JP2010218830A - Active material, electrode containing the active material, lithium-ion secondary battery including the electrode, and method for manufacturing the active material - Google Patents

Active material, electrode containing the active material, lithium-ion secondary battery including the electrode, and method for manufacturing the active material Download PDF

Info

Publication number
JP2010218830A
JP2010218830A JP2009063118A JP2009063118A JP2010218830A JP 2010218830 A JP2010218830 A JP 2010218830A JP 2009063118 A JP2009063118 A JP 2009063118A JP 2009063118 A JP2009063118 A JP 2009063118A JP 2010218830 A JP2010218830 A JP 2010218830A
Authority
JP
Japan
Prior art keywords
active material
livopo
particles
carbon
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009063118A
Other languages
Japanese (ja)
Other versions
JP5347605B2 (en
Inventor
Atsushi Sano
篤史 佐野
Keitaro Otsuki
佳太郎 大槻
Yousuke Miyaki
陽輔 宮木
Takeshi Takahashi
高橋  毅
Shoji Higuchi
章二 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2009063118A priority Critical patent/JP5347605B2/en
Priority to US12/723,101 priority patent/US20100233545A1/en
Priority to CN2010101345608A priority patent/CN101841037B/en
Publication of JP2010218830A publication Critical patent/JP2010218830A/en
Application granted granted Critical
Publication of JP5347605B2 publication Critical patent/JP5347605B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active material that achieves a sufficient discharge capacity at high discharge current density, an electrode including the active material, a lithium-ion secondary battery including the electrode, and a method for manufacturing the active material. <P>SOLUTION: The active material 5 contains active material particles 1 mainly composed of LiVOPO<SB>4</SB>having a β-type crystal structure, and a plurality of hemispherical carbon particles 2 that are supported on the surfaces of the active material particles 1 and respectively have a height of 5 to 20 nm. The active material has an average primary particle size of 50 to 1,000 nm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、活物質、これを含む電極、当該電極を含むリチウムイオン二次電池、及び活物質の製造方法に関する。   The present invention relates to an active material, an electrode including the active material, a lithium ion secondary battery including the electrode, and an active material manufacturing method.

構造式LiVOPOで表される結晶においては、Liが可逆的に挿入脱離することが知られている。特許文献1には、固相法によりβ型結晶構造(斜方晶)のLiVOPO及びα型結晶構造(三斜晶)のLiVOPOを作製し、これらを非水電解質二次電池の電極活物質として用いることが開示されている。そして、非水電解質二次電池の放電容量は、α型結晶構造(三斜晶)のLiVOPOに比べ、β型結晶構造のLiVOPOの方が大きいことが記載されている。 In the crystal represented by the structural formula LiVOPO 4 , it is known that Li is reversibly inserted and released. In Patent Document 1, β-type crystal structure (orthorhombic) LiVOPO 4 and α-type crystal structure (triclinic) LiVOPO 4 are prepared by a solid phase method, and these are used as the electrode activity of a non-aqueous electrolyte secondary battery. It is disclosed to be used as a substance. Then, the non-aqueous discharge capacity of electrolyte secondary battery, compared with the LiVOPO 4 of α-type crystal structure (triclinic), towards the LiVOPO 4 of β-type crystal structure is large is described.

非特許文献1には、VOPOとLiCOとを炭素の存在下で加熱し、炭素によりLiCOを還元して、β型結晶構造のLiVOPOを作製する方法(カーボサーマルリダクション法(CTR法))が開示されている。 Non-Patent Document 1 discloses a method for producing LiVOPO 4 having a β-type crystal structure by heating VOPO 4 and Li 2 CO 3 in the presence of carbon and reducing Li 2 CO 3 with carbon (carbothermal reduction). Law (CTR Law)) is disclosed.

特開2004−303527号公報JP 2004-303527 A

J.Baker et al.,J.Electrochem.Soc.,151,A796(2004)J. et al. Baker et al. , J .; Electrochem. Soc. 151, A796 (2004)

しかしながら、特許文献1及び非特許文献1に記載された方法により得られたβ型結晶構造のLiVOPOを含む活物質は、高い放電電流密度において十分な放電容量を得ることはできなかった。 However, the active material containing LiVOPO 4 having a β-type crystal structure obtained by the methods described in Patent Document 1 and Non-Patent Document 1 cannot obtain a sufficient discharge capacity at a high discharge current density.

そこで、本発明は、高い放電電流密度において十分な放電容量の得られる活物質、これを含む電極、当該電極を含むリチウムイオン二次電池、及び活物質の製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide an active material capable of obtaining a sufficient discharge capacity at a high discharge current density, an electrode including the active material, a lithium ion secondary battery including the electrode, and a method for manufacturing the active material. .

本発明に係る活物質は、β型結晶構造のLiVOPOを主成分とする活物質粒子と、活物質粒子の表面に担持され、高さが5〜20nmである複数の半球状の炭素粒子と、を含み、平均一次粒子径が50〜1000nmである。 The active material according to the present invention includes active material particles mainly composed of LiVOPO 4 having a β-type crystal structure, and a plurality of hemispherical carbon particles supported on the surface of the active material particles and having a height of 5 to 20 nm. The average primary particle diameter is 50 to 1000 nm.

本発明によれば、活物質が上記構造及び粒径を有することにより、高い放電電流密度において十分な放電容量を得ることが可能となる。この理由は明らかではないが、以下のことが考えられる。第一に、本発明に係る活物質は、上記構造及び粒径を有することにより、活物質粒子の粒子径は、50〜1000nmと同等又はそれ以下となり、比表面積が大きく、電解液との接触面積が増加することとなる。これにより、LiVOPOの結晶格子内へのリチウムイオンの拡散が行われ易く、リチウムイオンの挿入脱離が行われ易くなると考えられる。
第二に、活物質の炭素粒子は、高さが5〜20nmであり、かつ半球状であることにより、例えば炭素材料が膜を形成するような場合に比べ、活物質粒子と電解液との接触面積が大きくなりイオン伝導性が確保されることとなり、また、例えば球状の炭素粒子が担持されるような場合に比べ、活物質粒子と炭素粒子との接触面積が大きくなり電子伝導性が確保されることとなる。これにより、イオン導電性と電子伝導性を両立することができると考えられる。
According to the present invention, since the active material has the above structure and particle size, a sufficient discharge capacity can be obtained at a high discharge current density. The reason for this is not clear, but the following can be considered. First, the active material according to the present invention has the above structure and particle size, so that the particle size of the active material particles is equal to or less than 50 to 1000 nm, has a large specific surface area, and is in contact with the electrolytic solution. The area will increase. Accordingly, it is considered that lithium ions are easily diffused into the crystal lattice of LiVOPO 4 and lithium ions are easily inserted and desorbed.
Secondly, the carbon particles of the active material have a height of 5 to 20 nm and are hemispherical, so that, for example, the active material particles and the electrolytic solution are compared with the case where the carbon material forms a film. The contact area is increased and ion conductivity is ensured. Also, compared to the case where, for example, spherical carbon particles are supported, the contact area between the active material particles and the carbon particles is increased and the electron conductivity is ensured. Will be. Thereby, it is thought that ion conductivity and electronic conductivity can be made compatible.

また、本発明に係る電極は、集電体と、上述した活物質を含み集電体上に設けられた活物質層と、を備える。これにより、大きな放電容量の電極を得ることができる。   Moreover, the electrode which concerns on this invention is equipped with a collector and the active material layer provided on the collector containing the active material mentioned above. Thereby, an electrode having a large discharge capacity can be obtained.

本発明のリチウムイオン二次電池は、上述した電極を備える。これにより、大きな放電容量のリチウムイオン二次電池を得ることができる。   The lithium ion secondary battery of this invention is equipped with the electrode mentioned above. Thereby, a lithium ion secondary battery having a large discharge capacity can be obtained.

ここで、本発明に係る上記活物質の製造方法は、リチウム源、バナジウム源、リン酸源、カーボンブラック、及び水を含み、pHが7以下である混合物を加圧下で加熱し、β型結晶構造のLiVOPOの前駆体を得る水熱合成工程と、β型結晶構造のLiVOPOの前駆体を530〜670℃で加熱しβ型結晶構造のLiVOPOを得る焼成工程と、を備える。 Here, the method for producing the active material according to the present invention includes heating a mixture containing a lithium source, a vanadium source, a phosphoric acid source, carbon black, and water having a pH of 7 or less under pressure to form a β-type crystal. comprises a hydrothermal synthesis step of obtaining a precursor of LiVOPO 4 structure, and a firing step to obtain a LiVOPO 4 of the precursor of the LiVOPO 4 of beta-type crystal structure was heated at five hundred and thirty to six hundred and seventy ° C. beta-type crystal structure.

本発明に係る活物質の製造方法によれば、上述した構造を有する本発明に係る質物質を得ることができる。これにより、高い放電電流密度において十分な放電容量の得られる活物質、これを含む電極、当該電極を含むリチウムイオン二次電池を得ることができる。   According to the manufacturing method of the active material which concerns on this invention, the quality material which concerns on this invention which has the structure mentioned above can be obtained. As a result, an active material having a sufficient discharge capacity at a high discharge current density, an electrode including the active material, and a lithium ion secondary battery including the electrode can be obtained.

本発明によれば、高い放電電流密度において十分な放電容量の得られる活物質、これを含む電極、当該電極を含むリチウムイオン二次電池、及び活物質の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the active material from which sufficient discharge capacity is obtained in high discharge current density, the electrode containing this, the lithium ion secondary battery containing the said electrode, and the manufacturing method of an active material can be provided.

図1は、本実施形態に係る活物質の模式断面である。FIG. 1 is a schematic cross section of an active material according to the present embodiment. 図2は、本実施形態に係る活物質を含む活物質層を備えるリチウムイオン二次電池の模式断面図である。FIG. 2 is a schematic cross-sectional view of a lithium ion secondary battery including an active material layer containing an active material according to the present embodiment. 図3は、本実施例3における活物質のTEM像である。FIG. 3 is a TEM image of the active material in Example 3.

以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、各図面の寸法比率は、必ずしも実際の寸法比率とは一致していない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the dimension ratio of each drawing does not necessarily correspond with an actual dimension ratio.

<活物質>
本実施形態に係る活物質について説明する。図1は、本実施形態に係る活物質5の模式断面図である。本実施形態の活物質5は、活物質粒子1と、複数の半球状の炭素粒子2と、を含む。
<Active material>
The active material according to the present embodiment will be described. FIG. 1 is a schematic cross-sectional view of an active material 5 according to this embodiment. The active material 5 of the present embodiment includes active material particles 1 and a plurality of hemispherical carbon particles 2.

活物質5は、β型結晶構造のLiVOPOを主成分とする活物質粒子を基体(コア)とし、当該基体の表面に高さが5〜20nmの半球状の炭素粒子を有する。また、活物質5は、平均一次粒子径Rが50〜1000nmである。
ここで、本発明において規定される「活物質の平均一次粒子径R」とは、活物質5に対して測定した個数基準の粒度分布における、累積率が50%であるd50の値である。活物質5の個数基準の粒度分布は、例えば、高分解能走査型電子顕微鏡で観察したイメージに基づいた活物質5の投影面積から投影面積円相当径を測定し、その累積率から算出することができる。なお、投影面積円相当径とは、粒子(活物質5)の投影面積と同じ投影面積を持つ球を想定し、その球の直径(円相当径)を粒子径(活物質5の粒子径)として表したものである。
なお、投影面積円相当径の数値より算出される活物質5の個数基準の粒度分布において、累積率が10%である一次粒子径d10が、10〜50nmであり、累積率が50%である一次粒子径d50が、50〜1000nmであり、累積率が90%である一次粒子径d90が、1000〜10000nmであることが好ましい。
平均一次粒子径R(d50)が1000nmを超えると放電容量が悪化する傾向がある。一方、平均一次粒子径Rが50nm未満では、炭素粒子を担持させることが困難となる傾向がある。
The active material 5 uses active material particles mainly composed of LiVOPO 4 having a β-type crystal structure as a base (core), and has hemispherical carbon particles having a height of 5 to 20 nm on the surface of the base. Further, the active material 5 has an average primary particle size R 5 is 50-1000 nm.
Here, the “average primary particle diameter R 5 of the active material” defined in the present invention is a value of d50 having a cumulative rate of 50% in the number-based particle size distribution measured for the active material 5. . The number-based particle size distribution of the active material 5 can be calculated from, for example, the projected area circle equivalent diameter measured from the projected area of the active material 5 based on the image observed with a high-resolution scanning electron microscope and the cumulative ratio thereof. it can. The projected area equivalent circle diameter assumes a sphere having the same projected area as the projected area of the particles (active material 5), and the diameter (equivalent circle diameter) of the sphere is the particle diameter (particle diameter of the active material 5). It is expressed as
In addition, in the number-based particle size distribution of the active material 5 calculated from the numerical value of the projected area equivalent circle diameter, the primary particle diameter d10 having a cumulative ratio of 10% is 10 to 50 nm, and the cumulative ratio is 50%. The primary particle diameter d50 is preferably 50 to 1000 nm, and the primary particle diameter d90 having a cumulative ratio of 90% is preferably 1000 to 10,000 nm.
When the average primary particle diameter R 5 (d50) exceeds 1000 nm, the discharge capacity tends to deteriorate. On the other hand, the average primary particle diameter R 5 is less than 50 nm, there tends to be difficult to carry the carbon particles.

「β型結晶構造のLiVOPOを主成分とする」とは、活物質粒子1中におけるβ型結晶構造のLiVOPOの量が、質量基準で90%以上、好ましくは95%以上のことである。β型結晶構造のLiVOPO以外の成分としては、主として、α型結晶構造のLiVOPOが挙げられるが、LiVOPO以外にも未反応の原料成分等を微量含んでもよい。ここで、粒子中におけるβ型結晶構造のLiVOPOやα型結晶構造のLiVOPO等の量は、例えば、X線回折法により測定することができる。通常、β型結晶構造のLiVOPOは2θ=27.0度にピークが現れ、α型結晶構造のLiVOPOは2θ=27.2度にピークが現れる。なお、α型結晶構造のLiVOPOは、β型結晶構造のLiVOPOに対して10質量%以下であることが好ましい。 The phrase “having β-type crystal structure LiVOPO 4 as a main component” means that the amount of β-type crystal structure LiVOPO 4 in the active material particles 1 is 90% or more, preferably 95% or more on a mass basis. . The component other than the β-type crystal structure LiVOPO 4 mainly includes the α-type crystal structure LiVOPO 4, but may contain a small amount of unreacted raw material components in addition to LiVOPO 4 . Here, the amount of LiVOPO 4 having a β-type crystal structure, LiVOPO 4 having an α-type crystal structure, or the like in the particle can be measured by, for example, an X-ray diffraction method. Usually, LiVOPO 4 of β-type crystal structure peaks appear in 2 [Theta] = 27.0 degrees, LiVOPO 4 of α-type crystal structure peaks appear in 2 [Theta] = 27.2 degrees. Note that the α-type crystal structure LiVOPO 4 is preferably 10% by mass or less with respect to the β-type crystal structure LiVOPO 4 .

半球状の炭素粒子2は、高さhが5〜20nmであり、図1に示すように、活物質粒子1側とは反対側に凸面が形成されるように活物質粒子1の表面に担持されている。本発明において規定される「半球状の炭素粒子2の高さ」とは、活物質粒子1の表面から半球状の炭素粒子2の凸面の頂点までの高さ、を意味する。高さhが20nmを超えると高さによってイオン伝導性が低下するためか放電容量が低下する傾向がある。一方、高さhが5nm未満であると被覆率が高くなってイオン導電性が低下するためか放電容量が低下する傾向がある。炭素粒子2は、複数の半球状の炭素粒子2が、例えば活物質粒子1の表面に膜を形成するように密集して配置していのでなく、図1に示すように、大部分は互いに離間してそれぞれ独立して点在している。   The hemispherical carbon particle 2 has a height h of 5 to 20 nm and is supported on the surface of the active material particle 1 so that a convex surface is formed on the side opposite to the active material particle 1 side as shown in FIG. Has been. The “height of the hemispherical carbon particle 2” defined in the present invention means the height from the surface of the active material particle 1 to the apex of the convex surface of the hemispherical carbon particle 2. When the height h exceeds 20 nm, the discharge capacity tends to decrease because the ion conductivity decreases depending on the height. On the other hand, if the height h is less than 5 nm, the coverage is increased and the ionic conductivity is lowered, or the discharge capacity tends to be lowered. The carbon particles 2 are not densely arranged so that a plurality of hemispherical carbon particles 2 form a film on the surface of the active material particles 1, for example, but as shown in FIG. And are scattered independently.

半球状の炭素粒子2の高さ及び存在状態は、TEM等により観察することができる。また、半球状の炭素粒子2が活物質粒子1の表面を被覆する割合(表面被覆率)は、50〜90%であることが好ましい。なお、表面被覆率は、TEM観察により測定することができる。半球状の炭素粒子2は、活物質粒子1の表面において、1層形成されていることが好ましいが、半球状の炭素粒子2の表面に、さらに別の半球状の炭素粒子2が重なっていても構わない。ただし、イオン導電性及び電子伝導性の観点から、半球状の炭素粒子2の積層は、2層以下であることが好ましい。半球状の炭素粒子2は、例えば、カーボンブラックに由来するものである。   The height and existence state of the hemispherical carbon particles 2 can be observed with a TEM or the like. Moreover, it is preferable that the ratio (surface coverage) which the hemispherical carbon particle 2 coat | covers the surface of the active material particle 1 is 50 to 90%. The surface coverage can be measured by TEM observation. The hemispherical carbon particles 2 are preferably formed in a single layer on the surface of the active material particle 1, but another hemispherical carbon particle 2 overlaps the surface of the hemispherical carbon particle 2. It doesn't matter. However, from the viewpoints of ionic conductivity and electronic conductivity, the hemispherical carbon particles 2 are preferably laminated in two or less layers. The hemispherical carbon particles 2 are derived from, for example, carbon black.

このような活物質5は、上記構造を有することにより、高い放電電流密度において十分な放電容量を得ることが可能となる。この理由は明らかではないが、以下のことが考えられる。第一に、活物質5は、β型結晶構造のLiVOPOを主成分とする活物質粒子1と、活物質粒子1の表面に担持され、高さhが5〜20nmである複数の半球状の炭素粒子2と、を含み、平均一次粒子径Rが50〜1000nmであることにより、活物質粒子1の粒子径Rは、50〜1000nmと同等又はそれ以下となり、比表面積が大きく、電解液との接触面積が増加することとなる。これにより、LiVOPOの結晶格子内へのリチウムイオンの拡散が行われ易く、リチウムイオンの挿入脱離が行われ易くなると考えられる。第二に、活物質5の炭素粒子2は、高さが5〜20nmであり、かつ半球状であることにより、例えば炭素材料が膜を形成するような場合に比べ、活物質粒子1と電解液との接触面積が大きくなりイオン伝導性が確保されることとなり、また、例えば球状の炭素粒子が担持されるような場合に比べ、活物質粒子1と炭素粒子2との接触面積が大きくなり電子伝導性が確保されることとなる。これにより、イオン導電性と電子伝導性を両立することができると考えられる。 Since such an active material 5 has the above structure, a sufficient discharge capacity can be obtained at a high discharge current density. The reason for this is not clear, but the following can be considered. First, the active material 5 is composed of active material particles 1 mainly composed of LiVOPO 4 having a β-type crystal structure, and a plurality of hemispheres supported on the surface of the active material particles 1 and having a height h of 5 to 20 nm. Carbon particles 2 and the average primary particle diameter R 5 is 50 to 1000 nm, the particle diameter R 1 of the active material particles 1 is equal to or less than 50 to 1000 nm, and the specific surface area is large. The contact area with the electrolytic solution will increase. Accordingly, it is considered that lithium ions are easily diffused into the crystal lattice of LiVOPO 4 and lithium ions are easily inserted and desorbed. Secondly, the carbon particles 2 of the active material 5 have a height of 5 to 20 nm and are hemispherical, so that the active material particles 1 and the electrolysis are compared with a case where, for example, the carbon material forms a film. The contact area with the liquid is increased and ion conductivity is ensured, and the contact area between the active material particles 1 and the carbon particles 2 is increased as compared with the case where, for example, spherical carbon particles are supported. Electron conductivity will be ensured. Thereby, it is thought that ion conductivity and electronic conductivity can be made compatible.

<活物質の製造方法>
続いて、活物質5の製造方法について説明する。本実施形態に係る活物質5の製造方法は、リチウム源、バナジウム源、リン酸源、カーボンブラック、及び水を含み、pHが7以下である混合物を加圧下で加熱し、β型結晶構造のLiVOPOの前駆体を得る水熱合成工程と、β型結晶構造のLiVOPOの前駆体を530〜670℃に加熱しβ型結晶構造のLiVOPOを得る焼成工程と、を備える。
<Method for producing active material>
Then, the manufacturing method of the active material 5 is demonstrated. The manufacturing method of the active material 5 which concerns on this embodiment heats the mixture whose pH is 7 or less containing a lithium source, a vanadium source, a phosphoric acid source, carbon black, and water, and has a β-type crystal structure. comprises a hydrothermal synthesis step of obtaining a precursor of LiVOPO 4, and calcined to obtain a LiVOPO 4 of beta-type precursor of LiVOPO 4 crystal structure is heated to five hundred thirty to six hundred and seventy ° C. beta-type crystal structure.

[水熱合成工程]
(原料)
水熱合成工程に用いる原料は、少なくとも、リチウム源、バナジウム源、リン酸源、カーボンブラック及び水を含む混合物である。
リチウム源としては、例えば、LiNO、LiCO、LiOH、LiCl、LiSO及びCHCOOLi等のリチウム化合物が挙げられる。これらの中でも、LiNO、LiCOが好ましい。
バナジウム源としては、V及びNHVO等のバナジウム化合物が挙げられる。
リン酸源としては、例えば、HPO、NHPO、(NHHPO及びLiPO等のPO含有化合物が挙げられる。これらの中でも、HPO、(NHHPOが好ましい。
[Hydrothermal synthesis process]
(material)
The raw material used in the hydrothermal synthesis process is a mixture containing at least a lithium source, a vanadium source, a phosphoric acid source, carbon black, and water.
Examples of the lithium source include lithium compounds such as LiNO 3 , Li 2 CO 3 , LiOH, LiCl, Li 2 SO 4, and CH 3 COOLi. Among these, LiNO 3 and Li 2 CO 3 are preferable.
Examples of the vanadium source include vanadium compounds such as V 2 O 5 and NH 4 VO 3 .
Examples of the phosphoric acid source include PO 4 -containing compounds such as H 3 PO 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4, and Li 3 PO 4 . Among these, H 3 PO 4 and (NH 4 ) 2 HPO 4 are preferable.

水熱合成工程に用いる原料におけるリチウム源、リン酸源、及びバナジウム源の配合比は、組成式:LiVOPOで表される組成となるように、すなわち、Li原子:V原子:P原子:O原子=1:1:1:5(モル比)となるように調整すればよい。 The mixing ratio of the lithium source, the phosphate source, and the vanadium source in the raw materials used in the hydrothermal synthesis step is set to a composition represented by the composition formula: LiVOPO 4 , that is, Li atoms: V atoms: P atoms: O Adjustment may be made so that atoms = 1: 1: 1: 5 (molar ratio).

カーボンブラックは、活物質1の表面に半球状の炭素粒子2を担持させるために、上記の原料となる混合物に添加されるものである。カーボンブラックは、特に制限されず、例えば、一般に市販されている粒径30〜100nmのものを用いればよい。水熱合成工程及び後述する焼成工程を経て、原料として供給された略球状のカーボンブラックは、その硬度のためか、半球状となって活物質1の表面に担持されることとなる。カーボンブラックは、水熱合成時に上記原料となる水溶液内に容易に分散させることができる。   The carbon black is added to the mixture as the raw material in order to support the hemispherical carbon particles 2 on the surface of the active material 1. Carbon black is not particularly limited. For example, carbon black having a particle diameter of 30 to 100 nm that is generally commercially available may be used. The substantially spherical carbon black supplied as a raw material through the hydrothermal synthesis step and the firing step described later is hemispherically supported on the surface of the active material 1 because of its hardness. Carbon black can be easily dispersed in the aqueous solution as the raw material during hydrothermal synthesis.

水熱合成の原料となる混合物におけるカーボンブラックの含有量は、カーボンブラックを構成する炭素原子のモル数C1と、例えばバナジウム化合物に含まれるバナジウム原子のモル数Mとの比C1/Mが、0.04≦C1/M≦4を満たすように調製することが好ましい。炭素原子の含有量(モル数C1)が少な過ぎる場合、活物質5の電子伝導性及び容量密度が低下する傾向がある。炭素原子の含有量が多過ぎる場合、活物質5に占める活物質粒子1の重量が相対的に減少し、活物質の容量密度が減少する傾向がある。炭素原子の含有量を上記の範囲内とすることにより、これらの傾向を抑制できる。   The content of carbon black in the mixture as a raw material for hydrothermal synthesis is such that the ratio C1 / M between the number of moles C1 of carbon atoms constituting the carbon black and the number of moles M of vanadium atoms contained in the vanadium compound is 0, for example. It is preferable to prepare such that .04 ≦ C1 / M ≦ 4. When the content of carbon atoms (number of moles C1) is too small, the electronic conductivity and capacity density of the active material 5 tend to decrease. When there is too much content of a carbon atom, there exists a tendency for the weight of the active material particle 1 which occupies for the active material 5 to reduce relatively, and the capacity density of an active material to reduce. By setting the carbon atom content within the above range, these tendencies can be suppressed.

β型結晶構造のLiVOPOの前駆体を水熱合成により得るためには、例えば、上記の混合物のpHが7以下となるようにする。pHは、リチウム源、リン酸源、及びバナジウム源となる化合物の種類により調整することができるが、その他、塩酸、アンモニア水等のpH調整剤を用いても調整することができる。また、pHを7以下にすること以外に、例えばH等のパーオキサイドを混合し、原料を酸化性雰囲気にとすることによってもβ型結晶構造のLiVOPOの前駆体を得ることができる。なお、pHを7超とすると、α型結晶構造のLiVOPOの前駆体ができやすい傾向がある。 In order to obtain a precursor of LiVOPO 4 having a β-type crystal structure by hydrothermal synthesis, for example, the pH of the above mixture is set to 7 or less. Although pH can be adjusted with the kind of compound used as a lithium source, a phosphoric acid source, and a vanadium source, it can also adjust using pH adjusters, such as hydrochloric acid and aqueous ammonia. In addition to setting the pH to 7 or less, a precursor of LiVOPO 4 having a β-type crystal structure can also be obtained by mixing a peroxide such as H 2 O 2 and making the raw material an oxidizing atmosphere. it can. If the pH exceeds 7, a precursor of LiVOPO 4 having an α-type crystal structure tends to be easily formed.

(水熱合成)
水熱合成工程では、まず、内部を加熱、加圧する機能を有する反応容器(例えば、オートクレーブ等)内に、上述した前駆体の原料(例えば、リチウム化合物、バナジウム化合物、PO含有化合物、カーボンブラック、及び水)を投入して、これらが分散した水溶液(以下「原料混合物」という。)を調製する。なお、原料混合物を調製する際は、上記前駆体の原料をまとめて混合後一定時間攪拌し、還流してもよいが、例えば、最初に、バナジウム化合物、PO含有化合物、及び水を混合したものを還流した後、これにリチウム化合物、及びカーボンブラックを加えてもよい。この還流により、バナジウム化合物及びPO含有化合物の複合体を形成することができる。
(Hydrothermal synthesis)
In the hydrothermal synthesis step, first, the precursor raw materials (for example, lithium compound, vanadium compound, PO 4 -containing compound, carbon black) are placed in a reaction vessel (for example, an autoclave) having a function of heating and pressurizing the inside. , And water) to prepare an aqueous solution in which these are dispersed (hereinafter referred to as “raw material mixture”). When preparing the raw material mixture, the raw materials of the precursors may be mixed together and stirred for a predetermined time and refluxed. For example, first, a vanadium compound, a PO 4 -containing compound, and water were mixed. After refluxing, a lithium compound and carbon black may be added thereto. By this reflux, a complex of the vanadium compound and the PO 4 -containing compound can be formed.

次に、反応容器を密閉して、原料混合物を加圧しながら加熱することにより、混合物の水熱反応を進行させる。これにより、β型結晶構造のLiVOPOの前駆体を含む物質が水熱合成される。 Next, the reaction vessel is sealed, and the raw material mixture is heated while being pressurized, so that the hydrothermal reaction of the mixture proceeds. Thereby, the substance containing the precursor of LiVOPO 4 having a β-type crystal structure is hydrothermally synthesized.

水熱合成により得られたβ型結晶構造のLiVOPOの前駆体を含む物質は、通常、
流動性の低いペースト状の物質である。この物質に含まれるβ型結晶構造のLiVOPO
の前駆体は、水和物の状態であると考えられる。
A substance containing a precursor of LiVOPO 4 having a β-type crystal structure obtained by hydrothermal synthesis is usually
It is a paste-like substance with low fluidity. LiVOPO with β-type crystal structure contained in this substance
The precursor of 4 is considered to be in a hydrated state.

水熱合成工程において、原料混合物に加える圧力は、0.1〜30MPaとすることが好ましい。混合物に加える圧力が低過ぎると、最終的に得られるβ型結晶構造のLiVOPOを主成分とする活物質粒子の結晶性が低下し、活物質の容量密度が減少する傾向がある。混合物に加える圧力が高過ぎると、反応容器に高い耐圧性が求められ、活物質の製造コストが増大する傾向がある。原料混合物に加える圧力を上記の範囲内とすることによって、これらの傾向を抑制できる。 In the hydrothermal synthesis step, the pressure applied to the raw material mixture is preferably 0.1 to 30 MPa. When the pressure applied to the mixture is too low, the crystallinity of the active material particles mainly composed of LiVOPO 4 having a β-type crystal structure finally obtained tends to be lowered, and the capacity density of the active material tends to be reduced. If the pressure applied to the mixture is too high, the reaction vessel is required to have high pressure resistance, and the production cost of the active material tends to increase. By setting the pressure applied to the raw material mixture within the above range, these tendencies can be suppressed.

水熱合成工程における原料混合物の温度は、120〜200℃とすることが好ましい。混合物の温度が低過ぎると、最終的に得られるβ型結晶構造のLiVOPOを主成分とする活物質粒子の結晶性が低下し、活物質の容量密度が減少する傾向がある。混合物の温度が高過ぎると、反応容器に高い耐熱性が求められ、活物質の製造コストが増大する傾向がある。混合物の温度を上記の範囲内とすることによって、これらの傾向を抑制できる。 The temperature of the raw material mixture in the hydrothermal synthesis step is preferably 120 to 200 ° C. If the temperature of the mixture is too low, the crystallinity of the active material particles mainly composed of LiVOPO 4 having a β-type crystal structure finally obtained tends to be lowered, and the capacity density of the active material tends to be reduced. When the temperature of the mixture is too high, the reaction vessel is required to have high heat resistance, and the production cost of the active material tends to increase. By setting the temperature of the mixture within the above range, these tendencies can be suppressed.

[焼成工程]
続いて、得られた前駆体を530〜670℃に加熱する焼成工程を行う。これにより、活物質粒子1の結晶化及び半球状の炭素粒子2の担持が完成し、上述の活物質5が得られる。この工程では、水熱合成工程後の混合物中に残留した不純物等が除去される現象が起こると共に、β型結晶構造のLiVOPOの前駆体が脱水されて結晶化が起こるものと考えられる。また、水熱合成工程において得られる前駆体中に、カーボンブラック由来の炭素成分が含まれると思われるが、前駆体を上記温度範囲にて焼成することにより、活物質粒子1の表面に半球状の炭素粒子2が担持される。加熱温度が上記範囲の下限値より低くなると、活物質粒子が十分に粒成長しないためか、炭素の表面が、活物質粒子で覆われる傾向がある。一方、加熱温度が上記範囲の上限値より高くなると、活物質粒子1はβ相の割合が減少する傾向がある。
[Baking process]
Then, the baking process which heats the obtained precursor to 530-670 degreeC is performed. Thereby, the crystallization of the active material particles 1 and the support of the hemispherical carbon particles 2 are completed, and the above-described active material 5 is obtained. In this step, it is considered that impurities remaining in the mixture after the hydrothermal synthesis step are removed, and the precursor of LiVOPO 4 having a β-type crystal structure is dehydrated to cause crystallization. In addition, it seems that the precursor obtained in the hydrothermal synthesis step contains a carbon component derived from carbon black. By firing the precursor in the above temperature range, the surface of the active material particles 1 is hemispherical. Of carbon particles 2 are supported. If the heating temperature is lower than the lower limit of the above range, the active material particles may not be sufficiently grown, or the carbon surface tends to be covered with the active material particles. On the other hand, when the heating temperature is higher than the upper limit of the above range, the active material particles 1 tend to decrease the proportion of β phase.

ここで、焼成工程では、上述の前駆体を530〜670℃に0.5〜10時間加熱することが好ましい。加熱時間が短すぎると、最終的に得られるβ型結晶構造のLiVOPOを主成分とする活物質粒子の結晶性が低下し、活物質の容量密度が減少する傾向がある。一方、加熱時間が長すぎると、活物質粒子の粒成長が進み粒径が増大する結果、活物質におけるリチウムの拡散が遅くなり、活物質の容量密度が減少する傾向がある。加熱時間を上記の範囲内とすることによって、これらの傾向を抑制できる。 Here, in the firing step, it is preferable to heat the above precursor to 530 to 670 ° C. for 0.5 to 10 hours. If the heating time is too short, the crystallinity of the active material particles mainly composed of LiVOPO 4 having a β-type crystal structure as a main component is lowered, and the capacity density of the active material tends to be reduced. On the other hand, if the heating time is too long, the particle growth of the active material particles proceeds and the particle size increases. As a result, the diffusion of lithium in the active material becomes slow, and the capacity density of the active material tends to decrease. By setting the heating time within the above range, these tendencies can be suppressed.

焼成工程の雰囲気は特に限定されないが、カーボンブラックが酸化されないようにするためには、アルゴンガス、窒素ガス等の不活性雰囲気中で行うことが好ましい。また、炉内を不活性雰囲気とし、さらに炉の周囲を活性炭入り容器で覆う等して還元性雰囲気としてもよい。   The atmosphere of the firing step is not particularly limited, but it is preferably performed in an inert atmosphere such as argon gas or nitrogen gas in order to prevent the carbon black from being oxidized. Moreover, it is good also as reducing atmosphere by making the inside of a furnace into inert atmosphere, and also covering the circumference | surroundings of a furnace with the container containing activated carbon.

本実施形態に係る活物質の製造方法によれば、水熱合成によってβ−LiVOPOを合成するため、活物質粒子であるβ−LiVOPOの平均一次粒子径を50〜1000nmと同等又はそれ以下に微小化できると共に、半球状の所定の粒径範囲の炭素粒子を活物質粒子の表面に担持させることができ、上述の活物質5を容易に製造できる。また、活物質粒子1の粒度分布をシャープにすることも可能となる。 According to the method for producing an active material according to the present embodiment, β-LiVOPO 4 is synthesized by hydrothermal synthesis. Therefore, the average primary particle diameter of β-LiVOPO 4 that is an active material particle is equal to or less than 50 to 1000 nm. The active material 5 can be easily manufactured, and the hemispherical carbon particles having a predetermined particle size range can be supported on the surface of the active material particles. In addition, the particle size distribution of the active material particles 1 can be sharpened.

ところで、電極の活物質含有層においては、導電性を高めるべく、通常この活物質の表面に炭素材料等の導電材をさらに接触させることが多い。この方法として、活物質の製造後に活物質と導電材とを混合して活物質含有層を形成してもよいが、例えば、水熱合成の原料中に、カーボンブラック以外の炭素材料である導電材を添加して活物質粒子に炭素を付着させることもできる。   By the way, in the active material-containing layer of the electrode, in order to increase conductivity, a conductive material such as a carbon material is usually further brought into contact with the surface of the active material. As this method, after the active material is manufactured, the active material and the conductive material may be mixed to form the active material-containing layer. For example, in the raw material for hydrothermal synthesis, a conductive material that is a carbon material other than carbon black is used. It is also possible to add carbon to the active material particles by adding a material.

水熱合成の原料中に炭素材料である導電材を添加する場合の導電材としては、例えば、活性炭、黒鉛、ソフトカーボン、ハードカーボン等が挙げられる。これらの中でも水熱合成時に炭素粒子を上記原料となる混合物(水溶液内)に容易に分散させることができる、活性炭を用いることが好ましい。ただし、導電材は必ずしも水熱合成時に原料となる混合物に全量混合されている必要はなく、少なくとも一部が水熱合成時に原料となる混合物に混合されることが好ましい。これにより、活物質含有層を形成する際のバインダーを低減して容量密度を増加させることができる場合がある。   Examples of the conductive material in the case where a conductive material that is a carbon material is added to the raw material for hydrothermal synthesis include activated carbon, graphite, soft carbon, and hard carbon. Among these, it is preferable to use activated carbon that can easily disperse carbon particles in a mixture (in an aqueous solution) as a raw material during hydrothermal synthesis. However, the conductive material does not necessarily have to be mixed in the mixture as a raw material at the time of hydrothermal synthesis, and it is preferable that at least a part of the conductive material is mixed into the mixture as a raw material at the time of hydrothermal synthesis. Thereby, the binder at the time of forming an active material content layer can be reduced, and a capacity density can be increased.

水熱合成の原料となる混合物における炭素粒子等の上記導電材の含有量は、炭素粒子を構成する炭素原子のモル数C2と、例えばバナジウム化合物に含まれるバナジウム原子のモル数Mとの比C2/Mが、0.04≦C2/M≦4を満たすように調製することが好ましい。導電材の含有量(モル数C2)が少な過ぎる場合、活物質5と導電材により構成される電極活物質の電子伝導性及び容量密度が低下する傾向がある。導電材の含有量が多過ぎる場合、電極活物質に占める活物質粒子の重量が相対的に減少し、電極活物質の容量密度が減少する傾向があるだけでなく、活物質粒子1の表面に半球状の炭素粒子2が所望の状態に担持されにくくなる傾向がある。導電材の含有量を上記の範囲内とすることにより、これらの傾向を抑制できる。   The content of the conductive material such as carbon particles in the mixture as the raw material for hydrothermal synthesis is the ratio C2 of the number of moles C2 of carbon atoms constituting the carbon particles to the number of moles M of vanadium atoms contained in the vanadium compound, for example. It is preferable to prepare such that / M satisfies 0.04 ≦ C2 / M ≦ 4. When there is too little content (molar number C2) of an electrically conductive material, there exists a tendency for the electronic conductivity and capacity density of the electrode active material comprised by the active material 5 and an electrically conductive material to fall. When the content of the conductive material is too large, not only does the weight of the active material particles in the electrode active material relatively decrease and the capacity density of the electrode active material tends to decrease, but also on the surface of the active material particles 1. There is a tendency that the hemispherical carbon particles 2 are not easily supported in a desired state. By setting the content of the conductive material within the above range, these tendencies can be suppressed.

<リチウムイオン二次電池>
続いて、本実施形態に係る電極、及びリチウムイオン二次電池について図2を参照して簡単に説明する。
<Lithium ion secondary battery>
Next, the electrode and the lithium ion secondary battery according to this embodiment will be briefly described with reference to FIG.

リチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60,62を備えている。   The lithium ion secondary battery 100 mainly includes a laminate 30, a case 50 that accommodates the laminate 30 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 30.

積層体30は、一対の電極10、20がセパレータ18を挟んで対向配置されたものである。正極10は、正極集電体12上に正極活物質層14が設けられた物である。負極20は、負極集電体22上に負極活物質層24が設けられた物である。正極活物質層14及び負極活物質層24がセパレータ18の両側にそれぞれ接触している。正極集電体12及び負極集電体22の端部には、それぞれリード60,62が接続されており、リード60,62の端部はケース50の外部にまで延びている。   The laminated body 30 is configured such that a pair of electrodes 10 and 20 are arranged to face each other with the separator 18 interposed therebetween. The positive electrode 10 is a product in which a positive electrode active material layer 14 is provided on a positive electrode current collector 12. The negative electrode 20 is a product in which a negative electrode active material layer 24 is provided on a negative electrode current collector 22. The positive electrode active material layer 14 and the negative electrode active material layer 24 are in contact with both sides of the separator 18. Leads 60 and 62 are connected to the end portions of the positive electrode current collector 12 and the negative electrode current collector 22, respectively, and the end portions of the leads 60 and 62 extend to the outside of the case 50.

正極10の正極集電体12としては、例えば、アルミニウム箔等を使用できる。正極活物質層14は、上述の活物質5、バインダー、及び、必要に応じて添加される導電材を含む層である。必要に応じて添加される導電材としては、例えば、カーボンブラック類、炭素材料、ITO等の導電性酸化物が挙げられる。   As the positive electrode current collector 12 of the positive electrode 10, for example, an aluminum foil or the like can be used. The positive electrode active material layer 14 is a layer including the above-described active material 5, a binder, and a conductive material added as necessary. Examples of the conductive material added as necessary include carbon blacks, carbon materials, and conductive oxides such as ITO.

バインダーは、上記の活物質5と導電材とを集電体に結着することができれば特に限定されず、公知の結着剤を使用できる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ化ビニリデン―ヘキサフルオロプロピレン共重合体等のフッ素樹脂が挙げられる。   The binder is not particularly limited as long as it can bind the active material 5 and the conductive material to the current collector, and a known binder can be used. Examples thereof include fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and vinylidene fluoride-hexafluoropropylene copolymer.

このような正極は、公知の方法、例えば、前述の活物質5を含む電極活物質、又は活物質5、バインダー、及び導電材を、それらの種類に応じた溶媒、例えばPVDFの場合はN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等の溶媒に添加したスラリーを、正極集電体12の表面に塗布し、乾燥させることにより製造できる。   Such a positive electrode is obtained by using a known method, for example, an electrode active material containing the active material 5 described above, or an active material 5, a binder, and a conductive material. A slurry added to a solvent such as methyl-2-pyrrolidone or N, N-dimethylformamide is applied to the surface of the positive electrode current collector 12 and dried.

負極集電体22としては、銅箔等を使用できる。また、負極活物質層24としては、負極活物質、導電材、及び、バインダーを含むものを使用できる。導電材としては特に限定されず、公知の導電材を使用できる。例えば、カーボンブラック類、炭素材料、銅、ニッケル、ステンレス、鉄等の金属粉、炭素材料及び金属粉の混合物、ITOのような導電性酸化物が挙げられる。負極に用いられるバインダーとしては、公知の結着剤を特に制限なく使用することができ、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂が挙げられる。この結着剤は、活物質粒子や必要に応じて添加される導電材等の構成材料同士を結着するのみならず、それらの構成材料と集電体との結着にも寄与している。更に、上記の他に、結着剤としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、芳香族ポリアミド、セルロース、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等を用いてもよい。また、スチレン・ブタジエン・スチレンブロック共重合体、その水素添加物、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体、その水素添加物等の熱可塑性エラストマー状高分子を用いてもよい。更に、シンジオタクチック1、2−ポリブタジエン、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン(炭素数2〜12)共重合体等を用いてもよい。また、導電性高分子を用いてもよい。   As the negative electrode current collector 22, a copper foil or the like can be used. Moreover, as the negative electrode active material layer 24, the thing containing a negative electrode active material, a electrically conductive material, and a binder can be used. It does not specifically limit as a electrically conductive material, A well-known electrically conductive material can be used. Examples thereof include carbon blacks, carbon materials, metal powders such as copper, nickel, stainless steel, and iron, mixtures of carbon materials and metal powders, and conductive oxides such as ITO. As the binder used for the negative electrode, known binders can be used without any particular limitation. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer ( Fluorine resins such as ECTFE and polyvinyl fluoride (PVF). This binder not only binds constituent materials such as active material particles and conductive materials added as necessary, but also contributes to binding between the constituent materials and the current collector. . In addition to the above, as the binder, for example, polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, cellulose, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene / propylene rubber, and the like may be used. Also, thermoplastic elastomeric polymers such as styrene / butadiene / styrene block copolymers, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers, and hydrogenated products thereof. May be used. Further, syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, propylene / α-olefin (carbon number 2 to 12) copolymer and the like may be used. Further, a conductive polymer may be used.

負極活物質としては、例えば、リチウムイオンを吸蔵・放出(インターカレート・デインターカレート、或いはドーピング・脱ドーピング)可能な黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属、SiO2、SnO2等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi512)等を含む粒子が挙げられる。 Examples of the negative electrode active material include graphite, non-graphitizable carbon, graphitizable carbon, and low-temperature calcined carbon that can occlude / release (intercalate / deintercalate or dope / dedope) lithium ions. Carbon materials, metals that can be combined with lithium such as Al, Si and Sn, amorphous compounds mainly composed of oxides such as SiO 2 and SnO 2 , lithium titanate (Li 4 Ti 5 O 12 ), etc. The particle | grains containing are mentioned.

負極20の製造方法は、正極10の製造方法と同様にスラリーを調整して集電体に塗布すればよい。   The manufacturing method of the negative electrode 20 should just adjust slurry and apply | coat to a collector like the manufacturing method of the positive electrode 10. FIG.

電解質溶液は、正極活物質層14、負極活物質層24、及び、セパレータ18の内部に含有させるものである。電解質溶液としては、特に限定されず、例えば、本実施形態では、リチウム塩を含む電解質溶液(電解質水溶液、有機溶媒を使用する電解質溶液)を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いことにより、充電時の耐用電圧が低く制限されるので、有機溶媒を使用する電解質溶液(非水電解質溶液)であることが好ましい。電解質溶液としては、リチウム塩を非水溶媒(有機溶媒)に溶解したものが好適に使用される。リチウム塩としては、例えば、LiPF6、LiClO4、LiBF4、LiAsF6、LiCF3SO3、LiCF3、CF2SO3、LiC(CF3SO23、LiN(CF3SO22、LiN(CF3CF2SO22、LiN(CF3SO2)(C49SO2)、LiN(CF3CF2CO)2、LiBOB等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。 The electrolyte solution is contained in the positive electrode active material layer 14, the negative electrode active material layer 24, and the separator 18. The electrolyte solution is not particularly limited. For example, in the present embodiment, an electrolyte solution containing a lithium salt (electrolyte aqueous solution, electrolyte solution using an organic solvent) can be used. However, the electrolyte aqueous solution is preferably an electrolyte solution (non-aqueous electrolyte solution) using an organic solvent because the electrochemical decomposition voltage is low, and the withstand voltage during charging is limited to a low level. As the electrolyte solution, a lithium salt dissolved in a non-aqueous solvent (organic solvent) is preferably used. Examples of the lithium salt include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 , CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , A salt such as LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB or the like can be used. In addition, these salts may be used individually by 1 type, and may use 2 or more types together.

また、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、及び、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。   Moreover, as an organic solvent, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate etc. are mentioned preferably, for example. These may be used alone or in combination of two or more at any ratio.

なお、本実施形態において、電解質溶液は液状以外にゲル化剤を添加することにより得られるゲル状電解質であってもよい。また、電解質溶液に代えて、固体電解質(固体高分子電解質又はイオン伝導性無機材料からなる電解質)が含有されていてもよい。   In the present embodiment, the electrolyte solution may be a gel electrolyte obtained by adding a gelling agent in addition to liquid. Further, instead of the electrolyte solution, a solid electrolyte (a solid polymer electrolyte or an electrolyte made of an ion conductive inorganic material) may be contained.

また、セパレータ18も、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。   The separator 18 may also be formed of an electrically insulating porous structure, for example, a single layer of a film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or cellulose. And a fiber nonwoven fabric made of at least one constituent material selected from the group consisting of polyester and polypropylene.

ケース50は、その内部に積層体30及び電解液を密封するものである。ケース50は、電解液の外部への漏出や、外部からのリチウムイオン二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されない。例えば、ケース50として、図2に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、合成樹脂膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子例えばポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン、ポリプロピレン等が好ましい。   The case 50 seals the laminated body 30 and the electrolytic solution therein. The case 50 is not particularly limited as long as it can suppress leakage of the electrolytic solution to the outside and entry of moisture and the like into the lithium ion secondary battery 100 from the outside. For example, as the case 50, as shown in FIG. 2, a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used. For example, an aluminum foil can be used as the metal foil 52, and a film such as polypropylene can be used as the synthetic resin film 54. For example, the material of the outer polymer film 54 is preferably a polymer having a high melting point such as polyethylene terephthalate (PET) or polyamide, and the material of the inner polymer film 54 is preferably polyethylene or polypropylene.

リード60,62は、アルミ等の導電材料から形成されている。   The leads 60 and 62 are made of a conductive material such as aluminum.

以上、活物質、当該活物質を含む電極、当該電極を備える電池、及び活物質の製造方法の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。   As described above, the preferred embodiment of the active material, the electrode including the active material, the battery including the electrode, and the method for producing the active material has been described in detail. However, the invention is not limited to the embodiment. .

例えば、活物質粒子は、リチウムイオン二次電池以外の電気化学素子の電極材料としても用いることができる。このような、電気化学素子としては、金属リチウム二次電池(カソードに本発明の複合粒子を含む電極を用い、アノードに金属リチウムを用いたもの)等のリチウムイオン二次電池以外の二次電池や、リチウムキャパシタ等の電気化学キャパシタ等が挙げられる。これらの電気化学素子は、自走式のマイクロマシン、ICカードなどの電源や、プリント基板上又はプリント基板内に配置される分散電源の用途に使用することが可能である。   For example, the active material particles can also be used as an electrode material for electrochemical elements other than lithium ion secondary batteries. As such an electrochemical element, a secondary battery other than a lithium ion secondary battery, such as a metallic lithium secondary battery (which uses an electrode containing the composite particles of the present invention as a cathode and metallic lithium as an anode). And electrochemical capacitors such as lithium capacitors. These electrochemical elements can be used for power sources such as self-propelled micromachines and IC cards, and distributed power sources arranged on or in a printed circuit board.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
<水熱合成工程>
34.59g(0.35mol)のHPO(分子量:98.00、ナカライテスク社製、特級、純度:85重量%)、750gのHO(ナカライテスク社製、HPLC(高速液体クロマトグラフィー)用)、27.56g(0.15mol)のV(分子量:181.88、ナカライテスク社製、特級、純度:99重量%)、11.2g(0.15mol)のLiCO(分子量:73.89、ナカライテスク社製、特級、純度:99重量%)、及び1.52g(0.13mol)のカーボンブラック(CB)(分子量:12、平均粒径50nm、電気化学工業社製)をこの順序で1.5Lオートクレーブ容器に導入して、pHが3.5である混合物を調製した。これらの原料の量は、化学量論的に約50g(0.3mol)のLiVOPO(分子量:168.85)を生成させる量に相当する。
Example 1
<Hydrothermal synthesis process>
34.59 g (0.35 mol) of H 3 PO 4 (molecular weight: 98.00, manufactured by Nacalai Tesque, special grade, purity: 85% by weight), 750 g of H 2 O (manufactured by Nacalai Tesque, HPLC (high performance liquid chromatography) ) 27.56 g (0.15 mol) of V 2 O 5 (molecular weight: 181.88, manufactured by Nacalai Tesque, special grade, purity: 99 wt%), 11.2 g (0.15 mol) of Li 2 CO 3 (molecular weight: 73.89, manufactured by Nacalai Tesque, special grade, purity: 99% by weight) and 1.52 g (0.13 mol) of carbon black (CB) (molecular weight: 12, average particle size 50 nm, electrochemical Kogyo Co., Ltd.) was introduced in this order into a 1.5 L autoclave vessel to prepare a mixture having a pH of 3.5. The amount of these raw materials corresponds to the amount of stoichiometrically producing about 50 g (0.3 mol) of LiVOPO 4 (molecular weight: 168.85).

容器を密閉して、混合物を室温下で約30分攪拌した後に、容器内の圧力を0.5MPa、温度を160℃にし、16時間、水熱合成反応を行った。水熱合成反応後の混合物のpHは2.7であった。   The container was sealed, and the mixture was stirred at room temperature for about 30 minutes, and then the pressure in the container was 0.5 MPa, the temperature was 160 ° C., and a hydrothermal synthesis reaction was performed for 16 hours. The pH of the mixture after the hydrothermal synthesis reaction was 2.7.

水熱合成反応後のペースト状の混合物をバットに開けて、90℃で約21時間蒸発乾固させた。その後、サンプルをひっくり返してさらに90℃で約5時間蒸発乾固させた。蒸発乾固後の混合物(63.16g)を小型粉砕機(協立理工社製 SK−M500)で粉砕して、黒緑色の粉体(活物質の前躯体)を得た。   The paste-like mixture after the hydrothermal synthesis reaction was opened in a vat and evaporated to dryness at 90 ° C. for about 21 hours. Thereafter, the sample was turned over and further evaporated to dryness at 90 ° C. for about 5 hours. The mixture (63.16 g) after evaporation to dryness was pulverized with a small pulverizer (SK-M500, manufactured by Kyoritsu Riko Co., Ltd.) to obtain a black-green powder (active material precursor).

<焼成工程>
5.00gの前駆体をアルミナ坩堝に入れて、昇温速度を100℃/minとして室温から600℃まで加熱した。600℃に4時間保持した後、10℃/minで室温まで冷却した。なお、昇温時及び降温時には、200℃から窒素ガスを5L/minでフローさせ、炉内を窒素雰囲気とした。この焼成工程により、くすんだ緑色の粒子群(実施例1の活物質)を40.43g得た。
<Baking process>
5.00 g of the precursor was placed in an alumina crucible and heated from room temperature to 600 ° C. at a rate of temperature increase of 100 ° C./min. After holding at 600 ° C. for 4 hours, it was cooled to room temperature at 10 ° C./min. In addition, at the time of temperature increase and temperature decrease, nitrogen gas was flowed at 5 L / min from 200 ° C., and the inside of the furnace was made a nitrogen atmosphere. By this firing step, 40.43 g of a dull green particle group (active material of Example 1) was obtained.

<結晶構造の測定>
粉末X線回折(XRD)の結果から、実施例1の活物質は、LiVOPOのβ型結晶構造を有することが確認された。
<Measurement of crystal structure>
The results of powder X-ray diffraction (XRD), the active material of Example 1, it was confirmed that the β-type crystal structure of LiVOPO 4.

<個数基準の粒度分布及び平均一次粒子径の測定>
実施例1の活物質の個数基準の粒度分布を、高分解能走査型電子顕微鏡で観察したイメージに基づいた活物質の投影面積から求められる投影面積円相当径の累積率により算出した。求めた活物質の個数基準の粒度分布に基づき、活物質の平均一次粒子径(d50)を算出した。活物質の平均一次粒子径(d50)は、500nmであった。
<Measurement of number-based particle size distribution and average primary particle size>
The number-based particle size distribution of the active material of Example 1 was calculated by the cumulative ratio of the projected area equivalent circle diameter obtained from the projected area of the active material based on the image observed with a high-resolution scanning electron microscope. Based on the obtained particle size distribution based on the number of active materials, the average primary particle diameter (d50) of the active materials was calculated. The average primary particle diameter (d50) of the active material was 500 nm.

<炭素粒子の形状の観察及び大きさの測定>
実施例の活物質をTEMにより観察した。活物質粒子の表面に担持された炭素粒子の形状を観察し、大きさを測定した。一例として、実施例3の活物質のTEM像を図3に示す。半球状のCB粒子が活物質粒子の表面に担持されていた。活物質粒子表面から、半球状のCB粒子の凸面の最も高い位置までの平均高さhは、約9nmであった。
<Observation of carbon particle shape and measurement of size>
The active material of the example was observed by TEM. The shape of the carbon particles supported on the surface of the active material particles was observed and the size was measured. As an example, a TEM image of the active material of Example 3 is shown in FIG. Hemispherical CB particles were supported on the surface of the active material particles. The average height h from the active material particle surface to the highest position of the convex surface of the hemispherical CB particles was about 9 nm.

<放電容量の測定>
実施例1の活物質と、バインダーであるポリフッ化ビニリデン(PVDF)とアセチレンブラックを混合したものを、溶媒であるN−メチル−2−ピロリドン(NMP)中に分散させてスラリーを調製した。なお、スラリーにおいて活物質とアセチレンブラックとPVDFとの重量比が84:8:8となるように、スラリーを調製した。このスラリーを集電体であるアルミニウム箔上に塗布し、乾燥させた後、圧延を行い、実施例1の活物質を含む活物質層が形成された電極(正極)を得た。
<Measurement of discharge capacity>
A mixture of the active material of Example 1, polyvinylidene fluoride (PVDF) as a binder, and acetylene black was dispersed in N-methyl-2-pyrrolidone (NMP) as a solvent to prepare a slurry. The slurry was prepared so that the weight ratio of the active material, acetylene black, and PVDF was 84: 8: 8 in the slurry. This slurry was applied onto an aluminum foil as a current collector, dried, and then rolled to obtain an electrode (positive electrode) on which an active material layer containing the active material of Example 1 was formed.

次に、得られた電極と、その対極であるLi箔とを、それらの間にポリエチレン微多孔膜からなるセパレータを挟んで積層し、積層体(素体)を得た。この積層体を、アルミラミネーターパックに入れ、このアルミラミネートパックに、電解液として1MのLiPF溶液を注入した後、真空シールし、実施例1の評価用セルを作製した。 Next, the obtained electrode and the Li foil as the counter electrode were laminated with a separator made of a polyethylene microporous film interposed therebetween to obtain a laminate (element body). This laminate was put in an aluminum laminator pack, and 1M LiPF 6 solution was injected as an electrolyte into the aluminum laminate pack, followed by vacuum sealing to produce an evaluation cell of Example 1.

実施例1の評価用セルを用いて、放電レートを0.1C(25℃で定電流放電を行ったときに10時間で放電終了となる電流値)とした場合の放電容量(単位:mAh/g)を測定した。0.1Cでの放電容量は、120mAh/gであった。   Using the evaluation cell of Example 1, the discharge capacity (unit: mAh / unit) when the discharge rate is 0.1 C (current value at which discharge is completed in 10 hours when constant current discharge is performed at 25 ° C.) g) was measured. The discharge capacity at 0.1 C was 120 mAh / g.

(実施例2)
塩酸を加えることにより、水熱合成前のpHを1.8にした以外は実施例1と同様にして活物質を作製した。
(Example 2)
An active material was prepared in the same manner as in Example 1 except that hydrochloric acid was added to adjust the pH before hydrothermal synthesis to 1.8.

(実施例3)
塩酸を加えることにより、水熱合成前のpHを3.6にした以外は実施例1と同様にして活物質を作製した。
Example 3
An active material was prepared in the same manner as in Example 1 except that hydrochloric acid was added to adjust the pH before hydrothermal synthesis to 3.6.

(実施例4)
塩酸を加えることにより、水熱合成前のpHを2.5にした以外は実施例1と同様にして活物質を作製した。
Example 4
An active material was prepared in the same manner as in Example 1 except that hydrochloric acid was added to adjust the pH before hydrothermal synthesis to 2.5.

(実施例5)
塩酸を加えることにより、水熱合成前のpHを6.5にした以外は実施例1と同様にして活物質を作製した。
(Example 5)
An active material was prepared in the same manner as in Example 1 except that hydrochloric acid was added to adjust the pH before hydrothermal synthesis to 6.5.

(実施例6)
塩酸を加えることにより、水熱合成前のpHを2.5とし、焼成温度を550℃にした以外は実施例1と同様にして活物質を作製した。
(Example 6)
An active material was prepared in the same manner as in Example 1 except that hydrochloric acid was added to adjust the pH before hydrothermal synthesis to 2.5 and the firing temperature to 550 ° C.

(実施例7)
塩酸を加えることにより、水熱合成前のpHを2.5とし、焼成温度を650℃にした以外は実施例1と同様にして活物質を作製した。
(Example 7)
An active material was produced in the same manner as in Example 1 except that hydrochloric acid was added to adjust the pH before hydrothermal synthesis to 2.5 and the firing temperature to 650 ° C.

(比較例1)
炭素材料を黒鉛とした以外は実施例4と同様にして、活物質を作製した。
(Comparative Example 1)
An active material was produced in the same manner as in Example 4 except that the carbon material was graphite.

(比較例2)
焼成温度を500℃とした以外は実施例4と同様にして、活物質を作製した。
(Comparative Example 2)
An active material was produced in the same manner as in Example 4 except that the firing temperature was 500 ° C.

(比較例3)
アンモニア水を加えることにより、水熱合成前のpHを7.8にした以外は実施例1と同様にして活物質を作製した。
(Comparative Example 3)
An active material was prepared in the same manner as in Example 1 except that ammonia water was added to adjust the pH before hydrothermal synthesis to 7.8.

(比較例4)
アンモニア水を加えることにより、水熱合成前のpHを9.2にした以外は実施例1と同様にして活物質を作製した。
(Comparative Example 4)
An active material was prepared in the same manner as in Example 1 except that the pH before hydrothermal synthesis was changed to 9.2 by adding aqueous ammonia.

(比較例5)
アンモニア水を加えることにより、水熱合成前のpHを8.1にした以外は実施例1と同様にして活物質を作製した。
(Comparative Example 5)
An active material was produced in the same manner as in Example 1 except that ammonia water was added to adjust the pH before hydrothermal synthesis to 8.1.

(比較例6)
水熱合成を行わず、下記の固相法により活物質を作製した。
LiNO、V、HPOを、モル比で2:1:2となるように水に溶解させ、80℃にて撹拌した。この溶液を蒸発乾固し、110℃にて一晩乾燥後粉砕し、空気中、700℃で14時間焼成した。得られた粉末のX線回折パターンより、活物質粒子はβ型(斜方晶)であった。得られた粉末にカーボンブラックを3質量%混合し、ボールミルで混合、粉砕処理し、活物質を作製した。
(Comparative Example 6)
An active material was prepared by the following solid phase method without hydrothermal synthesis.
LiNO 3 , V 2 O 5 , and H 3 PO 4 were dissolved in water at a molar ratio of 2: 1: 2 and stirred at 80 ° C. This solution was evaporated to dryness, dried at 110 ° C. overnight, pulverized, and calcined in air at 700 ° C. for 14 hours. From the X-ray diffraction pattern of the obtained powder, the active material particles were β-type (orthorhombic). The obtained powder was mixed with 3% by mass of carbon black, mixed and pulverized with a ball mill to prepare an active material.

(比較例7)
水熱合成に用いる原料にカーボンブラックを添加せず、16時間の水熱合成工程後、β型結晶構造のLiVOPOの前駆体にカーボンブラックを添加し、これらを乾式混合した以外は実施例1と同様にして活物質を作製した。
(Comparative Example 7)
Example 1 except that carbon black was not added to the raw material used for hydrothermal synthesis, carbon black was added to the precursor of LiVOPO 4 having a β-type crystal structure after the hydrothermal synthesis process for 16 hours, and these were dry mixed. An active material was prepared in the same manner as described above.

上記実施例1〜7及び比較例1〜6の実験条件及び測定結果を表1に示す。   Table 1 shows the experimental conditions and measurement results of Examples 1 to 7 and Comparative Examples 1 to 6.

実施例1〜7では、β型結晶構造のLiVOPOに、高さが6〜18nmである半球状の炭素粒子が担持された、平均一次粒子径が260〜890nmである活物質が得られ、0.1Cにおける放電容量は、93〜130mAh/gと高い値を示した。
比較例1では燐片状(約20μm)の炭素粒子が、また、比較例6では小粒径(約50nm)の炭素粒子がβ型結晶構造のLiVOPO表面に点在した。比較例2では、β型結晶構造のLiVOPOが微粒子となり、炭素粒子の表面を被覆した。比較例3〜5では、半球状の炭素粒子担持された活物質は得られたものの、活物質粒子はα型結晶構造のLiVOPOであった。比較例7では、水熱合成後にカーボンブラックを添加したため、カーボンブラックは半球状にならず、添加前と同様形状(球状)のままβ型結晶構造のLiVOPO表面に担持された。いずれの実施例も比較例1〜7に比して、0.1Cにおける放電容量は、低い値を示した。
In Examples 1 to 7, an active material having an average primary particle size of 260 to 890 nm, in which hemispherical carbon particles having a height of 6 to 18 nm are supported on LiVOPO 4 having a β-type crystal structure, is obtained. The discharge capacity at 0.1 C showed a high value of 93 to 130 mAh / g.
In Comparative Example 1, flake-like (about 20 μm) carbon particles were scattered on the surface of LiVOPO 4 having a β-type crystal structure, and in Comparative Example 6, carbon particles having a small particle size (about 50 nm) were scattered. In Comparative Example 2, LiVOPO 4 having a β-type crystal structure became fine particles and covered the surface of the carbon particles. In Comparative Examples 3 to 5, an active material carrying hemispherical carbon particles was obtained, but the active material particles were LiVOPO 4 having an α-type crystal structure. In Comparative Example 7, since carbon black was added after hydrothermal synthesis, the carbon black did not become hemispherical and was supported on the surface of LiVOPO 4 having a β-type crystal structure in the same shape (spherical) as before addition. In all the examples, the discharge capacity at 0.1 C was lower than those in Comparative Examples 1 to 7.

本発明の活物質及びこれを含む電極によれば、高い放電電流密度において十分な放電容量のリチウムイオン二次電池を提供することができる。また、本発明の活物質の製造方法によれば、高い放電電流密度において十分な放電容量の得られる活物質を提供できる。   According to the active material of the present invention and the electrode including the active material, it is possible to provide a lithium ion secondary battery having a sufficient discharge capacity at a high discharge current density. In addition, according to the method for producing an active material of the present invention, an active material capable of obtaining a sufficient discharge capacity at a high discharge current density can be provided.

1…活物質粒子、2…炭素粒子、5…活物質、h…炭素粒子の高さ、R…活物質粒子の粒子径、R…活物質の平均一次粒子径、10,20…電極、12…正極集電体、14…正極活物質層、18…セパレータ、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、52…金属箔、54…高分子膜、60,62…リード、100…リチウムイオン二次電池。 1 ... the active material particles, 2 ... carbon particles, 5 ... active material, h ... a height of the carbon particles, the particle size of the R 1 ... active material particles, the average primary particle diameter of R 5 ... active material, 10, 20 ... electrode , 12 ... Positive electrode current collector, 14 ... Positive electrode active material layer, 18 ... Separator, 22 ... Negative electrode current collector, 24 ... Negative electrode active material layer, 30 ... Laminate, 50 ... Case, 52 ... Metal foil, 54 ... High Molecular film, 60, 62 ... lead, 100 ... lithium ion secondary battery.

Claims (4)

β型結晶構造のLiVOPOを主成分とする活物質粒子と、
前記活物質粒子の表面に担持され、高さが5〜20nmである複数の半球状の炭素粒子と、を含み、
平均一次粒子径が50〜1000nmである活物質。
active material particles mainly composed of LiVOPO 4 having a β-type crystal structure;
A plurality of hemispherical carbon particles supported on the surface of the active material particles and having a height of 5 to 20 nm,
An active material having an average primary particle size of 50 to 1000 nm.
集電体と、請求項1記載の活物質を含み前記集電体上に設けられた活物質層と、を備える電極。   An electrode comprising: a current collector; and an active material layer including the active material according to claim 1 and provided on the current collector. 請求項2記載の電極を備えるリチウムイオン二次電池。   A lithium ion secondary battery comprising the electrode according to claim 2. Li源、V源、P源、カーボンブラック、及び水を含み、pHが7以下である混合物を加圧下で加熱し、β型結晶構造のLiVOPOの前駆体を得る水熱合成工程と、
前記β型結晶構造のLiVOPOの前駆体を530〜670℃に加熱しβ型結晶構造のLiVOPOを得る焼成工程と、
を備える活物質の製造方法。
A hydrothermal synthesis step of obtaining a precursor of LiVOPO 4 having a β-type crystal structure by heating a mixture containing Li source, V source, P source, carbon black, and water and having a pH of 7 or less under pressure;
A firing step of heating the precursor of LiVOPO 4 having a β-type crystal structure to 530 to 670 ° C. to obtain LiVOPO 4 having a β-type crystal structure;
A method for producing an active material comprising:
JP2009063118A 2009-03-16 2009-03-16 Active material, electrode including the same, lithium ion secondary battery including the electrode, and method for producing active material Expired - Fee Related JP5347605B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009063118A JP5347605B2 (en) 2009-03-16 2009-03-16 Active material, electrode including the same, lithium ion secondary battery including the electrode, and method for producing active material
US12/723,101 US20100233545A1 (en) 2009-03-16 2010-03-12 Active material, method of manufacturing active material, electrode, and lithium-ion secondary battery
CN2010101345608A CN101841037B (en) 2009-03-16 2010-03-16 Method of manufacturing active material, active material, electrode, and lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063118A JP5347605B2 (en) 2009-03-16 2009-03-16 Active material, electrode including the same, lithium ion secondary battery including the electrode, and method for producing active material

Publications (2)

Publication Number Publication Date
JP2010218830A true JP2010218830A (en) 2010-09-30
JP5347605B2 JP5347605B2 (en) 2013-11-20

Family

ID=42977439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063118A Expired - Fee Related JP5347605B2 (en) 2009-03-16 2009-03-16 Active material, electrode including the same, lithium ion secondary battery including the electrode, and method for producing active material

Country Status (1)

Country Link
JP (1) JP5347605B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218822A (en) * 2009-03-16 2010-09-30 Tdk Corp Method for manufacturing active material, active material, electrode, and lithium-ion secondary battery
JP2012099361A (en) * 2010-11-02 2012-05-24 Tdk Corp Method of manufacturing active material, and lithium ion secondary battery
WO2012133729A1 (en) * 2011-03-31 2012-10-04 Tdk株式会社 Active material, electrode, lithium-ion secondary battery, and process for producing active material
WO2012133730A1 (en) * 2011-03-31 2012-10-04 Tdk株式会社 Active material, method for manufacturing active material, electrode, and lithium-ion rechargeable battery
WO2012133731A1 (en) * 2011-03-31 2012-10-04 Tdk株式会社 Active material, manufacturing method for active material, electrode, lithium-ion rechargeable battery, and manufacturing method for lithium-ion rechargeable battery
WO2013128936A1 (en) * 2012-02-28 2013-09-06 株式会社豊田自動織機 Active material composite, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaquoeus electrolyte secondary battery
JP2014011028A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Composite active material, solid state battery, and method for producing composite active material
JP2019169405A (en) * 2018-03-26 2019-10-03 株式会社東芝 Electrode, secondary battery, battery pack and vehicle

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110414A (en) * 1999-10-04 2001-04-20 Nippon Telegr & Teleph Corp <Ntt> Material for activating positive electrode of lithium secondary battery and the lithium secondary battery
JP2003292309A (en) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery
JP2004303527A (en) * 2003-03-31 2004-10-28 Yusaku Takita Electrode active material and electrode for nonaqueous electrolyte secondary battery as well as nonaqueous electrolyte secondary battery
JP2005047751A (en) * 2003-07-29 2005-02-24 Nippon Chem Ind Co Ltd Method of manufacturing lithium iron phosphorus-based multiple oxide carbon composite body containing manganese atom
JP2005123107A (en) * 2003-10-20 2005-05-12 Hitachi Maxell Ltd Active material for electrochemical element, its manufacturing method, and the electrochemical element using the same
JP2005276475A (en) * 2004-03-23 2005-10-06 Sumitomo Osaka Cement Co Ltd Positive electrode material for lithium battery, electrode for lithium battery, and lithium battery
JP2007294461A (en) * 2006-04-25 2007-11-08 Aquire Energy Co Ltd Cathode material for manufacturing rechargeable battery
JP2008257894A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Method of manufacturing positive electrode material for lithium ion secondary battery
JP2008277119A (en) * 2007-04-27 2008-11-13 Tdk Corp Composite particle for electrode, its manufacturing method, and electrochemical device
JP2010537946A (en) * 2007-09-06 2010-12-09 ヴァレンス テクノロジー インコーポレーテッド Method for producing an active material for use in a secondary electrochemical cell

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110414A (en) * 1999-10-04 2001-04-20 Nippon Telegr & Teleph Corp <Ntt> Material for activating positive electrode of lithium secondary battery and the lithium secondary battery
JP2003292309A (en) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery
JP2004303527A (en) * 2003-03-31 2004-10-28 Yusaku Takita Electrode active material and electrode for nonaqueous electrolyte secondary battery as well as nonaqueous electrolyte secondary battery
JP2005047751A (en) * 2003-07-29 2005-02-24 Nippon Chem Ind Co Ltd Method of manufacturing lithium iron phosphorus-based multiple oxide carbon composite body containing manganese atom
JP2005123107A (en) * 2003-10-20 2005-05-12 Hitachi Maxell Ltd Active material for electrochemical element, its manufacturing method, and the electrochemical element using the same
JP2005276475A (en) * 2004-03-23 2005-10-06 Sumitomo Osaka Cement Co Ltd Positive electrode material for lithium battery, electrode for lithium battery, and lithium battery
JP2007294461A (en) * 2006-04-25 2007-11-08 Aquire Energy Co Ltd Cathode material for manufacturing rechargeable battery
JP2008257894A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Method of manufacturing positive electrode material for lithium ion secondary battery
JP2008277119A (en) * 2007-04-27 2008-11-13 Tdk Corp Composite particle for electrode, its manufacturing method, and electrochemical device
JP2010537946A (en) * 2007-09-06 2010-12-09 ヴァレンス テクノロジー インコーポレーテッド Method for producing an active material for use in a secondary electrochemical cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218822A (en) * 2009-03-16 2010-09-30 Tdk Corp Method for manufacturing active material, active material, electrode, and lithium-ion secondary battery
JP2012099361A (en) * 2010-11-02 2012-05-24 Tdk Corp Method of manufacturing active material, and lithium ion secondary battery
JP2012216377A (en) * 2011-03-31 2012-11-08 Tdk Corp Active material, method for producing active material, electrode, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
WO2012133730A1 (en) * 2011-03-31 2012-10-04 Tdk株式会社 Active material, method for manufacturing active material, electrode, and lithium-ion rechargeable battery
WO2012133731A1 (en) * 2011-03-31 2012-10-04 Tdk株式会社 Active material, manufacturing method for active material, electrode, lithium-ion rechargeable battery, and manufacturing method for lithium-ion rechargeable battery
JP2012212636A (en) * 2011-03-31 2012-11-01 Tdk Corp Active material, method for manufacturing active material, electrode, and lithium ion secondary battery
WO2012133729A1 (en) * 2011-03-31 2012-10-04 Tdk株式会社 Active material, electrode, lithium-ion secondary battery, and process for producing active material
JP2012216409A (en) * 2011-03-31 2012-11-08 Tdk Corp Active material, electrode, lithium ion secondary battery, and active material manufacturing method
CN103493262A (en) * 2011-03-31 2014-01-01 Tdk株式会社 Active material, manufacturing method for active material, electrode, lithium-ion rechargeable battery, and manufacturing method for lithium-ion rechargeable battery
US10230108B2 (en) 2011-03-31 2019-03-12 Tdk Corporation Active material, method for manufacturing active material, electrode, and lithium ion secondary battery
US10611639B2 (en) 2011-03-31 2020-04-07 Tdk Corporation Active material, method for manufacturing active material, electrode, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
WO2013128936A1 (en) * 2012-02-28 2013-09-06 株式会社豊田自動織機 Active material composite, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaquoeus electrolyte secondary battery
JP2014011028A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Composite active material, solid state battery, and method for producing composite active material
US9887417B2 (en) 2012-06-29 2018-02-06 Toyota Jidosha Kabushiki Kaisha Composite active material, solid state battery and method for producing composite active material
JP2019169405A (en) * 2018-03-26 2019-10-03 株式会社東芝 Electrode, secondary battery, battery pack and vehicle

Also Published As

Publication number Publication date
JP5347605B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP4317571B2 (en) Active material, electrode, battery, and method for producing active material
JP6341318B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
US20100233545A1 (en) Active material, method of manufacturing active material, electrode, and lithium-ion secondary battery
KR101888552B1 (en) Positive electrode active material for lithium ion secondary battery, and positive electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same
JP5347605B2 (en) Active material, electrode including the same, lithium ion secondary battery including the electrode, and method for producing active material
KR101539843B1 (en) Anode Active Material of High Density and Methode for Preparation of The Same
JP5487676B2 (en) Electrochemical device comprising an active material, an electrode including the active material, and an electrolyte solution including the electrode and a lithium salt
JP5699754B2 (en) Active material, electrode, lithium ion secondary battery, and method for producing active material
US20130108921A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
WO2012008423A1 (en) Active material, electrode containing same, lithium secondary battery comprising the electrode, and method for producing active material
JP5365125B2 (en) Active material for positive electrode of lithium ion secondary battery
JP5347604B2 (en) Active material particles mainly composed of α-type crystal structure LiVOPO4, electrode including the same, lithium secondary battery including the electrode, and method for producing the active material particles
WO2014051020A1 (en) Lithium ion secondary battery
WO2022107861A1 (en) Precursor, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US20210111404A1 (en) Cathode active material for lithium ion secondary battery and method for producing same
JP5375446B2 (en) Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
JP2012018832A (en) Cathode active material for lithium secondary battery, manufacturing method thereof, precursor of cathode active material, manufacturing method thereof, and lithium secondary battery using cathode active material
JP5609299B2 (en) Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
JP2014024724A (en) Production method of lithium titanate powder, and lithium ion secondary battery and lithium ion capacitor using the lithium titanate powder
JP5609300B2 (en) Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
WO2018021480A1 (en) Positive electrode active substance for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery using same
JP2012212634A (en) Active material, electrode containing the same, lithium secondary battery comprising the electrode, and method for manufacturing active material
JP6197540B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
US9825295B2 (en) Positive electrode active material and lithium-ion secondary battery
JP2019175634A (en) Positive electrode active material and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5347605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees