JP2010221302A - Arc welding method - Google Patents
Arc welding method Download PDFInfo
- Publication number
- JP2010221302A JP2010221302A JP2010137662A JP2010137662A JP2010221302A JP 2010221302 A JP2010221302 A JP 2010221302A JP 2010137662 A JP2010137662 A JP 2010137662A JP 2010137662 A JP2010137662 A JP 2010137662A JP 2010221302 A JP2010221302 A JP 2010221302A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- arc
- waveform
- wire
- welding wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Arc Welding Control (AREA)
Abstract
Description
本発明は、アーク溶接方法に関するものである。さらに詳しくは、本発明は、開先アーク溶接施工において、ワイヤ送給速度を周期的に変動することによって溶接ワイヤのアーク発生点(溶接ワイヤ先端)を上下方向へ揺動させ、この上下揺動と溶接電流特性との間の位相差を制御することによって母材開先面でのアーク熱密度分布を自在に制御することを特徴とした高能率で高品質な溶接方法に関するものである。 The present invention relates to an arc welding method. More specifically, in the present invention, in the groove arc welding construction, the arc generation point (welding wire tip) of the welding wire is swung in the vertical direction by periodically changing the wire feed speed, and this vertical rocking is performed. The present invention relates to a high-efficiency and high-quality welding method characterized by freely controlling the arc heat density distribution on the groove surface of the base metal by controlling the phase difference between the welding current characteristics and the welding current characteristics.
従来、アーク溶接においては、V,K,レ型等および狭開先溶接継手の狭隘間隙部(開先底部)での融合不良などの溶接欠陥を防ぐためにその開先底部に十分なアーク入熱を投与することが必要であることが知られている。だが、開先の底部を十分に溶融するために大入熱アーク溶接法を用いると溶接時の熱により溶接継手部での金属学的な特性劣化や溶接変形が問題となる。これらの問題を解決するため、開先内でアーク熱の分散化と集中化を適切に制御することが不可欠である。 Conventionally, in arc welding, sufficient arc heat input at the bottom of the groove to prevent welding defects such as poor fusion at the narrow gap (groove bottom) of the V, K, ladle, etc. and narrow groove welded joints. Is known to be necessary. However, if a high heat input arc welding method is used to sufficiently melt the bottom of the groove, metallological characteristic deterioration and welding deformation at the welded joint due to heat during welding become problems. In order to solve these problems, it is essential to appropriately control the distribution and concentration of arc heat within the groove.
しかしながら、従来においては、各種の工夫が試みられているものの、アーク熱分布を自在に制御することは容易ではなく、この制御を可能として高能率で高品質な溶接を行うことは依然としてアーク溶接法の大きな課題になっていた。 However, although various attempts have been made in the past, it is not easy to freely control the arc heat distribution, and it is still possible to perform high-quality and high-quality welding with this control. It was a big issue.
そこで、本発明のアーク溶接方法は、上記のとおりの課題を解決するために、消耗電極式のアーク溶接方法であって、溶接ワイヤの送給に対して溶接ワイヤの送給波形を正弦波または矩形波に変化させ、この溶接ワイヤの送給波形に対して位相をずらすか、または位相をずらさずにアーク電流波形またはアーク電圧波形を使用することを特徴としている。 Therefore, the arc welding method of the present invention is a consumable electrode type arc welding method in order to solve the problems as described above, and a welding wire feeding waveform is a sine wave or a welding wire feeding waveform. It is characterized by changing to a rectangular wave and shifting the phase with respect to the welding waveform of the welding wire, or using an arc current waveform or an arc voltage waveform without shifting the phase.
このアーク溶接方法では、溶接ワイヤの送給波形の周期が0.4秒であり、アーク電流特性としてのパルス電圧の周期が0.4秒であるときに、溶接ワイヤの送給波形とパルス電圧の波形の間の位相差を−π/4とすることが好ましい。 In this arc welding method, when the cycle of the welding wire feed waveform is 0.4 seconds and the cycle of the pulse voltage as the arc current characteristic is 0.4 seconds, the welding wire feed waveform and the pulse voltage are set. The phase difference between the waveforms is preferably −π / 4.
また、このアーク溶接方法では、溶接ワイヤの送給波形の周期が0.4秒であり、アーク電流特性としてのパルス電圧の周期が0.2秒であるときに、溶接ワイヤの送給波形とパルス電圧の波形の間の位相差をπ/2とすることが好ましい。 Also, in this arc welding method, when the cycle of the welding wire feed waveform is 0.4 seconds and the cycle of the pulse voltage as the arc current characteristic is 0.2 seconds, the welding wire feed waveform The phase difference between the pulse voltage waveforms is preferably π / 2.
また、このアーク溶接方法では、溶接ワイヤの送給波形の周期が0.4秒であり、アーク電流特性としての交流の周期が0.2秒であるときに、溶接ワイヤの送給波形と交流の波形の間の位相差を0とすることが好ましい。 In this arc welding method, when the cycle of the welding wire feed waveform is 0.4 seconds and the AC cycle as the arc current characteristic is 0.2 seconds, the welding wire feed waveform and the AC It is preferable that the phase difference between the waveforms is zero.
本発明では、消耗電極ワイヤの送給速度を周期的に変動させ、溶接ワイヤのアーク発生点(ワイヤ先端)をアーク軸方向に揺動させる。この揺動に溶接パルス電流を協調させることにより、アーク入熱点(溶液ワイヤ先端)挙動範囲と移動速度を制御し、適切に開先底部へ熱エネルギーを投入しながら開先面のアーク熱密度分布を任意に形成することのできる消耗電極式アーク溶接方法としている。 In the present invention, the feeding speed of the consumable electrode wire is periodically changed to swing the arc generation point (wire tip) of the welding wire in the arc axis direction. By coordinating the welding pulse current with this oscillation, the arc heat input point (solution wire tip) behavior range and moving speed are controlled, and heat energy is appropriately input to the groove bottom while the heat density of the groove surface is increased. The consumable electrode arc welding method can arbitrarily form the distribution.
この溶接方法では開先内の熱密度分布を適切に制御できるので、過大入熱を回避した母材の特性を損なわない組織保存型の溶接施工が可能となる。また、従来では施工が困難な開先幅10mm以下の超狹開先の消耗式電極溶接(MIG,MAG,CO2 ,SAW)に有効である。また、溶接時の溶融領域や熱影響部を最小化できるので変形、残留応力の低減にも効果が大きい。 In this welding method, since the heat density distribution in the groove can be appropriately controlled, it is possible to perform a structure-preserving type welding construction that does not impair the characteristics of the base material that avoids excessive heat input. Further, it is effective for consumable electrode welding (MIG, MAG, CO 2 , SAW) of a super-groove with a groove width of 10 mm or less, which is difficult to perform conventionally. Further, since the melting region and the heat-affected zone at the time of welding can be minimized, the effect is great in reducing deformation and residual stress.
本発明によって、母材の開先面にアーク熱の分散化と集中化を自在に制御できる溶接システムが提供される。アークの入熱密度分布の制御を行うことによって、過大な溶接入熱となるのを抑制しながら母材溶融の確保を可能とする。また同時に、溶接時の熱密度を低減できるので、母材の特性を損なわない組織保存型の溶接施工が期待される。 The present invention provides a welding system that can freely control the distribution and concentration of arc heat on the groove surface of a base material. By controlling the heat input density distribution of the arc, it is possible to ensure the base material melting while suppressing excessive welding heat input. At the same time, since the heat density at the time of welding can be reduced, a structure-preserving type welding construction that does not impair the properties of the base material is expected.
以下に、詳しく本発明の実施の形態について説明する。まず、図1は、本発明の方法に用いることのできる溶接装置を例示したものである。この図1の装置においては、溶接電源1に接続されている溶接トーチ2と、この溶接トーチ2を介して消耗電極としての溶接ワイヤ3を送給するワイヤ送給装置7とを備えており、しかも、溶接ワイヤ3は送給装置7によって、その送給速度が周期的に変動されて、たとえば狹開先継手を形成する被溶接材4の開先内において、アーク入熱点(ワイヤ先端)が、発生されるアーク5の軸方向、つまり図1の上下方向に揺動可能とされている。
Hereinafter, embodiments of the present invention will be described in detail. First, FIG. 1 illustrates a welding apparatus that can be used in the method of the present invention. The apparatus shown in FIG. 1 includes a
従来の溶接方法においては、溶接ワイヤ3の送給速度は一定に保たれているが、本発明の溶接方法においては、溶接ワイヤ3の送給速度は一定でなしに周期的に変動することになる。なお、図1図中の符号6は溶融金属を、Zは、ワイヤ端の位置(開先底部からの距離)を示している。
In the conventional welding method, the feeding speed of the
さらに従来法との比較として説明すると、たとえば、図2(a)は、ワイヤ送供速度が一定な従来法における直流パルスアークを例示したものであるが、大電流時にワイヤ溶融量が大きくなりワイヤ端がA1からA2に上昇する。A2に達した後にアーク電流を下げるとワイヤの溶融量が少なくなりワイヤ端がA3まで下がる。しかしこの開先底部で、アーク電流が低下するため入熱量は相対的に小さくなり、底部の溶融確保には不適当な状態となる。 Further, as a comparison with the conventional method, for example, FIG. 2 (a) exemplifies a DC pulse arc in the conventional method in which the wire feeding speed is constant. The end rises from A1 to A2. When the arc current is decreased after reaching A2, the amount of melting of the wire decreases and the wire end decreases to A3. However, since the arc current decreases at the groove bottom, the amount of heat input becomes relatively small, which is in an unsuitable state for ensuring melting of the bottom.
一方、本発明の方法を例示した図2(b)の溶接ワイヤの送給速度を増減する直流パルス溶接では、この溶接ワイヤの送給速度の周期的変化とパルス発生時の位相差を制御することにより、ワイヤ端が開先底部にある時に大電流となるようにすることができる。これによって、開先底部の溶融確保が容易となる。被溶接材の開先でのワイヤ端のアーク発生位置は、溶接電源特性、溶接アーク電流・電圧波形、ワイヤ極性等の変化によって、制御可能であるが、溶接ワイヤの送給速度に対して、これらの諸条件を協調させて設定するとき入熱分布を自在かつ効果的に制御することができる。 On the other hand, in DC pulse welding that increases or decreases the welding wire feeding speed in FIG. 2B exemplifying the method of the present invention, the periodic change of the welding wire feeding speed and the phase difference at the time of pulse generation are controlled. Thus, a large current can be obtained when the wire end is at the groove bottom. This facilitates ensuring the melting of the groove bottom. The arc generation position of the wire end at the groove of the welded material can be controlled by changes in the welding power source characteristics, welding arc current / voltage waveform, wire polarity, etc., but with respect to the welding wire feeding speed, When these conditions are set in coordination, the heat input distribution can be controlled freely and effectively.
そして、溶接ワイヤの送給速度とアーク電流特性の変更時の位相差を最適なものに制御することで、開先底部での母材としての被溶接材の溶融を確保することができる。この最適化については、溶接ワイヤの送給速度の変動周期(周波数)とアーク電流特性、たとえば直流パルス電流の変動周期(周波数)の設定等によって最適位相差が異なることが考慮される。 And by controlling the phase difference at the time of changing the feeding speed of the welding wire and the arc current characteristic, it is possible to ensure melting of the material to be welded as the base material at the groove bottom. For this optimization, it is considered that the optimum phase difference differs depending on the setting of the fluctuation period (frequency) of the welding wire feeding speed and arc current characteristics, for example, the fluctuation period (frequency) of the DC pulse current.
そこで、これらの周期(周波数)をどのように考えるかの点は、たとえば次の例を参照することができる。すなわちまず、平均ワイヤ送給速度Vfav に対する周期的ワイヤ送給速度の変動V6 の割合Vfrが一定の場合、変動周波数が大きくなると、ワイヤ端の上下揺動幅ΔZが急激に減し、熱密度分布制御の効果が得られなくなる。たとえば図3は、直流パルス電流の場合について、位相差が−π/4におけるワイヤ送給速度変動周波数fとワイヤ端揺動振幅ΔZとの関係を例示したものであるが、前記Vfrが0.25〜0.75において、ワイヤ送給速度周波数fが10Hzまで大きくなるとワイヤ端の上下揺動幅ΔZが急減し、10Hz以上では最小のレベルで平均化されることがわかる。 Therefore, for example, the following example can be referred to for how to consider these periods (frequency). That is, first, when the ratio V fr of the fluctuation V 6 of the periodic wire feed speed to the average wire feed speed V fav is constant, when the fluctuation frequency increases, the vertical swing width ΔZ of the wire end rapidly decreases, The effect of heat density distribution control cannot be obtained. For example, FIG. 3, for the case of pulsed direct current, but in which the phase difference is illustrated the relationship between the wire feed rate variation frequency f and the wire end oscillation amplitude ΔZ in - [pi] / 4, wherein V fr is 0 .25 to 0.75, it can be seen that when the wire feed speed frequency f increases to 10 Hz, the up-and-down swing width ΔZ of the wire end decreases rapidly, and is averaged at a minimum level at 10 Hz or more.
そこで、たとえば溶接入熱量〜25kJ/cmを想定した溶接条件において開先内を1溶接で開先底部から高さ約10mmまで溶着金属で埋めるとすると、ワイヤ端の上下変動量は、少なくとも5mm以上、最大で10mm強を目標とし、この範囲で入熱密度分布を与えることが考慮される。してみると、図3からは、ワイヤ送給速度変動周波数fは10Hz以下を目安とすることが望ましいことになる。 Therefore, for example, if the inside of the groove is filled with a weld metal from the bottom of the groove to a height of about 10 mm under welding conditions assuming a welding heat input of ˜25 kJ / cm, the vertical fluctuation amount of the wire end is at least 5 mm or more. The target is a little over 10 mm at the maximum, and it is considered to give the heat input density distribution within this range. As a result, from FIG. 3, it is desirable that the wire feed speed fluctuation frequency f should be 10 Hz or less.
また、パルス電流についても、パルス周波数を大きくすると、ワイヤの溶融速度も平均化された電流で支配されることになり、ワイヤ端のパルス電流による揺動効果が期待できないことになる。そしてたとえば、前記の溶接条件と、ワイヤ端の上下変動量を考慮すると、10Hz以下の電流のパルス周波数を目安とすることが望ましい。 As for the pulse current, when the pulse frequency is increased, the melting rate of the wire is governed by the averaged current, and the fluctuation effect due to the pulse current at the wire end cannot be expected. For example, considering the welding conditions and the amount of vertical fluctuation of the wire end, it is desirable to use a pulse frequency of a current of 10 Hz or less as a guide.
そこで、溶接ワイヤの送給速度とアーク電流特性の変更時との位相差を制御する本発明の方法をより具体的に例示説明する。まず図4は、ワイヤ送給速度を一定とした従来の溶接方法において、パルス電圧の周期を0.4秒とした場合の溶接電流とワイヤ端位置を例示したものであるが、パルス電流印加時にはアーク発生端(ワイヤ端)は開先底部から上方へ急速に移動し、開先底部には十分な熱を投与することができない。 Therefore, the method of the present invention for controlling the phase difference between the welding wire feeding speed and the change of the arc current characteristic will be described more specifically. First, FIG. 4 exemplifies the welding current and the wire end position when the pulse voltage cycle is 0.4 seconds in the conventional welding method in which the wire feed speed is constant. The arc generation end (wire end) moves rapidly upward from the groove bottom, and sufficient heat cannot be applied to the groove bottom.
一方、パルス電圧の周期を0.4秒として、ワイヤ送給速度の変動周期も0.4秒とした場合のアーク発生端(ワイヤ端)とパルス電流との相互関係を例示したものが図5である。位相差−π/4のときが適正条件であり、パルス電流印加時に、ワイヤ端は開先底部に存在し、かつその後最も緩やかに上方に移動し、図4の従来法に比べて、開先底部に熱を投与できることがわかる。 On the other hand, FIG. 5 illustrates the interrelationship between the arc generation end (wire end) and the pulse current when the period of the pulse voltage is 0.4 seconds and the fluctuation period of the wire feed speed is also 0.4 seconds. It is. A phase difference of −π / 4 is an appropriate condition, and when a pulse current is applied, the wire end is present at the bottom of the groove and then moves most gently upward. Compared to the conventional method of FIG. It can be seen that heat can be administered to the bottom.
さらに、パルス電圧の周期を0.2秒とし、ワイヤ送給速度の変動周期を0.4秒とした場合、つまり送給速度変動1周期に2パルスが生成する場合について例示したのが図6である。位相差がπ/2の場合にワイヤ端が開先底部付近で停留し、かつ、このとき1パルスの入熱が効果的に投与されることがわかる。以上の直流パルスアーク溶接に代えて交流アーク溶接を行う場合を例示したものが図7である。交流の周期は、0.2秒であり、ワイヤ送給速度の変動周期は0.4秒とした場合である。交流アークの場合には、ワイヤ側が正の極性となるときに被溶接材が効果的に溶融できる。またワイヤ側が負の極性時には正の極性時に比較して溶融素度が大きくなることから、周期的なワイヤ送給速度変動とワイヤの溶融速度変動の相対関係によってワイヤ端位置が複雑に変化する。図7では、位相差を0とした時が適正な場合で、ワイヤ端が開先底部で停留する時にワイヤ側が正の極性となり(溶融電流が正の時)、開先底部の溶融を確保できるようになることがわかる。 Furthermore, FIG. 6 illustrates the case where the cycle of the pulse voltage is 0.2 seconds and the fluctuation cycle of the wire feed speed is 0.4 seconds, that is, the case where two pulses are generated in one cycle of the feed speed fluctuation. It is. It can be seen that when the phase difference is π / 2, the wire end stays near the bottom of the groove, and at this time, one pulse of heat input is effectively administered. FIG. 7 illustrates a case where AC arc welding is performed instead of the above DC pulse arc welding. The AC cycle is 0.2 seconds and the wire feed rate fluctuation cycle is 0.4 seconds. In the case of an AC arc, the welded material can be effectively melted when the wire side has a positive polarity. In addition, since the melting degree becomes larger when the wire side has a negative polarity than when the polarity is positive, the wire end position changes in a complicated manner depending on the relative relationship between the periodic wire feed speed fluctuation and the wire melting speed fluctuation. In FIG. 7, when the phase difference is 0, it is appropriate, and when the wire end stops at the groove bottom, the wire side has a positive polarity (when the melting current is positive), and it is possible to ensure melting of the groove bottom. You can see that
そして、これらのことからは、溶接電流波形(入熱)を任意に設定することで母材開先面への熱密度分布をさらに自在に制御することが可能となる。以上のとおりの本発明によって、開先内の熱密度分布を自在に制御でき、通常V,レ,K型等開先内および開先幅10mm以下の超狹開先内での開先底部の溶融確保とビード表面形状平滑化が同時に制御可能な溶接施工が行え、また、このことから過大な溶接入熱とならず母材の特性を損なわない組織保存型の溶接施工が可能となる。 And from these things, it becomes possible to further freely control the heat density distribution on the base material groove surface by arbitrarily setting the welding current waveform (heat input). According to the present invention as described above, the heat density distribution in the groove can be freely controlled, and the groove bottom portion in a groove having a groove width of 10 mm or less and in a groove having a groove width of 10 mm or less is usually used. Welding that can control melting and bead surface shape smoothing at the same time can be performed, and this makes it possible to perform a structure-preserving-type welding that does not cause excessive welding heat input and does not impair the properties of the base material.
1 溶接電源
2 溶接トーチ
3 溶接ワイヤ
4 被溶接材
5 溶接アーク
6 溶融金属
7 ワイヤ送給装置
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010137662A JP5191508B2 (en) | 2010-06-16 | 2010-06-16 | Arc welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010137662A JP5191508B2 (en) | 2010-06-16 | 2010-06-16 | Arc welding method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25114498A Division JP4780570B2 (en) | 1998-09-04 | 1998-09-04 | Arc welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010221302A true JP2010221302A (en) | 2010-10-07 |
JP5191508B2 JP5191508B2 (en) | 2013-05-08 |
Family
ID=43039045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010137662A Expired - Lifetime JP5191508B2 (en) | 2010-06-16 | 2010-06-16 | Arc welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5191508B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106363283A (en) * | 2016-11-28 | 2017-02-01 | 河海大学常州校区 | Method for determining serial double-wire submerged arc welding numerical simulation heat source model parameters |
CN106529047A (en) * | 2016-11-15 | 2017-03-22 | 河海大学常州校区 | Modeling method for serial double-wire submerged arc welding numerical simulation heat source model |
KR20170037814A (en) * | 2015-09-28 | 2017-04-05 | 가부시키가이샤 다이헨 | Direct and inverse feeding ac arc welding method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5382634A (en) * | 1976-12-28 | 1978-07-21 | Nippon Steel Corp | Arc welding method |
JPH0985439A (en) * | 1995-09-19 | 1997-03-31 | Mitsubishi Heavy Ind Ltd | Consumable electrode gas shielded metal-arc welding method and equipment therefor |
-
2010
- 2010-06-16 JP JP2010137662A patent/JP5191508B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5382634A (en) * | 1976-12-28 | 1978-07-21 | Nippon Steel Corp | Arc welding method |
JPH0985439A (en) * | 1995-09-19 | 1997-03-31 | Mitsubishi Heavy Ind Ltd | Consumable electrode gas shielded metal-arc welding method and equipment therefor |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170037814A (en) * | 2015-09-28 | 2017-04-05 | 가부시키가이샤 다이헨 | Direct and inverse feeding ac arc welding method |
CN106552984A (en) * | 2015-09-28 | 2017-04-05 | 株式会社达谊恒 | Positive backward feed alternating current arc welding connects method |
JP2017064721A (en) * | 2015-09-28 | 2017-04-06 | 株式会社ダイヘン | Forward and reverse feed ac arc-welding method |
CN106552984B (en) * | 2015-09-28 | 2020-07-07 | 株式会社达谊恒 | Positive and negative feed alternating current arc welding method |
KR102473580B1 (en) * | 2015-09-28 | 2022-12-05 | 가부시키가이샤 다이헨 | Direct and inverse feeding ac arc welding method |
CN106529047A (en) * | 2016-11-15 | 2017-03-22 | 河海大学常州校区 | Modeling method for serial double-wire submerged arc welding numerical simulation heat source model |
CN106529047B (en) * | 2016-11-15 | 2019-07-16 | 河海大学常州校区 | A kind of modeling method of tandem double wire hidden arc welding numerical simulation heat source model |
CN106363283A (en) * | 2016-11-28 | 2017-02-01 | 河海大学常州校区 | Method for determining serial double-wire submerged arc welding numerical simulation heat source model parameters |
CN106363283B (en) * | 2016-11-28 | 2018-11-09 | 河海大学常州校区 | A kind of tandem double wire hidden arc welding numerical simulation heat source model determination method for parameter |
Also Published As
Publication number | Publication date |
---|---|
JP5191508B2 (en) | 2013-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5234042B2 (en) | Arc welding method and apparatus | |
US9095929B2 (en) | Dual fillet welding methods and systems | |
JP2011073022A (en) | Carbon dioxide pulsed arc welding method | |
US6297473B2 (en) | Arc welding method | |
JP2015501727A (en) | DC electrode minus rotary arc welding method and system | |
JP6777969B2 (en) | Arc welding method and arc welding equipment | |
JP2005118872A (en) | Pulse arc welding output control method and arc length variation pulse arc welding output control method | |
JP2010234441A (en) | Ac pulse arc welding control method | |
JP2010264487A (en) | Arc welding method | |
JP2012245547A (en) | Welding device | |
JP2016209891A (en) | Parallel fillet welding method, parallel fillet welding system and program | |
JP5191508B2 (en) | Arc welding method | |
KR20180043284A (en) | Welding method and arc welding device | |
JP2011088209A (en) | Carbon dioxide pulsed arc welding method | |
JP5706709B2 (en) | 2-wire welding control method | |
WO2017033978A1 (en) | Welding method and arc welding device | |
JP6555824B2 (en) | Arc welding method | |
JP6078259B2 (en) | AC pulse arc welding control method | |
JP5972109B2 (en) | AC pulse arc welding control method | |
JP4780570B2 (en) | Arc welding method | |
JP4538616B2 (en) | Arc welding method | |
JP3867164B2 (en) | Welding method | |
JP2021030291A (en) | Dual electrode submerged arc-welding method | |
RU2367546C2 (en) | Three-phase arc weld deposition method | |
JP5926589B2 (en) | Plasma MIG welding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100726 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100727 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100914 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100916 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120529 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130129 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160208 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |