JP2011005676A - Composite including porous body having nano structure - Google Patents

Composite including porous body having nano structure Download PDF

Info

Publication number
JP2011005676A
JP2011005676A JP2009149317A JP2009149317A JP2011005676A JP 2011005676 A JP2011005676 A JP 2011005676A JP 2009149317 A JP2009149317 A JP 2009149317A JP 2009149317 A JP2009149317 A JP 2009149317A JP 2011005676 A JP2011005676 A JP 2011005676A
Authority
JP
Japan
Prior art keywords
composite
porous body
mesh
foam
nanostructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009149317A
Other languages
Japanese (ja)
Inventor
Nozomi Inoue
望 井上
Masanori Kimura
正典 木村
Keitaro Sugio
圭太郎 杉尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP2009149317A priority Critical patent/JP2011005676A/en
Publication of JP2011005676A publication Critical patent/JP2011005676A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a composite not getting loose scatteringly like a nonwoven fabric even after a damp gel is included, capable of uniformly including a porous body having a nano structure and having uniform heat insulating properties.SOLUTION: This composite is formed by including the porous body having the nano structure in a base material comprising a plastic foam having open cells and the porosity of the foam are 20-60 ppi [the number of cells (pores) per 1 inis 20-60].

Description

本発明は、ナノ構造を有する多孔質体を均一に内包する複合体に関するもので、防寒衣料、防寒靴、防寒寝具、電気機器断熱、車両断熱材、建築用断熱材など広く応用できるものである。   The present invention relates to a composite that uniformly encloses a porous body having a nanostructure, and is widely applicable to cold clothing, winter shoes, cold bedding, heat insulation for electrical equipment, vehicle heat insulation, heat insulation for construction, and the like. .

ナノ構造を有する多孔質体は、一般的に無機系材料ではシリカ、アルミナ、チタニア、カーボンなどの多孔質体が知られている。一方、有機系ではイソシアネート系化合物、レゾールホルムアルデヒド、フェノールフルフラール、メラミンホルムアルデヒド、ポリイミドなどが知られている。   As the porous body having a nanostructure, porous bodies such as silica, alumina, titania, and carbon are generally known as inorganic materials. On the other hand, isocyanate compounds, such as isocyanate compounds, resol formaldehyde, phenol furfural, melamine formaldehyde, and polyimide are known.

これらの多孔質体は、ゾルーゲル法による加水分解、縮重合によって得られた湿潤ゲル体を超臨界流体で乾燥させて得られる。そして、得られたナノ構造を有する多孔質体は、平均粒子径が20nmの粒子が集合したもので、固形分が5%以下で残りの95%が空気層で囲まれている。   These porous bodies can be obtained by drying a wet gel obtained by hydrolysis and condensation polymerization by a sol-gel method with a supercritical fluid. And the porous body which has the obtained nanostructure is what aggregated the particle | grains with an average particle diameter of 20 nm, solid content is 5% or less, and the remaining 95% is surrounded by the air layer.

また、ナノ構造を有する多孔質体は、固形部分の熱伝導度が小さい上、空気の対流や輻射を抑制する機能に優れるので、断熱材として使用されている硬質ポリウレタンフォームよりも断熱性に優れる。因みに、ナノ構造を有する多孔質体は、0.012〜0.015W/mK付近の断熱性能を示し、経年変化もほとんどないと言われている。   In addition, since the porous body having a nanostructure has low thermal conductivity in the solid portion and is excellent in the function of suppressing air convection and radiation, it has better heat insulation than the rigid polyurethane foam used as a heat insulating material. . Incidentally, it is said that the porous body having a nanostructure exhibits a heat insulating performance in the vicinity of 0.012 to 0.015 W / mK and hardly changes over time.

ナノ構造を有する多孔質体としては、例えば特許文献1に記載されているようなナノ構造を有するシリカ多孔質体が知られている。このシリカ多孔質体を製造する方法としては、例えばアルコキシシランのメタノール溶液をアルカリ触媒中で加水分解、縮重合させて湿潤ゲルを得て(ゾルーゲル法)、その後、超臨界炭酸ガスで乾燥させて得られている。そして、このシリカ多孔質体は、透明性が高いために断熱窓用として多くの研究がなされている。しかしながら、このシリカ多孔質体の比重は0.05〜0.3g/ccと非常に小さく、しかも固形分が5%以下であるために強度が弱く、指に触れただけで壊れてしまう欠点があった。   As a porous body having a nanostructure, for example, a silica porous body having a nanostructure as described in Patent Document 1 is known. As a method for producing this porous silica, for example, a methanol solution of alkoxysilane is hydrolyzed in an alkali catalyst and subjected to condensation polymerization to obtain a wet gel (sol-gel method), and then dried with supercritical carbon dioxide gas. Has been obtained. And since this silica porous body is highly transparent, many studies have been made for heat insulating windows. However, the specific gravity of this porous silica material is very small, 0.05 to 0.3 g / cc, and the solid content is 5% or less, so the strength is weak, and there is a drawback that it breaks only by touching the finger. there were.

そこで、特許文献2や3に記載されているように、ナノ構造を有する多孔質体を不織布に内包させた複合体が提案されている。   Therefore, as described in Patent Documents 2 and 3, a composite in which a porous body having a nanostructure is included in a nonwoven fabric has been proposed.

米国特許4402927号公報U.S. Pat. No. 4,402,927 特表平10−504792号公報Japanese National Patent Publication No. 10-504792 特表平2008−511537号公報Japanese National Patent Publication No. 2008-511537

しかしながら、これら不織布はいずれも綿状にふわふわしたもの(フェルト状、ウエッブ状、マット状)であったため、該基材に湿潤ゲルを内包させようとするとその段階で溶媒の影響を受け、不織布からなる基材がばらばらとほぐれてくるので、厚味が均一である含浸基材を得ることが出来なかった。仮にほぐれることなく湿潤ゲルを基材に含浸させられたとしても、局部的に湿潤ゲルが固まってしまい、超臨界炭酸ガス乾燥した場合には、ナノ構造を有する多孔質体が不均一に内包された複合体となり、断熱性能にばらつきが生じていた。   However, since these nonwoven fabrics were all fluffy (felt shape, web shape, mat shape), when trying to enclose the wet gel in the base material, it was affected by the solvent at that stage, Since the resulting base material was loosened, an impregnated base material having a uniform thickness could not be obtained. Even if the base material is impregnated with the wet gel without being loosened, the wet gel is locally solidified, and when the supercritical carbon dioxide gas is dried, the porous body having nanostructures is unevenly included. As a result, the insulation performance varied.

そこで、上記課題を解決するために本発明は、基材として不織布ではなく、連続気泡を有するプラスチック系発泡体で特定の空孔率を有するもの、或いは、織布又はメッシュ構造で特定の目開き(メッシュ)を有するものを採用することによって、湿潤ゲルを内包させた後でも不織布のようにばらばらとほぐれることがなく、その上、ナノ構造を有する多孔質体を均一に内包でき、均一な断熱性能を有する複合体を得ることが出来ることを見出した。   Therefore, in order to solve the above-mentioned problems, the present invention is not a nonwoven fabric as a base material but a plastic foam having open cells and having a specific porosity, or a specific opening with a woven fabric or a mesh structure. By adopting a material with (mesh), even after wetting the wet gel, it will not loosen like a non-woven fabric, and in addition, it will be possible to encapsulate nano-structured porous material uniformly and evenly insulate It has been found that a composite having performance can be obtained.

本発明の請求項1記載の複合体は、連続気泡を有するプラスチック系発泡体からなる基材に、ナノ構造を有する多孔質体を内包する複合体であって、該発泡体の空孔率は、20〜60ppi(一辺が1インチの正方形中にセル(孔)が20〜60 個)であることを特徴とする。また、請求項2記載の発明は、織布又はメッシュ構造を有する基材に、ナノ構造を有する多孔質体を内包する複合体であって、該織布又はメッシュ構造を有する基材の目開きが0.1〜0.5mm(メッシュ:#35〜#150)であることを特徴とする。   The composite according to claim 1 of the present invention is a composite in which a porous body having a nanostructure is included in a base material made of a plastic foam having open cells, and the porosity of the foam is 20 to 60 ppi (20 to 60 cells (holes) in a 1-inch square). The invention according to claim 2 is a composite in which a porous material having a nanostructure is included in a substrate having a woven fabric or a mesh structure, and the mesh of the substrate having the woven fabric or mesh structure Is 0.1 to 0.5 mm (mesh: # 35 to # 150).

本発明の複合体は、湿潤ゲルを内包させた後でも不織布のようにばらばらとほぐれることがなく、その上、ナノ構造を有する多孔質体を均一に内包保持でき、均一な断熱性能を有する複合体を得ることが出来た。   The composite of the present invention does not loosen like a non-woven fabric even after encapsulating a wet gel, and in addition, a composite having a uniform nano-structured porous body and having uniform heat insulation performance I was able to get a body.

軟質ウレタンフォームにナノ構造を有する多孔質体を内包する複合体を説明する図。The figure explaining the composite_body | complex which includes the porous body which has a nanostructure in a flexible urethane foam. ガラスクロスにナノ構造を有する多孔質体を内包する複合体を説明する図。The figure explaining the composite_body | complex which includes the porous body which has a nanostructure in glass cloth. 不織布にナノ構造を有する多孔質体を内包する複合体を説明する図。The figure explaining the composite_body | complex which includes the porous body which has a nano structure in a nonwoven fabric.

本発明の請求項1記載の複合体は、連続気泡を有するプラスチック系発泡体からなる基材に、ナノ構造を有する多孔質体を内包する複合体であって、該発泡体の空孔率は、20〜60ppi(一辺が1インチの正方形中にセル(孔)が20〜60 個)であることを特徴とする。   The composite according to claim 1 of the present invention is a composite in which a porous body having a nanostructure is included in a base material made of a plastic foam having open cells, and the porosity of the foam is 20 to 60 ppi (20 to 60 cells (holes) in a 1-inch square).

本発明の連続気泡を有するプラスチック系発泡体は、3次元構造のセル(孔)を有するものである。そして、該発泡体の空孔率は、20〜60ppi(一辺が1インチの正方形中にセル(孔)が20〜60 個)であるので湿潤ゲルを含浸させた際、セル(孔)全体に湿潤ゲルが均一に内包される。尚、ここでいう「空孔率」とは、プラスチック系発泡体を例えば切断し、その切断面において一辺が1インチの正方形部分を仮に見た際、その正方形中にセル(孔)数がいくつあるのかを表しているものであり、これをppi(pores per inch)と表した。そして、本発明で使用できる連続気泡のプラスチック系発泡体は、一辺が1インチの正方形中にセル(孔)が20〜60 個存在するものであり、20〜60ppiと表した。   The plastic foam having open cells of the present invention has cells (holes) having a three-dimensional structure. And since the porosity of the foam is 20 to 60 ppi (20 to 60 cells (holes) in a square of 1 inch on each side), when the wet gel is impregnated, the entire cell (hole) is filled. The wet gel is uniformly included. The “porosity” as used herein refers to the number of cells (holes) in a square when, for example, a plastic foam is cut and a square portion having a side of 1 inch is viewed on the cut surface. This is expressed as ppi (pores per inch). The open-cell plastic foam that can be used in the present invention has 20 to 60 cells (holes) in a 1-inch square, and is expressed as 20 to 60 ppi.

また、上記20〜60ppi(一辺が1インチの正方形中にセル(孔)が20〜60 個)の空孔率を有することにより、連続気泡を有するプラスチック系発泡体からなる基材のセル全体にナノ構造を有する多孔質体が均一に内包される。その結果、0.015〜0.018W/mKの優れた断熱性能を示すことができる。空孔率が20ppi未満であると、湿潤ゲルを含浸する際、湿潤ゲルが発泡体のセルを通過してしまい、発泡体のセル全体へ均一に内包された含浸体が得られない。一方、空孔率が60ppiを超えると、微細なセル構造をもつために湿潤ゲルが発泡体のセルへ浸透し難く、発泡体のセル全体へ均一に内包された含浸体が得られない。   In addition, by having a porosity of 20 to 60 ppi (20 to 60 cells (holes in a 1-inch square)), the entire cell of a base material made of a plastic foam having open cells is used. A porous body having a nanostructure is uniformly encapsulated. As a result, excellent heat insulation performance of 0.015 to 0.018 W / mK can be shown. When the porosity is less than 20 ppi, when the wet gel is impregnated, the wet gel passes through the cells of the foam, and an impregnated body uniformly encapsulated in the entire cells of the foam cannot be obtained. On the other hand, if the porosity exceeds 60 ppi, the wet gel hardly penetrates into the foam cells because of the fine cell structure, and an impregnated body uniformly encapsulated in the entire foam cells cannot be obtained.

本発明で使用できる基材としては、連続気泡を有するプラスチック系発泡体であり、例えば軟質ウレタンフォーム、軟質塩ビフォーム、ポリプロピレンフォーム、ポリエチレンフォーム、メラミンフォーム、ポリイミドフォームなどが挙げられる。また、製造上の観点からロール状に巻けるような柔軟性に富むものがよく、軟質ウレタンフォームやポリエチレンフォームが特に好ましい。そして、これら発泡体に化学繊維、フィルム、シート等をラミネートさせた複合品も使用可能である。   The base material that can be used in the present invention is a plastic foam having open cells, and examples thereof include soft urethane foam, soft PVC foam, polypropylene foam, polyethylene foam, melamine foam, and polyimide foam. Further, from the viewpoint of production, it is preferable to have a flexible property that can be wound in a roll shape, and a flexible urethane foam or polyethylene foam is particularly preferable. A composite product obtained by laminating a chemical fiber, a film, a sheet or the like on these foams can also be used.

本発明のナノ構造を有する多孔質体は、無機系材料ではシリカ、アルミナ、チタニア、カーボンなどの多孔質体が使用できる。そして、ナノゲル含浸合成時にシランカップリング剤添加して、有機材料との相溶性を向上させることも出来る。そうすることで、ナノ粒子の集合体が基材の空孔から剥離し難くなる。更に、得られた複合体同志との積層接着やつなぎ目接着、更に他素材との貼り合わせ加工などを可能に出来る。   As the porous body having a nanostructure of the present invention, porous bodies such as silica, alumina, titania and carbon can be used as inorganic materials. A silane coupling agent can be added during the nanogel impregnation synthesis to improve compatibility with the organic material. By doing so, it becomes difficult for the aggregate | assembly of a nanoparticle to peel from the void | hole of a base material. Furthermore, it is possible to perform lamination bonding and joint bonding with the obtained composites, and further bonding with other materials.

また、本発明のナノ構造を有する多孔質体は、有機系ではイソシアネート系化合物、レゾールホルムアルデヒド、フェノールフルフラール、メラミンホルムアルデヒド、ポリイミドなどの多孔質体も使用できる。   Moreover, the porous body which has a nanostructure of this invention can also use porous bodies, such as an isocyanate type compound, a resole formaldehyde, a phenol furfural, a melamine formaldehyde, a polyimide, in an organic type.

本発明の請求項2記載の複合体は、織布又はメッシュ構造を有する基材に、ナノ構造を有する多孔質体を内包する複合体であって、該織布又はメッシュ構造を有する基材は、目開きが0.1〜0.5mm(メッシュ:#35〜#150)であることを特徴とする。   The composite according to claim 2 of the present invention is a composite in which a porous body having a nanostructure is included in a base material having a woven cloth or mesh structure, and the base material having the woven cloth or mesh structure is The opening is 0.1 to 0.5 mm (mesh: # 35 to # 150).

尚、織布又はメッシュ構造を有する基材の目開きは、繊維径(mm)とメッシュの関係で示され、数1のような規定がある。
そして、本発明に必要な目開きは0.1〜0.5mmであり、これをメッシュで表すと#35〜#150であり、その結果、湿潤ゲルを含浸させた際、これらの目開きに湿潤ゲルが均一に内包される。メッシュが#35未満の場合、目開きが0.6mmを超えるので湿潤ゲルが内包されず、複合体の均一な断熱性能が得られない。一方、メッシュが#150を超えると、目開きが0.1mm未満の微細な空壁となって含浸加工が出来難くなる。尚、目開きを測定するためには、糸の太さや織り数などが必要になるために、簡易的にメッシュで目開きを想定している。
In addition, the opening of the base material which has a woven fabric or a mesh structure is shown by the relationship of a fiber diameter (mm) and a mesh, and there exists prescription | regulation like Formula 1.
And the opening required for this invention is 0.1-0.5 mm, and when this is expressed with a mesh, it is # 35- # 150, As a result, when impregnating wet gel, in these opening, The wet gel is uniformly included. When the mesh is less than # 35, the mesh exceeds 0.6 mm, so that the wet gel is not included, and the uniform heat insulating performance of the composite cannot be obtained. On the other hand, if the mesh exceeds # 150, it becomes difficult to perform the impregnation process because it becomes a fine empty wall with an opening of less than 0.1 mm. In order to measure the opening, the thickness of the thread, the number of weaves, and the like are required, and therefore the opening is simply assumed with a mesh.

また、上記織布とは、平織、綾織り、朱子織り等の織の間に一定の目開きを有する構造の基材であり、例えば平織のように縦糸と横糸を交互に組み合わせたもので目崩れしない基材であればよい。また、上記メッシュ構造を有する基材とは、クロスやメッシュと呼ばれるもので一定間隔に空壁を形成し、糸と糸の交点で接着しているもので目崩れしない基材であればよい。   The above-mentioned woven fabric is a base material having a structure having a certain opening between the weaves such as plain weave, twill weave, satin weave, etc., for example, a combination of warp and weft alternately such as plain weave. Any substrate that does not collapse may be used. The base material having the mesh structure may be a base material that is called a cloth or mesh, forms empty walls at regular intervals, adheres at the intersection of the yarns, and does not collapse.

また、織布又はメッシュ構造を有する基材の材質は、ポリエステル繊維、ナイロン繊維、ポロプロピレンなどの有機系繊維やテフロン(登録商標)繊維、ガラス繊維、セラミック繊維などの無機系繊維も使用可能である。この他、これらの素材の3 次元化学繊維でも使用可能である。また、製造上の観点からロール状に巻けるような柔軟性に富むものがよい。   In addition, the base material having a woven fabric or mesh structure can be organic fibers such as polyester fibers, nylon fibers, polypropylene, and inorganic fibers such as Teflon (registered trademark) fibers, glass fibers, and ceramic fibers. is there. In addition, 3D chemical fibers of these materials can also be used. Moreover, the thing which is rich in the flexibility which can be wound in roll shape from a viewpoint on manufacture is good.

本発明の複合体の製造方法は、A)先ず、含浸液としてのゾルを基材に強制的に含浸させて一定厚さに絞り込む方法や基材表面にゾルをスプレーする方法など基材の空孔(或いは目開き)内へ含浸液を内包出来ればいずれの方法であってもよい。B)続いて、触媒を添加してゲル化させ、湿潤ゲルとする。C)続いて、湿潤ゲルを内包する基材をロール状に巻いて、高圧容器に収納して、超臨界炭酸ガスによって乾燥させ、収縮の少ない複合体を得る。尚、A)のゾルにB)の触媒を添加してから、ゲル化前のゾルを基材の空孔(或いは目開き)内へ内包させてもよい。   The method for producing the composite of the present invention is as follows. A) First, the substrate is emptied, such as a method of forcibly impregnating the substrate with a sol as an impregnating liquid to narrow the substrate to a certain thickness, or a method of spraying the sol on the substrate surface. Any method may be used as long as the impregnating liquid can be included in the holes (or openings). B) Subsequently, a catalyst is added to cause gelation to obtain a wet gel. C) Subsequently, the base material containing the wet gel is wound into a roll shape, accommodated in a high-pressure container, and dried with supercritical carbon dioxide to obtain a composite with little shrinkage. In addition, after adding the catalyst of B) to the sol of A), the sol before gelation may be included in the pores (or openings) of the base material.

上述の含浸液とは、例えば金属アルコキシドや水ガラスを溶媒中で加水分解させ、ゾルを形成させた液である。そして、この含浸液に触媒を添加し、重縮合反応でゾルをゲル化させる、所謂ゾルーゲル法という合成方法で湿潤ゲルが得られる。   The above-mentioned impregnating liquid is a liquid in which, for example, metal alkoxide or water glass is hydrolyzed in a solvent to form a sol. A wet gel can be obtained by a so-called sol-gel method in which a catalyst is added to the impregnating solution and the sol is gelled by a polycondensation reaction.

次に、本発明を実施例により更に詳細に説明するが、本発明は実施例に限定されるもの
ではない。
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited to an Example.

(実施例1)
テトラメトキシシラン(KBM−04、信越化学社製)1モル、メタノール20 モル、25%アンモニア水0.01モルを配合(表1における「シリカ化合物」)した後、攪拌して含浸液を得た。その後、得られた含浸液中に、軟質ウレタンフォーム(厚味8mm、密度45kg/m、空孔率40ppi、商品名:ZV アキレス社製)を室温で含浸させ、35分間放置し、軟質ウレタンフォームのセル全体に湿潤ゲル体を内包保持させた。次に、この軟質ウレタンフォームのセル全体に湿潤ゲル体を内包保持させたものを、20mmφの金属メッシュ巻芯(400mm幅×1m長)に巻きつけて4L高圧容器に収納後、超臨界炭酸ガス乾燥(20Mpa、80℃、5時間)を行い、厚味7.5mm、比重0.050の軟質ウレタンフォームのセル全体にナノ構造を有する多孔質体が内包保持されている複合体を得た。
Example 1
After adding 1 mol of tetramethoxysilane (KBM-04, manufactured by Shin-Etsu Chemical Co., Ltd.), 20 mol of methanol, and 0.01 mol of 25% ammonia water (“silica compound” in Table 1), the mixture was stirred to obtain an impregnation solution. . Thereafter, the impregnating liquid thus obtained was impregnated with a flexible urethane foam (thickness 8 mm, density 45 kg / m 3 , porosity 40 ppi, trade name: ZV Achilles) at room temperature, and allowed to stand for 35 minutes. The wet gel body was encapsulated and held in the entire cell of the foam. Next, this flexible urethane foam cell with a wet gel body encapsulated is wound around a 20 mmφ metal mesh core (400 mm width × 1 m length) and stored in a 4 L high pressure vessel, and then supercritical carbon dioxide gas Drying (20 Mpa, 80 ° C., 5 hours) was performed to obtain a composite in which a porous body having a nanostructure was included and held in the whole cell of a flexible urethane foam having a thickness of 7.5 mm and a specific gravity of 0.050.

そして、得られた複合体の断熱性能、柔軟性、接着加工性についてそれぞれ評価を行った。各評価方法を以下に示す。   And the heat insulation performance of the obtained composite_body | complex, softness | flexibility, and adhesive processability were evaluated, respectively. Each evaluation method is shown below.

(断熱性能)
熱流計(M−180 英弘精機社製)で計測する。実施例1の複合体は、0.016W/mKの断熱性能であった。
(Insulation performance)
Measure with a heat flow meter (M-180 manufactured by Eiko Seiki Co., Ltd.). The composite of Example 1 had a heat insulation performance of 0.016 W / mK.

(柔軟性)
JIS P8115に準拠した折り曲げ試験で基材を荷重1.5kgで135度に折り曲げたときに、基材に折れ皺が発生するかどうかを目視で確認する。実施例1の複合体は、折れ皺が発生しなかったので表1に示すように○とした。
(Flexibility)
When the substrate is bent at 135 ° with a load of 1.5 kg in a bending test according to JIS P8115, it is visually confirmed whether or not creases are generated on the substrate. In the composite of Example 1, no creases occurred, so that it was marked as ◯ as shown in Table 1.

(テープ剥離強度)
複合体を2枚並べて繋ぎ目に25mm幅のブチルゴムテープ(WF−450、コニシ社製)を貼ってテープを180°で剥離した際の剥離強度を測定した。その結果、実施例1の複合体は、テープ剥離強度が60g/25mmであり、軟質ウレタンフォームに対してナノ構造を有する多孔質体が接着している事を確認出来た。
(Tape peel strength)
Two composites were placed side by side, a 25 mm wide butyl rubber tape (WF-450, manufactured by Konishi Co., Ltd.) was applied to the joint, and the peel strength when the tape was peeled at 180 ° was measured. As a result, the composite of Example 1 had a tape peel strength of 60 g / 25 mm, and it was confirmed that the porous body having a nanostructure was adhered to the flexible urethane foam.

(実施例2)
テトラメトキシシラン縮合物(メチルシリケート51、コルコート社製)0.3モル、フッ素系シランカップリング剤(KBE−22 信越化学社製)0.7モル、メタノール溶媒20モル、炭酸ナトリウム0.008モル、水10モルを配合(表1における「シリカ化合物+シランカップリング剤」)した後、攪拌して含浸液を得た。その後、得られた含浸液中に、軟質ウレタンフォーム(厚味8mm、密度45kg/m、空孔率40ppi、商品名:ZV アキレス社製)を室温で含浸させ、40分間放置し、軟質ウレタンフォームのセル全体に湿潤ゲル体を内包保持させた。次に、この軟質ウレタンフォームのセル全体に湿潤ゲル体を内包保持させたものを、20mmφの金属メッシュ巻芯(400mm幅×1m長)に巻きつけて4L高圧容器に収納後、超臨界炭酸ガス乾燥(20Mpa、80℃、5時間)を行い、厚味8.0mm、比重0.050の軟質ウレタンフォームのセル全体にナノ構造を有する多孔質体が内包保持されている複合体を得た。尚、この複合体を走査型電子顕微鏡(日立ハイテック社製、S−3400N:倍率1,000倍)で撮影したものを図1に示す。
(Example 2)
Tetramethoxysilane condensate (methyl silicate 51, manufactured by Colcoat) 0.3 mol, fluorine-based silane coupling agent (KBE-22 manufactured by Shin-Etsu Chemical Co., Ltd.) 0.7 mol, methanol solvent 20 mol, sodium carbonate 0.008 mol Then, 10 mol of water was blended (“silica compound + silane coupling agent” in Table 1) and then stirred to obtain an impregnation solution. Thereafter, the resulting impregnating solution was impregnated with a flexible urethane foam (thickness 8 mm, density 45 kg / m 3 , porosity 40 ppi, trade name: ZV Achilles) at room temperature, and left for 40 minutes to form a flexible urethane. The wet gel body was encapsulated and held in the entire cell of the foam. Next, this flexible urethane foam cell with a wet gel body encapsulated is wound around a 20 mmφ metal mesh core (400 mm width × 1 m length) and stored in a 4 L high pressure vessel, and then supercritical carbon dioxide gas Drying (20 Mpa, 80 ° C., 5 hours) was carried out to obtain a composite in which a porous body having a nanostructure was encapsulated and held in the whole cell of a flexible urethane foam having a thickness of 8.0 mm and a specific gravity of 0.050. In addition, what image | photographed this composite_body | complex with the scanning electron microscope (The Hitachi High-Tech company make, S-3400N: 1000-times multiplication factor) is shown in FIG.

そして、得られた複合体の断熱性能、柔軟性、接着加工性について、実施例1と同様の方法にて評価を行った。その結果、断熱性能は0.016W/mKであり、折れ皺が発生しなかったので表1に示すように○とした。一方、実施例2の複合体は、テープ剥離強度が150g/25mmであり、軟質ウレタンフォームに対してナノ構造を有する多孔質体が良好に接着している事を確認出来た。   And the heat insulation performance, the softness | flexibility, and the adhesive processability of the obtained composite_body | complex were evaluated by the method similar to Example 1. FIG. As a result, the heat insulation performance was 0.016 W / mK, and no creases occurred. On the other hand, the composite of Example 2 had a tape peel strength of 150 g / 25 mm, and it was confirmed that the porous body having a nanostructure was well adhered to the flexible urethane foam.

(実施例3)
ジフェニルメタン-4,4’-ジイソシアネート(ミリオネートMR−100、日本ポリウレタン工業社製)10重量部、ジクロロメタン90重量部、触媒(ポリキャット41、エアプロダクツ社製)0.2重量部を配合(表1における「イソシアネート化合物」)した後、攪拌して含浸液を得た。その後、得られた含浸液中に、軟質ウレタンフォーム(厚味8mm、密度45kg/m、空孔率40ppi、商品名:ZV アキレス社製)を室温で含浸させ、30分間放置し、軟質ウレタンフォームのセル全体に湿潤ゲル体を内包保持させた。次に、この軟質ウレタンフォームのセル全体に湿潤ゲル体を内包保持させたものを、20mmφの金属メッシュ巻芯(400mm幅×1m長)に巻きつけて4L高圧容器に収納後、超臨界炭酸ガス乾燥(10Mpa、50℃、3時間))を行い、厚味7.5mm、比重0.050の軟質ウレタンフォームのセル全体にナノ構造を有する多孔質体が内包保持されている複合体を得た。
(Example 3)
10 parts by weight of diphenylmethane-4,4′-diisocyanate (Millionate MR-100, manufactured by Nippon Polyurethane Industry Co., Ltd.), 90 parts by weight of dichloromethane, and 0.2 parts by weight of catalyst (Polycat 41, manufactured by Air Products) (Table 1) And then stirring to obtain an impregnating solution. Thereafter, the resulting impregnating liquid was impregnated with a flexible urethane foam (thickness 8 mm, density 45 kg / m 3 , porosity 40 ppi, trade name: ZV manufactured by Achilles) at room temperature, and allowed to stand for 30 minutes. The wet gel body was encapsulated and held in the entire cell of the foam. Next, this flexible urethane foam cell with a wet gel body encapsulated is wound around a 20 mmφ metal mesh core (400 mm width × 1 m length) and stored in a 4 L high pressure vessel, and then supercritical carbon dioxide gas Drying (10 Mpa, 50 ° C., 3 hours)) was performed to obtain a composite in which a porous body having a nanostructure was contained and held in the entire cell of a flexible urethane foam having a thickness of 7.5 mm and a specific gravity of 0.050. .

そして、得られた複合体の断熱性能、柔軟性、接着加工性について、実施例1と同様の方法にて評価を行った。その結果、断熱性能は0.017W/mKであり、折れ皺が発生しなかったので表1に示すように○とした。一方、実施例3の複合体は、テープ剥離強度が210g/25mmであり、軟質ウレタンフォームに対してナノ構造を有する多孔質体が良好に接着している事を確認出来た。   And the heat insulation performance, the softness | flexibility, and the adhesive processability of the obtained composite_body | complex were evaluated by the method similar to Example 1. FIG. As a result, the heat insulation performance was 0.017 W / mK, and no creases occurred. On the other hand, the composite of Example 3 had a tape peel strength of 210 g / 25 mm, and it was confirmed that the porous body having a nanostructure was well adhered to the flexible urethane foam.

(実施例4)
実施例3の含浸液中に、ポリエチレン発泡体(厚味10mm、密度50kg/m、空孔率50ppi、商品名:LC−150 三和化工社製)を室温で含浸させ、30分間放置し、ポリエチレン発泡体のセル全体に湿潤ゲル体を内包保持させた。次に、このポリエチレン発泡体のセル全体に湿潤ゲル体を内包保持させたものを、20mmφの金属メッシュ巻芯(400mm幅×1m長)に巻きつけて4L高圧容器に収納後、超臨界炭酸ガス乾燥(10Mpa、50℃、3時間)を行い、厚味9.5mm、比重0.050のポリエチレン発泡体のセル全体にナノ構造を有する多孔質体が内包保持されている複合体を得た。
Example 4
The impregnating solution of Example 3 was impregnated with polyethylene foam (thickness 10 mm, density 50 kg / m 3 , porosity 50 ppi, trade name: LC-150, manufactured by Sanwa Corporation) at room temperature and left for 30 minutes. The wet gel body was encapsulated and held in the entire polyethylene foam cell. Next, this polyethylene foam cell in which a wet gel body is encapsulated and held is wound around a 20 mmφ metal mesh core (400 mm width × 1 m length) and stored in a 4 L high-pressure vessel, and then supercritical carbon dioxide gas Drying (10 Mpa, 50 ° C., 3 hours) was performed to obtain a composite in which a porous body having a nanostructure was encapsulated and held in the whole cell of a polyethylene foam having a thickness of 9.5 mm and a specific gravity of 0.050.

そして、得られた複合体の断熱性能、柔軟性、接着加工性について、実施例1と同様の方法にて評価を行った。その結果、断熱性能は0.018W/mKであり、折れ皺が発生しなかったので表1に示すように○とした。一方、実施例4の複合体は、テープ剥離強度が160g/25mmであり、ポリエチレン発泡体に対してナノ構造を有する多孔質体が良好に接着している事を確認出来た。   And the heat insulation performance, the softness | flexibility, and the adhesive processability of the obtained composite_body | complex were evaluated by the method similar to Example 1. FIG. As a result, the heat insulation performance was 0.018 W / mK, and no creases occurred. On the other hand, the composite of Example 4 had a tape peel strength of 160 g / 25 mm, and it was confirmed that the porous body having a nanostructure was well adhered to the polyethylene foam.

(実施例5)
実施例2の含浸液中に、ガラスクロス基材(厚味3mm、メッシュ:#150、商品名:NGC−2000日本グラスファイバー工業社製)を室温で含浸させ、40分間放置し、ガラスクロス基材のメッシュに湿潤ゲル体を内包保持させた。次に、このガラスクロス基材のメッシュに湿潤ゲル体を内包保持させたものを、20mmφの金属メッシュ巻芯(400mm幅×1m長)に巻きつけて4L高圧容器に収納後、超臨界炭酸ガス乾燥(20Mpa、80℃、1時間)を行い、厚味3mm、比重0.050のガラスクロス基材のメッシュにナノ構造を有する多孔質体が内包保持されている複合体を得た。尚、この複合体を実施例2同様の顕微鏡で撮影したものを図2に示す。
(Example 5)
A glass cloth substrate (thickness 3 mm, mesh: # 150, trade name: NGC-2000 manufactured by Nippon Glass Fiber Industries, Ltd.) was impregnated in the impregnating liquid of Example 2 and allowed to stand for 40 minutes to obtain a glass cloth base. The wet gel body was included and held in the mesh of the material. Next, this glass cloth base mesh with a wet gel body held therein is wrapped around a 20 mmφ metal mesh core (400 mm width × 1 m length) and stored in a 4 L high-pressure vessel, and then supercritical carbon dioxide gas Drying (20 Mpa, 80 ° C., 1 hour) was performed to obtain a composite in which a porous body having a nanostructure was contained and retained in a mesh of a glass cloth substrate having a thickness of 3 mm and a specific gravity of 0.050. In addition, what image | photographed this composite_body | complex with the microscope similar to Example 2 is shown in FIG.

そして、得られた複合体の断熱性能、柔軟性、接着加工性について、実施例1と同様の方法にて評価を行った。その結果、断熱性能は0.018W/mKであり、折れ皺が発生しなかったので表1に示すように○とした。一方、実施例5の複合体は、テープ剥離強度が110g/25mmであり、ガラスクロス基材に対してナノ構造を有する多孔質体が良好に接着している事を確認出来た。   And the heat insulation performance, the softness | flexibility, and the adhesive processability of the obtained composite_body | complex were evaluated by the method similar to Example 1. FIG. As a result, the heat insulation performance was 0.018 W / mK, and no creases occurred. On the other hand, the composite of Example 5 had a tape peel strength of 110 g / 25 mm, and it was confirmed that the porous body having a nanostructure was well adhered to the glass cloth substrate.

(実施例6)
ガラスクロス基材の代わりに、セラミッククロス基材(厚味3mm、メッシュ:#100、商品名:TSC−1320 橘工業社製)を用いた以外は、実施例5と同様の方法にて、厚味3mm、比重0.060のセラミッククロス基材のメッシュにナノ構造を有する多孔質体が内包保持されている複合体を得た。
(Example 6)
In the same manner as in Example 5 except that a ceramic cloth substrate (thickness 3 mm, mesh: # 100, trade name: TSC-1320, manufactured by Tachibana Kogyo Co., Ltd.) was used instead of the glass cloth substrate, the thickness was increased. A composite in which a porous body having a nanostructure was encapsulated and retained in a mesh of a ceramic cloth substrate having a taste of 3 mm and a specific gravity of 0.060 was obtained.

そして、得られた複合体の断熱性能、柔軟性、接着加工性について、実施例1と同様の方法にて評価を行った。その結果、断熱性能は0.018W/mKであり、折れ皺が発生しなかったので表1に示すように○とした。一方、実施例6の複合体は、テープ剥離強度が100g/25mmであり、セラミッククロス基材に対してナノ構造を有する多孔質体が良好に接着している事を確認出来た。   And the heat insulation performance, the softness | flexibility, and the adhesive processability of the obtained composite_body | complex were evaluated by the method similar to Example 1. FIG. As a result, the heat insulation performance was 0.018 W / mK, and no creases occurred. On the other hand, the composite of Example 6 had a tape peel strength of 100 g / 25 mm, and it was confirmed that the porous body having a nanostructure was well adhered to the ceramic cloth substrate.

(実施例7)
実施例2の含浸液中に、ポリエステルメッシュ繊維基材(厚味700μm、メッシュ#60、商品名:PET390−HD セミテック社製)を室温で含浸させ、40分間放置し、ポリエステルメッシュ繊維基材のメッシュに湿潤ゲル体を内包保持させた。次に、このガラスクロス基材のメッシュに湿潤ゲル体を内包保持させたものを、20mmφの金属メッシュ巻芯(400mm幅×1m長)に巻きつけて4L高圧容器に収納後、超臨界炭酸ガス乾燥(20Mpa、80℃、0.5時間)を行い、厚味0.60mm、比重0.040のポリエステルメッシュ繊維基材のメッシュにナノ構造を有する多孔質体が内包保持されている複合体を得た。
(Example 7)
In the impregnating solution of Example 2, a polyester mesh fiber base material (thickness 700 μm, mesh # 60, trade name: PET390-HD manufactured by Semi-Tech Co., Ltd.) was impregnated at room temperature and allowed to stand for 40 minutes. The wet gel body was included and held in the mesh. Next, this glass cloth base mesh with a wet gel body held therein is wrapped around a 20 mmφ metal mesh core (400 mm width × 1 m length) and stored in a 4 L high-pressure vessel, and then supercritical carbon dioxide gas Drying (20 Mpa, 80 ° C., 0.5 hour), a composite in which a porous body having a nanostructure is encapsulated and held in a mesh of a polyester mesh fiber base material having a thickness of 0.60 mm and a specific gravity of 0.040 Obtained.

そして、得られた複合体の断熱性能、柔軟性、接着加工性について、実施例1と同様の方法にて評価を行った。その結果、断熱性能は0.022W/mKであり、折れ皺が発生しなかったので表1に示すように○とした。一方、実施例7の複合体は、テープ剥離強度が80g/25mmであり、ポリエステルメッシュ繊維基材に対してナノ構造を有する多孔質体が良好に接着している事を確認出来た。   And the heat insulation performance, the softness | flexibility, and the adhesive processability of the obtained composite_body | complex were evaluated by the method similar to Example 1. FIG. As a result, the heat insulation performance was 0.022 W / mK, and no creases occurred. On the other hand, the composite of Example 7 had a tape peel strength of 80 g / 25 mm, and it was confirmed that the porous body having a nanostructure was well adhered to the polyester mesh fiber substrate.

(比較例1)
実施例1の含浸液中に、軟質ウレタンフォーム(厚味8mm、密度15kg/m、空孔率14ppi、商品名:ムマックTB−QA アキレス社製)を室温で含浸させ、40分間放置したが、軟質ウレタンフォームのセル全体に湿潤ゲル体を均一に内包保持させることが出来なかったため、超臨界炭酸ガス乾燥までに至らなかった。
(Comparative Example 1)
The impregnating solution of Example 1 was impregnated with a flexible urethane foam (thickness 8 mm, density 15 kg / m 3 , porosity 14 ppi, trade name: Mumak TB-QA manufactured by Achilles) at room temperature and left for 40 minutes. Since the wet gel body could not be uniformly encapsulated and held throughout the cells of the flexible urethane foam, the supercritical carbon dioxide gas could not be dried.

(比較例2)
実施例1の含浸液中に、メラミン発泡体(厚味8mm、密度15kg/m、空孔率80ppi、商品名:Basotect G BASF社製)を室温で含浸させ、40分間放置したが、メラミン発泡体のセル全体に湿潤ゲル体を均一に内包保持させることが出来なかったため、超臨界炭酸ガス乾燥までに至らなかった。
(Comparative Example 2)
In the impregnation liquid of Example 1, a melamine foam (thickness 8 mm, density 15 kg / m 3 , porosity 80 ppi, trade name: manufactured by Basotect G BASF) was impregnated at room temperature and allowed to stand for 40 minutes. Since the wet gel body could not be uniformly encapsulated and held in the entire cell of the foam, supercritical carbon dioxide gas drying was not achieved.

(比較例3)
実施例2の含浸液中に、基材としてポリエステル不織布(厚味8mm、目付量600g/m、ニードルパンチ 高安社製)を室温で含浸させ、40分間放置し、ポリエステル不織布に湿潤ゲル体を内包保持させた。次に、このポリエステル不織布に湿潤ゲル体を内包保持させたものを、20mmφの金属メッシュ巻芯(400mm幅×1m長)に巻きつけて4L高圧容器に収納後、超臨界炭酸ガス乾燥(20Mpa、80℃、5時間)を行い、厚味8mm、比重0.080のポリエステル不織布にナノ構造を有する多孔質体が内包保持されている複合体を得た。尚、この複合体を実施例2同様の顕微鏡で撮影したものを図3に示す。
(Comparative Example 3)
In the impregnating solution of Example 2, a polyester nonwoven fabric (thickness 8 mm, basis weight 600 g / m 2 , needle punch made by Takayasu Co., Ltd.) is impregnated as a base material at room temperature, and left for 40 minutes. The inclusion was held. Next, this polyester non-woven fabric containing a wet gel body is wrapped around a 20 mmφ metal mesh core (400 mm width × 1 m length) and stored in a 4 L high-pressure vessel, followed by supercritical carbon dioxide drying (20 Mpa, 80 ° C., 5 hours) to obtain a composite in which a porous body having a nanostructure is contained in a polyester nonwoven fabric having a thickness of 8 mm and a specific gravity of 0.080. In addition, what image | photographed this composite_body | complex with the microscope similar to Example 2 is shown in FIG.

そして、得られた複合体の断熱性能、柔軟性、接着加工性について、実施例1と同様の方法にて評価を行った。その結果、断熱性能は0.021〜0.031W/mKというように測定箇所によってかなりばらつきがあり、均一な断熱性能は得られなかった。また、柔軟性は折れ皺が発生したので表1に示すように×とした。一方、テープ剥離強度は、テープを剥離する際に不織布の糸がほぐれ、形が崩れてしまったので測定不能とした。   And the heat insulation performance, the softness | flexibility, and the adhesive processability of the obtained composite_body | complex were evaluated by the method similar to Example 1. FIG. As a result, the heat insulation performance varied considerably depending on the measurement location such as 0.021 to 0.031 W / mK, and uniform heat insulation performance was not obtained. Further, since the crease occurred, the flexibility was evaluated as x as shown in Table 1. On the other hand, the tape peel strength could not be measured because the yarn of the nonwoven fabric was loosened when the tape was peeled, and the shape collapsed.

(比較例4)
実施例2の含浸液中に、基材としてガラス繊維不織布(厚味12mm、密度80kg/m、商品名:マグボード マグ社製)を室温で含浸させ、40分間放置し、ガラス繊維不織布に湿潤ゲル体を内包保持させたが、ガラス繊維が層状に一部分離して均一なものが得られなかったため、超臨界炭酸ガス乾燥までに至らなかった。
(Comparative Example 4)
In the impregnation liquid of Example 2, a glass fiber nonwoven fabric (thickness 12 mm, density 80 kg / m 3 , trade name: manufactured by Magboard Mag Inc.) was impregnated at room temperature, and left for 40 minutes to wet the glass fiber nonwoven fabric. Although the gel body was encapsulated and held, glass fibers were partly separated into layers and a uniform product could not be obtained, so the supercritical carbon dioxide gas could not be dried.

(比較例5)
実施例1の含浸液中に、基材としてポリエステルメッシュ繊維(厚味745μm、メッシュ:#20、くればあ社製)を室温で含浸させ、40分間放置し、ポリエステルメッシュ繊維のメッシュに湿潤ゲル体を内包保持させた。次に、このポリエステルメッシュ繊維のメッシュに湿潤ゲル体を内包保持させたものを、20mmφの金属メッシュ巻芯(400mm幅×1m長)に巻きつけて4L高圧容器に収納後、超臨界炭酸ガス乾燥(20Mpa、80℃、0.5時間)を行い、厚味0.65mm、比重0.040のポリエステルメッシュ繊維基材のメッシュにナノ構造を有する多孔質体が内包保持されている複合体を得た。
(Comparative Example 5)
In the impregnation liquid of Example 1, polyester mesh fiber (thickness 745 μm, mesh: # 20, manufactured by Kuraia Co., Ltd.) is impregnated as a base material at room temperature and left for 40 minutes. The body was held inside. Next, this polyester mesh fiber mesh containing a wet gel body is wrapped around a 20 mmφ metal mesh core (400 mm width × 1 m length), stored in a 4 L high pressure vessel, and then dried with supercritical carbon dioxide. (20 Mpa, 80 ° C., 0.5 hour) to obtain a composite in which a porous body having a nanostructure is encapsulated and held in a mesh of a polyester mesh fiber base material having a thickness of 0.65 mm and a specific gravity of 0.040 It was.

そして、得られた複合体の断熱性能、柔軟性、接着加工性について、実施例1と同様の方法にて評価を行った。その結果、断熱性能は0.030W/mKであり、折れ皺が発生しなかったので表1に示すように○とした。一方、比較例5の複合体は、テープ剥離強度が0g/25mmであり、軟質ウレタンフォームに対してナノ構造を有する多孔質体がほとんど接着していない事を確認出来た。   And the heat insulation performance, the softness | flexibility, and the adhesive processability of the obtained composite_body | complex were evaluated by the method similar to Example 1. FIG. As a result, the heat insulation performance was 0.030 W / mK, and no creases occurred. On the other hand, the composite of Comparative Example 5 had a tape peel strength of 0 g / 25 mm, and it was confirmed that the porous body having a nanostructure was hardly adhered to the flexible urethane foam.

(比較例6)
実施例1の含浸液中に、基材としてポリエステルメッシュ繊維(厚味3300μm、メッシュ:#160 くればあ社製)を室温で含浸させ、40分間放置し、ポリエステルメッシュ繊維のメッシュに湿潤ゲル体を内包保持させた。次に、このポリエステルメッシュ繊維のメッシュに湿潤ゲル体を内包保持させたものを、20mmφの金属メッシュ巻芯(400mm幅×1m長)に巻きつけて4L高圧容器に収納後、超臨界炭酸ガス乾燥(20Mpa、80℃、0.5時間)を行い、厚味3.2mm、比重0.060のポリエステルメッシュ繊維基材のメッシュにナノ構造を有する多孔質体が内包保持されている複合体を得た。
(Comparative Example 6)
In the impregnating solution of Example 1, polyester mesh fiber (thickness 3300 μm, mesh: manufactured by # 160 if available) is impregnated as a base material at room temperature, and left for 40 minutes, and the wet mesh body is placed on the mesh of the polyester mesh fiber. Was included. Next, this polyester mesh fiber mesh containing a wet gel body is wrapped around a 20 mmφ metal mesh core (400 mm width × 1 m length), stored in a 4 L high pressure vessel, and then dried with supercritical carbon dioxide. (20 Mpa, 80 ° C., 0.5 hour) to obtain a composite in which a porous body having a nanostructure is contained in a mesh of a polyester mesh fiber base material having a thickness of 3.2 mm and a specific gravity of 0.060. It was.

そして、得られた複合体の断熱性能、柔軟性、接着加工性について、実施例1と同様の方法にて評価を行った。その結果、断熱性能は0.040W/mKであり、折れ皺が発生しなかったので表1に示すように○とした。一方、比較例6の複合体は、テープ剥離強度が0g/25mmであり、軟質ウレタンフォームに対してナノ構造を有する多孔質体がほとんど接着していない事を確認出来た。   And the heat insulation performance, the softness | flexibility, and the adhesive processability of the obtained composite_body | complex were evaluated by the method similar to Example 1. FIG. As a result, the heat insulation performance was 0.040 W / mK, and no creases occurred. On the other hand, the composite of Comparative Example 6 had a tape peel strength of 0 g / 25 mm, and it was confirmed that the porous body having a nanostructure was hardly adhered to the flexible urethane foam.

Claims (2)

連続気泡を有するプラスチック系発泡体からなる基材に、ナノ構造を有する多孔質体を内包する複合体であって、
該発泡体の空孔率は、20〜60ppi(一辺が1インチの正方形中にセル(孔)が20〜60 個)であることを特徴とする複合体。
A composite body including a porous body having a nanostructure in a base material made of a plastic foam having open cells,
The composite is characterized in that the porosity of the foam is 20 to 60 ppi (20 to 60 cells (holes) in a square having a side of 1 inch).
織布又はメッシュ構造を有する基材に、ナノ構造を有する多孔質体を内包する複合体であって、
該織布又はメッシュ構造を有する基材の目開きが、0.1〜0.5mm(メッシュ:#35〜#150)であることを特徴とする複合体。
A composite that includes a porous body having a nanostructure in a base material having a woven fabric or a mesh structure,
A composite having a mesh size of 0.1 to 0.5 mm (mesh: # 35 to # 150).
JP2009149317A 2009-06-24 2009-06-24 Composite including porous body having nano structure Pending JP2011005676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009149317A JP2011005676A (en) 2009-06-24 2009-06-24 Composite including porous body having nano structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009149317A JP2011005676A (en) 2009-06-24 2009-06-24 Composite including porous body having nano structure

Publications (1)

Publication Number Publication Date
JP2011005676A true JP2011005676A (en) 2011-01-13

Family

ID=43562922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009149317A Pending JP2011005676A (en) 2009-06-24 2009-06-24 Composite including porous body having nano structure

Country Status (1)

Country Link
JP (1) JP2011005676A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019512022A (en) * 2016-01-27 2019-05-09 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Insulation structure
JP2021116949A (en) * 2020-01-23 2021-08-10 東芝ライフスタイル株式会社 refrigerator
US11547977B2 (en) 2018-05-31 2023-01-10 Aspen Aerogels, Inc. Fire-class reinforced aerogel compositions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275305A (en) * 2001-03-16 2002-09-25 Matsushita Electric Ind Co Ltd Composite porous form and its manufacturing method
JP2004340415A (en) * 2003-05-13 2004-12-02 Toshiba Corp Refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275305A (en) * 2001-03-16 2002-09-25 Matsushita Electric Ind Co Ltd Composite porous form and its manufacturing method
JP2004340415A (en) * 2003-05-13 2004-12-02 Toshiba Corp Refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019512022A (en) * 2016-01-27 2019-05-09 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Insulation structure
US11072145B2 (en) 2016-01-27 2021-07-27 Aspen Aerogels, Inc. Laminates comprising reinforced aerogel composites
US11547977B2 (en) 2018-05-31 2023-01-10 Aspen Aerogels, Inc. Fire-class reinforced aerogel compositions
JP2021116949A (en) * 2020-01-23 2021-08-10 東芝ライフスタイル株式会社 refrigerator

Similar Documents

Publication Publication Date Title
US10940669B2 (en) Insulating structures
JP6330974B2 (en) Airgel composite material
TWI796284B (en) Airgel laminated composite and heat insulating material
EP3326811B1 (en) Method and apparatus for manufacturing composite sheet comprising aerogel sheets
JP6612443B2 (en) Method and apparatus for producing composite sheet including airgel sheet
Mazrouei-Sebdani et al. Multiple assembly strategies for silica aerogel-fiber combinations–A review
Mekonnen et al. Preparation of aerogel and its application progress in coatings: A mini overview
US20170356589A1 (en) Thermally Insulative Expanded Polytetrafluoroethylene Article
JP2018118488A (en) Aerogel laminate complex and heat insulation material
JP2002333092A (en) Fiber and fine particle composite heat-insulating material
WO2014126490A1 (en) Flexible hybrid aerogels prepared under subcritical conditions and their preparation process
JP2015048543A (en) Fiber substrate and heat insulation mat including fiber substrate
JP2011502756A5 (en)
JP6057515B2 (en) Cylindrical insulation and equipment equipped with the same
JP2011005676A (en) Composite including porous body having nano structure
KR101323618B1 (en) Aerogel coating solution, method of manufacturing aerogel sheet coated thereby, and aerogel sheet manufactured by the same method
JP6866653B2 (en) Airgel laminated complex and insulation
JP2019074751A (en) Sound absorbing material
JP6493276B2 (en) Sound absorbing material
TW200900552A (en) Resin composition for processing of porous material and manufacturing method of mold porous material
JP5794619B2 (en) Cylindrical heat insulating material and thermal equipment using the same
CN210462177U (en) Multilayer core material supported by woven fiber framework and vacuum insulation panel prepared by multilayer core material
MXPA06000052A (en) Methods to produce gel sheets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130725