JP2010218829A - ACTIVE MATERIAL PARTICLE MAINLY COMPOSED OF LIVOPO4 HAVING alpha TYPE CRYSTAL STRUCTURE, ELECTRODE CONTAINING THE ACTIVE MATERIAL PARTICLE, LITHIUM SECONDARY BATTERY INCLUDING THE ELECTRODE, AND METHOD FOR MANUFACTURING THE ACTIVE MATERIAL PARTICLE - Google Patents

ACTIVE MATERIAL PARTICLE MAINLY COMPOSED OF LIVOPO4 HAVING alpha TYPE CRYSTAL STRUCTURE, ELECTRODE CONTAINING THE ACTIVE MATERIAL PARTICLE, LITHIUM SECONDARY BATTERY INCLUDING THE ELECTRODE, AND METHOD FOR MANUFACTURING THE ACTIVE MATERIAL PARTICLE Download PDF

Info

Publication number
JP2010218829A
JP2010218829A JP2009063114A JP2009063114A JP2010218829A JP 2010218829 A JP2010218829 A JP 2010218829A JP 2009063114 A JP2009063114 A JP 2009063114A JP 2009063114 A JP2009063114 A JP 2009063114A JP 2010218829 A JP2010218829 A JP 2010218829A
Authority
JP
Japan
Prior art keywords
active material
livopo
type crystal
crystal structure
material particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009063114A
Other languages
Japanese (ja)
Other versions
JP5347604B2 (en
Inventor
Atsushi Sano
篤史 佐野
Keitaro Otsuki
佳太郎 大槻
Yousuke Miyaki
陽輔 宮木
Takeshi Takahashi
高橋  毅
Toru Inoue
亨 井上
Shoji Higuchi
章二 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2009063114A priority Critical patent/JP5347604B2/en
Publication of JP2010218829A publication Critical patent/JP2010218829A/en
Application granted granted Critical
Publication of JP5347604B2 publication Critical patent/JP5347604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide active material particles mainly composed of LiVOPO<SB>4</SB>having an α type crystal structure, while having a large discharge capacity, an electrode containing the active material particles, a lithium secondary battery including the electrode, and a method for manufacturing the active material particles. <P>SOLUTION: The active material particles 1 are mainly composed of LiVOPO<SB>4</SB>having an α type crystal structure and respectively have a porous structure in which a total pore volume is ≥0.55 cm<SP>3</SP>/g. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、α型結晶構造のLiVOPOを主成分とする活物質粒子、これを含む電極、当該電極を備えるリチウム二次電池、及びこの活物質粒子の製造方法に関する。 The present invention relates to an active material particle mainly composed of LiVOPO 4 having an α-type crystal structure, an electrode including the same, a lithium secondary battery including the electrode, and a method for producing the active material particle.

リチウムを挿入脱離可能な正極材料として、LiVOPOが検討されている(例えば、特許文献1、非特許文献1)。LiVOPOは、α型、β型等の異なる結晶構造を有し、α型はβ型に比して熱力学的に安定な構造であるといわれているが、特許文献1によれば、β型結晶構造のLiVOPOに比べて、α型結晶構造のLiVOPOは放電容量が小さいことが報告されている。また、非特許文献1では、αII、γ、及びδ型結晶構造のLiVOPOに関して、レートの違いによる容量の変化が検討されている。 LiVOPO 4 has been studied as a positive electrode material capable of inserting and extracting lithium (for example, Patent Document 1 and Non-Patent Document 1). LiVOPO 4 has different crystal structures such as α-type and β-type, and α-type is said to be a thermodynamically stable structure compared to β-type. It has been reported that LiVOPO 4 having an α-type crystal structure has a smaller discharge capacity than LiVOPO 4 having a type crystal structure. In Non-Patent Document 1, a change in capacity due to a difference in rate is examined for LiVOPO 4 having α II , γ, and δ type crystal structures.

特開2004−303527号公報JP 2004-303527 A

N.Dupre et al., Solid State Ionics, 140, p.532−534(2001)N. Dupre et al. , Solid State Ionics, 140, p. 532-534 (2001)

しかしながら、α型結晶構造のLiVOPOの容量を増加させることに関して十分な検討はなされていない。 However, sufficient studies have not been made on increasing the capacity of LiVOPO 4 having an α-type crystal structure.

そこで本発明は、α型結晶構造のLiVOPOを主成分としかつ放電容量の大きな活物質粒子、当該活物質粒子を含む電極、及び当該電極を備えたリチウム二次電池及びこの活物質粒子の製造方法を提供することを目的とする。 Accordingly, the present invention provides an active material particle mainly composed of LiVOPO 4 having an α-type crystal structure and a large discharge capacity, an electrode including the active material particle, a lithium secondary battery including the electrode, and production of the active material particle. It aims to provide a method.

本発明の活物質粒子は、α型結晶構造のLiVOPOを主成分とし、全細孔容積が0.55cm/g以上の多孔質構造である。 The active material particles of the present invention have a porous structure mainly composed of LiVOPO 4 having an α-type crystal structure and a total pore volume of 0.55 cm 3 / g or more.

本発明の活物質粒子によれば、α型結晶構造のLiVOPOを主成分とする活物質粒子であっても従来に比して大きな放電容量を実現することができる。この理由は明らかではないが、例えば、全細孔容積が0.55cm/g以上の多孔質構造であることにより、電解液が活物質粒子の内部まで浸透し易くなり、α型結晶構造のLiVOPOの結晶格子内へのリチウムイオンの挿入脱離が行われ易くなることが考えられる。 According to the active material particles of the present invention, a large discharge capacity can be realized even if the active material particles are mainly composed of αVO crystal LiVOPO 4 . Although the reason for this is not clear, for example, the porous structure having a total pore volume of 0.55 cm 3 / g or more makes it easy for the electrolyte to penetrate into the active material particles, and the α-type crystal structure It is conceivable that lithium ions are easily inserted into and extracted from the crystal lattice of LiVOPO 4 .

ここで、本発明の活物質粒子は、比表面積が1m/g以上であることが好ましい。比表面積が1m/g以上であることにより、電解液と活物質粒子との接触面積がより増加し、α型結晶構造を有するLiVOPOの結晶格子内へのリチウムイオンの挿入脱離がより行われ易くなる。これにより、より大きな放電容量を得ることができる。 Here, the active material particles of the present invention preferably have a specific surface area of 1 m 2 / g or more. When the specific surface area is 1 m 2 / g or more, the contact area between the electrolytic solution and the active material particles is further increased, and insertion and desorption of lithium ions into the crystal lattice of LiVOPO 4 having an α-type crystal structure is further increased. It becomes easy to be done. Thereby, a larger discharge capacity can be obtained.

本発明の電極は、集電体と、上述した活物質粒子を含み集電体上に設けられた活物質層と、を備える。これにより、大きな放電容量の電極を得ることができる。   The electrode of the present invention includes a current collector and an active material layer including the above-described active material particles and provided on the current collector. Thereby, an electrode having a large discharge capacity can be obtained.

本発明のリチウムイオン二次電池は、上述した電極を備える。これにより、大きな放電容量のリチウムイオン二次電池を得ることができる。   The lithium ion secondary battery of this invention is equipped with the electrode mentioned above. Thereby, a lithium ion secondary battery having a large discharge capacity can be obtained.

本発明のα型結晶構造のLiVOPOを主成分とする活物質粒子の製造方法は、還元作用を有する有機化合物の存在下で水熱合成することにより、α型結晶構造のLiVOPOの前駆体を得る水熱合成工程と、水熱合成により得られたα型結晶構造のLiVOPOの前駆体を500〜750℃に加熱して多孔質構造かつα型結晶構造のLiVOPOを得る本焼成工程と、を備える。 The method for producing active material particles mainly composed of LiVOPO 4 having an α-type crystal structure according to the present invention comprises a precursor of LiVOPO 4 having an α-type crystal structure by hydrothermal synthesis in the presence of an organic compound having a reducing action. this firing step to obtain a hydrothermal synthesis to obtain a precursor of the LiVOPO 4 of α-type crystal structure obtained by hydrothermal synthesis was heated to 500 to 750 ° C. the LiVOPO 4 of the porous structure cutlet α-type crystal structure And comprising.

還元作用を有する有機化合物の存在下で水熱合成することにより、α型結晶構造のLiVOPOの前駆体を得ることができる。そして、このようにして得られたα型結晶構造のLiVOPOの前駆体を500〜750℃に加熱することにより、上述した、α型結晶構造のLiVOPOを主成分とする所定の多孔質構造の活物質粒子を得ることができる。 By performing hydrothermal synthesis in the presence of an organic compound having a reducing action, a precursor of LiVOPO 4 having an α-type crystal structure can be obtained. Then, by heating the precursor of LiVOPO 4 having the α-type crystal structure thus obtained to 500 to 750 ° C., the above-described predetermined porous structure mainly composed of LiVOPO 4 having the α-type crystal structure is provided. Active material particles can be obtained.

ここで、本発明のα型結晶構造のLiVOPOを主成分とする活物質粒子の製造方法においては、本焼成工程の加熱温度が600〜750℃であることが好ましい。この温度範囲で本焼成を行うと、全細孔容積が一層増加することとなり、より大きな放電容量を得ることができる。 Here, in the method for producing active material particles mainly composed of LiVOPO 4 having an α-type crystal structure according to the present invention, the heating temperature in the main firing step is preferably 600 to 750 ° C. When the main baking is performed in this temperature range, the total pore volume is further increased, and a larger discharge capacity can be obtained.

また、本発明のα型結晶構造のLiVOPOを主成分とする活物質粒子の製造方法においては、本焼成工程前に、水熱合成により得られたα型結晶構造のLiVOPOの前駆体を300〜500℃に1〜48時間加熱する仮焼工程を備えることが好ましい。これによっても、全細孔容積がより一層増加することとなり、より大きな放電容量を得ることができる。 In the method for producing active material particles mainly composed of LiVOPO 4 having an α-type crystal structure according to the present invention, a precursor of LiVOPO 4 having an α-type crystal structure obtained by hydrothermal synthesis is added before the main firing step. It is preferable to provide a calcination step of heating at 300 to 500 ° C. for 1 to 48 hours. This also further increases the total pore volume, and a larger discharge capacity can be obtained.

本発明によれば、α型結晶構造のLiVOPOを主成分としかつ放電容量の大きな活物質粒子、当該活物質粒子を含む電極、当該電極を備えたリチウム二次電池、及びその製造方法を提供することができる。 According to the present invention, there are provided active material particles mainly composed of LiVOPO 4 having an α-type crystal structure and a large discharge capacity, an electrode including the active material particles, a lithium secondary battery including the electrode, and a method for manufacturing the same. can do.

図1は、本実施形態に係る活物質粒子の模式図である。FIG. 1 is a schematic view of active material particles according to the present embodiment. 図2は、本焼成工程における加熱温度が600℃である、本実施例5の活物質粒子の表面における電子顕微鏡写真である。FIG. 2 is an electron micrograph of the surface of the active material particles of Example 5 in which the heating temperature in the main baking step is 600 ° C. 図3は、本焼成工程における加熱温度が750℃である、本実施例7の活物質粒子の表面における電子顕微鏡写真である。FIG. 3 is an electron micrograph of the surface of the active material particles of Example 7 in which the heating temperature in the main baking step is 750 ° C. 図4は、本実施形態に係るリチウムイオン二次電池の模式断面図である。FIG. 4 is a schematic cross-sectional view of the lithium ion secondary battery according to this embodiment.

以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、各図面の寸法比率は、必ずしも実際の寸法比率とは一致していない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the dimension ratio of each drawing does not necessarily correspond with an actual dimension ratio.

<活物質粒子>
本実施形態に係る活物質粒子について説明する。図1は、本実施形態に係る活物質粒子1の模式図である。本実施形態の活物質粒子1は、α型結晶構造のLiVOPOを主成分とする粒子であり、多数の表面から内部かけて延びる細孔2を有する多孔質構造である。活物質粒子1の全細孔容積は0.55cm/g以上であり、好ましくは0.6cm/g以上であり、より好ましくは0.8cm/g以上である。活物質粒子1の全細孔容積の上限値は特に制限されないが、通常3cm/g程度である。また、活物質粒子1の比表面積は、1.0m/g以上であることが好ましく、1.2m/g以上であることがより好ましい。また、活物質粒子1の一次粒子の平均粒径は0.05〜1μmであることが好ましく、好ましくは0.1〜0.5μmである。細孔容積は水銀ポロシメーターにより測定することができ、比表面積は、窒素ガス吸着により測定することができ、平均粒径はレーザー回折・散乱法により測定することができる。
<Active material particles>
The active material particles according to this embodiment will be described. FIG. 1 is a schematic view of an active material particle 1 according to the present embodiment. The active material particle 1 of the present embodiment is a particle mainly composed of LiVOPO 4 having an α-type crystal structure, and has a porous structure having pores 2 extending from a large number of surfaces to the inside. Total pore volume of the active material particles 1 is 0.55 cm 3 / g or more, preferably 0.6 cm 3 / g or more, more preferably 0.8 cm 3 / g or more. The upper limit value of the total pore volume of the active material particles 1 is not particularly limited, but is usually about 3 cm 3 / g. Moreover, the specific surface area of the active material particles 1 is preferably 1.0 m 2 / g or more, and more preferably 1.2 m 2 / g or more. The average particle size of the primary particles of the active material particles 1 is preferably 0.05 to 1 μm, and preferably 0.1 to 0.5 μm. The pore volume can be measured by a mercury porosimeter, the specific surface area can be measured by nitrogen gas adsorption, and the average particle diameter can be measured by a laser diffraction / scattering method.

「α型結晶構造のLiVOPOを主成分とする」とは、粒子中におけるα型結晶構造のLiVOPOの量が、質量基準で90%以上、好ましくは92%以上のことである。α型結晶構造のLiVOPO以外の成分としては、主として、β型結晶構造のLiVOPOが挙げられるが、LiVOPO以外にも未反応の原料成分等を微量含んでもよい。ここで、粒子中におけるα型結晶構造のLiVOPOやβ型結晶構造のLiVOPO等の量は、例えば、X線回折法により測定することができる。通常、α型結晶構造のLiVOPOは2θ=27.2度にピークが現れ、β型結晶構造のLiVOPOは2θ=27.0度にピークが現れる。なお、β型結晶構造のLiVOPOは、α型結晶構造のLiVOPOに対して10質量%以下であることが好ましい。 The phrase “having α-type crystal structure LiVOPO 4 as a main component” means that the amount of α-type crystal structure LiVOPO 4 in the particles is 90% or more, preferably 92% or more on a mass basis. As a component other than LiVOPO 4 of α-type crystal structure, mainly, but LiVOPO 4 of β-type crystal structure and the like, the raw material components such as also unreacted than LiVOPO 4 may include trace amounts. Here, the amount of LiVOPO 4 having an α-type crystal structure or LiVOPO 4 having a β-type crystal structure in the particles can be measured by, for example, an X-ray diffraction method. Usually, LiVOPO 4 of α-type crystal structure peaks appear in 2 [Theta] = 27.2 degrees, LiVOPO 4 of β-type crystal structure peaks appear in 2 [Theta] = 27.0 degrees. Incidentally, LiVOPO 4 of β-type crystal structure, it is preferred for LiVOPO 4 of α-type crystal structure is 10% by mass or less.

活物質粒子1の表面は、図示しないが、その少なくとも一部が炭素の膜により覆われていてもよい。炭素の膜は、例えば平均粒径が0.03〜0.1μmの炭素微粒子で構成されていてもよい。これにより活物質粒子1を電極または電池に用いる際に導電材として機能し、活物質粒子1同士の導電性が良好になる。また、必要に応じて活物質粒子1と混合される導電材(後述する)との電子伝導性も良好になる。また、活物質粒子1は、活物質粒子1よりも大きな炭素粒子に担持されていてもよい。   Although the surface of the active material particle 1 is not illustrated, at least a part of the surface may be covered with a carbon film. The carbon film may be composed of carbon fine particles having an average particle diameter of 0.03 to 0.1 μm, for example. Thereby, when using the active material particle 1 for an electrode or a battery, it functions as a conductive material, and the conductivity between the active material particles 1 is improved. In addition, the electronic conductivity with a conductive material (described later) mixed with the active material particles 1 is improved as necessary. The active material particles 1 may be supported on carbon particles larger than the active material particles 1.

<活物質粒子の製造方法>
続いて、活物質粒子1の製造方法について説明する。本実施形態に係る活物質粒子1の製造方法は、還元作用を有する有機化合物の存在下で水熱合成することにより、α型結晶構造のLiVOPOの前駆体を得る水熱合成工程と、水熱合成により得られたα型結晶構造のLiVOPOの前駆体を500〜750℃に加熱して多孔質構造かつα型結晶構造のLiVOPOを得る本焼成工程と、を備える。
<Method for producing active material particles>
Then, the manufacturing method of the active material particle 1 is demonstrated. The method for producing active material particles 1 according to the present embodiment includes a hydrothermal synthesis step of obtaining a precursor of LiVOPO 4 having an α-type crystal structure by hydrothermal synthesis in the presence of an organic compound having a reducing action, And a main firing step of heating the precursor of LiVOPO 4 having an α-type crystal structure obtained by thermal synthesis to 500 to 750 ° C. to obtain LiVOPO 4 having a porous structure and an α-type crystal structure.

[水熱合成工程]
(前駆体の原料)
α型結晶構造のLiVOPOの前駆体の原料は、少なくとも、リチウム源、リン酸源、及びバナジウム源を含む。
[Hydrothermal synthesis process]
(Raw material of precursor)
The raw material of the precursor of LiVOPO 4 having an α-type crystal structure includes at least a lithium source, a phosphate source, and a vanadium source.

リチウム源としては、例えば、LiNO、LiCO、LiOH、LiCl、LiSO及びCHCOOLi等のリチウム化合物が挙げられる。 Examples of the lithium source include lithium compounds such as LiNO 3 , Li 2 CO 3 , LiOH, LiCl, Li 2 SO 4, and CH 3 COOLi.

リン酸源としては、例えば、HPO、NHPO、(NHHPO及びLiPO等のPO含有化合物が挙げられる。 Examples of the phosphoric acid source include PO 4 -containing compounds such as H 3 PO 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4, and Li 3 PO 4 .

バナジウム源としては、V及びNHVO等のバナジウム化合物が挙げられる。 Examples of the vanadium source include vanadium compounds such as V 2 O 5 and NH 4 VO 3 .

そして、これらの3種の化合物と水とを混合し水溶液とすることにより、前駆体の原料とすることができる。   Then, by mixing these three kinds of compounds and water into an aqueous solution, it can be used as a precursor raw material.

α型結晶構造のLiVOPOの前駆体を水熱合成により得るためには、上記の原料に、さらに還元作用を有する有機化合物を混合する。具体的な還元作用を有する有機化合物としては、例えば、アスコルビン酸、クエン酸、マレイン酸、フマル酸、グルコース、ポリビニルピロリドン、グルコースを構成単位として含む多糖類やオリゴ糖類等が挙げられる。これらのうち、理由は明らかではないが、アスコルビン酸が特に好ましい。還元作用を有する有機化合物の含有量は、上記三種の化合物と水とを混合した水溶液の質量に対して、1〜8質量%混合させればよい。 In order to obtain a precursor of LiVOPO 4 having an α-type crystal structure by hydrothermal synthesis, an organic compound having a reducing action is further mixed with the above raw materials. Specific examples of the organic compound having a reducing action include ascorbic acid, citric acid, maleic acid, fumaric acid, glucose, polyvinyl pyrrolidone, polysaccharides and oligosaccharides containing glucose as a structural unit. Of these, ascorbic acid is particularly preferred, although the reason is not clear. What is necessary is just to mix 1-8 mass% of content of the organic compound which has a reducing effect with respect to the mass of the aqueous solution which mixed the said 3 types of compound and water.

上記混合物における還元作用を有する有機化合物の含有量は、還元作用を有する有機化合物のモル数C1と、例えばバナジウム化合物に含まれるバナジウム元素のモル数Mとの比C1/Mが、0.02≦C1/M≦2を満たすように調整することが好ましい。還元作用を有する有機化合物の含有量(モル数C1)が少な過ぎる場合、活物質粒子1同士及び活物質粒子1と後述する導電材との電子伝導性が低下する傾向がある。還元作用を有する有機化合物の含有量が多過ぎる場合、活物質粒子1及び後述する導電材により構成される電極活物質に占める活物質粒子1の重量が相対的に減少し、活物質の容量密度が減少する傾向がある。還元作用を有する有機化合物の含有量を上記の範囲内とすることにより、これらの傾向を抑制できる。   The content of the organic compound having a reducing action in the mixture is such that the ratio C1 / M between the number of moles C1 of the organic compound having a reducing action and the number of moles M of the vanadium element contained in the vanadium compound is 0.02 ≦ It is preferable to adjust so as to satisfy C1 / M ≦ 2. When there is too little content (molar number C1) of the organic compound which has a reducing effect, there exists a tendency for the electronic conductivity of the active material particles 1 and active material particles 1 and the electrically conductive material mentioned later to fall. When there is too much content of the organic compound which has a reducing action, the weight of the active material particle 1 which occupies for the active material particle 1 and the electrode active material comprised by the electrically conductive material mentioned later reduces relatively, and the capacity density of an active material Tend to decrease. By setting the content of the organic compound having a reducing action within the above range, these tendencies can be suppressed.

水熱合成直前の原料混合物のpHの値は特に限定されないが、還元作用を有する有機化合物としてアスコルビン酸を用いる場合、pHは7〜9であることが好ましい。水熱合成の原料となる混合物のpHは、リチウム源となる化合物、リン酸源となる化合物、及びバナジウム源となるバナジウム化合物の種類により調整することができるが、その他、アンモニア水や塩酸等を用いても調整することができる。   The pH value of the raw material mixture immediately before the hydrothermal synthesis is not particularly limited, but when ascorbic acid is used as the organic compound having a reducing action, the pH is preferably 7-9. The pH of the mixture used as the raw material for hydrothermal synthesis can be adjusted depending on the type of the lithium source compound, the phosphoric acid source compound, and the vanadium source vanadium compound. It can be adjusted even if it is used.

混合物におけるリチウム化合物、バナジウム化合物及びPO含有化合物の配合比は、組成式:LiVOPOで表される組成となるように、すなわち、Li原子:V原子:P原子:O原子=1:1:1:5(モル比)となるように調整すればよい。 The mixing ratio of the lithium compound, vanadium compound and PO 4 -containing compound in the mixture is such that the composition is represented by the composition formula: LiVOPO 4 , that is, Li atom: V atom: P atom: O atom = 1: 1: What is necessary is just to adjust so that it may become 1: 5 (molar ratio).

ところで、電極の活物質含有層においては、導電性を高めるべく、通常この活物質粒子の表面に炭素材料等の導電材を接触させることが多い。この方法として、活物質粒子の製造後に活物質粒子と導電材とを混合して活物質含有層を形成してもよいが、例えば、水熱合成の原料に添加した還元作用を有する有機化合物を後述の本焼成工程や仮焼工程で熱分解させて活物質粒子に炭素(膜や粒子)を付着させてもよいし、また、水熱合成の原料中に炭素材料である導電材を添加して活物質粒子に炭素を付着させることもできる。   By the way, in the active material-containing layer of the electrode, a conductive material such as a carbon material is usually brought into contact with the surface of the active material particles in order to increase conductivity. As this method, active material particles and a conductive material may be mixed after the production of active material particles to form an active material-containing layer. For example, an organic compound having a reducing action added to a raw material for hydrothermal synthesis may be used. Carbon (film or particles) may be attached to the active material particles by pyrolysis in the main firing step or calcining step described later, or a conductive material that is a carbon material is added to the raw material for hydrothermal synthesis. Thus, carbon can be attached to the active material particles.

水熱合成の原料中に炭素材料である導電材を添加する場合の導電材としては、例えば、活性炭、カーボンブラック、黒鉛、ソフトカーボン、ハードカーボン等が挙げられる。これらの中でも水熱合成時に炭素粒子を上記原料となる混合物(水溶液)内に容易に分散させることができる、活性炭又はカーボンブラックを用いることが好ましい。特に、カーボンブラックとしてアセチレンブラックを用いることにより、これらの効果をより得やすくなる。ただし、導電材は必ずしも水熱合成時に原料となる混合物に全量混合されている必要はなく、少なくとも一部が水熱合成時に原料となる混合物に混合されることが好ましい。これにより、活物質含有層を形成する際のバインダーを低減して容量密度を増加させることができる場合がある。   Examples of the conductive material in the case where a conductive material that is a carbon material is added to the raw material for hydrothermal synthesis include activated carbon, carbon black, graphite, soft carbon, and hard carbon. Among these, it is preferable to use activated carbon or carbon black that can easily disperse carbon particles in the mixture (aqueous solution) as the raw material during hydrothermal synthesis. In particular, the use of acetylene black as carbon black makes it easier to obtain these effects. However, the conductive material does not necessarily have to be mixed in the mixture as a raw material at the time of hydrothermal synthesis, and it is preferable that at least a part of the conductive material is mixed into the mixture as a raw material at the time of hydrothermal synthesis. Thereby, the binder at the time of forming an active material content layer can be reduced, and a capacity density can be increased.

水熱合成の原料となる混合物における炭素粒子等の導電材の含有量は、炭素粒子を構成する炭素原子のモル数C2と、例えばバナジウム化合物に含まれるバナジウム原子のモル数Mとの比C2/Mが、0.02≦C2/M≦2を満たすように調製することが好ましい。炭素原子の含有量(モル数C2)が少な過ぎる場合、電極活物質の電子伝導性及び容量密度が低下する傾向がある。導電材の含有量が多過ぎる場合、電極活物質に占める活物質粒子の重量が相対的に減少し、電極活物質の容量密度が減少する傾向がある。導電材の含有量を上記の範囲内とすることにより、これらの傾向を抑制できる。   The content of the conductive material such as carbon particles in the mixture serving as the raw material for hydrothermal synthesis is the ratio C2 / C2 of the number of moles C2 of carbon atoms constituting the carbon particles and the number of moles M of vanadium atoms contained in the vanadium compound, for example. It is preferable to prepare such that M satisfies 0.02 ≦ C2 / M ≦ 2. When the content of carbon atoms (number of moles C2) is too small, the electron conductivity and capacity density of the electrode active material tend to decrease. When there is too much content of a electrically conductive material, there exists a tendency for the weight of the active material particle which occupies for an electrode active material to reduce relatively, and the capacity density of an electrode active material to reduce. By setting the content of the conductive material within the above range, these tendencies can be suppressed.

(水熱合成)
水熱合成工程では、まず、内部を加熱、加圧する機能を有する反応容器(例えば、オートクレーブ等)内に、上述した前駆体の原料(例えば、リチウム化合物、バナジウム化合物、PO含有化合物、還元作用を有する有機化合物、導電材、及び水)を投入して、これらが分散した水溶液(以下「原料混合物」という。)を調製する。なお、原料混合物を調製する際は、例えば、最初に、バナジウム化合物、PO含有化合物、及び水を混合したものを還流した後、これにリチウム化合物、還元作用を有する有機化合物及び導電材を加えてもよい。この還流により、バナジウム化合物及びPO含有化合物の複合体を形成することができる。
(Hydrothermal synthesis)
In the hydrothermal synthesis process, first, the precursor raw materials (for example, lithium compound, vanadium compound, PO 4 -containing compound, reducing action) in a reaction vessel (for example, an autoclave) having a function of heating and pressurizing the inside. And an aqueous solution (hereinafter referred to as “raw material mixture”) in which these are dispersed is prepared. In preparing the raw material mixture, for example, first, a mixture of a vanadium compound, a PO 4 -containing compound, and water is refluxed, and then a lithium compound, an organic compound having a reducing action, and a conductive material are added thereto. May be. By this reflux, a complex of the vanadium compound and the PO 4 -containing compound can be formed.

次に、反応容器を密閉して、原料混合物を加圧及び加熱しながら、例えば還流することにより、混合物の水熱反応を進行させる。これにより、α型結晶構造のLiVOPOの前駆体を含む物質が水熱合成される。 Next, the reaction vessel is sealed, and the hydrothermal reaction of the mixture is allowed to proceed by, for example, refluxing while the raw material mixture is pressurized and heated. Thereby, the substance containing the precursor of LiVOPO 4 having an α-type crystal structure is hydrothermally synthesized.

水熱合成により得られたα型結晶構造のLiVOPOの前駆体を含む物質は、通常、タール状の物質である。この物質に含まれるα型結晶構造のLiVOPOの前駆体は、水和物の状態であると考えられる。 A substance containing a precursor of LiVOPO 4 having an α-type crystal structure obtained by hydrothermal synthesis is usually a tar-like substance. The precursor of LiVOPO 4 having an α-type crystal structure contained in this substance is considered to be in a hydrate state.

水熱合成工程において、原料混合物に加える圧力は、0.2〜1.0MPaとすることが好ましい。混合物に加える圧力が低過ぎると、最終的に得られるα型結晶構造のLiVOPOを主成分とする活物質粒子の結晶性が低下し、活物質の容量密度が減少する傾向がある。混合物に加える圧力が高過ぎると、反応容器に高い耐圧性が求められ、活物質の製造コストが増大する傾向がある。原料混合物に加える圧力を上記の範囲内とすることによって、これらの傾向を抑制できる。 In the hydrothermal synthesis step, the pressure applied to the raw material mixture is preferably 0.2 to 1.0 MPa. When the pressure applied to the mixture is too low, the crystallinity of the active material particles mainly composed of LiVOPO 4 having the α-type crystal structure finally obtained tends to be lowered, and the capacity density of the active material tends to be reduced. If the pressure applied to the mixture is too high, the reaction vessel is required to have high pressure resistance, and the production cost of the active material tends to increase. By setting the pressure applied to the raw material mixture within the above range, these tendencies can be suppressed.

水熱合成工程における原料混合物の温度は、120〜180℃とすることが好ましい。混合物の温度が低過ぎると、最終的に得られるα型結晶構造のLiVOPOを主成分とする活物質粒子の結晶性が低下し、活物質の容量密度が減少する傾向がある。混合物の温度が高過ぎると、反応容器に高い耐熱性が求められ、活物質の製造コストが増大する傾向がある。混合物の温度を上記の範囲内とすることによって、これらの傾向を抑制できる。 The temperature of the raw material mixture in the hydrothermal synthesis step is preferably 120 to 180 ° C. If the temperature of the mixture is too low, the crystallinity of the active material particles mainly composed of LiVOPO 4 having an α-type crystal structure finally obtained tends to decrease, and the capacity density of the active material tends to decrease. When the temperature of the mixture is too high, the reaction vessel is required to have high heat resistance, and the production cost of the active material tends to increase. By setting the temperature of the mixture within the above range, these tendencies can be suppressed.

[本焼成工程]
続いて、得られた前駆体を500〜750℃に加熱する本焼成工程を行う。これにより、結晶化及び多孔質化が起こり上述の活物質粒子1が得られる。この工程では、水熱合成後の混合物中に残留した還元作用を有する有機化合物や不純物等が除去される現象が起こると共に、α型結晶構造のLiVOPOの前駆体が脱水されて結晶化及び多孔質化が起こるものと考えられる。
[Main firing process]
Then, the main baking process which heats the obtained precursor to 500-750 degreeC is performed. Thereby, crystallization and porosification occur and the above-mentioned active material particles 1 are obtained. In this process, a phenomenon occurs in which organic compounds and impurities having a reducing action remaining in the mixture after hydrothermal synthesis are removed, and the precursor of LiVOPO 4 having an α-type crystal structure is dehydrated to be crystallized and porous. It is thought that qualification will occur.

ここで、本焼成工程では、上述の前駆体を500〜750℃に0.5〜12時間加熱することが好ましい。加熱時間が短すぎると、最終的に得られるα型結晶構造のLiVOPOを主成分とする活物質粒子の結晶性が低下し、活物質の容量密度が減少する傾向がある。一方、加熱時間が長すぎると、活物質粒子の粒成長が進み粒径が増大する結果、電極活物質におけるリチウムの拡散が遅くなり、電極活物質の容量密度が減少する傾向がある。加熱時間を上記の範囲内とすることによって、これらの傾向を抑制できる。 Here, in this baking process, it is preferable to heat the above-mentioned precursor to 500-750 degreeC for 0.5 to 12 hours. When the heating time is too short, the crystallinity of the active material particles mainly composed of LiVOPO 4 having an α-type crystal structure as a main component is lowered, and the capacity density of the active material tends to be reduced. On the other hand, if the heating time is too long, the particle growth of the active material particles proceeds and the particle size increases, so that the diffusion of lithium in the electrode active material becomes slow and the capacity density of the electrode active material tends to decrease. By setting the heating time within the above range, these tendencies can be suppressed.

また、加熱温度が600〜750℃であることがより好ましい。この温度範囲では、理由は不明であるが、全細孔容積が特に増加することとなり、より大きな放電容量を得ることができる。   Moreover, it is more preferable that heating temperature is 600-750 degreeC. In this temperature range, the reason is unknown, but the total pore volume is particularly increased, and a larger discharge capacity can be obtained.

本焼成工程の雰囲気は特に限定されないが、還元作用を有する有機化合物由来の炭素及び炭素粒子等の導電材が酸化されないようにするためには、アルゴンガス等の不活性雰囲気中で行うことが好ましい。   The atmosphere of the main baking step is not particularly limited, but is preferably performed in an inert atmosphere such as argon gas in order to prevent conductive materials such as carbon and carbon particles derived from organic compounds having a reducing action from being oxidized. .

また、本焼成工程前に、上述した水熱合成により得られた前駆体を含む物質を300〜500℃で1〜48時間加熱する仮焼工程を備えることが好ましい。仮焼工程を行うことにより、活物質粒子の全細孔容積がより一層増加することとなり、より大きな放電容量を得ることができる。この理由は不明であるが、例えば、仮焼工程によって、前駆体の内部から水熱合成工程において添加した還元作用を有する有機化合物等の不純物が十分除去され、本焼成工程での結晶化や多孔質化がより効率よく行なわれることが考えられる。なお、仮焼工程の焼成雰囲気は特に限定されない。   Moreover, it is preferable to provide the calcination process which heats the substance containing the precursor obtained by the hydrothermal synthesis mentioned above at 300-500 degreeC for 1 to 48 hours before this baking process. By performing the calcination step, the total pore volume of the active material particles is further increased, and a larger discharge capacity can be obtained. Although the reason for this is unknown, for example, the calcination step sufficiently removes impurities such as organic compounds having a reducing action added from the inside of the precursor in the hydrothermal synthesis step, and the crystallization and porosity in the main firing step. It is conceivable that the quality improvement is performed more efficiently. Note that the firing atmosphere in the calcination step is not particularly limited.

<リチウムイオン二次電池>
続いて、本実施形態に係る電極、及びリチウムイオン二次電池について図4を参照して簡単に説明する。
<Lithium ion secondary battery>
Next, the electrode and the lithium ion secondary battery according to this embodiment will be briefly described with reference to FIG.

リチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60,62を備えている。   The lithium ion secondary battery 100 mainly includes a laminate 30, a case 50 that accommodates the laminate 30 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 30.

積層体30は、一対の電極10、20がセパレータ18を挟んで対向配置されたものである。正極10は、正極集電体12上に正極活物質層14が設けられた物である。負極20は、負極集電体22上に負極活物質層24が設けられた物である。正極活物質層14及び負極活物質層24がセパレータ18の両側にそれぞれ接触している。正極集電体12及び負極集電体22の端部には、それぞれリード60,62が接続されており、リード60,62の端部はケース50の外部にまで延びている。   The laminated body 30 is configured such that a pair of electrodes 10 and 20 are arranged to face each other with the separator 18 interposed therebetween. The positive electrode 10 is a product in which a positive electrode active material layer 14 is provided on a positive electrode current collector 12. The negative electrode 20 is a product in which a negative electrode active material layer 24 is provided on a negative electrode current collector 22. The positive electrode active material layer 14 and the negative electrode active material layer 24 are in contact with both sides of the separator 18. Leads 60 and 62 are connected to the end portions of the positive electrode current collector 12 and the negative electrode current collector 22, respectively, and the end portions of the leads 60 and 62 extend to the outside of the case 50.

正極10の正極集電体12としては、例えば、アルミニウム箔等を使用できる。正極活物質層14は、上述の活物質粒子1、バインダー、及び、必要に応じて添加される導電材を含む層である。必要に応じて添加される導電材としては、例えば、カーボンブラック類、炭素材料、ITO等の導電性酸化物が挙げられる。   As the positive electrode current collector 12 of the positive electrode 10, for example, an aluminum foil or the like can be used. The positive electrode active material layer 14 is a layer containing the above-described active material particles 1, a binder, and a conductive material added as necessary. Examples of the conductive material added as necessary include carbon blacks, carbon materials, and conductive oxides such as ITO.

バインダーは、上記の活物質粒子と導電材とを集電体に結着することができれば特に限定されず、公知の結着剤を使用できる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ化ビニリデン―ヘキサフルオロプロピレン共重合体等のフッ素樹脂が挙げられる。   The binder is not particularly limited as long as it can bind the active material particles and the conductive material to the current collector, and a known binder can be used. Examples thereof include fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and vinylidene fluoride-hexafluoropropylene copolymer.

このような正極は、公知の方法、例えば、前述の活物質粒子1を含む電極活物質、又は活物質粒子1、バインダー、及び導電材を、それらの種類に応じた溶媒、例えばPVDFの場合はN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等の溶媒に添加したスラリーを、正極集電体12の表面に塗布し、乾燥させることにより製造できる。   Such a positive electrode is a known method, for example, an electrode active material including the active material particles 1 described above, or an active material particle 1, a binder, and a conductive material, and a solvent according to their type, for example, PVDF. The slurry can be produced by applying a slurry added to a solvent such as N-methyl-2-pyrrolidone or N, N-dimethylformamide on the surface of the positive electrode current collector 12 and drying it.

負極集電体22としては、銅箔等を使用できる。また、負極活物質層24としては、負極活物質、導電材、及び、バインダーを含むものを使用できる。導電材としては特に限定されず、公知の導電材を使用できる。例えば、カーボンブラック類、炭素材料、銅、ニッケル、ステンレス、鉄等の金属粉、炭素材料及び金属粉の混合物、ITOのような導電性酸化物が挙げられる。負極に用いられるバインダーとしては、公知の結着剤を特に制限なく使用することができ、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂が挙げられる。この結着剤は、活物質粒子や必要に応じて添加される導電材等の構成材料同士を結着するのみならず、それらの構成材料と集電体との結着にも寄与している。更に、上記の他に、結着剤としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、芳香族ポリアミド、セルロース、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等を用いてもよい。また、スチレン・ブタジエン・スチレンブロック共重合体、その水素添加物、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体、その水素添加物等の熱可塑性エラストマー状高分子を用いてもよい。更に、シンジオタクチック1、2−ポリブタジエン、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン(炭素数2〜12)共重合体等を用いてもよい。また、導電性高分子を用いてもよい。   As the negative electrode current collector 22, a copper foil or the like can be used. Moreover, as the negative electrode active material layer 24, the thing containing a negative electrode active material, a electrically conductive material, and a binder can be used. It does not specifically limit as a electrically conductive material, A well-known electrically conductive material can be used. Examples thereof include carbon blacks, carbon materials, metal powders such as copper, nickel, stainless steel, and iron, mixtures of carbon materials and metal powders, and conductive oxides such as ITO. As the binder used for the negative electrode, known binders can be used without any particular limitation. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer ( Fluorine resins such as ECTFE and polyvinyl fluoride (PVF). This binder not only binds constituent materials such as active material particles and conductive materials added as necessary, but also contributes to binding between the constituent materials and the current collector. . In addition to the above, as the binder, for example, polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, cellulose, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene / propylene rubber, and the like may be used. Also, thermoplastic elastomeric polymers such as styrene / butadiene / styrene block copolymers, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers, and hydrogenated products thereof. May be used. Further, syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, propylene / α-olefin (carbon number 2 to 12) copolymer and the like may be used. Further, a conductive polymer may be used.

負極活物質としては、例えば、リチウムイオンを吸蔵・放出(インターカレート・デインターカレート、或いはドーピング・脱ドーピング)可能な黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属、SiO2、SnO2等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi512)等を含む粒子が挙げられる。 Examples of the negative electrode active material include graphite, non-graphitizable carbon, graphitizable carbon, and low-temperature calcined carbon that can occlude / release (intercalate / deintercalate or dope / dedope) lithium ions. Carbon materials, metals that can be combined with lithium such as Al, Si and Sn, amorphous compounds mainly composed of oxides such as SiO 2 and SnO 2 , lithium titanate (Li 4 Ti 5 O 12 ), etc. The particle | grains containing are mentioned.

負極20の製造方法は、正極10の製造方法と同様にスラリーを調整して集電体に塗布すればよい。   The manufacturing method of the negative electrode 20 should just adjust slurry and apply | coat to a collector like the manufacturing method of the positive electrode 10. FIG.

電解質溶液は、正極活物質層14、負極活物質層24、及び、セパレータ18の内部に含有させるものである。電解質溶液としては、特に限定されず、例えば、本実施形態では、リチウム塩を含む電解質溶液(電解質水溶液、有機溶媒を使用する電解質溶液)を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いことにより、充電時の耐用電圧が低く制限されるので、有機溶媒を使用する電解質溶液(非水電解質溶液)であることが好ましい。電解質溶液としては、リチウム塩を非水溶媒(有機溶媒)に溶解したものが好適に使用される。リチウム塩としては、例えば、LiPF6、LiClO4、LiBF4、LiAsF6、LiCF3SO3、LiCF3、CF2SO3、LiC(CF3SO23、LiN(CF3SO22、LiN(CF3CF2SO22、LiN(CF3SO2)(C49SO2)、LiN(CF3CF2CO)2、LiBOB等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。 The electrolyte solution is contained in the positive electrode active material layer 14, the negative electrode active material layer 24, and the separator 18. The electrolyte solution is not particularly limited. For example, in the present embodiment, an electrolyte solution containing a lithium salt (electrolyte aqueous solution, electrolyte solution using an organic solvent) can be used. However, the electrolyte aqueous solution is preferably an electrolyte solution (non-aqueous electrolyte solution) using an organic solvent because the electrochemical decomposition voltage is low, and the withstand voltage during charging is limited to a low level. As the electrolyte solution, a lithium salt dissolved in a non-aqueous solvent (organic solvent) is preferably used. Examples of the lithium salt include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 , CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , A salt such as LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB or the like can be used. In addition, these salts may be used individually by 1 type, and may use 2 or more types together.

また、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、及び、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。   Moreover, as an organic solvent, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate etc. are mentioned preferably, for example. These may be used alone or in combination of two or more at any ratio.

なお、本実施形態において、電解質溶液は液状以外にゲル化剤を添加することにより得られるゲル状電解質であってもよい。また、電解質溶液に代えて、固体電解質(固体高分子電解質又はイオン伝導性無機材料からなる電解質)が含有されていてもよい。   In the present embodiment, the electrolyte solution may be a gel electrolyte obtained by adding a gelling agent in addition to liquid. Further, instead of the electrolyte solution, a solid electrolyte (a solid polymer electrolyte or an electrolyte made of an ion conductive inorganic material) may be contained.

また、セパレータ18も、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。   The separator 18 may also be formed of an electrically insulating porous structure, for example, a single layer of a film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or cellulose. And a fiber nonwoven fabric made of at least one constituent material selected from the group consisting of polyester and polypropylene.

ケース50は、その内部に積層体30及び電解液を密封するものである。ケース50は、電解液の外部への漏出や、外部からのリチウムイオン二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されない。例えば、ケース50として、図4に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、合成樹脂膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子例えばポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン、ポリプロピレン等が好ましい。   The case 50 seals the laminated body 30 and the electrolytic solution therein. The case 50 is not particularly limited as long as it can suppress leakage of the electrolytic solution to the outside and entry of moisture and the like into the lithium ion secondary battery 100 from the outside. For example, as the case 50, as shown in FIG. 4, a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used. For example, an aluminum foil can be used as the metal foil 52, and a film such as polypropylene can be used as the synthetic resin film 54. For example, the material of the outer polymer film 54 is preferably a polymer having a high melting point such as polyethylene terephthalate (PET) or polyamide, and the material of the inner polymer film 54 is preferably polyethylene or polypropylene.

リード60,62は、アルミ等の導電材料から形成されている。   The leads 60 and 62 are made of a conductive material such as aluminum.

以上、活物質粒子、当該活物質粒子を含む電極、当該電極を備える電池及び活物質粒子の製造方法の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。   The preferred embodiments of the active material particles, the electrode including the active material particles, the battery including the electrode, and the method for producing the active material particles have been described above in detail, but the invention is limited to the above embodiment. is not.

例えば、活物質粒子は、リチウムイオン二次電池以外の電気化学素子の電極材料としても用いることができる。このような、電気化学素子としては、金属リチウム二次電池(カソードに本発明の複合粒子を含む電極を用い、アノードに金属リチウムを用いたもの)等のリチウムイオン二次電池以外の二次電池や、リチウムキャパシタ等の電気化学キャパシタ等が挙げられる。これらの電気化学素子は、自走式のマイクロマシン、ICカードなどの電源や、プリント基板上又はプリント基板内に配置される分散電源の用途に使用することが可能である。   For example, the active material particles can also be used as an electrode material for electrochemical elements other than lithium ion secondary batteries. As such an electrochemical element, a secondary battery other than a lithium ion secondary battery, such as a metallic lithium secondary battery (which uses an electrode containing the composite particles of the present invention as a cathode and metallic lithium as an anode). And electrochemical capacitors such as lithium capacitors. These electrochemical elements can be used for power sources such as self-propelled micromachines and IC cards, and distributed power sources arranged on or in a printed circuit board.

次に、具体的な実施例を示し、本発明をさらに詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。   Next, specific examples are shown to describe the present invention in more detail. In addition, this invention is not limited to a following example.

(実施例1)
<水熱合成工程>
1.5Lオートクレーブ容器に、23.1gのHPOを500gの水に溶解して調製したHPO水溶液を仕込み、次に容器内へ18.4gのVを徐々に加えた。Vを全て加えた後、容器を密閉して95℃/200rpmで16時間還流した。還流後、容器の内容物が室温に下がってから一旦容器を開放し、容器内へ8.5gのLiOH・HOと7.1gのアスコルビン酸(C)を添加した後、更に1.0gのカーボンブラックを加えた。この時、容器の内容物のpHは7であった。次に、再び容器を密閉し、容器内の圧力を0.5MPaにし、内容物を160℃/300rpmで還流しながら8時間保持した。これにより、タール状の混合物を得た。得られたタール状の混合物のpHを測定したところ、pHは4であった。
Example 1
<Hydrothermal synthesis process>
An H 3 PO 4 aqueous solution prepared by dissolving 23.1 g of H 3 PO 4 in 500 g of water is charged into a 1.5 L autoclave container, and then 18.4 g of V 2 O 5 is gradually added into the container. It was. After all the V 2 O 5 was added, the vessel was sealed and refluxed at 95 ° C./200 rpm for 16 hours. After the reflux, after the contents of the container had cooled to room temperature, the container was once opened, and 8.5 g of LiOH.H 2 O and 7.1 g of ascorbic acid (C 6 H 8 O 6 ) were added to the container. Further, 1.0 g of carbon black was added. At this time, the pH of the contents of the container was 7. Next, the container was sealed again, the pressure in the container was 0.5 MPa, and the contents were held for 8 hours while refluxing at 160 ° C./300 rpm. Thereby, a tar-like mixture was obtained. When the pH of the obtained tar-like mixture was measured, the pH was 4.

次に、水熱合成工程で得られたタール状の混合物に約300mlの水を加えた。得られた混合物を、オーブンを用いて90℃で約23時間熱処理した後、粉砕することにより、灰色の粉体を得た。   Next, about 300 ml of water was added to the tar-like mixture obtained in the hydrothermal synthesis step. The obtained mixture was heat-treated at 90 ° C. for about 23 hours using an oven and then pulverized to obtain a gray powder.

(仮焼工程)
得られた粉体をアルミナ坩堝に入れ、空気雰囲気中において、温度を45分かけて室温から450℃まで昇温させ、その後3時間450℃に保持して熱処理した後、10分程度で室温まで急冷させた。この仮焼工程により、茶褐色の粉体(実施例1の活物質粒子)を得た。そして、得られた茶褐色粉体をふるい(30μmメッシュ)で分級した。得られた茶褐色の粉末は、X線回折測定の結果、α型結晶構造のLiVOPOを主に含んでいた。X線回折測定により測定されたα型結晶構造のLiVOPOのピーク強度(2θ=27.2°)と、β型結晶構造のLiVOPOとのピーク強度(2θ=27.0°)との比は、12:1であった。
(Calcination process)
The obtained powder is put in an alumina crucible, and the temperature is raised from room temperature to 450 ° C. over 45 minutes in an air atmosphere. After that, heat treatment is performed by holding at 450 ° C. for 3 hours, and then the temperature is reached in about 10 minutes. It was cooled rapidly. By this calcination step, a brown powder (active material particles of Example 1) was obtained. The resulting brown powder was classified with a sieve (30 μm mesh). As a result of X-ray diffraction measurement, the obtained brownish-brown powder mainly contained LiVOPO 4 having an α-type crystal structure. Ratio of peak intensity (2θ = 27.2 °) of LiVOPO 4 having an α-type crystal structure and peak intensity (2θ = 27.0 °) of LiVOPO 4 having a β-type crystal structure, measured by X-ray diffraction measurement Was 12: 1.

(本焼成工程)
得られた粉体をアルゴン雰囲気下、500℃に4時間保持し熱処理することにより、表面及び内部に多数の細孔を有する活物質粒子を得た。得られた活物質粒子の全細孔容積及び、比表面積を表1に示す。
(Main firing process)
The obtained powder was heated at 500 ° C. for 4 hours under an argon atmosphere to obtain active material particles having a large number of pores on the surface and inside. Table 1 shows the total pore volume and specific surface area of the obtained active material particles.

<評価用セルの作製>
実施例1の活物質粒子と、バインダーであるポリフッ化ビニリデン(PVDF)とアセチレンブラックを混合したものを、溶媒であるN−メチル−2−ピロリドン(NMP)中に分散させてスラリーを調製した。なお、スラリーにおいて活物質粒子とアセチレンブラックとPVDFとの重量比が84:8:8となるように、スラリーを調製した。このスラリーを集電体であるアルミニウム箔上に塗布し、乾燥させた後、圧延を行い、実施例1の活物質粒子を含む活物質含有層が形成された電極(正極)を得た。
<Production of evaluation cell>
A mixture of the active material particles of Example 1, polyvinylidene fluoride (PVDF) as a binder, and acetylene black was dispersed in N-methyl-2-pyrrolidone (NMP) as a solvent to prepare a slurry. The slurry was prepared so that the weight ratio of the active material particles, acetylene black, and PVDF was 84: 8: 8 in the slurry. This slurry was applied onto an aluminum foil as a current collector, dried, and then rolled to obtain an electrode (positive electrode) on which an active material-containing layer containing active material particles of Example 1 was formed.

次に、得られた電極と、その対極であるLi箔とを、それらの間にポリエチレン微多孔膜からなるセパレータを挟んで積層し、積層体(素体)を得た。この積層体を、アルミラミネーターパックに入れ、このアルミラミネートパックに、電解液として1MのLiPF溶液を注入した後、真空シールし、実施例1の評価用セルを作製した。評価用セルの0.1Cにおける充放電容量を表1に示した。 Next, the obtained electrode and the Li foil as the counter electrode were laminated with a separator made of a polyethylene microporous film interposed therebetween to obtain a laminate (element body). This laminate was put in an aluminum laminator pack, and 1M LiPF 6 solution was injected as an electrolyte into the aluminum laminate pack, followed by vacuum sealing to produce an evaluation cell of Example 1. The charge / discharge capacity at 0.1 C of the evaluation cell is shown in Table 1.

(実施例2)
本焼成工程において、550℃で熱処理した以外は実施例1と同様にして、実施例2の活物質粒子を得た。また、実施例1と同様にして、実施例2の活物質粒子を含む活物質含有層が形成された電極(正極)及び、評価用セルを作製した。
(Example 2)
Active material particles of Example 2 were obtained in the same manner as in Example 1 except that heat treatment was performed at 550 ° C. in the main firing step. Further, in the same manner as in Example 1, an electrode (positive electrode) on which an active material-containing layer containing active material particles of Example 2 was formed and an evaluation cell were produced.

(実施例3)
仮焼工程を行わず、本焼成工程において600℃で熱処理した以外は実施例1と同様にして、実施例3の活物質粒子を得た。また、実施例1と同様にして、実施例3の活物質粒子を含む活物質含有層が形成された電極(正極)及び、評価用セルを作製した。
Example 3
Active material particles of Example 3 were obtained in the same manner as in Example 1 except that the calcination step was not performed and heat treatment was performed at 600 ° C. in the main baking step. Further, in the same manner as in Example 1, an electrode (positive electrode) on which an active material-containing layer containing active material particles of Example 3 was formed and an evaluation cell were produced.

(実施例4)
仮焼工程において300℃で熱処理を行い、本焼成工程において600℃で熱処理を行った以外は実施例1と同様にして、実施例4の活物質粒子を得た。また、実施例1と同様にして、実施例4の活物質粒子を含む活物質含有層が形成された電極(正極)及び、評価用セルを作製した。
Example 4
Active material particles of Example 4 were obtained in the same manner as in Example 1 except that heat treatment was performed at 300 ° C. in the calcination step and heat treatment was performed at 600 ° C. in the main firing step. Further, in the same manner as in Example 1, an electrode (positive electrode) on which an active material-containing layer containing active material particles of Example 4 was formed and an evaluation cell were produced.

(実施例5)
仮焼工程において450℃で熱処理を行い、本焼成工程において600℃で熱処理を行った以外は実施例1と同様にして、実施例5の活物質粒子を得た。また、実施例1と同様にして、実施例5の活物質粒子を含む活物質含有層が形成された電極(正極)及び、評価用セルを作製した。
(Example 5)
Active material particles of Example 5 were obtained in the same manner as in Example 1 except that heat treatment was performed at 450 ° C. in the calcination step and heat treatment was performed at 600 ° C. in the main firing step. Further, in the same manner as in Example 1, an electrode (positive electrode) on which an active material-containing layer containing active material particles of Example 5 was formed and an evaluation cell were produced.

(実施例6)
仮焼工程において500℃で熱処理を行い、本焼成工程において600℃で熱処理を行った以外は実施例1と同様にして、実施例6の活物質粒子を得た。また、実施例1と同様にして、実施例6の活物質粒子を含む活物質含有層が形成された電極(正極)及び、評価用セルを作製した。
(Example 6)
Active material particles of Example 6 were obtained in the same manner as in Example 1 except that heat treatment was performed at 500 ° C. in the calcination step and heat treatment was performed at 600 ° C. in the main firing step. Further, in the same manner as in Example 1, an electrode (positive electrode) on which an active material-containing layer containing active material particles of Example 6 was formed and an evaluation cell were produced.

(実施例7)
仮焼工程において450℃で熱処理を行い、本焼成において、750℃で熱処理を行った以外は実施例1と同様にして、実施例7の活物質粒子を得た。また、実施例1と同様にして、実施例7の活物質粒子を含む活物質含有層が形成された電極(正極)及び、評価用セルを作製した。
(Example 7)
Active material particles of Example 7 were obtained in the same manner as in Example 1 except that heat treatment was performed at 450 ° C. in the calcination step and heat treatment was performed at 750 ° C. in the main firing. Further, in the same manner as in Example 1, an electrode (positive electrode) on which an active material-containing layer containing active material particles of Example 7 was formed and an evaluation cell were produced.

(実施例8)
アンモニア水を添加することにより、水熱合成前の原料水溶液のpHを9とし、仮焼工程において450℃で熱処理を行い、本焼成工程において750℃で熱処理を行った以外は実施例1と同様にして、実施例8の活物質粒子を得た。また、実施例1と同様にして、実施例8の活物質粒子を含む活物質含有層が形成された電極(正極)及び、評価用セルを作製した。
(Example 8)
By adding ammonia water, the pH of the aqueous raw material solution before hydrothermal synthesis was set to 9, heat treatment was performed at 450 ° C. in the calcination step, and heat treatment was performed at 750 ° C. in the main firing step, which was the same as in Example 1. Thus, active material particles of Example 8 were obtained. Further, in the same manner as in Example 1, an electrode (positive electrode) on which an active material-containing layer containing active material particles of Example 8 was formed and an evaluation cell were produced.

(比較例1)
仮焼工程において450℃で熱処理を行い、本焼成工程においても450℃で熱処理を行った以外は実施例1と同様にして、比較例1の活物質粒子を得た。また、実施例1と同様にして、比較例1の活物質粒子を含む活物質含有層が形成された電極(正極)及び、評価用セルを作製した。
(Comparative Example 1)
Active material particles of Comparative Example 1 were obtained in the same manner as in Example 1 except that heat treatment was performed at 450 ° C. in the calcination step and heat treatment was performed at 450 ° C. in the main firing step. Further, in the same manner as in Example 1, an electrode (positive electrode) on which an active material-containing layer containing active material particles of Comparative Example 1 was formed and an evaluation cell were produced.

(比較例2)
仮焼工程において450℃で熱処理を行い、本焼成工程において800℃で熱処理を行った以外は実施例1と同様にして、比較例2の活物質粒子を得た。また、実施例1と同様にして、比較例2の活物質粒子を含む活物質含有層が形成された電極(正極)及び、評価用セルを作製した。
(Comparative Example 2)
Active material particles of Comparative Example 2 were obtained in the same manner as in Example 1 except that heat treatment was performed at 450 ° C. in the calcination step and heat treatment was performed at 800 ° C. in the main firing step. Further, in the same manner as in Example 1, an electrode (positive electrode) on which an active material-containing layer containing active material particles of Comparative Example 2 was formed and an evaluation cell were produced.

実施例1と同様に、実施例2〜8、比較例1、2の活物質粒子の焼成条件及び、それを用いた評価用セルの0.1Cにおける充放電容量を表1に示した。なお、α/βは、α型結晶構造のLiVOPOのピーク強度とβ型の結晶構造のLiVOPOのピーク強度との比により求められた質量比である。 As in Example 1, Table 1 shows the firing conditions of the active material particles of Examples 2 to 8 and Comparative Examples 1 and 2, and the charge / discharge capacity at 0.1 C of the evaluation cell using the active material particles. Α / β is a mass ratio obtained by a ratio between the peak intensity of LiVOPO 4 having an α-type crystal structure and the peak intensity of LiVOPO 4 having a β-type crystal structure.

アスコルビン酸の存在下で水熱合成を行い、500〜750℃の範囲で本焼成を行うことにより、α型結晶構造のLiVOPOを主成分とする多孔質構造な活物質粒子を得ることができ、これらは高い放電容量を示した。特に、600〜750℃の範囲で本焼成を行った場合、全細孔容積は大きくなり、特に0.1C放電容量は高かった。また、実施例3と実施例4とを対比すると、本焼成前に、前駆体を300〜500℃において仮焼することにより得られた実施例4の活物質粒子は、実施例3の活物質粒子に比べて全細孔容積は増大し、0.1C放電容量も増加していた。 By conducting hydrothermal synthesis in the presence of ascorbic acid and carrying out main firing in the range of 500 to 750 ° C., porous structure active material particles mainly composed of α-type crystal structure LiVOPO 4 can be obtained. These showed a high discharge capacity. In particular, when the main calcination was performed in the range of 600 to 750 ° C., the total pore volume was large, and the 0.1 C discharge capacity was particularly high. Moreover, when Example 3 and Example 4 are contrasted, the active material particles of Example 4 obtained by calcining the precursor at 300 to 500 ° C. before the main firing are the active material of Example 3. Compared to the particles, the total pore volume increased and the 0.1 C discharge capacity also increased.

このように、本発明によれば、熱力学的に安定な構造であり、かつ放電容量の大きなα型結晶構造のLiVOPOを主成分とする活物質粒子、当該活物質粒子を含む電極、及び当該電極を備えたリチウム二次電池を提供することができる。 As described above, according to the present invention, active material particles mainly composed of LiVOPO 4 having an α-type crystal structure having a thermodynamically stable structure and a large discharge capacity, an electrode including the active material particles, and A lithium secondary battery including the electrode can be provided.

1…α型結晶構造のLiVOPOを主成分とする活物質粒子、2…細孔、10,20…電極、12…正極集電体、14…正極活物質層、18…セパレータ、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、52…金属箔、54…高分子膜、60,62…リード、100…リチウムイオン二次電池。 Active material particles 1 ... the LiVOPO 4 of α-type crystal structure as the main component, 2 ... pore, 10, 20 ... electrode, 12 ... cathode current collector, 14 ... positive electrode active material layer, 18 ... separator, 22 ... negative electrode Current collector, 24 ... negative electrode active material layer, 30 ... laminate, 50 ... case, 52 ... metal foil, 54 ... polymer film, 60, 62 ... lead, 100 ... lithium ion secondary battery.

Claims (7)

α型結晶構造のLiVOPOを主成分とし、全細孔容積が0.55cm/g以上の多孔質構造である活物質粒子。 Active material particles having a porous structure mainly composed of αVO crystal LiVOPO 4 and having a total pore volume of 0.55 cm 3 / g or more. 比表面積が1m/g以上である請求項1記載の活物質粒子。 The active material particles according to claim 1, wherein the specific surface area is 1 m 2 / g or more. 集電体と、請求項1又は2記載の活物質粒子を含み前記集電体上に設けられた活物質層と、を備える電極。   An electrode comprising: a current collector; and an active material layer comprising the active material particles according to claim 1 or 2 and provided on the current collector. 請求項3記載の電極を備えるリチウムイオン二次電池。   A lithium ion secondary battery comprising the electrode according to claim 3. 還元作用を有する有機化合物の存在下で水熱合成することにより、α型結晶構造のLiVOPOの前駆体を得る水熱合成工程と、
前記水熱合成により得られたα型結晶構造のLiVOPOの前駆体を500〜750℃に加熱して多孔質構造かつα型結晶構造のLiVOPOを得る本焼成工程と、を備えるα型結晶構造のLiVOPOを主成分とする活物質粒子の製造方法。
A hydrothermal synthesis step of obtaining a precursor of LiVOPO 4 having an α-type crystal structure by hydrothermal synthesis in the presence of an organic compound having a reducing action;
A main-firing step of heating the precursor of LiVOPO 4 having an α-type crystal structure obtained by the hydrothermal synthesis to 500 to 750 ° C. to obtain LiVOPO 4 having a porous structure and an α-type crystal structure. A method for producing active material particles having LiVOPO 4 having a structure as a main component.
前記本焼成工程の加熱温度が600〜750℃である、請求項5記載の活物質粒子の製造方法。   The manufacturing method of the active material particle of Claim 5 whose heating temperature of the said main baking process is 600-750 degreeC. 前記本焼成工程前に、前記水熱合成により得られたα型結晶構造のLiVOPOの前駆体を300〜500℃に1〜48時間加熱する仮焼工程を備える請求項5又は6記載の活物質粒子の製造方法。 Wherein before the calcination step, according to claim 5 or 6 active according comprising a calcination step of heating for 1 to 48 hours a precursor of LiVOPO 4 to 300 to 500 ° C. of α-type crystal structure obtained by the hydrothermal synthesis Method for producing substance particles.
JP2009063114A 2009-03-16 2009-03-16 Active material particles mainly composed of α-type crystal structure LiVOPO4, electrode including the same, lithium secondary battery including the electrode, and method for producing the active material particles Active JP5347604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063114A JP5347604B2 (en) 2009-03-16 2009-03-16 Active material particles mainly composed of α-type crystal structure LiVOPO4, electrode including the same, lithium secondary battery including the electrode, and method for producing the active material particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063114A JP5347604B2 (en) 2009-03-16 2009-03-16 Active material particles mainly composed of α-type crystal structure LiVOPO4, electrode including the same, lithium secondary battery including the electrode, and method for producing the active material particles

Publications (2)

Publication Number Publication Date
JP2010218829A true JP2010218829A (en) 2010-09-30
JP5347604B2 JP5347604B2 (en) 2013-11-20

Family

ID=42977438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063114A Active JP5347604B2 (en) 2009-03-16 2009-03-16 Active material particles mainly composed of α-type crystal structure LiVOPO4, electrode including the same, lithium secondary battery including the electrode, and method for producing the active material particles

Country Status (1)

Country Link
JP (1) JP5347604B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218822A (en) * 2009-03-16 2010-09-30 Tdk Corp Method for manufacturing active material, active material, electrode, and lithium-ion secondary battery
CN102275891A (en) * 2011-07-19 2011-12-14 彩虹集团公司 Method for preparing ferrous-phosphate-based lithium salt material through high-pressure liquid phase preparation
JP2012099361A (en) * 2010-11-02 2012-05-24 Tdk Corp Method of manufacturing active material, and lithium ion secondary battery
WO2014051020A1 (en) * 2012-09-28 2014-04-03 Tdk株式会社 Lithium ion secondary battery
JP2015106471A (en) * 2013-11-29 2015-06-08 Tdk株式会社 Positive electrode active material, positive electrode and lithium ion secondary battery
JP2016106385A (en) * 2016-03-25 2016-06-16 株式会社半導体エネルギー研究所 Positive electrode active material for secondary battery, and secondary battery
JP2020149825A (en) * 2019-03-12 2020-09-17 株式会社リコー Method for production of composite material
US11532811B2 (en) 2019-03-12 2022-12-20 Ricoh Company, Ltd. Composite material, electrode, electrode device, power storage device and method of manufacturing composite material

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303527A (en) * 2003-03-31 2004-10-28 Yusaku Takita Electrode active material and electrode for nonaqueous electrolyte secondary battery as well as nonaqueous electrolyte secondary battery
JP2005060181A (en) * 2003-08-18 2005-03-10 National Institute Of Advanced Industrial & Technology Mesoporous lithium iron (ii, iii) phosphate powder, production method therefor, and energy storage device, lithium battery or lithium intercalation electrical device
JP2006261060A (en) * 2005-03-18 2006-09-28 Sumitomo Osaka Cement Co Ltd Manufacturing method of electrode material, electrode material, electrode and lithium battery
JP2007018883A (en) * 2005-07-07 2007-01-25 Toshiba Corp Negative electrode active material, nonaqueous electrolyte battery and battery pack
JP2007109533A (en) * 2005-10-14 2007-04-26 Gs Yuasa Corporation:Kk Manufacturing method of positive electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery equipped with the same
WO2007124401A2 (en) * 2006-04-21 2007-11-01 Valence Technology, Inc. Method for making electrode active material
JP2008108692A (en) * 2006-04-07 2008-05-08 Mitsubishi Chemicals Corp Lithium transition metal-based compound powder for positive electrode material in lithium secondary battery, method for manufacturing powder, spray dried product of powder, firing precursor of powder, and positive electrode for lithium secondary battery using powder, and lithium secondary battery
JP2008198815A (en) * 2007-02-14 2008-08-28 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
WO2008105490A1 (en) * 2007-02-28 2008-09-04 Santoku Corporation Compound having olivine-type structure, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2008277119A (en) * 2007-04-27 2008-11-13 Tdk Corp Composite particle for electrode, its manufacturing method, and electrochemical device
JP2008282804A (en) * 2007-04-09 2008-11-20 Kao Corp Positive electrode active material sintered body for battery
JP2010086778A (en) * 2008-09-30 2010-04-15 Tdk Corp Active material material, positive electrode using the same, and lithium-ion secondary battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303527A (en) * 2003-03-31 2004-10-28 Yusaku Takita Electrode active material and electrode for nonaqueous electrolyte secondary battery as well as nonaqueous electrolyte secondary battery
JP2005060181A (en) * 2003-08-18 2005-03-10 National Institute Of Advanced Industrial & Technology Mesoporous lithium iron (ii, iii) phosphate powder, production method therefor, and energy storage device, lithium battery or lithium intercalation electrical device
JP2006261060A (en) * 2005-03-18 2006-09-28 Sumitomo Osaka Cement Co Ltd Manufacturing method of electrode material, electrode material, electrode and lithium battery
JP2007018883A (en) * 2005-07-07 2007-01-25 Toshiba Corp Negative electrode active material, nonaqueous electrolyte battery and battery pack
JP2007109533A (en) * 2005-10-14 2007-04-26 Gs Yuasa Corporation:Kk Manufacturing method of positive electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery equipped with the same
JP2008108692A (en) * 2006-04-07 2008-05-08 Mitsubishi Chemicals Corp Lithium transition metal-based compound powder for positive electrode material in lithium secondary battery, method for manufacturing powder, spray dried product of powder, firing precursor of powder, and positive electrode for lithium secondary battery using powder, and lithium secondary battery
WO2007124401A2 (en) * 2006-04-21 2007-11-01 Valence Technology, Inc. Method for making electrode active material
JP2008198815A (en) * 2007-02-14 2008-08-28 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
WO2008105490A1 (en) * 2007-02-28 2008-09-04 Santoku Corporation Compound having olivine-type structure, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2008282804A (en) * 2007-04-09 2008-11-20 Kao Corp Positive electrode active material sintered body for battery
JP2008277119A (en) * 2007-04-27 2008-11-13 Tdk Corp Composite particle for electrode, its manufacturing method, and electrochemical device
JP2010086778A (en) * 2008-09-30 2010-04-15 Tdk Corp Active material material, positive electrode using the same, and lithium-ion secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218822A (en) * 2009-03-16 2010-09-30 Tdk Corp Method for manufacturing active material, active material, electrode, and lithium-ion secondary battery
JP2012099361A (en) * 2010-11-02 2012-05-24 Tdk Corp Method of manufacturing active material, and lithium ion secondary battery
CN102275891A (en) * 2011-07-19 2011-12-14 彩虹集团公司 Method for preparing ferrous-phosphate-based lithium salt material through high-pressure liquid phase preparation
WO2014051020A1 (en) * 2012-09-28 2014-04-03 Tdk株式会社 Lithium ion secondary battery
CN104704655A (en) * 2012-09-28 2015-06-10 Tdk株式会社 Lithium ion secondary battery
JPWO2014051020A1 (en) * 2012-09-28 2016-08-22 Tdk株式会社 Lithium ion secondary battery
JP2015106471A (en) * 2013-11-29 2015-06-08 Tdk株式会社 Positive electrode active material, positive electrode and lithium ion secondary battery
JP2016106385A (en) * 2016-03-25 2016-06-16 株式会社半導体エネルギー研究所 Positive electrode active material for secondary battery, and secondary battery
JP2020149825A (en) * 2019-03-12 2020-09-17 株式会社リコー Method for production of composite material
US11532811B2 (en) 2019-03-12 2022-12-20 Ricoh Company, Ltd. Composite material, electrode, electrode device, power storage device and method of manufacturing composite material
JP7358752B2 (en) 2019-03-12 2023-10-11 株式会社リコー Composite material manufacturing method

Also Published As

Publication number Publication date
JP5347604B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP4317571B2 (en) Active material, electrode, battery, and method for producing active material
JP5347604B2 (en) Active material particles mainly composed of α-type crystal structure LiVOPO4, electrode including the same, lithium secondary battery including the electrode, and method for producing the active material particles
JP5699754B2 (en) Active material, electrode, lithium ion secondary battery, and method for producing active material
JP6094584B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery using the same, and method for producing positive electrode active material for lithium secondary battery
KR101539843B1 (en) Anode Active Material of High Density and Methode for Preparation of The Same
WO2012008423A1 (en) Active material, electrode containing same, lithium secondary battery comprising the electrode, and method for producing active material
JP5365125B2 (en) Active material for positive electrode of lithium ion secondary battery
JP6020580B2 (en) Lithium ion secondary battery
JP5347605B2 (en) Active material, electrode including the same, lithium ion secondary battery including the electrode, and method for producing active material
CA2810132A1 (en) Method for producing lithium metal phosphate
JP5915732B2 (en) Method for producing positive electrode active material for non-aqueous secondary battery, method for producing positive electrode for non-aqueous secondary battery, and method for producing non-aqueous secondary battery
JP5375446B2 (en) Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
KR102203636B1 (en) A cathode active material comprising lithium transition metal oxide, a method for manufacturing the same, and a lithium secondary battery including the same
JP2015056223A (en) Positive electrode active material for nonaqueous secondary batteries, method for manufacturing positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
JP5609299B2 (en) Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
JP5609300B2 (en) Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
JP5888046B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP6197541B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2012212634A (en) Active material, electrode containing the same, lithium secondary battery comprising the electrode, and method for manufacturing active material
WO2022230661A1 (en) Secondary battery negative electrode, secondary battery, and method for manufacturing secondary battery negative electrode
JP4694799B2 (en) Method for producing tricobalt tetroxide for active material of non-aqueous electrolyte battery
JP5648732B2 (en) Positive electrode active material and lithium ion secondary battery
JP6349825B2 (en) Positive electrode and lithium ion secondary battery using the same
JP2019175634A (en) Positive electrode active material and lithium ion secondary battery
JP2017183045A (en) Positive electrode active material and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120117

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5347604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150