JP2010220474A - Driving control device and electric rolling stock - Google Patents

Driving control device and electric rolling stock Download PDF

Info

Publication number
JP2010220474A
JP2010220474A JP2010151162A JP2010151162A JP2010220474A JP 2010220474 A JP2010220474 A JP 2010220474A JP 2010151162 A JP2010151162 A JP 2010151162A JP 2010151162 A JP2010151162 A JP 2010151162A JP 2010220474 A JP2010220474 A JP 2010220474A
Authority
JP
Japan
Prior art keywords
inverter
voltage
storage device
power storage
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010151162A
Other languages
Japanese (ja)
Other versions
JP4977772B2 (en
Inventor
Mutsuhiro Terunuma
照沼  睦弘
Eiichi Toyoda
豊田  瑛一
Motomi Shimada
嶋田  基巳
Masahiro Nagasu
正浩 長洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010151162A priority Critical patent/JP4977772B2/en
Publication of JP2010220474A publication Critical patent/JP2010220474A/en
Application granted granted Critical
Publication of JP4977772B2 publication Critical patent/JP4977772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving control device of an electric rolling stock wherein the generating AC voltage of an inverter of the electric rolling stock is increased, and thereby, the high-speed-side characteristics of an induction motor of the electric rolling stock are extended, and further, the performances of the power running and regenerating brake of the electric rolling stock are improved, in a power converter for driving the induction motor by the variable voltage and frequency type inverter. <P>SOLUTION: In the driving control device of an electric rolling stock, a DC voltage source having an energy storage device, which has a capacity capable of treating the current of flowing-in to or flowing-out from an inverter of the electric rolling stock, is inserted into the inverter in series with the inverter in the earthing side of the input of the inverter. The output voltage of the DC voltage source is controlled from zero voltage continuously, and is added to a catenary voltage, and further, is applied to the inverter. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、可変電圧、可変周波数インバータにより誘導電動機を駆動する電力変換器を制御する装置に係り、特に直流電源側に蓄電装置を有する直流電圧発生手段を備え、この直流電圧発生手段の発生する電力を利用して駆動する電力変換器の駆動制御装置及び電気車に関する。   The present invention relates to an apparatus for controlling a power converter that drives an induction motor by a variable voltage and variable frequency inverter, and more particularly, includes a DC voltage generating means having a power storage device on the DC power supply side, and the DC voltage generating means generates the same. The present invention relates to a drive control device for a power converter that drives using electric power and an electric vehicle.

可変電圧、可変周波数(VVVF)インバータ制御により誘導電動機を駆動する、いわゆるインバータ鉄道車両において、停止間際に空気ブレーキを使用せず電気力のみのブレーキ力で鉄道車両を停車させる、全電気停止ブレーキが実用化されている。   In a so-called inverter railway vehicle that drives an induction motor by variable voltage, variable frequency (VVVF) inverter control, an all-electric stop brake that stops the railway vehicle with a braking force of only electric force without using an air brake just before stopping. It has been put into practical use.

空気ブレーキに頼らず、電気力によるブレーキだけで停止力が得られることは、ブレーキシューの磨耗の抑制につながり車両のメンテナンスにとって効果があるとともに、空気ブレーキでの立ち上がり遅れがないため、停止精度の向上にも寄与する。   The fact that stopping force can be obtained only by braking with electric force without relying on air brakes is effective for vehicle maintenance, and there is no delay in starting up with air brakes. Contributes to improvement.

このように、従来使用していた空気ブレーキに対して、電気ブレーキだけで鉄道車両を停止させることに少なからずメリットがあることから、鉄道車両の全速度領域において空気ブレーキを電気ブレーキに置き換えることができれば、ブレーキシューの磨耗に対して大きなメリットを得ることが可能となる。   As described above, since there is a considerable merit in stopping the railway vehicle with only the electric brake over the conventionally used air brake, it is possible to replace the air brake with the electric brake in the entire speed range of the railway vehicle. If possible, it is possible to obtain a great merit with respect to wear of the brake shoe.

しかしながら、インバータ制御における誘導電動機の交流側の最大出力電圧は、直流側すなわちインバータの入力電圧で決定され、鉄道車両での誘導電動機は、図2、図3の実線で示すように、高速の領域は交流出力電圧が最大になった特性を使用していることから、電気力のブレーキだけでは所要のブレーキ力を得られない問題があった。   However, the maximum output voltage on the AC side of the induction motor in the inverter control is determined by the DC side, that is, the input voltage of the inverter, and the induction motor in the railway vehicle has a high-speed area as shown by the solid lines in FIGS. Uses the characteristic that the AC output voltage is maximized, so there is a problem that the required braking force cannot be obtained only with the brake of electric force.

そのために、ブレーキ時に誘導電動機側の電圧を上昇させることで、ブレーキ力を増加させようとする試みがなされている。例えば抵抗やコンデンサなどのインピーダンスを挿入するものであるが、ブレーキ時の回生エネルギーを無駄に消費するだけでなく、電圧の連続性がとれない欠点がある。特許文献1に開示されている例では、回生エネルギーの無駄はないが電圧の連続性がない。   For this reason, attempts have been made to increase the braking force by increasing the voltage on the induction motor side during braking. For example, an impedance such as a resistor or a capacitor is inserted, but not only the regenerative energy at the time of braking is wasted, but also the continuity of voltage cannot be obtained. In the example disclosed in Patent Document 1, there is no waste of regenerative energy, but there is no continuity of voltage.

特開2002−369304号公報JP 2002-369304 A

本発明の課題は、上記事情に鑑み、回生エネルギーを無駄にせずかつ電圧の連続性も保つことで必要な電気ブレーキ力を得る、鉄道車両の駆動制御装置を提供することにある。   In view of the above circumstances, an object of the present invention is to provide a drive control device for a railway vehicle that obtains a necessary electric brake force without wasting regenerative energy and maintaining continuity of voltage.

上記課題は、蓄電装置をインバータの直流側電圧を上昇させる向きで直列接続し、蓄電装置からインバータへ印加する電圧を連続的に変化させることで達成できる。   The said subject can be achieved by connecting an electrical storage apparatus in series in the direction which raises the direct current | flow side voltage of an inverter, and changing the voltage applied to an inverter from an electrical storage apparatus continuously.

本発明によれば、誘導電動機の特性を高速側に拡大できるので、電気ブレーキ範囲が拡大しブレーキシューの磨耗低減が図れる。またブレーキ力の増大は回生パワーの増大でもあり、電力の回生率が向上し結果として省エネルギー化が可能となる。さらに力行側の特性も高速側に拡大することで制御性能の向上が期待できる。インバータの接地側に直流電圧源を挿入することは、電圧源に使用する部品を架線電圧対応の高圧部品を使用しなくてもよいという効果もある。   According to the present invention, since the characteristics of the induction motor can be expanded to the high speed side, the electric brake range can be expanded and the wear of the brake shoe can be reduced. Further, the increase in braking force is also an increase in regenerative power, and the power regeneration rate is improved, resulting in energy saving. Furthermore, the performance on the power running side can be expected to be improved by expanding the characteristics on the high speed side. Inserting a DC voltage source on the ground side of the inverter also has an effect that it is not necessary to use a high-voltage component corresponding to an overhead wire voltage as a component used for the voltage source.

図1は、本発明の実施例1の電力変換器の制御装置の説明図である。FIG. 1 is an explanatory diagram of a control device for a power converter according to a first embodiment of the present invention. 図2は、電力変換器の力行時の誘導電動機の特性を示す説明図である。FIG. 2 is an explanatory diagram illustrating characteristics of the induction motor during powering of the power converter. 図3は、電力変換器のブレーキ時の誘導電動機の特性を示す説明図である。FIG. 3 is an explanatory diagram showing the characteristics of the induction motor during braking of the power converter. 図4は、電力変換器の架線電圧とインバータ入力電圧の関係を示す説明図である。FIG. 4 is an explanatory diagram showing the relationship between the overhead voltage of the power converter and the inverter input voltage. 図5は、本発明の実施例1の電力変換器の架線電圧と直流電圧源電圧とインバータ入力電圧の関係を示す説明図である。FIG. 5 is an explanatory diagram illustrating a relationship among the overhead line voltage, the DC voltage source voltage, and the inverter input voltage of the power converter according to the first embodiment of the present invention. 図6は、本発明の実施例1である直流発生電源装置を挿入した電力変換器の説明図である。FIG. 6 is an explanatory diagram of a power converter in which the direct current generating power supply apparatus according to the first embodiment of the present invention is inserted. 図7は、図6の本発明の実施例1の電力変換器の力行時の動作説明図である。FIG. 7 is an explanatory diagram of operation during powering of the power converter according to the first embodiment of the present invention in FIG. 6. 図8は、図7の電力変換器の各発生電圧の説明図である。FIG. 8 is an explanatory diagram of each generated voltage of the power converter of FIG. 図9は、図6の本発明の実施例1の電力変換器の回生ブレーキ時の動作説明図である。FIG. 9 is an operation explanatory diagram of the power converter according to the first embodiment of the present invention shown in FIG. 6 during regenerative braking. 図10は、図9の電力変換器の各発生電圧の説明図である。FIG. 10 is an explanatory diagram of each generated voltage of the power converter of FIG. 図11は、本発明の実施例2の直流発生電源装置を挿入した電力変換器の説明図である。FIG. 11 is an explanatory diagram of a power converter in which the DC generation power supply device according to the second embodiment of the present invention is inserted. 図12は、図11の本発明の実施例2の電力変換器の力行時の動作説明図である。FIG. 12 is a diagram for explaining the operation during powering of the power converter according to the second embodiment of the present invention in FIG. 11. 図13は、図12の電力変換器の各発生電圧の説明図である。FIG. 13 is an explanatory diagram of each generated voltage of the power converter of FIG. 図14は、図11の本発明の実施例2の電力変換器の回生ブレーキ時の動作説明図である。FIG. 14 is an operation explanatory diagram of the power converter according to the second embodiment of the present invention in FIG. 11 during regenerative braking. 図15は、図14の電力変換器の各発生電圧の説明図である。FIG. 15 is an explanatory diagram of each generated voltage of the power converter of FIG. 図16は、本発明の実施例2の蓄電装置の容量の選定を示す説明図である。FIG. 16 is an explanatory diagram illustrating selection of the capacity of the power storage device according to the second embodiment of this invention.

以下に、本発明の実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例1の電力変換器の制御装置を示す。図1において架線1の直流電力をパンタグラフ2から集電し、フィルタリアクトルFL3及びフィルタコンデンサFC4を介してインバータ5に供給する。インバータ5で交流電力に変換し誘導電動機6を駆動する。インバータ5の接地側には蓄電装置11を有する直流電圧源10が挿入され、直流電圧を発生する。電流は車輪7を介し線路に戻される。以上の動作は鉄道車両の力行の場合であり、ブレーキの場合は、誘導電動機6が発電機として働き、電力を架線1側に回生することになる。従って、直流電圧源10はインバータ5に流れる電流が流れ込むことになり、インバータの流入、流出両方向の電流を制御することになる。   FIG. 1 shows a control apparatus for a power converter according to a first embodiment of the present invention. In FIG. 1, the DC power of the overhead line 1 is collected from the pantograph 2 and supplied to the inverter 5 via the filter reactor FL3 and the filter capacitor FC4. The inverter 5 converts it into AC power and drives the induction motor 6. A DC voltage source 10 having a power storage device 11 is inserted on the ground side of the inverter 5 to generate a DC voltage. The current is returned to the track via the wheel 7. The above operation is a case of power running of a railway vehicle. In the case of a brake, the induction motor 6 functions as a generator and regenerates electric power to the overhead line 1 side. Therefore, the DC voltage source 10 controls the current flowing in the inverter 5 in both the inflow and outflow directions.

鉄道車両での誘導電動機の一般的な特性を図2、図3に示す。図2は力行の場合、図3はブレーキの場合である。図3は力行と対比させるため逆向きの特性図としている。図4のように直流電圧源10を挿入しない通常の電力変換器では、架線電圧Es≒インバータ入力電圧Eiであり、図2、図3の実線で示す特性となっている。   The general characteristics of induction motors in railway vehicles are shown in FIGS. 2 shows the case of power running, and FIG. 3 shows the case of brake. FIG. 3 is a reverse characteristic diagram for comparison with power running. In a normal power converter in which the DC voltage source 10 is not inserted as shown in FIG. 4, the overhead line voltage Es≈the inverter input voltage Ei, and the characteristics shown by the solid lines in FIGS.

そこで、本発明の実施例1のように、インバータの入力側に直流電圧源10を挿入して、図5に示すように直流電圧源10の出力電圧Edを、架線電圧Esに加算するように制御すれば、インバータ入力電圧Ei=Es+Edとなり、図2、図3の特性で点線に示すように、インバータへの入力電圧の上昇により誘導電動機6の発生する交流電圧はΔEm分拡大し、結果的に電流・トルクの特性が高速側に拡大する。従って直流電圧を上昇させると、インバータの処理する電力も拡大することになり、ブレーキ時には通常より大きな回生パワーを得られることになる。   Therefore, as in the first embodiment of the present invention, the DC voltage source 10 is inserted on the input side of the inverter, and the output voltage Ed of the DC voltage source 10 is added to the overhead wire voltage Es as shown in FIG. If controlled, the inverter input voltage Ei = Es + Ed. As shown by the dotted lines in the characteristics of FIGS. 2 and 3, the AC voltage generated by the induction motor 6 is increased by ΔEm as a result of the increase of the input voltage to the inverter. In addition, the current / torque characteristics expand to the high speed side. Therefore, when the DC voltage is increased, the power processed by the inverter is also increased, and regenerative power larger than usual can be obtained during braking.

鉄道車両では、直流電圧源10の出力電圧はゼロから連続的に制御できる方が都合がよい。このような直流電圧を出力する電圧源を用いた具体的例を図6に示す。   In a railway vehicle, it is convenient that the output voltage of the DC voltage source 10 can be continuously controlled from zero. A specific example using such a voltage source that outputs a DC voltage is shown in FIG.

図6において、図1と共通するところは説明を省略する。図1では図示しなかったが、架線1と車輪7の間には、回生エネルギーを吸収する他の鉄道車両や変電所が存在し、これらを8であらわす。   In FIG. 6, the description of what is common with FIG. 1 is omitted. Although not shown in FIG. 1, there are other railway vehicles and substations that absorb regenerative energy between the overhead wire 1 and the wheels 7, which are represented by 8.

蓄電装置11は充放電可能な蓄エネルギー装置で、その正極側にはスイッチング素子21、負極側にはスイッチング素子22が接続されスイッチング素子21と22とは直列接続する。またスイッチング素子21、22それぞれにはフライホイールダイオード31、32が並列に接続される。スイッチング素子21と22の中点とフライホイールダイオード31と32との中点は接続され、リアクトル41を介してインバータ5の接地側に接続される。蓄電装置11の正極側は車輪7に接続される。   The power storage device 11 is a chargeable / dischargeable energy storage device. A switching element 21 is connected to the positive electrode side, a switching element 22 is connected to the negative electrode side, and the switching elements 21 and 22 are connected in series. Further, flywheel diodes 31 and 32 are connected in parallel to the switching elements 21 and 22, respectively. The midpoints of the switching elements 21 and 22 and the midpoints of the flywheel diodes 31 and 32 are connected, and are connected to the ground side of the inverter 5 via the reactor 41. The positive electrode side of the power storage device 11 is connected to the wheel 7.

ここでスイッチング素子の一方を常にオフとし、もう一方のスイッチング素子をオン・オフのチョッピング動作させることで、スイッチング素子とダイオードとの中点にチョッピング電圧が発生する。このチョッピング電圧を平滑すれば直流電圧を得ることができ、この直流電圧は架線電圧と加算されインバータ5に印加することになる。直流電圧はスイッチング素子のチョッピング周期(通流率)を制御することで、ゼロから連続に可変できる。   Here, when one of the switching elements is always turned off and the other switching element is turned on and off, a chopping voltage is generated at the midpoint between the switching element and the diode. If this chopping voltage is smoothed, a DC voltage can be obtained, and this DC voltage is added to the overhead wire voltage and applied to the inverter 5. The DC voltage can be varied continuously from zero by controlling the chopping cycle (conduction rate) of the switching element.

図6の動作について以下詳細に説明する。図7に力行時の動作状態を示す。図7において、スイッチング素子21を常にオフにして、スイッチング素子22をオンさせると、実線で示すようにリアクトル41、スイッチング素子22、蓄電装置11を介した経路で電流が流れ、(A)点には図8に示す実線のように、蓄電装置11の電圧(−)Ebが出力される。   The operation of FIG. 6 will be described in detail below. FIG. 7 shows the operating state during power running. In FIG. 7, when the switching element 21 is always turned off and the switching element 22 is turned on, a current flows through a path through the reactor 41, the switching element 22, and the power storage device 11 as indicated by a solid line. As shown by a solid line in FIG. 8, the voltage (−) Eb of the power storage device 11 is output.

スイッチング素子21をオフのままスイッチング素子22をオフすると、リアクトル41、フライホイールダイオード31を介して点線で示すように電流が流れ、(A)点の電位は図8の点線のようにゼロになる。このようにスイッチング素子22のオンオフにより、蓄電装置11の電圧Ebの大きさのチョッピング電圧を発生させる。このチョッピング電圧をリアクトル41、フィルタコンデンサ4により平滑された電圧Edは、架線電圧Esに加算されインバータ5の入力電圧Eiとなる。この発生電圧Edは、スイッチング素子22のチョッピングの通流率制御によりその大きさを連続に変えることができる。このため任意のタイミングで発生電圧の大きさや電圧の挿入・除去が可能になる。   When the switching element 22 is turned off while the switching element 21 remains off, a current flows as shown by a dotted line through the reactor 41 and the flywheel diode 31, and the potential at the point (A) becomes zero as shown by a dotted line in FIG. . Thus, the chopping voltage having the magnitude of the voltage Eb of the power storage device 11 is generated by turning on and off the switching element 22. The voltage Ed obtained by smoothing the chopping voltage by the reactor 41 and the filter capacitor 4 is added to the overhead wire voltage Es to become the input voltage Ei of the inverter 5. The generated voltage Ed can be continuously changed in magnitude by controlling the chopping current ratio of the switching element 22. Therefore, the magnitude of the generated voltage and the insertion / removal of the voltage can be performed at an arbitrary timing.

図9にブレーキ時の動作状態を示す。ブレーキ時にはスイッチング素子22を常にオフとする。ここでスイッチング素子21をオフにすれば、蓄電装置11からフライホイールダイオード32、リアクトル41を介して実線で示す経路で電流が流れ、(A)点には図10の実線で示すように電圧(−)Ebがあらわれる。   FIG. 9 shows the operating state during braking. During braking, the switching element 22 is always turned off. If the switching element 21 is turned off, current flows from the power storage device 11 through the flywheel diode 32 and the reactor 41 along the path indicated by the solid line, and the voltage ( -) Eb appears.

次にスイッチング素子21をオンさせると、電流はスイッチング素子21、リアクトル41、を介して点線で示すように流れ、(A)点の電位は図10の点線のようにゼロとなる。このようにブレーキの場合にはスイッチング素子21のオンオフによって、図10のようにチョッピング電圧を発生できる。   Next, when the switching element 21 is turned on, a current flows through the switching element 21 and the reactor 41 as indicated by a dotted line, and the potential at the point (A) becomes zero as indicated by a dotted line in FIG. As described above, in the case of a brake, a chopping voltage can be generated as shown in FIG.

力行と同様にこの電圧もリアクトル41、フィルタコンデンサ4で平滑されて電圧Edとなり、インバータ5の発生電圧に印加され、架線側への回生パワーが通常より増大し、より大きな電気ブレーキ力が得られることになる。なお、リアクトル41はインバータ5側でも車輪7側でもどちらに接続しても効果は同じである。   Similar to power running, this voltage is also smoothed by the reactor 41 and the filter capacitor 4 to become the voltage Ed, which is applied to the voltage generated by the inverter 5 and the regenerative power to the overhead wire side increases more than usual, so that a larger electric brake force can be obtained. It will be. The effect is the same whether the reactor 41 is connected to either the inverter 5 side or the wheel 7 side.

ここで直流電圧源の発生する電圧Edとインバータ5への流入・流出電流の関係を求めてみる。蓄電装置11の出力電圧をEb、蓄電装置11の電流をIb、インバータ5の直流電流をIi、スイッチング素子21及び22のチョッピング通流率をγであらわすと、

Figure 2010220474
Figure 2010220474
の関係になり、(1)、(2)より
Figure 2010220474
となるので、チョッピング通流率γの制御により、インバータへ加算する電圧Edと蓄電装置の電流Ibが選択される。 Here, the relationship between the voltage Ed generated by the DC voltage source and the inflow / outflow current to the inverter 5 will be determined. When the output voltage of the power storage device 11 is represented by Eb, the current of the power storage device 11 is represented by Ib, the direct current of the inverter 5 is represented by Ii, and the chopping current ratio of the switching elements 21 and 22 is represented by γ.
Figure 2010220474
Figure 2010220474
From (1) and (2)
Figure 2010220474
Therefore, the voltage Ed to be added to the inverter and the current Ib of the power storage device are selected by controlling the chopping conduction ratio γ.

また、一般的に通流率γ≦1であるため、加算する電圧Edは蓄電装置11の電圧Eb以下であり、

Figure 2010220474
で制限されることになる。 In general, since the conduction ratio γ ≦ 1, the voltage Ed to be added is equal to or lower than the voltage Eb of the power storage device 11,
Figure 2010220474
Will be limited.

蓄電装置11の容量については、特性を拡大する速度範囲でのエネルギーに対して、蓄電装置で負担する比率を満たす容量であればよい。   About the capacity | capacitance of the electrical storage apparatus 11, the capacity | capacitance should just satisfy | fill the ratio borne by an electrical storage apparatus with respect to the energy in the speed range which expands a characteristic.

図16に示すように、拡大したい速度をvh、蓄電装置による電圧の加算が必要ない速度をvlとする。vhとvl間のエネルギーBvは鉄道車両の重量をMとすれば、

Figure 2010220474
となる。蓄電装置で負担する電圧の最大値は、通流率≒1の場合を考えると、バッテリ電圧Ebとしてよいので、蓄電装置の容量の最大値Bbmaxは、
Figure 2010220474
でほぼあらわせる。従って蓄電装置11の容量は(6)式を満足する容量であればよい。 As shown in FIG. 16, it is assumed that the speed to be expanded is vh, and the speed at which voltage addition by the power storage device is not required is vl. The energy Bv between vh and vl is M if the weight of the railway vehicle is
Figure 2010220474
It becomes. The maximum value of the voltage borne by the power storage device may be the battery voltage Eb, considering the case where the conduction ratio is approximately 1. Therefore, the maximum value Bbmax of the capacity of the power storage device is
Figure 2010220474
It almost shows up. Therefore, the capacity of the power storage device 11 only needs to satisfy the expression (6).

本実施例の他の特徴としては、スイッチング素子21、22の両端とフライホイールダイオード31、32の両端は、蓄電装置11が接続されているので、これらの耐圧性能はインバータへの印加電圧ではなく、蓄電装置11に対応した耐圧性能でよい。インバータの正極側に直流電圧源を挿入した場合には、直流電圧源に使用する素子はインバータと同じ耐圧性能が必要になる。しかし本実施例では、加算電圧に応じた素子の耐圧性能でよく、標準化や小型化が図れる効果もある。   As another feature of the present embodiment, since the power storage device 11 is connected to both ends of the switching elements 21 and 22 and both ends of the flywheel diodes 31 and 32, these withstand voltage performances are not applied voltages to the inverter. The pressure resistance performance corresponding to the power storage device 11 may be sufficient. When a DC voltage source is inserted on the positive side of the inverter, the elements used for the DC voltage source need to have the same breakdown voltage performance as the inverter. However, in this embodiment, the withstand voltage performance of the element according to the added voltage is sufficient, and there is an effect that standardization and miniaturization can be achieved.

本発明の他の実施例について説明する。図11は直流電圧を出力可能な他の電圧源を用いた例である。図11の直流電圧源の構成は図6とほぼ同様であるが、蓄電装置11の正極側はインバータ5の接地側に接続され、スイッチング素子21、22とフライホイールダイオード31、32の中点からのリアクトル41の出力端が車輪7へ接続されているのが異なっている。   Another embodiment of the present invention will be described. FIG. 11 shows an example using another voltage source capable of outputting a DC voltage. The configuration of the DC voltage source in FIG. 11 is substantially the same as that in FIG. 6, but the positive electrode side of the power storage device 11 is connected to the ground side of the inverter 5, and the switching elements 21 and 22 and the flywheel diodes 31 and 32 are The output terminal of the reactor 41 is connected to the wheel 7.

図11の動作について以下詳細に説明する。図12は力行時の動作状態を示す。図12において、スイッチング素子22は常にオフとし、スイッチング素子21をオンすると、実線で示すようにスイッチング素子21、リアクトル41を介した経路で電流が流れ、スイッチング素子21をオフすれば、点線で示すように蓄電装置11、フライホイールダイオード32、リアクトル41を介して電流が流れる。本実施例の場合でも、スイッチング素子21のオンオフ動作により(A)点には図13に示すようにチョッピング電圧を得ることができる。   The operation of FIG. 11 will be described in detail below. FIG. 12 shows the operating state during powering. In FIG. 12, when the switching element 22 is always turned off and the switching element 21 is turned on, a current flows through the path through the switching element 21 and the reactor 41 as shown by a solid line, and when the switching element 21 is turned off, it is shown by a dotted line. Thus, a current flows through the power storage device 11, the flywheel diode 32, and the reactor 41. Even in the case of the present embodiment, a chopping voltage can be obtained at the point (A) as shown in FIG. 13 by the on / off operation of the switching element 21.

図14にブレーキ時の動作状態を示す。ここではスイッチング素子21を常にオフとする。スイッチング素子22をオフとすれば、リアクトル41、フライホイールダイオード31を介して実線で示す経路で電流が流れ、スイッチング素子22をオンさせると、リアクトル41、スイッチング素子22、蓄電装置11を介して点線で示すように電流が流れる。従ってこの場合もチョッピング素子22のオンオフによって、(A)点には図15に示すようにチョッピング電圧が得ることができる。よって図11の実施例においても、図6の実施例と同様の効果を得ることができる。   FIG. 14 shows the operating state during braking. Here, the switching element 21 is always off. If the switching element 22 is turned off, a current flows through a path indicated by a solid line through the reactor 41 and the flywheel diode 31, and when the switching element 22 is turned on, a dotted line passes through the reactor 41, the switching element 22, and the power storage device 11. Current flows as shown by. Therefore, also in this case, a chopping voltage can be obtained at point (A) as shown in FIG. Therefore, also in the embodiment of FIG. 11, the same effect as that of the embodiment of FIG. 6 can be obtained.

以上説明してきたように、本実施例では車両性能の向上を図ることが可能となる。   As described above, the vehicle performance can be improved in this embodiment.

1 架線
2 パンタグラフ
3 フィルタリアクトル
4 フィルタコンデンサ
5 インバータ
6 誘導電動機
7 車輪
8 他列車、変電所など
10 直流電圧源装置
11 蓄電装置
21 スイッチング素子
22 スイッチング素子
31 フライホイールダイオード
32 フライホイールダイオード
41 リアクトル
DESCRIPTION OF SYMBOLS 1 Overhead line 2 Pantograph 3 Filter reactor 4 Filter capacitor 5 Inverter 6 Induction motor 7 Wheel 8 Other trains, substations, etc. 10 DC voltage source device 11 Power storage device 21 Switching element 22 Switching element 31 Flywheel diode 32 Flywheel diode 41 Reactor

Claims (12)

電気車の駆動用の電動機に回生電力を発生させて前記電気車を減速可能なインバータと、
前記インバータの直流側電圧を平滑化するコンデンサと、
前記インバータの直流側に、前記インバータの直流側電圧を上昇させる向きで直列に挿入された蓄電装置と、
前記蓄電装置と並列に接続されたスイッチ手段と、
前記電気車の減速時に、前記スイッチ手段のチョッピング動作の通流率を制御して、前記蓄積手段から前記インバータへ印加する電圧を連続的に変化させるチョッピング制御手段と、を備えたことを特徴とする駆動制御装置。
An inverter capable of decelerating the electric vehicle by generating regenerative power in an electric motor for driving the electric vehicle;
A capacitor for smoothing the DC side voltage of the inverter;
A power storage device inserted in series in the direction of increasing the DC side voltage of the inverter on the DC side of the inverter;
Switch means connected in parallel with the power storage device;
Chopping control means for continuously changing the voltage applied from the storage means to the inverter by controlling the conduction rate of the chopping operation of the switch means when the electric vehicle is decelerated. Drive control device.
請求項1に記載の駆動制御装置において、
前記蓄電装置及び前記スイッチ手段は、前記インバータの接地側に接続されたことを特徴とする駆動制御装置。
The drive control apparatus according to claim 1,
The power storage device and the switch means are connected to the ground side of the inverter.
請求項1または請求項2に記載の駆動制御装置において、
前記蓄電装置と前記スイッチ手段の接続点の前記インバータ側または他方側に接続されてチョッピング電圧を平滑化するリアクトルを備えたことを特徴とする駆動制御装置。
The drive control apparatus according to claim 1 or 2,
A drive control device comprising a reactor connected to the inverter side or the other side of a connection point between the power storage device and the switch means to smooth a chopping voltage.
電気車の駆動用の電動機に回生電力を発生させて前記電気車を減速可能なインバータと、
前記インバータの直流側電圧を平滑化するコンデンサと、
前記インバータの直流側に、前記インバータの直流側電圧を上昇させる向きで直列に挿入された蓄電装置と、
前記蓄電装置と直列に接続されたスイッチ手段と、
前記蓄電装置及び前記スイッチ手段と並列に接続されたバイパス回路と、
前記電気車の減速時に、前記スイッチ手段のチョッピング動作の通流率を制御して、前記蓄積手段から前記インバータへ印加する電圧を連続的に変化させるチョッピング制御手段と、を備えたことを特徴とする駆動制御装置。
An inverter capable of decelerating the electric vehicle by generating regenerative power in an electric motor for driving the electric vehicle;
A capacitor for smoothing the DC side voltage of the inverter;
A power storage device inserted in series in the direction of increasing the DC side voltage of the inverter on the DC side of the inverter;
Switch means connected in series with the power storage device;
A bypass circuit connected in parallel with the power storage device and the switch means;
Chopping control means for continuously changing the voltage applied from the storage means to the inverter by controlling the conduction rate of the chopping operation of the switch means when the electric vehicle is decelerated. Drive control device.
請求項4に記載の駆動制御装置において、
前記蓄電装置及び前記スイッチ手段及び前記バイパス回路は、前記インバータの接地側に接続されたことを特徴とする駆動制御装置。
The drive control apparatus according to claim 4,
The power storage device, the switch means, and the bypass circuit are connected to the ground side of the inverter.
請求項4または請求項5に記載の駆動制御装置において、
前記蓄電装置と前記バイパス回路の接続点の前記インバータ側または他方側に接続されてチョッピング電圧を平滑化するリアクトルを備えたことを特徴とする駆動制御装置。
In the drive control device according to claim 4 or 5,
A drive control device comprising a reactor connected to the inverter side or the other side of a connection point between the power storage device and the bypass circuit to smooth a chopping voltage.
電気車を駆動可能な電動機と、前記電動機に回生電力を発生させて電気ブレーキを掛けるインバータと、
前記インバータの直流側に、前記インバータの直流側電圧を上昇させる向きで直列に挿入された蓄電装置と、
前記蓄電装置に対して並列接続されたスイッチング素子と、を備え、
前記スイッチング素子のチョッピング動作の通流率を制御して、前記蓄積手段から前記インバータへ印加する電圧を連続的に変化させることを特徴とする電気車。
An electric motor capable of driving an electric vehicle, an inverter that generates regenerative power in the electric motor and applies an electric brake;
A power storage device inserted in series in the direction of increasing the DC side voltage of the inverter on the DC side of the inverter;
A switching element connected in parallel to the power storage device,
An electric vehicle characterized in that a voltage applied from the storage means to the inverter is continuously changed by controlling a conduction rate of a chopping operation of the switching element.
請求項7に記載の電気車において、
前記蓄電装置及び前記スイッチング素子は、前記インバータの接地側に接続されたことを特徴とする電気車。
The electric vehicle according to claim 7,
The electric vehicle, wherein the power storage device and the switching element are connected to a ground side of the inverter.
請求項7または請求項8に記載の電気車において、
前記蓄電装置と前記スイッチング素子の接続点の前記インバータ側または他方側に接続されてチョッピング電圧を平滑化するリアクトルを備えたことを特徴とする電気車。
The electric vehicle according to claim 7 or 8,
An electric vehicle comprising a reactor connected to the inverter side or the other side of a connection point between the power storage device and the switching element to smooth a chopping voltage.
電気車を駆動可能な電動機と、
前記電気車の減速時に、前記電動機に回生電力を発生させて電気ブレーキを掛けるインバータと、
前記インバータの直流側に、前記インバータの直流側電圧を上昇させる向きで直列に挿入された蓄電装置と、
前記蓄電装置に対して直列接続されたスイッチング素子と、
前記スイッチング素子のチョッピング動作の通流率を制御して、前記蓄積手段から前記インバータへ印加する電圧を連続的に変化させることを特徴とする電気車。
An electric motor capable of driving an electric vehicle;
An inverter that generates regenerative power in the electric motor and applies an electric brake when the electric vehicle decelerates;
A power storage device inserted in series in the direction of increasing the DC side voltage of the inverter on the DC side of the inverter;
A switching element connected in series to the power storage device;
An electric vehicle characterized in that a voltage applied from the storage means to the inverter is continuously changed by controlling a conduction rate of a chopping operation of the switching element.
請求項10に記載の電気車において、
前記蓄電装置及び前記スイッチング素子及び前記バイパス回路は、前記インバータの接地側に接続されたことを特徴とする電気車。
The electric vehicle according to claim 10,
The electric storage device, the switching element, and the bypass circuit are connected to a ground side of the inverter.
請求項10または請求項11に記載の電気車において、
前記蓄電装置と前記バイパス回路の接続点の前記インバータ側または他方側に接続されてチョッピング電圧を平滑化するリアクトルを備えたことを特徴とする電気車。
The electric vehicle according to claim 10 or 11,
An electric vehicle comprising a reactor connected to the inverter side or the other side of a connection point between the power storage device and the bypass circuit to smooth a chopping voltage.
JP2010151162A 2010-07-01 2010-07-01 Drive control device and electric vehicle Active JP4977772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010151162A JP4977772B2 (en) 2010-07-01 2010-07-01 Drive control device and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010151162A JP4977772B2 (en) 2010-07-01 2010-07-01 Drive control device and electric vehicle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007118390A Division JP4546988B2 (en) 2007-04-27 2007-04-27 Control device for power converter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011256087A Division JP5320452B2 (en) 2011-11-24 2011-11-24 Drive control device and electric vehicle

Publications (2)

Publication Number Publication Date
JP2010220474A true JP2010220474A (en) 2010-09-30
JP4977772B2 JP4977772B2 (en) 2012-07-18

Family

ID=42978679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010151162A Active JP4977772B2 (en) 2010-07-01 2010-07-01 Drive control device and electric vehicle

Country Status (1)

Country Link
JP (1) JP4977772B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198195A (en) * 2012-03-16 2013-09-30 Toshiba Corp Electric vehicle control device
US8963456B2 (en) 2011-03-07 2015-02-24 Hitachi, Ltd. Power converter and power converter of rolling stock

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369304A (en) * 2001-06-11 2002-12-20 Hitachi Ltd Controller electric rolling stock
JP2006094613A (en) * 2004-09-22 2006-04-06 Railway Technical Res Inst Railway rolling stock system
JP2008228359A (en) * 2007-03-08 2008-09-25 Railway Technical Res Inst Power storage device and power storage device system for electric rolling stock

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369304A (en) * 2001-06-11 2002-12-20 Hitachi Ltd Controller electric rolling stock
JP2006094613A (en) * 2004-09-22 2006-04-06 Railway Technical Res Inst Railway rolling stock system
JP2008228359A (en) * 2007-03-08 2008-09-25 Railway Technical Res Inst Power storage device and power storage device system for electric rolling stock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8963456B2 (en) 2011-03-07 2015-02-24 Hitachi, Ltd. Power converter and power converter of rolling stock
JP2013198195A (en) * 2012-03-16 2013-09-30 Toshiba Corp Electric vehicle control device

Also Published As

Publication number Publication date
JP4977772B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4546988B2 (en) Control device for power converter
US6331365B1 (en) Traction motor drive system
JP5365586B2 (en) Power converter
JP5298152B2 (en) Power conversion device and power conversion device for railway vehicles
TWI606670B (en) Brake energy recovery module
JP5425849B2 (en) Railway vehicle drive control device
JP5902534B2 (en) Railway vehicle drive system
WO2008144901A1 (en) Power architecture and braking circuits for dc motor-propelled vehicle
JP5152573B2 (en) Control device for rotating electrical machine
JP2004056934A (en) Auxiliary power unit
JP2009183078A (en) Drive system of electric vehicle
JP5320452B2 (en) Drive control device and electric vehicle
JP3972322B2 (en) Electric vehicle control device
JP4977772B2 (en) Drive control device and electric vehicle
JP5401486B2 (en) Railway vehicle drive system
JP2018126039A (en) Electric power conversion system
KR101424057B1 (en) Brake chopper for train and train comprising the same
JP6744836B2 (en) Power conversion device, electric vehicle, and power conversion method
JP6851502B2 (en) Power conversion system for railway vehicles
JP6790551B2 (en) Power system for electric vehicles
JP6240023B2 (en) Power converter and railway vehicle equipped with the same
JP6417297B2 (en) Power conversion device for railway vehicles
JP2019193490A (en) Power conversion device
JP2004236397A (en) Controller of power converter for vehicle
JPH09308003A (en) Driver of dc rolling stock

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4977772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3