JP2010221605A - Composite in which fine powder of porous body having nano-structure is arrayed in layer - Google Patents

Composite in which fine powder of porous body having nano-structure is arrayed in layer Download PDF

Info

Publication number
JP2010221605A
JP2010221605A JP2009073045A JP2009073045A JP2010221605A JP 2010221605 A JP2010221605 A JP 2010221605A JP 2009073045 A JP2009073045 A JP 2009073045A JP 2009073045 A JP2009073045 A JP 2009073045A JP 2010221605 A JP2010221605 A JP 2010221605A
Authority
JP
Japan
Prior art keywords
porous body
composite
fine powder
nanostructure
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009073045A
Other languages
Japanese (ja)
Other versions
JP5441467B2 (en
Inventor
Shinichi Maeda
慎一 前田
Nozomi Inoue
望 井上
Masanori Kimura
正典 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP2009073045A priority Critical patent/JP5441467B2/en
Publication of JP2010221605A publication Critical patent/JP2010221605A/en
Application granted granted Critical
Publication of JP5441467B2 publication Critical patent/JP5441467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of difficulty in improving heat insulation property such that, although fine powders of porous bodies having a nano structure can be added much to an organic material, and when such fine powders of porous bodies are diffused in an organic material of an organic emulsion or the like for example, the organic material (e.g., binder) enters into the air layer of the porous bodies having the nano structure and as a result, the part entered into the air layer demonstrates heat insulation property inherent to the organic material. <P>SOLUTION: The composite is characterized in that, with an adhesive layer provided in a base material, the fine powders of the porous bodies having a nano structure are arrayed in layers on the adhesive layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ナノ構造を有する多孔質体の微粉末を層状に配列させた複合体に関する。   The present invention relates to a composite in which fine powders of a porous body having a nanostructure are arranged in layers.

ナノ構造を有する多孔質体は、一般的に無機系材料ではシリカ、アルミナ、チタニア、カーボンなどの多孔質体が知られている。一方、有機系ではイソシアネート系化合物、レゾールホルムアルデヒド、フェノールフルフラール、メラミンホルムアルデヒド、ポリイミドなどが知られている。   As the porous body having a nanostructure, porous bodies such as silica, alumina, titania, and carbon are generally known as inorganic materials. On the other hand, isocyanate compounds, such as isocyanate compounds, resol formaldehyde, phenol furfural, melamine formaldehyde, and polyimide are known.

これらの多孔質体の製造方法は、ゾルーゲル法による加水分解、縮重合によって得られた湿潤ゲルを超臨界流体で乾燥させて得られる。そして、得られたナノ構造を有する多孔質体は、図1(左図)に示すような平均粒子径が20nmの粒子が集合したもので、固形分が5%以下で残りの95%が空気層で囲まれているものである。   The production method of these porous bodies is obtained by drying a wet gel obtained by hydrolysis and condensation polymerization by a sol-gel method with a supercritical fluid. The obtained porous body having a nanostructure is a collection of particles having an average particle diameter of 20 nm as shown in FIG. 1 (left figure), the solid content is 5% or less, and the remaining 95% is air. It is the one surrounded by layers.

また、ナノ構造を有する多孔質体は、固体(固形部分)の熱伝導度が小さい上、空気の対流や輻射を抑制出来るので断熱材として使用されている硬質ポリウレタンフォームよりも断熱性に優れる。因みに、ナノ構造を有する多孔質体は、0.012〜0.015W/mK付近の断熱性能を示し、経年変化もほとんどないと言われている。   In addition, the porous body having a nanostructure has a low thermal conductivity of a solid (solid portion) and can suppress air convection and radiation, and thus has better heat insulation than a rigid polyurethane foam used as a heat insulating material. Incidentally, it is said that a porous body having a nanostructure exhibits a heat insulation performance in the vicinity of 0.012 to 0.015 W / mK and hardly changes over time.

ナノ構造を有する多孔質体としては、例えば特許文献1に記載されているようなナノ構造を有するシリカ多孔質体が知られている。このシリカ多孔質体を製造する方法としては、例えばアルコキシシランのメタノール溶液をアルカリ触媒中で加水分解、縮重合させて湿潤ゲルを得て(ゾルーゲル法)、その後、超臨界炭酸ガスで乾燥させて得ている。そして、このシリカ多孔質体は、透明性が高いために断熱窓用として多くの研究がなされている。しかしながら、このシリカ多孔質体は、比重が0.05〜0.30g/ccと非常に小さいため強度が脆く、商品化が難しい材料として製品化が遅れてきた。   As a porous body having a nanostructure, for example, a silica porous body having a nanostructure as described in Patent Document 1 is known. As a method for producing this porous silica, for example, a methanol solution of alkoxysilane is hydrolyzed in an alkali catalyst and subjected to condensation polymerization to obtain a wet gel (sol-gel method), and then dried with supercritical carbon dioxide gas. It has gained. And since this silica porous body is highly transparent, many studies have been made for heat insulating windows. However, since this porous silica has a very low specific gravity of 0.05 to 0.30 g / cc, its strength is brittle, and commercialization has been delayed as a material that is difficult to commercialize.

そこで、ナノ構造を有する多孔質体単体での応用研究よりもジェットミルなどで粉砕加工した微粉末を応用する研究が進められている。具体的には、ナノ構造を有する多孔質体を粉砕し微粉末化させ、この微粉末を表面修飾させて有機系エマルジョンなどの有機系材料に対する相溶性を向上させ、より多くの微粉末を有機系材料に混合する方法が検討されている。   Therefore, research on the application of fine powder pulverized by a jet mill or the like is being promoted rather than application research on a porous body having a nanostructure. Specifically, a porous body having a nanostructure is pulverized and finely powdered, and the surface of the fine powder is modified to improve compatibility with organic materials such as organic emulsions. A method of mixing with a system material has been studied.

米国特許4,402,927号公報U.S. Pat.No. 4,402,927

しかしながら、この方法では、ナノ構造を有する多孔質体の微粉末を有機系材料に多く添加することは可能であるが、例えば多孔質体の微粉末を有機系エマルジョンなどの有機系材料に分散させると、図1(右図)に示すようにナノ構造を有する多孔質体の空気層に有機系材料(例えばバインダー)が入り込む。その結果、空気層に入り込んだ部位は、その有機系材料自体の性能で断熱性能を発揮する事になるので断熱性能の向上が図れない問題があった。   However, in this method, it is possible to add a lot of fine powder of a porous body having a nanostructure to an organic material. For example, the fine powder of a porous body is dispersed in an organic material such as an organic emulsion. Then, as shown in FIG. 1 (right figure), an organic material (for example, a binder) enters the air layer of the porous body having a nanostructure. As a result, the portion that has entered the air layer exhibits the heat insulation performance by the performance of the organic material itself, so there is a problem that the heat insulation performance cannot be improved.

そこで、断熱性能の向上を図るために鋭意検討を行った結果、ナノ構造を有する多孔質体を粉砕して微粉末化させ、その微粉末を層状に配列することを見出し、本発明を完成させた。   Therefore, as a result of intensive studies to improve the heat insulation performance, it was found that the porous body having a nanostructure was pulverized into fine powders, and the fine powders were arranged in layers, and the present invention was completed. It was.

本発明は、基材に接着層を設け、この接着層上にナノ構造を有する多孔質体の微粉末を層状に配列することを特徴とする複合体である。また、基材と基材の間にナノ構造を有する多孔質体の微粉末を層状に配列するように挟み込み、四周をシールすることを特徴とする複合体である。また、袋に、ナノ構造を有する多孔質体の微粉末を層状に配列するように充填し、袋の開口部をシールすることによって密閉されたことを特徴とする複合体。また、通気性基材上にナノ構造を有する多孔質体の微粉末を積層し、基材下部から吸引することによって基材中にナノ構造を有する多孔質体の微粉末を層状に配列させたことを特徴とする複合体である。   The present invention is a composite in which an adhesive layer is provided on a substrate, and fine powders of a porous body having a nanostructure are arranged on the adhesive layer in layers. Further, the composite is characterized in that a fine powder of a porous body having a nanostructure is sandwiched between a base material so as to be arranged in a layered manner, and the four sides are sealed. In addition, the composite is characterized in that a bag is filled with fine powder of a porous body having a nanostructure so as to be arranged in layers, and the bag is sealed by sealing the opening of the bag. In addition, the fine powder of the porous body having nanostructures was laminated on the breathable base material, and the fine powder of the porous body having nanostructures was arranged in layers in the base material by sucking from the lower part of the base material. It is a composite characterized by the above.

本発明の複合体は、ナノ構造を有する多孔質体を粉砕して微粉末化させ、その微粉末を層状に配列することで断熱性能の向上を図れた。   In the composite of the present invention, the porous body having a nanostructure was pulverized into a fine powder, and the fine powder was arranged in a layered manner to improve the heat insulation performance.

ナノ構造を有するシリカ多孔質体を説明する図である。It is a figure explaining the silica porous body which has a nanostructure. 基材に接着層を設けた後、この接着層上にナノ構造を有する多孔質体の微粉末を層状に配列させた図である。FIG. 3 is a diagram in which fine particles of a porous body having a nanostructure are arranged in layers on an adhesive layer after providing an adhesive layer on a substrate. アクリルエマルジョンにナノ構造を有する多孔質体の微粉末を分散させたものを塗工した図である。It is the figure which applied what disperse | distributed the fine powder of the porous body which has a nanostructure in acrylic emulsion. バキュームベルトを説明する図である。It is a figure explaining a vacuum belt.

本発明は、基材に接着層を設け、この接着層上にナノ構造を有する多孔質体の微粉末を層状に配列することを特徴とする複合体である。即ち、基材に接着剤又は粘着剤を塗工して接着層を設けた後、ナノ構造を有する多孔質体の微粉末を層状に配列するように散布することによって、ナノ構造を有する多孔質体の空気層に有機系材料(樹脂)が入り込む接着成分がナノ構造を有する多孔質体の空気層に充填されることを抑制しながら積層出来るため、空気の対流や輻射を抑制出来、結果断熱性能が向上する複合体を得られる。   The present invention is a composite in which an adhesive layer is provided on a substrate, and fine powders of a porous body having a nanostructure are arranged on the adhesive layer in layers. In other words, after applying an adhesive or pressure-sensitive adhesive to the base material and providing an adhesive layer, the nanostructured porous material is dispersed in a layered manner to form a porous nanostructured porous powder. Adhesive components that penetrate organic materials (resins) into the air layer of the body can be laminated while suppressing the filling of the air layer of the porous body with nanostructures, so air convection and radiation can be suppressed, resulting in heat insulation A composite with improved performance can be obtained.

本発明で使用出来る基材は、織布、不織布のいずれでもよく天然繊維、ガラス繊維の他、化学繊維例えばポリエステル、アクリル、ポリプロピレン、ポリアミドなどが使用可能である。また、フィルム、シート基材もポリエステル、ポリエチレン、ポリプロピレン、ナイロン、ポリイミドあるいは金属箔又はこれらフィルムの複合品も可能である。また、プラスチック系発泡体では例えば押出スチレン、ビーズスチレン、ウレタン、フェノール、メラミンなどが挙げられる。   The base material that can be used in the present invention may be either a woven fabric or a non-woven fabric. In addition to natural fibers and glass fibers, chemical fibers such as polyester, acrylic, polypropylene, and polyamide can be used. The film and sheet base material can be polyester, polyethylene, polypropylene, nylon, polyimide, metal foil, or a composite product of these films. Examples of plastic foams include extruded styrene, bead styrene, urethane, phenol, and melamine.

本発明の接着層は、ナノ構造を有する多孔質体の微粉末が固定出来るものであればよく、例えば塩酢ビ、アクリル、ウレタン、ゴム系、エポキシ、ホットメルト接着剤などが使用可能で、ジェルタイプの接着剤であれば該微粉末を多く積層することが出来るので好ましい。   The adhesive layer of the present invention only needs to be able to fix the fine powder of the porous body having a nanostructure, such as vinyl acetate, acrylic, urethane, rubber, epoxy, hot melt adhesive, etc. A gel type adhesive is preferable because a large amount of the fine powder can be laminated.

本発明のナノ構造を有する多孔質体の微粉末の散布方法としては、篩いを使った振動式、ローラーなどで一定厚さを維持する方法や、スリッターを使った散布方式などが用いられる。この方法により、図3に示すようなアクリルエマルジョンにナノ構造を有する多孔質体の微粉末を分散させたものを塗工した場合、得られる熱伝導率が0.300W/mK付近であったのに対し、図2に示すように該微粉末を層状に配列するように散布したものは、熱伝導率が0.020〜0.080W/mK付近のものを得られた。即ち、本発明の複合体は、ナノ構造を有する多孔質体の微粉末を有機系材料に分散させた分散液を塗工したものに比べて、断熱性能が向上したものである。   As a method for spraying the fine powder of the porous material having a nanostructure of the present invention, a vibration method using a sieve, a method of maintaining a constant thickness with a roller, a spraying method using a slitter, or the like is used. With this method, when a fine powder of a porous material having a nanostructure is dispersed in an acrylic emulsion as shown in FIG. 3, the obtained thermal conductivity was around 0.300 W / mK. On the other hand, as shown in FIG. 2, when the fine powder was dispersed so as to be arranged in layers, a thermal conductivity of about 0.020 to 0.080 W / mK was obtained. That is, the composite of the present invention has improved heat insulation performance as compared with a case where a dispersion liquid in which fine powder of a porous material having a nanostructure is dispersed in an organic material is applied.

また、本発明の別の態様としては、基材と基材の間にナノ構造を有する多孔質体の微粉末を層状に配列するように挟み込み、四周をシールする複合体であり、断熱性能を向上させることが出来る。   Further, another aspect of the present invention is a composite in which fine powder of a porous body having a nanostructure is sandwiched between a base material so as to be arranged in a layered manner, and seals four sides, and has a heat insulation performance. Can be improved.

本発明で使用出来る基材は、織布又は不織布、フィルム、シートなどで、例えば金属板、金属箔、フィルム、シート類、織布、不織布あるいはこれらの積層体でもよい。   The base material that can be used in the present invention is a woven or non-woven fabric, a film, a sheet, and the like, for example, a metal plate, a metal foil, a film, sheets, a woven fabric, a non-woven fabric, or a laminate thereof.

また、基材と基材の間にナノ構造を有する多孔質体の微粉末を層状に配列するように挟み込んだ場合、張り合わせた基材の四周をシールする必要がある。一般的には、接着剤の塗工によってシールすることが可能であるが、織布や不織布の場合は、ロックミシンなどで縫い合わせることによって該微粉末の漏れを防ぐことが出来る。フィルムやシート状のものは、熱融着やドライラミネーションによってシール出来る。   Moreover, when the fine powder of the porous body which has a nanostructure is pinched | interposed between the base materials so that it may arrange in a layer form, it is necessary to seal the four circumferences of the base material bonded together. Generally, sealing can be performed by applying an adhesive, but in the case of a woven fabric or a non-woven fabric, leakage of the fine powder can be prevented by sewing with a lock sewing machine or the like. Films and sheets can be sealed by heat sealing or dry lamination.

挟み込む方法としては、請求項1で得られた複合体同志を貼り合わせるか、連続ラインであれば、ロール状基材上にナノ構造を有する多孔質体の微粉末を散布した後に上基材を重ね合わせ、両端を接着剤又はホットメルトでシールする。織布や不織布が基材の場合は、ミシンなどで縫い合わせることも可能である。   As a sandwiching method, the composites obtained in claim 1 are bonded together, or if it is a continuous line, the upper substrate is applied after the fine powder of the porous body having a nanostructure is sprayed on the roll-shaped substrate. Laminate and seal both ends with adhesive or hot melt. When a woven fabric or a non-woven fabric is a base material, it can be sewn with a sewing machine or the like.

また、本発明の別の態様としては、袋に、ナノ構造を有する多孔質体の微粉末を層状に配列するように充填し、袋の開口部をシールすることによって密閉された複合体であり、断熱性能を向上させることが出来る。   Another aspect of the present invention is a composite that is sealed by filling a bag with fine powder of a porous body having a nanostructure so as to be arranged in layers and sealing the opening of the bag. Insulation performance can be improved.

袋としては、例えば矩形状の基材同士を重ねて合わせて3方向の端部をシールしたものを使用することが出来る。そして、袋に、ナノ構造を有する多孔質体の微粉末を層状に配列するように充填し、袋の開口部をシールすることによって密閉された複合体を得ることが出来る。また、袋に、ナノ構造を有する多孔質体の微粉末を層状に配列するように充填した上で、例えば真空断熱材の芯材として使用されているようなガラス繊維等を袋中に挿入し、袋の開口部をシールすることによって密閉された複合体としてもよい。さらに、得られた複合体を熱プレス加工によって一定の厚さにしてもよい。   As the bag, for example, rectangular base materials that are overlapped with each other and sealed in three directions can be used. The bag is filled with fine powder of a porous material having a nanostructure so as to be arranged in layers, and a sealed composite can be obtained by sealing the opening of the bag. Moreover, after filling the bag so that the fine powder of the porous material having a nanostructure is arranged in a layered manner, glass fibers used as a core material of a vacuum heat insulating material, for example, are inserted into the bag. The composite may be sealed by sealing the opening of the bag. Further, the obtained composite may be made to have a constant thickness by hot pressing.

袋を作製する際のシール方法としては、フィルムやシート基材であれば熱融着加工、レーザー溶接、高周波加工などでシールする。織布や不織布の場合は、接着剤やホットメルト剤などでシールするかミシンなどで縫い合わせることで可能である。   As a sealing method at the time of producing the bag, if it is a film or a sheet base material, it is sealed by heat fusion processing, laser welding, high frequency processing or the like. In the case of a woven fabric or a non-woven fabric, it can be sealed with an adhesive or a hot melt agent or stitched with a sewing machine.

袋にナノ構造を有する多孔質体の微粉末を層状に配列するように充填して得た複合体を熱プレスする方法としては、一定の隙間を設定した二本の熱ロールの間を通して一定厚さの板状物とする方法や、熱プレス機で一定厚さに圧縮して板状物を得る方法などがある。   As a method of hot pressing a composite obtained by filling a bag with fine powder of a porous material having nanostructures in a layered manner, a constant thickness is passed between two hot rolls with a fixed gap. There are a method for obtaining a plate-like material, a method for obtaining a plate-like material by compressing to a certain thickness with a hot press machine, and the like.

また、通気性があって熱融着可能な基材で袋を作製し、その袋に、ナノ構造を有する多孔質体の微粉末を層状に配列するように充填して得た複合体に、ガスバリヤー性フィルムを更に被覆して低真空成形して断熱性能を高めてもよい。   In addition, a bag made of a base material that is air permeable and heat-sealable, and a composite obtained by filling the bag so as to arrange the fine powder of the porous body having a nanostructure in a layered manner, A gas barrier film may be further coated, and low vacuum forming may be performed to improve heat insulation performance.

また、本発明の別の態様としては、通気性基材上にナノ構造を有する多孔質体の微粉末を積層し、基材下部から吸引することによって基材中にナノ構造を有する多孔質体の微粉末を層状に配列させた複合体であり、断熱性能を向上させることが出来る。   Further, as another aspect of the present invention, a porous body having a nanostructure in a substrate is formed by laminating a fine powder of a porous body having a nanostructure on a breathable substrate and sucking it from the bottom of the substrate. This is a composite in which the fine powders are arranged in layers, and the heat insulation performance can be improved.

この方法によって、バインダーを使わないためにナノ構造を有する多孔質体の空気層に有機系材料(樹脂)が入り込まない。即ち、多孔質体の空気層を損なうことなく複合体が得られるので断熱性能を向上させることが出来る。また、この方法によって得られた複合体を複数枚積層させることによって、高性能の断熱材を得ることも出来る。   By this method, since no binder is used, the organic material (resin) does not enter the air layer of the porous body having a nanostructure. That is, since the composite can be obtained without impairing the air layer of the porous body, the heat insulation performance can be improved. Moreover, a high performance heat insulating material can also be obtained by laminating a plurality of composites obtained by this method.

通気性のある基材としては、フィルター用途などに使われる不織布などのふわふわしたものが適している。素材としては、ガラス繊維、ポリエステル、ポリプロピレンなどが使用可能である。   As the base material having air permeability, a fluffy material such as a non-woven fabric used for a filter is suitable. As the material, glass fiber, polyester, polypropylene or the like can be used.

また、この方法によって得られた複合体を複数枚積層させる場合、通気性のフィルムをラミネートした基材が適している。これを使うことによって振動や捻じ曲げなどで粉末がこぼれ落ちるのを防ぐことが出来る。   Further, when a plurality of composites obtained by this method are laminated, a base material laminated with a breathable film is suitable. By using this, it is possible to prevent the powder from spilling due to vibration or twist bending.

基材下部から吸引する方法としては、図4に示すような装置を用いて、複数の穴があいたコンベアベルト上に基材を設置して上方からナノ構造を有する多孔質体の微粉末を散布してバキュームする方法がある。バキューム能力は、吸引仕事率(JIS C 9108)によって真空度100Pa、風量1.5〜3m3/分で吸引するのがよい。 As a method of sucking from the lower part of the base material, using a device as shown in FIG. 4, the base material is set on a conveyor belt having a plurality of holes, and fine powder of a porous body having a nanostructure is sprayed from above. There is a way to vacuum. The vacuum capacity is preferably drawn at a vacuum degree of 100 Pa and an air volume of 1.5 to 3 m 3 / min depending on the suction power (JIS C 9108).

次に、本発明を実施例により更に詳細に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited to an Example.

(実施例1)
テトラメトキシシラン(コルコート社製、MZ-51)を0.75モル、フッ素系シランカップリング剤(信越化学工業社製、PFPTMS)0.25モル、メタノール7.2モル、アンモニア水0.01モルを混合してゾルーゲル法によって疎水化湿潤ゲルを得た。
次に、この疎水化湿潤ゲルを80℃、20MPaの超臨界炭酸ガス乾燥条件で5時間溶媒置換することによって、ナノ構造を有するシリカ多孔質体を得た。
次に、得られたナノ構造を有するシリカ多孔質体をヘンシェルミキサーに投入し、この多孔質体に対してシランカップリング剤(信越化学工業社製、KBM-403)0.1重量%を添加し、多孔質体の表面改質処理を行い、比重0.15g/ccの多孔質体を得た。
次に、ナノ構造を有するシリカ多孔質体の表面を改質したものを、ジェットミルにて10μm以下に粉砕処理し、多孔質体の微粉末を得た。
Example 1
Hydrophobic by sol-gel method by mixing 0.75 mol of tetramethoxysilane (manufactured by Colcoat, MZ-51), 0.25 mol of fluorosilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., PFPTMS), 7.2 mol of methanol and 0.01 mol of aqueous ammonia. A moistened gel was obtained.
Next, the hydrophobic wet gel was subjected to solvent substitution under supercritical carbon dioxide drying conditions at 80 ° C. and 20 MPa for 5 hours to obtain a porous silica material having a nanostructure.
Next, the obtained silica porous body having a nanostructure was put into a Henschel mixer, and 0.1% by weight of a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403) was added to the porous body. The porous body was surface-modified to obtain a porous body having a specific gravity of 0.15 g / cc.
Next, the surface of the silica porous body having nanostructures was modified and pulverized to 10 μm or less by a jet mill to obtain a fine powder of the porous body.

次に、25μmの易接着性ポリエステルフィルムにクロロプレン系ゴム接着剤(セメダイン社製、セメダイン575)をロールコーターにて目付量150g/m2塗工後、80-95℃の熱風乾燥機にて2分間乾燥させた。その後、接着層表面に上部から上記多孔質体の微粉末をスリッターにて3g/m2で散布し、フィルム上に多孔質体の微粉末を層状に表面配列した厚みが50μmの複合体を得た。 Next, apply a chloroprene rubber adhesive (Cemedine 575, Cemedine 575) to a 25 μm easy-adhesive polyester film using a roll coater, and then apply 2 in a hot air dryer at 80-95 ° C. Let dry for minutes. After that, fine powder of the porous body is spread on the surface of the adhesive layer from above with a slitter at 3 g / m 2 to obtain a composite having a thickness of 50 μm in which the fine powder of the porous body is arranged in layers on the film. It was.

得られた複合体を熱流計(英弘精機社製、MF-180)で測定した。その結果、熱伝導率は0.080W/mKであった。   The obtained composite was measured with a heat flow meter (MF-180, manufactured by Eiko Seiki Co., Ltd.). As a result, the thermal conductivity was 0.080 W / mK.

(実施例2)
実施例1で得られた複合体を2枚作製した。そして、多孔質体の微粉末が設けられた面同士が向かい合うように貼り合わせ、四周をホットメルトでシールし、厚みが60μmの複合体を得た。
(Example 2)
Two composites obtained in Example 1 were prepared. And it bonded together so that the surfaces provided with the fine powder of the porous body might face each other, and the four circumferences were sealed with hot melt to obtain a composite having a thickness of 60 μm.

得られた複合体について、実施例1同様の方法にて熱伝導率を測定した。その結果、0.030W/mKであった。   About the obtained composite_body | complex, the heat conductivity was measured by the method similar to Example 1. FIG. As a result, it was 0.030 W / mK.

(実施例3)
実施例1と同じ方法にて多孔質体の微粉末得て、この微粉末を3方熱融着したポリプロピレン製不織布(三和製紙社製、サンモアS)からなる袋に多孔質体の微粉末を層状に表面配列するように充填し、袋の開口部をシールして密閉状態とした。その後、100℃の熱プレス機にて10mm厚のスペーサーを設けて圧着し、厚みが10mmの複合体を得た。
Example 3
A fine powder of a porous body was obtained in the same manner as in Example 1, and a fine powder of the porous body was packed in a bag made of a polypropylene nonwoven fabric (Sanmore S, Sanwa Paper Co., Ltd.) obtained by heat-sealing the fine powder in three directions. In a layered manner, and the opening of the bag was sealed to form a sealed state. Thereafter, a spacer having a thickness of 10 mm was provided and pressure-bonded by a hot press at 100 ° C. to obtain a composite having a thickness of 10 mm.

得られた複合体について、実施例1同様の方法にて熱伝導率と熱貫流率を測定した。その結果、熱伝導率は0.020W/mK、熱貫流率は2.0W/m2・Kであった。 About the obtained composite_body | complex, the heat conductivity and the heat transmissivity were measured by the method similar to Example 1. FIG. As a result, the thermal conductivity was 0.020 W / mK, and the thermal conductivity was 2.0 W / m 2 · K.

(実施例4)
実施例3で得た複合体をガスバリヤー性の高い袋状フィルム(フィルムの構成:AL-PET25μm/アルミ箔7μm/LDPE50μm)に挿入して深絞型真空包装機(エヌピーシー社製)にて真空度1,000Pa、500Pa、150Paの各々を真空成形した後、ヒートシールを行い、厚みが10mmの真空包装体からなる複合体を得た。
Example 4
The composite obtained in Example 3 was inserted into a bag-like film with high gas barrier properties (film configuration: AL-PET 25 μm / aluminum foil 7 μm / LDPE 50 μm) and deep drawing type vacuum packaging machine (manufactured by NPC) After vacuum forming at a vacuum degree of 1,000 Pa, 500 Pa, and 150 Pa, heat sealing was performed to obtain a composite made of a vacuum package having a thickness of 10 mm.

得られた真空包装体からなる複合体について、実施例1同様の方法にて熱伝導率と熱貫流率を測定した。その結果、真空度1,000Paの時の熱伝導率が0.010W/mKで、熱貫流率が1.0W/m2・Kであった。真空度500Paの時の時の熱伝導率が0.007W/mK で、熱貫流率が0.7W/m2・Kであった。真空度150Paの時の時の熱伝導率が0.004W/mK で、熱貫流率が0.4W/m2・Kであった。 About the composite_body | complex which consists of the obtained vacuum packaging body, the heat conductivity and the heat transmissivity were measured by the method similar to Example 1. FIG. As a result, the heat conductivity at a vacuum of 1,000 Pa was 0.010 W / mK, and the heat transmissivity was 1.0 W / m 2 · K. When the degree of vacuum was 500 Pa, the thermal conductivity was 0.007 W / mK, and the thermal conductivity was 0.7 W / m 2 · K. When the degree of vacuum was 150 Pa, the thermal conductivity was 0.004 W / mK and the thermal conductivity was 0.4 W / m 2 · K.

(実施例5)
実施例1と同じ方法にて多孔質体の微粉末得て、通気性のあるポリエステル繊維の綿状のフィルター(日本バイリーン社製、KNB-650)に得られた多孔質体粉末を過剰量散布した。その後、フィルター下部から掃除機(日立社製、吸引仕事率650W)で吸引し、およそ30秒間で粉末がほぼフィルター内の充填される状態、即ち、多孔質体の微粉末を層状に表面配列する状態で停止した複合体を得た。
注)吸引仕事率(JIS C 9108)
吸引仕事率(W)=真空度(Pa)×風量(m3/分)×0.01666で示される。
正確には、真空度100Paで風量1.5m3/分で1分間吸引した。
(Example 5)
Porous fine powder was obtained in the same manner as in Example 1, and an excessive amount of porous powder obtained on a cotton-like filter made of breathable polyester fibers (KNB-650, manufactured by Japan Vilene Co., Ltd.) was dispersed. did. After that, it is sucked from the bottom of the filter with a vacuum cleaner (made by Hitachi, suction power 650W), and the powder is almost filled in the filter in about 30 seconds, that is, the fine powder of the porous body is arranged in a layered surface. A complex stopped in state was obtained.
Note) Suction power (JIS C 9108)
Suction power (W) = degree of vacuum (Pa) × air volume (m 3 /min)×0.01666
To be precise, the vacuum was 100 Pa and the air volume was sucked for 1 minute at 1.5 m 3 / min.

得られた複合体について、実施例1同様の方法にて熱伝導率と熱貫流率を測定した。その結果、熱伝導率は、0.028W/mKで熱貫流率(K値)3.5W/m2・Kであった。 About the obtained composite_body | complex, the heat conductivity and the heat transmissivity were measured by the method similar to Example 1. FIG. As a result, the thermal conductivity was 0.028 W / mK, and the thermal conductivity (K value) was 3.5 W / m 2 · K.

(実施例6)
実施例5で作成した複合体を、ウレタン接着剤(DIC社製、クリスボン4010)で目付量 100〜150g/m2塗工して80〜95℃熱風乾燥後、同じ複合体同志を貼り合せ、ピンチロールで圧着ラミネートした。この操作を2回繰り返し、3層構造の複合体を得た。
(Example 6)
The composite prepared in Example 5 was coated with urethane adhesive (DIC Corporation, Crisbon 4010) with a basis weight of 100 to 150 g / m 2 and dried with hot air at 80 to 95 ° C., and then the same composite was bonded. The laminate was crimped with a pinch roll. This operation was repeated twice to obtain a composite having a three-layer structure.

得られた複合体について、実施例1同様の方法にて熱伝導率と熱貫流率を測定した。その結果、熱伝導率は、0.024W/mKで、熱貫流率は0.96W/m2・Kであった。 About the obtained composite_body | complex, the heat conductivity and the heat transmissivity were measured by the method similar to Example 1. FIG. As a result, the thermal conductivity was 0.024 W / mK, and the thermal conductivity was 0.96 W / m 2 · K.

(比較例1)
実施例1と同じ方法にて多孔質体の微粉末得て、この多孔質体の微粉末をウレタンエマルジョン(DIC社製、ボンディック1520)に15重量部添加して分散液を作製した。この分散液を25μm易接着性ポリエステルフィルムに目付量100g/m2となるようにロールコーターで塗工した。その後、80-95℃熱風乾燥機にて3分間乾燥して複合体を得た。
(Comparative Example 1)
A porous fine powder was obtained in the same manner as in Example 1, and 15 parts by weight of this porous fine powder was added to a urethane emulsion (manufactured by DIC, Bondic 1520) to prepare a dispersion. This dispersion was applied to a 25 μm easy-adhesive polyester film with a roll coater so as to have a basis weight of 100 g / m 2 . Thereafter, it was dried for 3 minutes in an 80-95 ° C. hot air dryer to obtain a composite.

得られた複合体について、実施例1同様の方法にて熱伝導率を測定した。その結果、0.300W/mKであった。   About the obtained composite_body | complex, the heat conductivity was measured by the method similar to Example 1. FIG. As a result, it was 0.300 W / mK.

(比較例2)
真空断熱材用極細ガラス繊維(マグ社製、WR1000)をガスバリヤー性の高い袋状フィルム(フィルムの構成:AL-PET25μm/アルミ箔7μm/LDPE50μm)に挿入して130℃、2分間乾燥後、深絞型真空包装機(エヌピーシー社製)にて真空度1,000Pa、500Pa、150Paの各々を真空成形した後、ヒートシールを行い、厚みが10mmの真空包装体からなる複合体を得た。
(Comparative Example 2)
Insert ultra-fine glass fiber for vacuum insulation (made by Mag Co., Ltd., WR1000) into a bag-like film with high gas barrier properties (film structure: AL-PET25μm / aluminum foil 7μm / LDPE50μm) and dry at 130 ° C for 2 minutes Each of vacuums of 1,000 Pa, 500 Pa, and 150 Pa was vacuum formed with a deep drawing type vacuum packaging machine (manufactured by NP Corp.), and then heat sealed to obtain a composite comprising a vacuum packaging body having a thickness of 10 mm.

得られた真空包装体について、実施例1同様の方法にて熱伝導率と熱貫流率を測定した。その結果、真空度1,000Paの時の熱伝導率が0.015W/mKで、熱貫流率が1.5W/m2・Kであった。真空度500Paの時の時の熱伝導率が0.012W/mK で、熱貫流率が1.2W/m2・Kであった。真空度150Paの時の時の熱伝導率が0.009W/mK で、熱貫流率が0.9W/m2・Kであった。 About the obtained vacuum packaging body, the heat conductivity and the heat transmissivity were measured by the same method as Example 1. As a result, the heat conductivity at a vacuum of 1,000 Pa was 0.015 W / mK, and the heat transmissivity was 1.5 W / m 2 · K. When the degree of vacuum was 500 Pa, the thermal conductivity was 0.012 W / mK and the thermal conductivity was 1.2 W / m 2 · K. When the degree of vacuum was 150 Pa, the thermal conductivity was 0.009 W / mK and the thermal conductivity was 0.9 W / m 2 · K.

(比較例3)
実施例1と同じ方法にて多孔質体の微粉末得て、この微粉末15重量部をアクリルエマルジョン(DIC社製、ボンコートAN-200)と混合した分散液を作製した。その後、実施例5のフィルターKNB-650に含浸加工した後に、8mm厚間隔でピンチロールを使って絞込み、80-95℃熱風乾燥機で5分間乾燥させて複合体を得た。尚、得られた含浸布は目付量が200g/m2であった。
(Comparative Example 3)
A porous fine powder was obtained in the same manner as in Example 1, and a dispersion was prepared by mixing 15 parts by weight of this fine powder with an acrylic emulsion (manufactured by DIC, Boncoat AN-200). Thereafter, the filter KNB-650 of Example 5 was impregnated and then narrowed down with a pinch roll at an interval of 8 mm thickness and dried for 5 minutes with an 80-95 ° C. hot air dryer to obtain a composite. The obtained impregnated fabric had a basis weight of 200 g / m 2 .

得られた複合体について、実施例1同様の方法にて熱伝導率を測定した。その結果、熱伝導率0.300W/mK、熱貫流率37.5W/m2・Kであった。 About the obtained composite_body | complex, the heat conductivity was measured by the method similar to Example 1. FIG. As a result, the thermal conductivity was 0.300 W / mK, and the thermal conductivity was 37.5 W / m 2 · K.

Claims (4)

基材に接着層を設け、この接着層上にナノ構造を有する多孔質体の微粉末を層状に配列することを特徴とする複合体。   A composite comprising an adhesive layer on a base material, and fine powders of a porous body having a nanostructure arranged on the adhesive layer in a layered manner. 基材と基材の間にナノ構造を有する多孔質体の微粉末を層状に配列するように挟み込み、四周をシールすることを特徴とする複合体。   A composite comprising sandwiching fine powders of a porous body having a nanostructure between a base material so as to be arranged in a layered manner, and sealing four sides. 袋に、ナノ構造を有する多孔質体の微粉末を層状に配列するように充填し、袋の開口部をシールすることによって密閉されたことを特徴とする複合体。   A composite comprising a bag filled with fine powder of a porous material having a nanostructure so as to be arranged in layers, and sealed by sealing an opening of the bag. 通気性基材上にナノ構造を有する多孔質体の微粉末を積層し、基材下部から吸引することによって基材中にナノ構造を有する多孔質体の微粉末を層状に配列させたことを特徴とする複合体。   By laminating a fine powder of a porous body having a nanostructure on a breathable base material and sucking from the bottom of the base material, the fine powder of the porous body having a nanostructure is arranged in a layer form in the base material. Characteristic complex.
JP2009073045A 2009-03-25 2009-03-25 Composite in which fine powder of porous material having nanostructure is arranged in layers Active JP5441467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073045A JP5441467B2 (en) 2009-03-25 2009-03-25 Composite in which fine powder of porous material having nanostructure is arranged in layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009073045A JP5441467B2 (en) 2009-03-25 2009-03-25 Composite in which fine powder of porous material having nanostructure is arranged in layers

Publications (2)

Publication Number Publication Date
JP2010221605A true JP2010221605A (en) 2010-10-07
JP5441467B2 JP5441467B2 (en) 2014-03-12

Family

ID=43039300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073045A Active JP5441467B2 (en) 2009-03-25 2009-03-25 Composite in which fine powder of porous material having nanostructure is arranged in layers

Country Status (1)

Country Link
JP (1) JP5441467B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055075A (en) * 2012-09-11 2014-03-27 Japan Fine Ceramics Center Method of manufacturing porous silica particle and porous silica particle for vacuum heat insulation material
WO2017038769A1 (en) * 2015-09-02 2017-03-09 日立化成株式会社 Aerogel laminate and heat-insulating material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021094A (en) * 1999-07-06 2001-01-26 Dainippon Printing Co Ltd Heat-insulating composite sheet and heat-insulating member
JP2005534530A (en) * 2002-07-29 2005-11-17 ゴア エンタープライズ ホールディングス,インコーポレイティド Footwear and other apparel insulation products
JP2009041649A (en) * 2007-08-08 2009-02-26 Panasonic Corp Vacuum heat insulating material and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021094A (en) * 1999-07-06 2001-01-26 Dainippon Printing Co Ltd Heat-insulating composite sheet and heat-insulating member
JP2005534530A (en) * 2002-07-29 2005-11-17 ゴア エンタープライズ ホールディングス,インコーポレイティド Footwear and other apparel insulation products
JP2009041649A (en) * 2007-08-08 2009-02-26 Panasonic Corp Vacuum heat insulating material and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055075A (en) * 2012-09-11 2014-03-27 Japan Fine Ceramics Center Method of manufacturing porous silica particle and porous silica particle for vacuum heat insulation material
WO2017038769A1 (en) * 2015-09-02 2017-03-09 日立化成株式会社 Aerogel laminate and heat-insulating material
JPWO2017038769A1 (en) * 2015-09-02 2018-06-14 日立化成株式会社 Airgel laminate and heat insulating material

Also Published As

Publication number Publication date
JP5441467B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
TWI351980B (en) Filter unit and filter unit panel
CN108883597A (en) The laminated body of aerogel-containing composite materials comprising enhancing
WO2015010489A1 (en) High sound-adsorption coefficient expanded polytetrafluoroethylene composite fiber cotton
JP2015531323A (en) Heat insulation film for high temperature molding, vacuum heat insulating material using the same, and method for producing vacuum heat insulating material
CN107405858A (en) Evacuated insulation panel
JP2015048543A (en) Fiber substrate and heat insulation mat including fiber substrate
JP5441467B2 (en) Composite in which fine powder of porous material having nanostructure is arranged in layers
JP6560095B2 (en) Laminated nonwoven fabric and method for producing the same
JP2014046587A (en) Laminated film applied with functional porous body, laminate and package
JP6195776B2 (en) Method for producing three-layer laminated nonwoven fabric
JP6603896B2 (en) Insulation
KR20130011193A (en) Nonwoven fabric complex using carbon nanotube and manufacturing method thereof
JP4972342B2 (en) Hygroscopic sheet
JP6114022B2 (en) Laminated nonwoven fabric
CN212499248U (en) Novel Nomex paper cladding aerogel felt heat insulating mattress
JPH031856A (en) Throwaway pocket warmer
KR20120028633A (en) Manufacturing method of insulated nonwoven fabric with aerogel
JPH04210232A (en) Sheet-shaped deoxidizer
WO2019155558A1 (en) Production method for filter medium, filter medium, and respirator
JP2001226860A (en) Particle-containing nonwoven fabric and method for producing the same
CN211542699U (en) Environment-friendly high-barrier composite packaging material
JP2018192764A (en) Laminate structure
CN206861149U (en) A kind of insulation quilt and warming plate of the heat-barrier material not out of dust containing nanoaperture
JP2011005676A (en) Composite including porous body having nano structure
JPH0356358Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

R150 Certificate of patent or registration of utility model

Ref document number: 5441467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350