tma of the component (a) (B) It is a molded article in which the glass transition temperature Tgb of the component satisfies the following formula (1).
Tma> Tgb (1)

一般的に、非晶性樹脂のガラス転移に伴う弾性率の変化は約100倍程度であり、結晶性樹脂のガラス転移に伴う弾性率の変化は約10倍以下であり、結晶融解温度前後での弾性率変化は約100倍以上である。
ここで、(a)成分が結晶性樹脂であり、(b)成分が非晶性樹脂であるブレンド又はアロイであり、(a)成分の融点Tmaと(b)成分のガラス転移温度Tgbが、Tma>Tgbとなる場合であって、かつ、(a)成分が結晶化した成形体であれば、発泡させる温度域で(a)成分は(b)成分と比較し弾性率が高く、多孔構造を形成させるための支持体となり、(b)成分は(a)成分と比較し弾性率が低くなるため、主に(b)成分を発泡させることができる。また、(b)成分のガラス転移温度Tgbから(a)成分の結晶融解温度Tmaまでの温度範囲における弾性率の調整が可能となるため、好適な弾性率域の温度範囲が広くすることができるため好ましい。(a)成分の融点Tmaは40℃〜200℃の範囲が良く、(b)成分のガラス転移温度Tgbは−100℃〜200℃の範囲が良い。また、(a)成分の融点Tmaと(b)成分のガラス転移温度Tgbの差(Tma−Tgb)は、10℃以上あることが好ましく、30℃以上がさらに好ましく、50℃以上が特に好ましい。なお、上限としては一般的には200℃以下である。
一方、(a)成分が結晶化してない場合には、(b)成分のガラス転移温度Tgb以上であって、(a)成分の弾性率が(b)成分の弾性率より高くなる温度域で発泡させ、その後結晶化させることによって、発泡温度が低く、耐熱性を有する発泡体を得ることが可能となる。
In general, the change in elastic modulus associated with the glass transition of the amorphous resin is about 100 times, the change in elastic modulus associated with the glass transition of the crystalline resin is about 10 times or less, and around the crystal melting temperature. The change in elastic modulus is about 100 times or more.
Here, (a) component is a crystalline resin, (b) component is a non-crystalline resin blend or alloy, (a) melting point Tma of component and (b) component glass transition temperature Tgb, If Tma> Tgb, and if the molded component (a) is crystallized, the component (a) has a higher elastic modulus than the component (b) in the foaming temperature range, and has a porous structure. Since the elastic modulus of the component (b) is lower than that of the component (a), the component (b) can be mainly foamed. Moreover, since it becomes possible to adjust the elastic modulus in the temperature range from the glass transition temperature Tgb of the component (b) to the crystal melting temperature Tma of the component (a), it is possible to widen the preferable temperature range of the elastic modulus region. Therefore, it is preferable. The melting point Tma of the component (a) is preferably in the range of 40 ° C to 200 ° C, and the glass transition temperature Tgb of the component (b) is preferably in the range of -100 ° C to 200 ° C. Further, the difference (Tma−Tgb) between the melting point Tma of the component (a) and the glass transition temperature Tgb of the component (b) is preferably 10 ° C. or higher, more preferably 30 ° C. or higher, and particularly preferably 50 ° C. or higher. The upper limit is generally 200 ° C. or lower.
On the other hand, when the component (a) is not crystallized, the temperature is higher than the glass transition temperature Tgb of the component (b), and the elastic modulus of the component (a) is higher than the elastic modulus of the component (b). By foaming and then crystallizing, it is possible to obtain a foam having a low foaming temperature and heat resistance.

発泡化させる方法としては、発泡化させる温度が上記範囲を満足していれば、特に制限は無く、加圧ガスから成形体を開放する際の減圧化で発泡させることにより非平衡状態を作り出し、含有したガスを気化させることにより発泡化させる急減圧法、及び/又は加圧ガスから成形体を開放し、非加圧下において加圧ガスを含有した成形体を加熱することにより非平衡状態を作り出し、含浸したガスを気化させることにより発泡化させる加熱法のいずれの方法でも良い。   The foaming method is not particularly limited as long as the foaming temperature satisfies the above range, creating a non-equilibrium state by foaming by reducing the pressure when the molded body is released from the pressurized gas, A non-equilibrium state is created by heating the molded body containing the pressurized gas under non-pressurization by releasing the molded body from the rapid pressure reduction method in which foaming is achieved by vaporizing the contained gas and / or pressurizing gas. Any method of a heating method of foaming by vaporizing the impregnated gas may be used.

急減圧法を用いる場合は、再加熱させる工程がなく、再加熱させるための設備が不要となるため生産コスト面や生産工程面で好ましい。しかし、加圧ガス中から開放させる際の減圧に伴う、加圧ガスの断熱膨張により、雰囲気の温度が急激に下がるため、上記の成形体の弾性率が5.0×10Pa以上となる温度域の制御が困難となる場合があり、減圧速度の調整が必要となる。 When the rapid depressurization method is used, there is no process for reheating, and equipment for reheating is not necessary, which is preferable in terms of production cost and production process. However, due to the adiabatic expansion of the pressurized gas that accompanies the reduced pressure when being released from the pressurized gas, the temperature of the atmosphere rapidly decreases, so the elastic modulus of the molded body is 5.0 × 10 8 Pa or more. It may be difficult to control the temperature range, and the pressure reduction rate needs to be adjusted.

また加熱法を用いる場合は、加圧ガス中から取り出し、非加圧下において再加熱により発泡させるため、成形体の弾性率が5.0×10Pa以上となる温度域の制御が容易である点で好ましい。加熱法では加熱するまでの時間が変わると、含浸させたガスが成形体表面から雰囲気に拡散してしまうため得られる発泡体の発泡セル径、発泡倍率が変わる場合がある。加圧ガス中から取り出し加熱するまでの時間は、(a)成分と(b)成分のガラス転移温度、及び/又は(a)成分と(b)成分の混合割合や成形体の厚みなどにより異なるので一概には言えないが、12時間以内であることが好ましく、更に好ましくは1時間以内である。 Further, when using the heating method, it is taken out from the pressurized gas and foamed by reheating under non-pressurized, so that it is easy to control the temperature range where the elastic modulus of the molded body is 5.0 × 10 8 Pa or more. This is preferable. In the heating method, if the time until heating is changed, the impregnated gas diffuses from the surface of the molded body into the atmosphere, so that the foam cell diameter and the expansion ratio of the foam obtained may change. The time from taking out the pressurized gas to heating varies depending on the glass transition temperature of the component (a) and the component (b) and / or the mixing ratio of the component (a) and the component (b), the thickness of the molded body, and the like. Therefore, although it cannot be generally stated, it is preferably within 12 hours, more preferably within 1 hour.

加熱法を用いる場合の加熱手段としては、公知の手段で良く、例えば熱風循環式熱処理炉、オイルバス、溶融塩バスなどが挙げられる。取り扱い性の観点から熱風循環熱処理炉が好ましい。加熱時間は発泡化が完了する時間を設定すれば良く、例えば0.2mm厚み程度の成形体であれば、60秒以内が適当である。   As a heating means in the case of using the heating method, a known means may be used, and examples thereof include a hot air circulation heat treatment furnace, an oil bath, a molten salt bath and the like. A hot-air circulating heat treatment furnace is preferable from the viewpoint of handleability. What is necessary is just to set the time for which foaming is completed as the heating time.

前記したように、急減圧法では発泡温度の制御が難しく、加熱法の方が発泡温度の制御の精度が高くなるため、望むべき多孔構造を発現させる観点から、加熱法の方が好ましく採用できる。   As described above, the control of the foaming temperature is difficult in the rapid decompression method, and the accuracy of the control of the foaming temperature is higher in the heating method, so that the heating method can be preferably employed from the viewpoint of expressing the desired porous structure. .

上記発泡化後、所望の多孔構造に制御するためには冷却することが好ましい。冷却温度は(a)成分と(b)成分のガラス転移温度、及び/又は(a)成分と(b)成分の混合割合や成形体の厚みなどにより異なるので一概には言えないが、室温付近まで急速に冷却するのが好ましい。   After the foaming, it is preferable to cool in order to control to a desired porous structure. The cooling temperature varies depending on the glass transition temperature of the component (a) and the component (b) and / or the mixing ratio of the component (a) and the component (b) and the thickness of the molded body. It is preferable to cool rapidly.

本発明の成形体は、単層であっても構わないし、また成形体表面に平滑性、耐熱性、耐溶剤性、加圧ガスの拡散性などの特性を付与する目的で、積層構成としても良い。積層構成の場合には、樹脂組成や添加剤の異なる層を適宜組み合わせて構成することができる。また、各層の積層比は用途、目的に応じて適宜調整することができる。   The molded body of the present invention may be a single layer, or may have a laminated structure for the purpose of imparting properties such as smoothness, heat resistance, solvent resistance, and pressure gas diffusibility to the surface of the molded body. good. In the case of a laminated structure, layers having different resin compositions and additives can be appropriately combined. Moreover, the lamination ratio of each layer can be suitably adjusted according to a use and the objective.

上記の積層体を形成する方法としては、共押出法、各層のフィルムを形成した後に、重ね合わせて熱融着する方法、接着剤等で接合する方法等が挙げられる。   Examples of the method for forming the laminate include a co-extrusion method, a method of forming a film of each layer, and then superposing and heat-sealing, a method of bonding with an adhesive, and the like.

本発明の成形体には、その性質を損なわない程度に添加剤、例えば、熱安定剤、酸化防止剤、紫外線吸収剤、光安定剤、結晶核剤、着色剤、帯電防止剤、加水分解防止剤、滑剤、難燃剤などの各種添加剤を適宜配合してもよい。またその性質を損なわない程度に他の樹脂組成物を含んでも良い。   In the molded product of the present invention, additives such as a heat stabilizer, an antioxidant, an ultraviolet absorber, a light stabilizer, a crystal nucleating agent, a colorant, an antistatic agent and an anti-hydrolysis agent are added to such an extent that the properties are not impaired. You may mix | blend various additives, such as an agent, a lubricant, a flame retardant, suitably. Moreover, you may contain another resin composition to such an extent that the property is not impaired.

また、本発明の発泡体には、本発明を損なわない範囲で必要に応じてコロナ処理、印刷、コーティング、蒸着等の表面加工、更にはミシン目加工などを施すことができる。   In addition, the foam of the present invention can be subjected to surface treatment such as corona treatment, printing, coating, vapor deposition, and perforation as required without departing from the scope of the present invention.

本発明の発泡体は、該発泡体の裏面に金属薄膜層を形成することも可能である。   The foam of this invention can also form a metal thin film layer in the back surface of this foam.

金属薄膜層は、金属を蒸着することにより形成することができ、例えば、真空蒸着法、イオン化蒸着法、スパッタリング法、イオンプレーティング法等によって形成することができる。蒸着金属材料としては、特に制限されることなく使用することができるが、一般的には、銀、アルミニウム等が好ましい。   The metal thin film layer can be formed by vapor-depositing a metal, and can be formed by, for example, a vacuum vapor deposition method, an ionization vapor deposition method, a sputtering method, an ion plating method, or the like. Although it can use without being restrict | limited especially as a vapor deposition metal material, Generally silver, aluminum, etc. are preferable.

また、金属薄膜層は、金属の単層品や積層品、あるいは、金属酸化物の単層品や積層品でも、金属の単層品と金属酸化物の単層品との2層構成でもよい。金属薄膜層の厚みは、層を形成する材料や層形成等によっても異なるが、通常は10nm〜300nmの範囲内にあることが好ましい。   In addition, the metal thin film layer may be a metal single layer product or a laminate product, or a metal oxide single layer product or a laminate product, or a two-layer configuration of a metal single layer product and a metal oxide single layer product. . The thickness of the metal thin film layer varies depending on the material forming the layer, the layer formation, and the like, but is usually preferably in the range of 10 nm to 300 nm.

また、本発明の発泡体を金属板もしくは樹脂板に被覆することもできる。   The foam of the present invention can be coated on a metal plate or a resin plate.

また、成形体の高次構造(モルフォロジー)を制御することにより、その範囲内で適宜に発泡構造を制御できることから、本発明の発泡体は、薬物投与の最適化を目的とした薬物送達システム(DDS)等の医療分野やスカホールド(細胞の足場となる基質)等の再生医療工学分野への利用、液晶表示装置、照明器具、照明看板等に用いられる反射材、低誘電率性を要求される材料分野への利用、高強度多孔体、断熱材、緩衝材などの用途に有効に活用することができる。   In addition, since the foam structure can be appropriately controlled within the range by controlling the higher-order structure (morphology) of the molded body, the foam of the present invention is a drug delivery system (for drug administration optimization) Reflective materials used in medical fields such as DDS) and regenerative medical engineering fields such as scaffolds (substrates that serve as cell scaffolds), liquid crystal display devices, lighting fixtures, lighting signs, etc., and low dielectric constants are required. It can be effectively used in applications such as high-strength porous materials, heat insulating materials, and cushioning materials.

以下に実施例でさらに詳しく説明するが、これらにより本発明は何ら制限を受けるものではない。なお、成形体及び発泡体についての種々の測定値及び評価は次のようにして行った。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In addition, the various measured values and evaluation about a molded object and a foam were performed as follows.

(1)成形体モルフォロジー観察
成形体に染色前処理(RuO気相染色)を施し、透過電子顕微鏡(日本電子製:JEM−1200EX)を用いて、得られた成形体の断面の中心付近の観察を行った。
(1) Molded body morphology observation The molded body was subjected to pre-dyeing treatment (RuO 4 gas phase dyeing), and using a transmission electron microscope (manufactured by JEOL Ltd .: JEM-1200EX), near the center of the cross section of the obtained molded body. Observations were made.

(2)弾性率の温度依存性
成形体をJIS K−7198 A法に記載の動的粘弾性測定法により、アイティー計測(株)製粘弾性スペクトロメーター「DVA−200」を用い、振動周波数10Hz、歪み0.1%にて、昇温速度=3℃/分で、−100℃〜300℃まで測定した。
(2) Temperature Dependence of Elastic Modulus Using a dynamic viscoelasticity measurement method described in JIS K-7198 A method, the molded body was subjected to vibration frequency using a viscoelastic spectrometer “DVA-200” manufactured by IT Measurement Co., Ltd. Measurement was performed from −100 ° C. to 300 ° C. at a heating rate of 3 ° C./min at 10 Hz and a strain of 0.1%.

(3)発泡体多孔構造観察
走査電子顕微鏡(日立製作所製:S−4500)を用いて、得られた発泡体の断面の中心付近の観察を行った。
(3) Foam porous structure observation The vicinity of the center of the cross section of the obtained foam was observed using a scanning electron microscope (Hitachi, Ltd .: S-4500).

(実施例1)
(a)成分がプロピレン、(b)成分がエチレンからなり、プロピレンとエチレンの質量比がプロピレン/エチレン=74/26となるプロピレン−エチレンブロック共重合体(日本ポリプロ社製「商品名:ZELAS5063」)を、押出設定温度180℃〜200℃に設定したφ25mm同方向ニ軸押出機(L/D=40)に投入して溶融混練し、ダイ温度200℃、ダイ幅300mm、リップギャップ1mmとなるTダイから押出し、キャスト温度30℃の設定でキャスティングし、幅=250mm、厚み=250μmの成形体1を得た。
得られた成形体1の中心付近のモルフォロジー観察像を図1に示す。尚、図1の黒く見える部分が(b)成分であり、(b)成分の平均サイズは1.2μmである。また、得られた成形体1の弾性率の温度依存性を図2に示す。
Example 1
Propylene-ethylene block copolymer in which (a) component is propylene, (b) component is ethylene, and the mass ratio of propylene to ethylene is propylene / ethylene = 74/26 (“trade name: ZELAS 5063” manufactured by Nippon Polypro Co., Ltd.) ) Is melted and kneaded into a φ25 mm co-directional twin screw extruder (L / D = 40) set at an extrusion set temperature of 180 ° C. to 200 ° C., resulting in a die temperature of 200 ° C., a die width of 300 mm, and a lip gap of 1 mm. It was extruded from a T die and cast at a setting of a casting temperature of 30 ° C. to obtain a molded body 1 having a width = 250 mm and a thickness = 250 μm.
A morphological observation image near the center of the obtained molded body 1 is shown in FIG. The portion that appears black in FIG. 1 is the component (b), and the average size of the component (b) is 1.2 μm. Moreover, the temperature dependence of the elasticity modulus of the obtained molded object 1 is shown in FIG.

次に得られた成形体1を40℃(図2より成形体の40℃における弾性率は3.5×10Paである)に温調された圧力容器に投入し、炭酸ガス(二酸化炭素)で10MPaに加圧し、成形体1に二酸化炭素を1時間含浸させた。その後、圧力容器のリークバルブを全開放し、減圧速度=0.5MPa/secで容器内の圧力を開放し、容器内からシートを取り出し発泡体1を得た。 Next, the obtained molded body 1 was put into a pressure vessel whose temperature was adjusted to 40 ° C. (the elastic modulus at 40 ° C. of the molded body is 3.5 × 10 8 Pa from FIG. 2), and carbon dioxide gas (carbon dioxide ) To 10 MPa, and the compact 1 was impregnated with carbon dioxide for 1 hour. Thereafter, the leak valve of the pressure vessel was fully opened, the pressure in the vessel was released at a pressure reduction rate of 0.5 MPa / sec, and a sheet was taken out from the vessel to obtain a foam 1.

得られた発泡体1の中心付近の空孔観察像を図3に示す。尚、この発泡体1の発泡倍率は約1.5倍であり、平均気泡径は約1.7μmであった。また、圧力容器の温度を120℃(図2より成形体の120℃における弾性率は7.5×10Paである)とした以外は上記と同様の方法で発泡体2を得た。得られた発泡体2の中心付近の観察像を図4に、得られた発泡体2をRu0気相染色した後にイオンエッチング処理した後の観察像を図5に示す。尚、図5において、エッチング処理がされているのが(a)成分の領域であり、白く見える部分が(b)成分の領域となる。
発泡体2の発泡倍率は約2.1倍であり、平均気泡径は2.5μmであった。発泡体1、2共に、成形体1の(b)成分の平均サイズと発泡倍率に見合った気泡径となっており、成形体1のモルフォロジーを反映した発泡体を得ることができていることが確認できる。また発泡体2は主に(b)成分の領域で発泡構造が形成されていることもわかる。
A hole observation image near the center of the obtained foam 1 is shown in FIG. The foam 1 had an expansion ratio of about 1.5 and an average cell diameter of about 1.7 μm. Moreover, the foam 2 was obtained by the same method as above except that the temperature of the pressure vessel was 120 ° C. (the elastic modulus at 120 ° C. of the molded body was 7.5 × 10 7 Pa from FIG. 2). FIG. 4 shows an observation image in the vicinity of the center of the obtained foam 2, and FIG. 5 shows an observation image after ion etching treatment after RuO 4 gas phase staining of the obtained foam 2. In FIG. 5, the region where the component (a) is subjected to the etching process, and the portion which appears white is the region (b).
The expansion ratio of the foam 2 was about 2.1 times, and the average cell diameter was 2.5 μm. Both of the foams 1 and 2 have a cell diameter commensurate with the average size and expansion ratio of the component (b) of the molded body 1, and a foam reflecting the morphology of the molded body 1 can be obtained. I can confirm. It can also be seen that the foam 2 has a foam structure formed mainly in the region of the component (b).

(実施例2)
(a)成分としてポリプロピレン(日本ポリプロ社製「商品名:ノバテックPP FY4」(ガラス転移温度(Tg)=−10℃、融点(Tm)=162℃))75質量部、(b)成分としてスチレン−エチレン/ブチレン−スチレン共重合体(JSR社製「商品名:DYNARON9901P(スチレン含有量=51%、Tg=−50℃)」25質量部とをドライブレンドしたものを用い、実施例1と同様の方法で成形体2を得た。
成形体2のモルフォロジー観察像を図6に示す。図6中の白線は500nmの長さを示す。(b)成分がナノオーダーで分散した粒子が凝集したような構造を形成し、凝集している領域の平均サイズが300〜500nmとなるモルフォロジーを有している。また成形体2、(a)成分、及び(b)成分の弾性率の温度依存性を図7に示す。
(Example 2)
As component (a), polypropylene ("trade name: Novatec PP FY4" manufactured by Nippon Polypro Co., Ltd. (glass transition temperature (Tg) = -10 ° C, melting point (Tm) = 162 ° C)) 75 parts by mass, component (b) styrene -Ethylene / butylene-styrene copolymer (product name: DYNARON 9901P (styrene content = 51%, Tg = -50 ° C), manufactured by JSR Corporation) 25 parts by weight, dry-blended, the same as in Example 1 The molded body 2 was obtained by the method described above.
A morphology observation image of the molded body 2 is shown in FIG. The white line in FIG. 6 indicates a length of 500 nm. (B) The structure which the particle | grains which disperse | distributed by the nano order aggregated is formed, and it has the morphology from which the average size of the aggregated area | region will be 300-500 nm. Moreover, the temperature dependence of the elasticity modulus of the molded object 2, (a) component, and (b) component is shown in FIG.

ついで、圧力容器を20℃に温調し、炭酸ガス(二酸化炭素)を20MPaに加圧し、含浸時間を6時間、減圧速度を1MPa/sec、熱風循環式熱処理炉の設定温度を120℃(図7より120℃の成形体の弾性率は1.6×10Paである)に設定した後に1分間投入し、投入後圧空エアーで表面を冷却した以外は実施例1と同様の方法で本発明の発泡体3を得た。
得られた発泡体3の観察像を図8に示す。尚、この発泡体3の発泡倍率は約1.2倍であり、平均気泡径は約0.6μmであった。成形体2の(b)成分の凝集サイズと発泡倍率に見合った気泡径となっており、成形体2のモルフォロジーを反映した発泡体を得ることができていることが確認できる。
Next, the temperature of the pressure vessel was adjusted to 20 ° C., carbon dioxide (carbon dioxide) was pressurized to 20 MPa, the impregnation time was 6 hours, the pressure reduction rate was 1 MPa / sec, and the set temperature of the hot-air circulating heat treatment furnace was 120 ° C. 7 to 120 ° C., the elastic modulus of the molded body was 1.6 × 10 7 Pa), and then charged for 1 minute. After the charging, the surface was cooled with compressed air. Inventive foam 3 was obtained.
An observation image of the obtained foam 3 is shown in FIG. In addition, the expansion ratio of this foam 3 was about 1.2 times, and the average cell diameter was about 0.6 μm. It can be confirmed that a foam reflecting the morphology of the molded body 2 can be obtained because the cell diameter is commensurate with the agglomerated size and expansion ratio of the component (b) of the molded body 2.

(比較例1)
実施例2と同じ成形体を40℃に温調された圧力容器に投入し、二酸化炭素で20MPaに加圧し、6時間後に、減圧速度=1MPa/secで容器内の圧力を開放し、容器内から成形体を取り出した。
結果(a)成分と(b)成分を含有しているが、成形体の弾性率が5.0×10Pa以上となる温度域であるため、発泡体は得られず、二酸化炭素を含浸させる前と同じ状態であった。
(Comparative Example 1)
The same molded body as in Example 2 was put into a pressure vessel adjusted to 40 ° C., pressurized to 20 MPa with carbon dioxide, and after 6 hours, the pressure in the vessel was released at a pressure reduction rate of 1 MPa / sec. The molded body was taken out from the above.
Result Although it contains the component (a) and the component (b), it is in the temperature range where the elastic modulus of the molded product is 5.0 × 10 8 Pa or more, so a foam cannot be obtained and impregnated with carbon dioxide. It was the same state as before.

(実施例3)
(a)成分としてポリプロピレン(日本ポリプロ社製「商品名:ノバテックPP FY4」(結晶性樹脂、ガラス転移温度(Tg)=−10℃、融点(Tm)=162℃))75質量部、(b)成分として水添スチレン−ブタジエン共重合体(旭化成ライフ&リビング社製「タフテックH1051」(非晶性樹脂、スチレン含有量=42%、Tg=−50℃))25質量部とをドライブレンドしたものを、実施例1と同様の条件で本発明の成形体3を得た。
成形体3のモルフォロジー観察像を図9に示す。図9中の白線は2μmの長さを示す。成形体3のモルフォロジーは海島構造を有しており、(b)成分の平均サイズが1.1μmである。また成形体3の弾性率の温度依存性を図10に示す。
(Example 3)
As component (a), 75 parts by mass of polypropylene (trade name: Novatec PP FY4 manufactured by Nippon Polypro Co., Ltd. (crystalline resin, glass transition temperature (Tg) = − 10 ° C., melting point (Tm) = 162 ° C.)), (b ) 25 parts by mass of a hydrogenated styrene-butadiene copolymer (“Tough Tech H1051” (amorphous resin, styrene content = 42%, Tg = −50 ° C.) manufactured by Asahi Kasei Life & Living) as a component A molded product 3 of the present invention was obtained under the same conditions as in Example 1.
A morphology observation image of the molded body 3 is shown in FIG. A white line in FIG. 9 indicates a length of 2 μm. The morphology of the molded body 3 has a sea-island structure, and the average size of the component (b) is 1.1 μm. Further, the temperature dependence of the elastic modulus of the molded body 3 is shown in FIG.

ついで、実施例2と同様の条件(図10より120℃の成形体の弾性率は1.6×10Paである)で発泡体4を得た。得られた発泡体4の観察像を図11に示す。尚、この発泡体4の発泡倍率は約1.5倍であり、平均気泡径は約1.8μmであった。成形体3の(b)成分の平均サイズと発泡倍率に見合った気泡径となっており、成形体3のモルフォロジーを反映した発泡体を得ることができていることが確認できる。 Next, a foam 4 was obtained under the same conditions as in Example 2 (the elastic modulus of the molded body at 120 ° C. was 1.6 × 10 7 Pa from FIG. 10). An observation image of the obtained foam 4 is shown in FIG. In addition, the expansion ratio of this foam 4 was about 1.5 times, and the average cell diameter was about 1.8 μm. It can be confirmed that a foam reflecting the morphology of the molded body 3 can be obtained because the cell diameter is commensurate with the average size and the expansion ratio of the component (b) of the molded body 3.

(比較例2)
実施例2において、(a)成分のみで成形体を作製し、耐圧容器の温度を120℃にした以外は実施例1と同様の方法で実施した。
得られた成形体の弾性率の温度依存性を図12に示す。結果、成形体の弾性率が5.0×10Pa以下となる温度域であるが、(b)成分を有さないため、得られた成形体は発泡しておらず、二酸化炭素を含浸させる前と同じ状態であった。
(Comparative Example 2)
In Example 2, a molded body was produced using only the component (a), and the same procedure as in Example 1 was performed except that the temperature of the pressure vessel was 120 ° C.
FIG. 12 shows the temperature dependence of the elastic modulus of the obtained molded body. The result is a temperature range in which the elastic modulus of the molded product is 5.0 × 10 8 Pa or less, but since it does not have the component (b), the obtained molded product is not foamed and impregnated with carbon dioxide. It was the same state as before.

(実施例4)
(a)成分としてポリ乳酸(NatureWorks社製「商品名:NatureWorks4032D」(結晶性樹脂、Tg=65℃、Tm=165℃))75質量部、(b)成分としてシリコーンアクリル複合ゴム(三菱レイヨン社製「商品名:メタブレンS−2001」(非晶性樹脂、Tg=−42℃))25質量部とし、キャスト温度を55℃とした以外は実施例1と同様の方法で成形体4を得た。
得られた成形体4のモルフォロジーは、海島構造を有し(b)成分のサイズが0.9μmである、弾性率の温度依存性を図13に示す。
Example 4
(A) 75 parts by mass of polylactic acid (product name: NatureWorks 4032D manufactured by NatureWorks) (crystalline resin, Tg = 65 ° C., Tm = 165 ° C.) as component, and silicone acrylic composite rubber (Mitsubishi Rayon Co., Ltd.) as component (b) “Product name: Methbrene S-2001” (amorphous resin, Tg = −42 ° C.)) 25 parts by mass, and the molding temperature 4 was obtained in the same manner as in Example 1 except that the casting temperature was 55 ° C. It was.
The morphology of the obtained molded body 4 has a sea-island structure, and the temperature dependency of the elastic modulus in which the size of the component (b) is 0.9 μm is shown in FIG.

ついで、圧力容器温度を20℃に温調し、炭酸ガス(二酸化炭素)で20MPa、含浸時間は4時間、熱風循環式熱処理炉の設定温度を70℃(図13より120℃の成形体の弾性率は1.7×10Paである)に設定とした以外は実施例2と同様の方法で本発明の発泡体5を得た。
得られた発泡体5の観察像を図14に示す。尚、この発泡体4の発泡倍率は約1.4倍であり、平均気泡径は約1.3μmであった。ほぼ成形体4の(b)成分の平均サイズの発泡倍率見合いの微細な発泡体を得ることができていることが確認できる。
Next, the pressure vessel temperature is adjusted to 20 ° C., carbon dioxide (carbon dioxide) is 20 MPa, the impregnation time is 4 hours, and the set temperature of the hot-air circulating heat treatment furnace is 70 ° C. The foam 5 of the present invention was obtained in the same manner as in Example 2 except that the rate was set to 1.7 × 10 7 Pa.
The observation image of the obtained foam 5 is shown in FIG. The foaming factor of this foam 4 was about 1.4 times, and the average cell diameter was about 1.3 μm. It can be confirmed that a fine foam having an average expansion ratio of the average size of the component (b) of the molded body 4 can be obtained.

(実施例5)
(a)成分として結晶性樹脂であるポリプロピレン(日本ポリプロピレン製「商品名:ノバテックPP FY4」(ガラス転移温度(Tg)=−10℃、融点(Tm)=162℃))50質量部、(b)成分として結晶性樹脂であるプロピレン−エチレン共重合体(出光石油化学社製「商品名:プライムTPO R110E(Tg=−50℃)」)50質量部とをドライブレンドしたものを、実施例1と同様の条件で成形体5を得た。
(Example 5)
(A) Polypropylene, which is a crystalline resin as a component (“trade name: Novatec PP FY4” manufactured by Nippon Polypropylene (glass transition temperature (Tg) = − 10 ° C., melting point (Tm) = 162 ° C.)), 50 parts by mass (b Example 1) What was dry-blended with 50 parts by mass of propylene-ethylene copolymer (“trade name: Prime TPO R110E (Tg = −50 ° C.)” manufactured by Idemitsu Petrochemical Co., Ltd.), which is a crystalline resin, as a component of Example 1 The molded object 5 was obtained on the conditions similar to.

成形体5のモルフォロジー観察像を図15(図15中の白線は2μmの長さを示す。)、弾性率の温度依存性を図16に示す。また成形体5を230℃で10分間プレス成形し、厚さ3mmのプレート状の成形体6を得た。成形体6のモルフォロジー観察像を図17に示す(図17中の白線は2μmの長さを示す。)。   The morphology observation image of the molded body 5 is shown in FIG. 15 (the white line in FIG. 15 indicates a length of 2 μm), and the temperature dependence of the elastic modulus is shown in FIG. The molded body 5 was press-molded at 230 ° C. for 10 minutes to obtain a plate-shaped molded body 6 having a thickness of 3 mm. A morphology observation image of the molded body 6 is shown in FIG. 17 (the white line in FIG. 17 indicates a length of 2 μm).

成形体5については、圧力容器温度を40℃(図16より40℃の成形体の弾性率は3.4×10Paである)、含浸圧力を10MPa、含浸時間を1時間として、減圧速度を1MPa/secで発泡させ発泡体6を得た。
得られた発泡体6の観察像を図18に示す。成形体6については、圧力容器温度を40℃(図16より40℃の成形体の弾性率は3.4×10Paである)、含浸圧力を20MPa、含浸時間を8時間として成形体に炭酸ガス(二酸化炭素)を含有させ、減圧速度を1MPa/secで発泡させ、発泡体7を得た。
得られた発泡体7の観察像を図19に示す。成形体の(b)成分の分散構造が変化すると、発泡構造も変化しており、(b)成分のモルフォロジーを反映した発泡構造となることが確認できる。
For the molded body 5, the pressure vessel temperature was 40 ° C. (the elastic modulus of the molded body at 40 ° C. is 3.4 × 10 8 Pa from FIG. 16), the impregnation pressure was 10 MPa, the impregnation time was 1 hour, and the pressure reduction rate. Was foamed at 1 MPa / sec to obtain a foam 6.
An observation image of the obtained foam 6 is shown in FIG. For the molded body 6, the pressure vessel temperature was 40 ° C. (from FIG. 16, the elastic modulus of the molded body at 40 ° C. is 3.4 × 10 8 Pa), the impregnation pressure was 20 MPa, and the impregnation time was 8 hours. Carbon dioxide gas (carbon dioxide) was contained and foamed at a reduced pressure rate of 1 MPa / sec to obtain foam 7.
An observation image of the obtained foam 7 is shown in FIG. When the dispersion structure of the component (b) of the molded body changes, the foam structure also changes, and it can be confirmed that the foam structure reflects the morphology of the component (b).

(比較例3)
(a)成分がプロピレン、(b)成分がエチレンからなり、プロピレンとエチレンの質量比がプロピレン/エチレン=90/10となるプロピレン−エチレンランダム共重合体(三菱化学製「ZELAS7053」)を用いた以外は実施例1と同様の方法で成形体7を得た。
得られた成形体7のモルフォロジーを図20に、弾性率の温度依存性を図21に示す。
(Comparative Example 3)
A propylene-ethylene random copolymer (Mitsubishi Chemical "ZELAS7053") in which the component (a) is propylene, the component (b) is ethylene, and the mass ratio of propylene to ethylene is propylene / ethylene = 90/10 was used. Except for this, a molded body 7 was obtained in the same manner as in Example 1.
The morphology of the obtained molded body 7 is shown in FIG. 20, and the temperature dependence of the elastic modulus is shown in FIG.

次に得られた成形体7を20℃(図21より20℃の成形体の弾性率は5.2×10Paである)に温調した圧力容器に投入し、含浸圧力を10MPa、含浸時間を1時間として成形体に炭酸ガス(二酸化炭素)を含有させ、急減圧により発泡させ発泡体8を得た。
得られた発泡体8の観察像を図22に示す。得られた発泡体8には空孔は認められるものの数が少ない。
Next, the obtained molded body 7 was put into a pressure vessel whose temperature was adjusted to 20 ° C. (the elastic modulus of the molded body at 20 ° C. is 5.2 × 10 8 Pa from FIG. 21), and the impregnation pressure was 10 MPa. The molded body was made to contain carbon dioxide (carbon dioxide) for 1 hour, and foamed by rapid decompression to obtain foam 8.
An observation image of the obtained foam 8 is shown in FIG. Although the obtained foam 8 has pores, the number is small.

(実施例6)
比較例3で得られ成形体7を用い、40℃に温調した圧力容器に投入し、含浸圧力を20MPa、含浸時間を6時間として成形体に炭酸ガス(二酸化炭素)を含有させた後、圧力容器のリークバルブを全開放し、減圧速度=1MPa/secで容器内の圧力を開放し、容器内から成形体を取り出し、ガスが含浸した成形体を120℃に設定した熱風循環式熱処理炉内に1分間投入し、投入後圧空エアーで表面を冷却し本発明の発泡体9を得た。
得られた発泡体9の観察像を図23に示す。比較例3と比べ緻密で微細な発泡体となり、成形体のモルフォロジーを反映した緻密で微細な発泡体を得ることができていることが確認できる。
(Example 6)
After using the molded body 7 obtained in Comparative Example 3 and placing it in a pressure vessel adjusted to 40 ° C., impregnation pressure was 20 MPa, impregnation time was 6 hours, and carbon dioxide gas (carbon dioxide) was contained in the molded body. Fully open the leak valve of the pressure vessel, release the pressure in the vessel at a decompression rate of 1 MPa / sec, take out the molded product from the vessel, and set the gas-impregnated molded product at 120 ° C. The foamed body 9 of the present invention was obtained by throwing it into the interior for 1 minute and then cooling the surface with compressed air after the introduction.
An observation image of the obtained foam 9 is shown in FIG. It can be confirmed that a dense and fine foam is obtained as compared with Comparative Example 3, and a dense and fine foam reflecting the morphology of the molded body can be obtained.

実施例1〜6の本発明の製造方法によって得られた発泡体は、成形体のモルフォロジーを反映した微細で緻密な多孔構造を有していることがわかる。具体的にはドメインが小さい場合には得られる発泡体の空孔径も小さくなり、成形体中の(b)成分の平均サイズと発泡倍率に見合った空孔が形成していることが確認できる。これに対して、(a)成分と(b)成分を含有しているが、成形体の弾性率が5.0×10Paを越える温度域で発泡させた場合(比較例1、及び3)には、発泡体を得ることできない場合や、空孔は認められるものの数が少ない発泡体となっていることが確認できる。また、成形体の弾性率が5.0×10Pa以下となる温度域であるが、(b)成分を有さない場合(比較例2)でも、発泡体を得ることができない。 It can be seen that the foams obtained by the production methods of Examples 1 to 6 have a fine and dense porous structure reflecting the morphology of the molded body. Specifically, when the domain is small, the pore diameter of the obtained foam is also small, and it can be confirmed that pores corresponding to the average size and the expansion ratio of the component (b) in the molded body are formed. On the other hand, when the component (a) and the component (b) are contained, the molded article is foamed in a temperature range where the elastic modulus exceeds 5.0 × 10 8 Pa (Comparative Examples 1 and 3). ), It can be confirmed that the foam cannot be obtained or the foam has a small number of pores. Moreover, although it is the temperature range from which the elasticity modulus of a molded object is set to 5.0 * 10 < 8 > Pa or less, even when it does not have (b) component (comparative example 2), a foam cannot be obtained.

Claims (3)

主成分として(a)成分及び(b)成分を含有し、かつ、(b)成分の平均サイズを5μm以下に制御してなる成形体を得、該成形体中に加圧ガスを含浸させた後、該成形体の弾性率が5.0×10Pa以下となる温度域で、主に(b)成分の領域で発泡させてなり、厚みが50μm以上、かつ500μm以下のシート形状の発泡体。 A molded product containing the components (a) and (b) as the main components and the average size of the component (b) being controlled to 5 μm or less was obtained, and the molded product was impregnated with a pressurized gas. Thereafter, foaming is performed in a temperature range where the elastic modulus of the molded body is 5.0 × 10 8 Pa or less, mainly in the region of the component (b), and a sheet-shaped foaming having a thickness of 50 μm or more and 500 μm or less. body. 前記(a)成分が結晶性樹脂であり、前記(b)成分が非晶性樹脂であり、かつ、前記(a)成分の融点Tmaと前記(b)成分のガラス転移温度Tgbとが下記(1)式を満足することを特徴とする請求項1記載の発泡体。
Tma>Tgb ・・・(1)
The component (a) is a crystalline resin, the component (b) is an amorphous resin, and the melting point Tma of the component (a) and the glass transition temperature Tgb of the component (b) are the following ( The foam according to claim 1, which satisfies the formula (1).
Tma> Tgb (1)
表面にさらに、金属薄膜層を備えた請求項1又は2に発泡体。

The foam according to claim 1 or 2, further comprising a metal thin film layer on the surface.

JP2012051104A 2012-03-08 2012-03-08 Method for manufacturing foam, and foam Pending JP2012140630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012051104A JP2012140630A (en) 2012-03-08 2012-03-08 Method for manufacturing foam, and foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012051104A JP2012140630A (en) 2012-03-08 2012-03-08 Method for manufacturing foam, and foam

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007149131A Division JP2008303236A (en) 2007-06-05 2007-06-05 Manufacturing method for cellular material, and cellular material

Publications (1)

Publication Number Publication Date
JP2012140630A true JP2012140630A (en) 2012-07-26

Family

ID=46677200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012051104A Pending JP2012140630A (en) 2012-03-08 2012-03-08 Method for manufacturing foam, and foam

Country Status (1)

Country Link
JP (1) JP2012140630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129448A (en) * 2012-12-28 2014-07-10 Sekisui Chem Co Ltd Method for producing thermoplastic resin foam
JP2014129446A (en) * 2012-12-28 2014-07-10 Sekisui Chem Co Ltd Method for producing thermoplastic resin foam

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248102A (en) * 1999-03-03 2000-09-12 Kanegafuchi Chem Ind Co Ltd Foam for vacuum heat insulation, vacuum heat insulation material, and their preparation
JP2000281829A (en) * 1999-03-30 2000-10-10 Sumitomo Chem Co Ltd Foamed body
JP2001151924A (en) * 1999-11-30 2001-06-05 Sumitomo Chem Co Ltd Method for manufacturing copolymer resin foam
JP2001302837A (en) * 2000-04-24 2001-10-31 Jsp Corp Foamed particle for molding
JP2003089727A (en) * 2001-09-18 2003-03-28 Mitsubishi Chemicals Corp Method for producing thermoplastic resin foam and thermoplastic resin foam
JP2003251652A (en) * 2002-03-06 2003-09-09 Toto Ltd Apparatus for manufacturing finely foamed film, manufacturing method using the same and apparatus for manufacturing non-foamed film adapted to production of finely foamed film
JP2003253032A (en) * 2002-02-28 2003-09-10 Idemitsu Petrochem Co Ltd Foamable thermoplastic resin composition and foam thereof
JP2005271504A (en) * 2004-03-26 2005-10-06 Japan Science & Technology Agency Method for manufacturing resin expansion-molded article and resin expansion-molded article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248102A (en) * 1999-03-03 2000-09-12 Kanegafuchi Chem Ind Co Ltd Foam for vacuum heat insulation, vacuum heat insulation material, and their preparation
JP2000281829A (en) * 1999-03-30 2000-10-10 Sumitomo Chem Co Ltd Foamed body
JP2001151924A (en) * 1999-11-30 2001-06-05 Sumitomo Chem Co Ltd Method for manufacturing copolymer resin foam
JP2001302837A (en) * 2000-04-24 2001-10-31 Jsp Corp Foamed particle for molding
JP2003089727A (en) * 2001-09-18 2003-03-28 Mitsubishi Chemicals Corp Method for producing thermoplastic resin foam and thermoplastic resin foam
JP2003253032A (en) * 2002-02-28 2003-09-10 Idemitsu Petrochem Co Ltd Foamable thermoplastic resin composition and foam thereof
JP2003251652A (en) * 2002-03-06 2003-09-09 Toto Ltd Apparatus for manufacturing finely foamed film, manufacturing method using the same and apparatus for manufacturing non-foamed film adapted to production of finely foamed film
JP2005271504A (en) * 2004-03-26 2005-10-06 Japan Science & Technology Agency Method for manufacturing resin expansion-molded article and resin expansion-molded article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129448A (en) * 2012-12-28 2014-07-10 Sekisui Chem Co Ltd Method for producing thermoplastic resin foam
JP2014129446A (en) * 2012-12-28 2014-07-10 Sekisui Chem Co Ltd Method for producing thermoplastic resin foam

Similar Documents

Publication Publication Date Title
KR101455435B1 (en) Polypropylene resin foam particle and molding thereof
WO2012081490A1 (en) Process for producing molded body of expanded polyolefin resin particles, and molded body of expanded polyolefin resin particles
JP5732116B2 (en) Polyolefin resin expanded particles
WO2013132957A1 (en) Polypropylene resin foamed particles and moulded article of polypropylene resin foamed particles
JP2014077045A (en) Polyolefinic resin foam particle molding
JP6060220B1 (en) Propylene-based resin expanded particles and expanded molded articles
JP6620387B2 (en) Propylene-based resin expanded particles and expanded molded articles
JP5927343B2 (en) Propylene-based resin expanded particles and expanded molded articles
JP2005068203A (en) Composition for polyolefin-based resin foam, its foam and method for producing foam
JP2010222566A (en) Resin molded product and method for producing the same
JP2009155557A (en) Heat-resistant foamed sheet, method for manufacturing the same and container for food
JP4999041B2 (en) Polycarbonate foam
JP2008303236A (en) Manufacturing method for cellular material, and cellular material
JP2003225978A (en) Foamed polypropylene resin sheet
JP2012140630A (en) Method for manufacturing foam, and foam
JP2006257307A (en) Resin composition for forming foamed polyolefin resin sheet and foamed polyolefin resin sheet produced therefrom
JP5591159B2 (en) Polystyrene porous film
JP2010241946A (en) Polycarbonate resin foam and method for producing the same
JP6390313B2 (en) Foam particles
JP5290910B2 (en) Polystyrene porous film
JP2015101591A (en) Polyolefin-based resin foam particle
JP4879767B2 (en) Polypropylene-based reflective sheet and reflector using the same
JP4434382B2 (en) Manufacturing method of polystyrene resin foam sheet
JP4777280B2 (en) Polypropylene-based reflective sheet and reflector using the same
WO2023054139A1 (en) Microporous polyolefin membrane, separator for batteries, and secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107