JP2006261060A - Manufacturing method of electrode material, electrode material, electrode and lithium battery - Google Patents

Manufacturing method of electrode material, electrode material, electrode and lithium battery Download PDF

Info

Publication number
JP2006261060A
JP2006261060A JP2005080159A JP2005080159A JP2006261060A JP 2006261060 A JP2006261060 A JP 2006261060A JP 2005080159 A JP2005080159 A JP 2005080159A JP 2005080159 A JP2005080159 A JP 2005080159A JP 2006261060 A JP2006261060 A JP 2006261060A
Authority
JP
Japan
Prior art keywords
source
electrode material
acid
group
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005080159A
Other languages
Japanese (ja)
Other versions
JP4823540B2 (en
Inventor
Yoshiyuki Toge
喜之 峠
Mitsumasa Saito
光正 斉藤
Tetsuji Yamada
哲司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2005080159A priority Critical patent/JP4823540B2/en
Publication of JP2006261060A publication Critical patent/JP2006261060A/en
Application granted granted Critical
Publication of JP4823540B2 publication Critical patent/JP4823540B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an electrode material in which a high discharge capacity, a stable charge and discharge cycle performance, a high filling property, and a high output can be realized by using elements of low cost and abundant in resource-wise, also to provide an electrode material, an electrode, and a lithium battery. <P>SOLUTION: This is a manufacturing method of an electrode material having a compound composed of Li<SB>x</SB>Al<SB>y</SB>A<SB>z</SB>PO<SB>4</SB>(where, A is one kind or two kinds or more selected from a group of Co, Mn, Ni, Fe, Cu, Cr, x+3y+z=3, x, y, z are positive numbers), asa main component. Li source, A source (where, A is one kind or two kinds or more selected from a group of Co, Mn, Ni, Fe, Cu, Cr), Al source, PO<SB>4</SB>source, and an organic acid are added to a solvent having water as a main component, and are made a solution, and then, this solution is made to react at high temperatures and high pressure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電極材料の製造方法と電極材料及び電極並びにリチウム電池に関し、特に、電池用の正極材料、とりわけリチウム電池用の正極材料に用いて好適な電極材料の製造方法と電極材料及び電極並びにリチウム電池に関するものである。   TECHNICAL FIELD The present invention relates to a method for producing an electrode material, an electrode material and an electrode, and a lithium battery, and in particular, a method for producing an electrode material suitable for use in a positive electrode material for a battery, particularly a positive electrode material for a lithium battery, and an electrode material and electrode. The present invention relates to a lithium battery.

近年、小型化、軽量化、高容量化が期待される電池として、リチウム電池、例えば、リチウムイオン電池等の非水電解液系の二次電池が提案され、実用に供されている。
このリチウム電池の正極材料としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)等のリチウム(Li)化合物が提案され、既に一部が実用化されている。
In recent years, lithium batteries, for example, non-aqueous electrolyte secondary batteries such as lithium ion batteries have been proposed and put into practical use as batteries expected to be reduced in size, weight, and capacity.
As a positive electrode material for this lithium battery, lithium (Li) compounds such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium manganate (LiMnO 2 ) have been proposed, and some of them have already been put into practical use. ing.

一方、鉄(Fe)は、資源的に豊富かつ安価であり、しかも人体や環境に対する毒性等の問題がないことから、リチウム電池用の正極材料に用いるのに有望な元素である。
例えば、LiFePOで表されるFe含有リン酸化合物は、金属Liに対して3.3V程度の電位を有することから、充放電可能な正極材料として用いることが可能である(例えば、非特許文献1参照)。
A.K.パディ他(A.K.Padhi et al.)、ジャーナル・オブ・エレクトロケミカル・ソサエティー(J.Electrochem.Soc.)第144巻、1609頁(1997年)
On the other hand, iron (Fe) is a promising element to be used for a positive electrode material for a lithium battery because it is abundant and inexpensive in terms of resources and has no problems such as toxicity to the human body or the environment.
For example, an Fe-containing phosphoric acid compound represented by LiFePO 4 has a potential of about 3.3 V with respect to metal Li, and thus can be used as a chargeable / dischargeable positive electrode material (for example, non-patent literature). 1).
A. K. Paddy et al., J. Electrochem. Soc. Vol. 144, p. 1609 (1997)

しかしながら、上記のLiCoOでは、Coの埋蔵量が少ないために、価格が市況の影響を受け易く、したがって、正極材料が高価なものとなるという問題点や、Co自体に毒性がある等の問題点があった。
また、LiNiOでは、優れた充放電特性を示すものの、Ni自体が決して安価ではないために、正極材料が高価なものとなるという問題点があった。また、高温における安定性が十分ではなく、定比からの組成ずれが生じた場合には急激な特性低下が生じる虞がある等の問題点もあった。
However, in the above-described LiCoO 2 , since the amount of Co reserve is small, the price is easily affected by market conditions, and therefore, the problem that the positive electrode material becomes expensive and the Co itself is toxic, etc. There was a point.
Moreover, although LiNiO 2 shows excellent charge / discharge characteristics, there is a problem that the cathode material becomes expensive because Ni itself is not cheap. In addition, there is a problem that stability at high temperature is not sufficient, and there is a possibility that sudden characteristic deterioration may occur when a composition deviation from a constant ratio occurs.

また、LiMnOでは、高温でMnが溶出するという問題点や、Mn3+のヤーン・テラー歪によるサイクル劣化等の問題点があった。
また、LiFePOで表されるFe含有リン酸化合物をリチウム電池の正極材料として用いた場合、充放電時の電流密度が低く、したがって、高出力化が困難であるという問題点があり、実用化を妨げている一因になっている。
In addition, LiMnO 2 has a problem that Mn is eluted at a high temperature and a cycle deterioration due to a Mn 3+ yarn-teller strain.
Moreover, when the Fe-containing phosphoric acid compound represented by LiFePO 4 is used as a positive electrode material for a lithium battery, there is a problem that the current density at the time of charging and discharging is low, and therefore, it is difficult to increase the output, and practical use It is one of the factors that are preventing it.

本発明は、上記の課題を解決するためになされたものであって、安価で資源的に豊富な元素を用い、高い放電容量、安定した充放電サイクル性能、高い充填性、高い出力を実現することが可能な電極材料の製造方法と電極材料及び電極並びにリチウム電池を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and uses an inexpensive and resource-rich element to realize high discharge capacity, stable charge / discharge cycle performance, high fillability, and high output. It is an object of the present invention to provide an electrode material manufacturing method, an electrode material, an electrode, and a lithium battery.

本発明者等は、上記課題を解決するために鋭意研究を行った結果、リチウム電池を高出力化するには、正極材料の微粒子化が有効であることを見出し、また、水熱合成法によりLiFePOで表される材料を合成する際にAlを添加すれば、LiFePOで表される材料が微粒子化し、さらに、レート特性、低温特性が向上することを知見し、本発明を完成させるに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that fine particles of the positive electrode material are effective for increasing the output of the lithium battery, and by hydrothermal synthesis. In order to complete the present invention, it is found that if Al is added when a material represented by LiFePO 4 is added, the material represented by LiFePO 4 is finely divided, and further, rate characteristics and low-temperature characteristics are improved. It came.

また、水を主成分とする溶媒に、Li源、A源(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上)、Al源、PO源及び有機酸を加えて溶液とし、この溶液を高温高圧下にて反応させることにより、LiAlPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上、x+3y+2z=3、x、y、zは正の数)からなる化合物を主成分とする電極材料が容易に得られることも分かった。 Further, a solvent containing water as a main component includes Li source, A source (where A is one or more selected from the group of Co, Mn, Ni, Fe, Cu, Cr), Al source, PO 4 source and adding an organic acid to form a solution, by reacting the solution at a high temperature under high pressure, Li x Al y a z PO 4 ( where, a is Co, Mn, Ni, Fe, Cu, the group of Cr It was also found that an electrode material containing as a main component a compound consisting of one or more selected from the group consisting of x + 3y + 2z = 3, x, y, and z being positive numbers) was easily obtained.

ここで、本発明者等が本発明を完成させるに至った経緯を詳しく説明する。
本発明者等は、LiFePOの様なリン酸塩系材料は、従来より用いられているLiCoO等の電極材料に比べて電子導電性が低いことが、充放電時に流せる電流密度を高くすることができない、すなわち高出力化ができない一因であると考えた。
そこで、より多くの電流を流すためには、材料の比表面積を高くすること、すなわち微粒子化することが有効であると考え、また、材料自体の電子伝導性を向上させることも有効であると考えた。また、材料の粒径を小さくすれば、粒子表面における反応面積と、反応進行後の粒子内部での反応面積差が小さくなり、より理論容量に近い状態にまで充放電が可能になるのではないかと考えた。
また、粒子の表面積を大きくすると、反応界面に流れる電流密度を低くすることができ、より大電流での充放電が可能になると考えた。
さらに、材料自体の電子導電性が向上すれば、材料表面に到達した電子が材料内を移動し易くなるため、低温で、より高速の充放電に対応することができると考えた。
Here, the background to which the present inventors have completed the present invention will be described in detail.
The present inventors have found that a phosphate-based material such as LiFePO 4 has a lower electronic conductivity than a conventionally used electrode material such as LiCoO 2, which increases the current density that can flow during charging and discharging. I thought it was one of the reasons why I couldn't do it, that is, I couldn't increase the output.
Therefore, in order to flow more current, it is considered effective to increase the specific surface area of the material, that is, to make fine particles, and it is also effective to improve the electron conductivity of the material itself. Thought. Moreover, if the particle size of the material is reduced, the difference between the reaction area on the particle surface and the reaction area inside the particle after the reaction has progressed will not enable charging / discharging to a state closer to the theoretical capacity. I thought.
Further, it was considered that when the surface area of the particles is increased, the current density flowing through the reaction interface can be lowered, and charging / discharging with a larger current becomes possible.
Furthermore, if the electron conductivity of the material itself is improved, the electrons that have reached the surface of the material can easily move through the material, so that it is possible to cope with faster charge and discharge at a low temperature.

また、LiFePOで表されるリン酸化合物を合成する場合、従来では、粒子径を小さくするために、(a)より低温、短時間で合成、(b)製造後に粉砕、のいずれかの方法を採るのが一般的であった。しかしながら、上記(a)の方法では、LiFePO結晶相が十分に生成・発達せず、しかも結晶性が低い等の理由により、十分な効果が得られない。また、上記(b)の方法では、粒子径が粗大化し易く、十分小さな粒子径にまで小さくすることができず、粒子自体に過度の力がかかることにより、歪や割れが生じ易く、結晶性も低下する虞がある等の理由により十分な効果は得られない。 Moreover, when synthesizing a phosphoric acid compound represented by LiFePO 4 , conventionally, in order to reduce the particle diameter, any method of (a) synthesis at a lower temperature and in a shorter time than (a) and (b) pulverization after production It was common to adopt. However, in the method (a), the LiFePO 4 crystal phase is not sufficiently generated / developed, and sufficient effects cannot be obtained due to low crystallinity. Further, in the method (b), the particle size is likely to be coarsened and cannot be reduced to a sufficiently small particle size, and excessive force is applied to the particles themselves, so that distortion and cracking are likely to occur, and the crystallinity. However, a sufficient effect cannot be obtained due to the possibility of a decrease.

一方、比較的低温で結晶性の高い材料を合成することのできる合成法としては、水を主成分とする溶媒中に、目的物を構成する各元素の原料を添加し、得られた溶液を密閉反応器中、高温高圧下にて反応させる、いわゆる水熱法が知られている。
本発明者等は、水熱法によりLiFePOを合成する際に、クエン酸の様な遷移金属をキレート化し、高温で分解するような水可溶性有機酸を添加すれば、原料を完全に反応させることができ、しかも、生成した粒子が粗大化する虞がなく、均一な粒子径の粒子を容易に得ることができることを見出した。
本発明者等は、水熱法によりLiFePOを合成する際に、さらにAlを添加すれば、得られた粒子がより微粒子の状態となり、この微粒子を正極材料として用いれば、粒子径が十分に小さな微粒子を容易に得ることができ、したがって、充放電速度を速くすることができ、低温で使用する際においても充分な性能を得ることができることを見出した。
On the other hand, as a synthesis method capable of synthesizing a material having high crystallinity at a relatively low temperature, a raw material for each element constituting the target product is added to a solvent containing water as a main component, and the obtained solution is used. A so-called hydrothermal method in which a reaction is carried out in a closed reactor at high temperature and high pressure is known.
When synthesizing LiFePO 4 by the hydrothermal method, the present inventors chelate a transition metal such as citric acid and add a water-soluble organic acid that decomposes at high temperature to completely react the raw materials. In addition, the present inventors have found that particles having a uniform particle diameter can be easily obtained without the possibility that the generated particles are coarsened.
When the present inventors synthesize LiFePO 4 by the hydrothermal method, if Al is further added, the obtained particles are in a finer state. If these fine particles are used as a positive electrode material, the particle diameter is sufficiently large. It has been found that small fine particles can be easily obtained, and therefore the charge / discharge rate can be increased and sufficient performance can be obtained even when used at low temperatures.

この水熱法によりLiFePOを合成する際、反応溶液中に存在するLi、Fe2+、PO 3−が反応することにより、LiFePO結晶核が生成、成長する。
ここで、LiFePOの主成分であるLi、Fe2+等のイオンとは価数が異なり、かつ、イオン半径の小さいAl3+が反応系に存在し、生成したLiFePO結晶中のLiサイトもしくはFeサイトにドープされた場合、結晶に歪みが生じ、結晶成長を妨げる効果がある。したがって、微粒子が生成する。
さらに、一旦生成した粒子はそれ以上成長し難いので、溶液中のイオン濃度がAl無添加時に比べて高くなり、その結果、結晶核を生成し易い状態となり、より効果的に微粒子を得ることができる。
また、Alを導入することにより、LiFePO結晶中に正孔が発生し易くなり、電子伝導性の向上、Liイオンによる拡散性の向上も期待できる。
さらに、Alと同時にB源の元素を加えた場合、さらに結晶構造が変化して電子伝導性やLiイオンの拡散性が改善される。
本発明は、以上のような発想に基づいてなされたものである。
When LiFePO 4 is synthesized by this hydrothermal method, Li + , Fe 2+ , and PO 4 3− existing in the reaction solution react to generate and grow LiFePO 4 crystal nuclei.
Here, Al 3+ having a valence different from ions such as Li + and Fe 2+ , which are the main components of LiFePO 4 , and having a small ion radius exists in the reaction system, and the Li site in the generated LiFePO 4 crystal or When the Fe site is doped, the crystal is distorted and has an effect of hindering crystal growth. Accordingly, fine particles are generated.
Furthermore, since the particles once generated are difficult to grow any more, the ion concentration in the solution is higher than when no Al is added, and as a result, it becomes easy to generate crystal nuclei, and fine particles can be obtained more effectively. it can.
Further, by introducing Al, holes are easily generated in the LiFePO 4 crystal, and improvement in electron conductivity and diffusibility due to Li ions can be expected.
Further, when the element of the B source is added simultaneously with Al, the crystal structure is further changed to improve the electron conductivity and Li ion diffusibility.
The present invention has been made based on the above idea.

すなわち、本発明の電極材料の製造方法は、LiAlPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上、x+3y+2z=3、x、y、zは正の数)からなる化合物を主成分とする電極材料の製造方法であって、水を主成分とする溶媒に、Li源、A源(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上)、Al源、PO源及び有機酸を加えて溶液とし、次いで、この溶液を高温高圧下にて反応させることを特徴とする。 That is, the manufacturing method of the electrode material of the present invention is Li x Al y A z PO 4 (where A is one or more selected from the group of Co, Mn, Ni, Fe, Cu, Cr, x + 3y + 2z). = 3, x, y, z is a method for producing an electrode material mainly composed of a compound consisting of a compound consisting of Li, A source (where A is Co , Mn, Ni, Fe, Cu, Cr selected from the group consisting of one or two or more), an Al source, a PO 4 source and an organic acid to form a solution, and this solution is then reacted under high temperature and pressure It is characterized by making it.

本発明の他の電極材料の製造方法は、LiAlPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上、BはMg、Ca、Sr、Sc、Y、Ti、Zr、V、Nb、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Ag、Zn、In、Sn、Sb、希土類元素の群から選択された1種または2種以上かつ前記Aとは異なる、x+3y+2z+n・w=3、x、y、z、wは正の数、nはBの価数)からなる化合物を主成分とする電極材料の製造方法であって、水を主成分とする溶媒に、Li源、A源(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上)、B源(但し、BはMg、Ca、Sr、Sc、Y、Ti、Zr、V、Nb、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Ag、Zn、In、Sn、Sb、希土類元素の群から選択された1種または2種以上かつ前記Aとは異なる)、Al源、PO源及び有機酸を加えて溶液とし、次いで、この溶液を高温高圧下にて反応させることを特徴とする。 Another method for manufacturing an electrode material of the present invention, Li x Al y A z B w PO 4 ( where, A is Co, Mn, Ni, Fe, Cu, 1 or more kinds selected from the group of Cr , B are Mg, Ca, Sr, Sc, Y, Ti, Zr, V, Nb, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Ag, Zn, In, Sn, Sb, rare earth elements A compound composed of one or more selected from the group and different from A, x + 3y + 2z + n · w = 3, x, y, z, w are positive numbers, and n is a valence of B) A method for producing an electrode material comprising: a Li source, an A source (where A is one or two selected from the group of Co, Mn, Ni, Fe, Cu, Cr) Seeds or more), B source (B is Mg, Ca, Sr, Sc, Y, Ti, Zr, V, Nb, Cr, M o, W, Mn, Fe, Co, Ni, Cu, Ag, Zn, In, Sn, Sb, one or more selected from the group of rare earth elements and different from A), Al source, PO Four sources and an organic acid are added to form a solution, and then this solution is reacted under high temperature and high pressure.

上記の電極材料の製造方法各々では、前記有機酸は、クエン酸、リンゴ酸、マロン酸、アクリル酸、ポリアクリル酸、メタクリル酸、ギ酸、乳酸、酒石酸、マレイン酸、コハク酸の群から選択された1種または2種以上であることが好ましい。
前記yの範囲は、0.001以上かつ0.1以下であることが好ましい。
In each of the above electrode material manufacturing methods, the organic acid is selected from the group of citric acid, malic acid, malonic acid, acrylic acid, polyacrylic acid, methacrylic acid, formic acid, lactic acid, tartaric acid, maleic acid, and succinic acid. It is preferable that they are 1 type, or 2 or more types.
The range of y is preferably 0.001 or more and 0.1 or less.

本発明の電極材料は、本発明の電極材料の製造方法各々により得られたことを特徴とする。
本発明の電極は、本発明の電極材料を用いてなることを特徴とする。
本発明のリチウム電池は、本発明の電極を正電極として備えてなることを特徴とする。
The electrode material of the present invention is obtained by each of the methods for producing an electrode material of the present invention.
The electrode of the present invention is characterized by using the electrode material of the present invention.
The lithium battery of the present invention comprises the electrode of the present invention as a positive electrode.

本発明の電極材料の製造方法によれば、水を主成分とする溶媒に、Li源、A源(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上)、Al源、PO源及び有機酸を加えて溶液とし、次いで、この溶液を高温高圧下にて反応させるので、電極材料の放電容量を高めることができ、充放電サイクル性能を安定させることができ、充填性を高めることができ、出力を高めることができる。 According to the method for producing an electrode material of the present invention, a solvent containing water as a main component, a Li source, and an A source (where A is one selected from the group consisting of Co, Mn, Ni, Fe, Cu, and Cr). Or two or more), Al source, PO 4 source and organic acid are added to form a solution, and then this solution is reacted under high temperature and high pressure, so that the discharge capacity of the electrode material can be increased, and the charge / discharge cycle performance Can be stabilized, the filling property can be improved, and the output can be increased.

また、Li源、Al源、PO源及び有機酸を用いるので、安価で資源的に豊富な元素を用いることで、LiAlPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上、x+3y+2z=3、x、y、zは正の数)からなる化合物を主成分とする電極材料を容易かつ安価に製造することができる。 Also, Li source, Al source, because use of the PO 4 source and an organic acid, by using in abundance as a resource element at a low cost, Li x Al y A z PO 4 ( where, A is Co, Mn, Ni, To easily and inexpensively produce an electrode material mainly composed of a compound consisting of one or more selected from the group of Fe, Cu, and Cr, and x + 3y + 2z = 3, x, y, and z are positive numbers) Can do.

本発明の他の電極材料の製造方法によれば、水を主成分とする溶媒に、Li源、A源(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上)、B源(但し、BはMg、Ca、Sr、Sc、Y、Ti、Zr、V、Nb、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Ag、Zn、In、Sn、Sb、希土類元素の群から選択された1種または2種以上かつ前記Aとは異なる)、Al源、PO源及び有機酸を加えて溶液とし、次いで、この溶液を高温高圧下にて反応させるので、電極材料の放電容量を高めることができ、充放電サイクル性能を安定させることができ、充填性を高めることができ、出力を高めることができる。 According to the method for producing another electrode material of the present invention, the solvent containing water as a main component, the Li source and the A source (where A is selected from the group of Co, Mn, Ni, Fe, Cu, Cr) 1 type or 2 types or more), B source (where B is Mg, Ca, Sr, Sc, Y, Ti, Zr, V, Nb, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Ag) , Zn, In, Sn, Sb, one or more selected from the group of rare earth elements and different from A), an Al source, a PO 4 source and an organic acid are added to form a solution, and then this solution Therefore, the discharge capacity of the electrode material can be increased, the charge / discharge cycle performance can be stabilized, the filling property can be increased, and the output can be increased.

また、Li源、Al源、PO源及び有機酸を用いるので、安価で資源的に豊富な元素を用いることで、LiAlPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上、BはMg、Ca、Sr、Sc、Y、Ti、Zr、V、Nb、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Ag、Zn、In、Sn、Sb、希土類元素の群から選択された1種または2種以上かつ前記Aとは異なる、x+3y+2z+n・w=3、x、y、z、wは正の数、nはBの価数)からなる化合物を主成分とする電極材料を容易かつ安価に製造することができる。 Also, Li source, Al source, because use of the PO 4 source and an organic acid, by using in abundance as a resource element at a low cost, Li x Al y A z B w PO 4 ( where, A is Co, Mn, One or more selected from the group of Ni, Fe, Cu, Cr, B is Mg, Ca, Sr, Sc, Y, Ti, Zr, V, Nb, Cr, Mo, W, Mn, Fe, One or more selected from the group consisting of Co, Ni, Cu, Ag, Zn, In, Sn, Sb, and rare earth elements, and different from A, x + 3y + 2z + n · w = 3, x, y, z, w It is possible to easily and inexpensively manufacture an electrode material mainly composed of a compound composed of a positive number and n is a valence of B.

本発明の電極材料によれば、本発明の電極材料の製造方法により得られた電極材料であるので、安価で資源的に豊富な元素を用い、高い放電容量、安定した充放電サイクル性能、高い充填性、高い出力の電極材料を実現することができ、工業用材料として極めて利用価値の高いものとなる。
本発明の電極によれば、本発明の電極材料を用いたので、高い放電容量、安定した充放電サイクル性能、高い充填性、高い出力の電極を実現することができ、電極として極めて利用価値の高いものとなる。
According to the electrode material of the present invention, since it is an electrode material obtained by the method for producing an electrode material of the present invention, it uses inexpensive and resource-rich elements, has a high discharge capacity, stable charge / discharge cycle performance, and high An electrode material with high fillability and high output can be realized, and it has extremely high utility value as an industrial material.
According to the electrode of the present invention, since the electrode material of the present invention is used, a high discharge capacity, stable charge / discharge cycle performance, high fillability, and a high output electrode can be realized. It will be expensive.

本発明のリチウム電池によれば、本発明の電極を正電極として備えたので、この電極を用いた正電極の充放電容量(特に、放電容量)を向上させることができ、充放電サイクルを安定化することができ、出力を高めることができる。したがって、各種電気特性に優れたリチウム電池を提供することができる。   According to the lithium battery of the present invention, since the electrode of the present invention is provided as a positive electrode, the charge / discharge capacity (particularly, discharge capacity) of the positive electrode using this electrode can be improved, and the charge / discharge cycle is stabilized. Output and output can be increased. Therefore, it is possible to provide a lithium battery excellent in various electric characteristics.

本発明の電極材料の製造方法と電極材料及び電極並びにリチウム電池の一実施の形態について説明する。   An embodiment of a method for producing an electrode material, an electrode material, an electrode, and a lithium battery according to the present invention will be described.

本発明の電極材料の製造方法は、次の(1)、(2)のいずれかの方法である。
(1)水を主成分とする溶媒に、Li源、A源(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上)、Al源、PO源及び有機酸を加えて溶液とし、次いで、この溶液を高温高圧下にて反応させることにより、LiAlPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上、x+3y+2z=3、x、y、zは正の数)からなる化合物を主成分とする電極材料を製造する方法。
The manufacturing method of the electrode material of the present invention is either of the following methods (1) and (2).
(1) In a solvent containing water as a main component, an Li source, an A source (where A is one or more selected from the group of Co, Mn, Ni, Fe, Cu, Cr), an Al source, and the solution added to PO 4 source and organic acids, followed by reacting the solution at a high temperature under high pressure, Li x Al y a z PO 4 ( where, a is Co, Mn, Ni, Fe, Cu, A method for producing an electrode material comprising as a main component a compound consisting of one or more selected from the group of Cr, x + 3y + 2z = 3, x, y, and z are positive numbers).

(2)水を主成分とする溶媒に、Li源、A源(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上)、B源(但し、BはMg、Ca、Sr、Sc、Y、Ti、Zr、V、Nb、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Ag、Zn、In、Sn、Sb、希土類元素の群から選択された1種または2種以上かつ前記Aとは異なる)、Al源、PO源及び有機酸を加えて溶液とし、次いで、この溶液を高温高圧下にて反応させることにより、LiAlPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上、BはMg、Ca、Sr、Sc、Y、Ti、Zr、V、Nb、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Ag、Zn、In、Sn、Sb、希土類元素の群から選択された1種または2種以上かつ前記Aとは異なる、x+3y+2z+n・w=3、x、y、z、wは正の数、nはBの価数)からなる化合物を主成分とする電極材料を製造する方法。 (2) Lithium source, A source (where A is one or more selected from the group consisting of Co, Mn, Ni, Fe, Cu, Cr), B source ( However, B is Mg, Ca, Sr, Sc, Y, Ti, Zr, V, Nb, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Ag, Zn, In, Sn, Sb, rare earth elements 1 or 2 or more selected from the group of the above and different from A), an Al source, a PO 4 source and an organic acid are added to form a solution, and then this solution is reacted under high temperature and high pressure, li x Al y a z B w PO 4 ( where, a is Co, Mn, Ni, Fe, Cu, Cr 1 , two or more selected from the group of, B is Mg, Ca, Sr, Sc, Y Ti, Zr, V, Nb, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Ag, Zn One or more selected from the group of In, Sn, Sb, and rare earth elements and different from A, x + 3y + 2z + n · w = 3, x, y, z, w are positive numbers, and n is a valence of B The electrode material which has as a main component the compound which consists of several).

用いる原料としては、特に限定されず、通常水熱法で目的とする物質が得られる組み合わせであれば良いが、水を主成分とする溶媒中で反応させることを考慮すると、水に可溶な酢酸塩、硫酸塩、塩化物等が好適である。
Li源としては、例えば、塩化リチウム(LiCl)、臭化リチウム(LiBr)、炭酸リチウム(LiCO)、硝酸リチウム(LiNO)、硫酸リチウム(LiSO)、リン酸リチウム(LiPO)、水酸化リチウム(LiOH)等のリチウム無機酸塩、酢酸リチウム(LiCHCOO)、蓚酸リチウム((COOLi))等のリチウム有機酸塩、あるいは、リチウムエトキシド(LiCO)等のリチウムアルコキシド、(Li(CH)等の有機リチウム化合物、等のLi含有有機金属化合物を用いることができる。
The raw material to be used is not particularly limited, and may be any combination as long as the target substance can be obtained usually by a hydrothermal method. However, in consideration of reacting in a solvent containing water as a main component, it is soluble in water. Acetate, sulfate, chloride and the like are preferred.
Examples of the Li source include lithium chloride (LiCl), lithium bromide (LiBr), lithium carbonate (Li 2 CO 3 ), lithium nitrate (LiNO 3 ), lithium sulfate (Li 2 SO 4 ), and lithium phosphate (Li 3 PO 4 ), lithium inorganic acid salts such as lithium hydroxide (LiOH), lithium organic acid salts such as lithium acetate (LiCH 3 COO) and lithium oxalate ((COOLi) 2 ), or lithium ethoxide (LiC 2 H Li-containing organometallic compounds such as lithium alkoxides such as 5 O), organic lithium compounds such as (Li 4 (CH 3 ) 4 ), and the like can be used.

A源としては、Co、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上の元素を含む化合物が好ましく、特に、Fe、Co、Mn、Niのいずれか1種、またはこれらのうち2種以上の元素を含む化合物が、高い放電電位、豊富な資源量、安全性等から好ましい。
これらの化合物としては、例えば、Fe成分としては、硫酸鉄(II)(FeSO)、酢酸鉄(II)(Fe(CHCOO))、塩化鉄(II)(FeCl)等を挙げることができる。
The A source is preferably a compound containing one or more elements selected from the group consisting of Co, Mn, Ni, Fe, Cu, and Cr, and in particular, any one of Fe, Co, Mn, and Ni Or a compound containing two or more of these elements is preferred from the viewpoint of high discharge potential, abundant resource amount, safety, and the like.
Examples of these compounds include iron sulfate (II) (FeSO 4 ), iron acetate (II) (Fe (CH 3 COO) 2 ), iron chloride (II) (FeCl 2 ) and the like. be able to.

B源としては、A源とは異なる元素であり、かつ、Mg、Ca、Sr、Sc、Y、Ti、Zr、V、Nb、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Ag、Zn、In、Sn、Sb、希土類元素の群から選択された1種または2種以上の元素を含む化合物が好ましい。
ここで、希土類元素とは、ランタン系列であるLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの15元素のことである。
The source B is an element different from the source A, and Mg, Ca, Sr, Sc, Y, Ti, Zr, V, Nb, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, A compound containing one or more elements selected from the group consisting of Ag, Zn, In, Sn, Sb and rare earth elements is preferred.
Here, the rare earth elements are 15 elements of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu which are lanthanum series.

この様な化合物としては、上記の元素のうちA源とは異なる元素の金属塩のうち1種または2種以上が用いられ、例えば、MgSO、Ti(SO等の硫酸塩、Mg(CHCOO)等の酢酸塩、CaCl、TiCl等の塩化物等が好適に用いられる。 As such a compound, one or more metal salts of elements different from the A source among the above elements are used. For example, sulfates such as MgSO 4 and Ti (SO 4 ) 2 , Mg Acetates such as (CH 3 COO) 2 and chlorides such as CaCl 2 and TiCl 4 are preferably used.

Al源としては、硫酸アルミニウム(Al(SO)、塩化アルミニウム(AlCl)、酢酸アルミニウム(Al(CHCOO))等を挙げることができる。
Al源の添加量(y)は、不純物が生成しない限り制限されないが、本発明においては、0,001≦y≦0.100が好ましく、より好ましくは0.01≦y≦0.05である。
その理由は、yが0.001より少ないと、Al添加によるLiAlPOあるいはLiAlPOの微粒子化が進まず、また、電子伝導性、Liイオン拡散の改善についても充分な効果が期待できないからであり、また、yが0.100より多いと、Alを含む不純物が生成し易くなるために、結晶内にLi欠陥が多数生じることとなり、その結果、容量が低下する等の問題が生じるからである。
Examples of the Al source include aluminum sulfate (Al 2 (SO 4 ) 3 ), aluminum chloride (AlCl 3 ), aluminum acetate (Al (CH 3 COO) 3 ), and the like.
The addition amount (y) of the Al source is not limited as long as no impurities are generated. However, in the present invention, 0.001 ≦ y ≦ 0.100 is preferable, and 0.01 ≦ y ≦ 0.05 is more preferable. .
This is because, when y is less than 0.001, fine particles of Li x Al y A z PO 4 or Li x Al y A z B w PO 4 does not proceed by Al addition, also electronic conductivity, Li-ion This is because a sufficient effect cannot be expected for the improvement of diffusion, and if y is more than 0.100, impurities including Al are easily generated, so that many Li defects are generated in the crystal. As a result, problems such as a decrease in capacity occur.

PO源としては、例えば、オルトリン酸(HPO)、メタリン酸(HPO)等のリン酸、リン酸水素2アンモニウム((NHHPO)、リン酸2水素アンモニウム(NHPO)等のリン酸水素アンモニウム塩が挙げられる。
中でも、比較的純度が高く、組成制御を行うことが容易な点から、オルトリン酸、リン酸水素2アンモニウム、リン酸2水素アンモニウムが好ましい。
Examples of the PO 4 source include phosphoric acid such as orthophosphoric acid (H 3 PO 4 ) and metaphosphoric acid (HPO 3 ), diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ), and ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) ammonium hydrogenphosphate salts.
Of these, orthophosphoric acid, diammonium hydrogen phosphate, and ammonium dihydrogen phosphate are preferred because of their relatively high purity and ease of composition control.

有機酸としては、水可溶性の有機酸が好ましく、例えば、クエン酸、リンゴ酸、乳酸、酒石酸等のヒドロキシカルボン酸、マロン酸、アクリル酸、ポリアクリル酸、メタクリル酸、ギ酸、マレイン酸、コハク酸等のカルボン酸が挙げられる。
中でも、クエン酸は、
(a)低毒性であり、安全性も高い。
(b)金属イオンに対するキレート効果が高く、生成したLiAlPOあるいはLiAlPOの結晶核の成長を抑制する。
(c)分解時に還元性を示すため、A元素の酸化を防ぐことができる。
等の理由から特に好適である。
The organic acid is preferably a water-soluble organic acid, for example, hydroxycarboxylic acids such as citric acid, malic acid, lactic acid, and tartaric acid, malonic acid, acrylic acid, polyacrylic acid, methacrylic acid, formic acid, maleic acid, and succinic acid. Carboxylic acid such as
Among them, citric acid is
(A) Low toxicity and high safety.
(B) high chelate effect against metal ions, the resulting Li x Al y A z PO 4 or Li x Al y A z B w PO 4 for suppressing the growth of crystal nuclei.
(C) Since it exhibits reducibility during decomposition, oxidation of the A element can be prevented.
It is particularly preferable for the reasons described above.

水を主成分とする溶媒としては、純水、水−アルコール溶液、水−ケトン溶液、水−エーテル溶液、のいずれかを用いることができるが、使い易さ、安全性の点から純水が好ましい。
その理由は、純水は他の溶媒と比べて安価であり、臨界点付近にて誘電率の大きな変化を示すことから、温度及び圧力を変化させることにより各物質に対する溶解度等の溶媒としての物性を容易に制御することができるからである。
As a solvent containing water as a main component, pure water, water-alcohol solution, water-ketone solution, or water-ether solution can be used. However, pure water is preferable from the viewpoint of ease of use and safety. preferable.
The reason is that pure water is cheaper than other solvents and shows a large change in dielectric constant near the critical point. Therefore, by changing the temperature and pressure, the physical properties as a solvent such as solubility in each substance This is because it can be easily controlled.

本発明では、水を主成分とする溶媒に、Li源、A源、Al源、PO源及び有機酸を加え、必要に応じてB源も加え、溶液とする。
次いで、この溶液を、高温高圧下にて反応させる。例えば、オートクレーブ等の耐圧密閉容器等に収納し、その後、加熱して所定の最高保持温度まで昇温させる。
In the present invention, a Li source, an A source, an Al source, a PO 4 source and an organic acid are added to a solvent containing water as a main component, and a B source is also added as necessary to form a solution.
The solution is then reacted under high temperature and pressure. For example, it is housed in a pressure-resistant airtight container such as an autoclave and then heated to a predetermined maximum holding temperature.

耐圧密閉容器内の圧力は、最高保持温度に到達した時点で高圧状態になっているので、この最高保持温度を所定時間保持することにより、所定の高温高圧状態を所定時間確保することができる。これにより、上記の溶液を高温高圧下にて反応させることができる。
この反応条件としては、目的とする組成により異なるが、概ね120〜350℃、0.1MPa〜30MPaの下で100時間以下、好ましくは0.5時間以上かつ100時間以下保持することにより、目的とする組成の「LiAlPOからなる化合物」または「LiAlPOからなる化合物」が合成される。
この反応が完了した溶液を濾過、乾燥、あるいは遠心分離・乾燥することにより、「LiAlPOからなる化合物」または「LiAlPOからなる化合物」を主成分とする微粒子を得ることができる。
Since the pressure in the pressure-resistant airtight container is in a high pressure state when reaching the maximum holding temperature, a predetermined high temperature and high pressure state can be ensured for a predetermined time by holding this maximum holding temperature for a predetermined time. Thereby, said solution can be made to react under high temperature and high pressure.
The reaction conditions vary depending on the intended composition, but are generally maintained at 120 to 350 ° C. and 0.1 MPa to 30 MPa for 100 hours or less, preferably 0.5 hours to 100 hours. of composition "Li x Al y compounds consisting a z PO 4" or "consisting of Li x Al y a z B w PO 4 compound" is synthesized.
Filtered solution the reaction is complete, drying, or by centrifugation and drying, the "Li x Al y compounds consisting A z PO 4" or "consisting of Li x Al y A z B w PO 4 compound" Fine particles containing the main component can be obtained.

この様にして得られた本発明の電極材料は、平均粒子径が0.01μm以上かつ0.5μm以下が好ましく、より好ましくは0.02μm以上かつ0.2μm以下である。
平均粒子径が0.01μmより小さいと、Liの挿入・脱離に伴う構造変化により粒子が破壊する虞があり、また、表面積が大きすぎるために結合剤を多く必要とし、その結果、正極材料の導電率が低くなり、正極の充填密度が著しく低下する等の問題が生じるからであり、一方、0.5μmを超えると、活物質内部抵抗が高くなり、その結果、Liイオンの移動速度も遅延し、効率が低下する等の問題が生じるからである。
出力をより高めるためには、0.2μm以下の粒子が、活物質内部抵抗の影響が小さいので好ましい。
The electrode material of the present invention thus obtained has an average particle size of preferably 0.01 μm or more and 0.5 μm or less, more preferably 0.02 μm or more and 0.2 μm or less.
If the average particle size is smaller than 0.01 μm, the particles may be destroyed due to structural changes accompanying Li insertion / extraction, and the surface area is too large, so that a large amount of binder is required. This is because there is a problem that the conductivity of the positive electrode becomes low and the packing density of the positive electrode is remarkably lowered. This is because of problems such as delay and reduced efficiency.
In order to further increase the output, particles having a size of 0.2 μm or less are preferable because the influence of the internal resistance of the active material is small.

ここで「LiAlPOからなる化合物」とは、X線回折法により「LiAlPO」と同定される化合物であり、「LiAlPOからなる化合物を主成分とする」とは、この化合物を少なくとも90重量%以上含むという意味であり、残部の10重量%未満は他の化合物であってもよい。
また、「LiAlPOからなる化合物」についても、上記の「LiAlPOからなる化合物」と同様、X線回折法により「LiAlPO」と同定される化合物であり、「LiAlPOからなる化合物を主成分とする」とは、この化合物を少なくとも90重量%以上含むという意味であり、残部の10重量%未満は他の化合物であってもよい。
Here, the "compound composed of Li x Al y A z PO 4" is a compound identified as "Li x Al y A z PO 4" by X-ray diffraction method, "Li x Al y A z PO 4 "The main component is a compound consisting of" means that this compound is contained at least 90% by weight or more, and the remaining less than 10% by weight may be other compounds.
As for the "Li x Al y A z B w PO compounds consisting of 4 ', similar to the" compound consisting Li x Al y A z PO 4 "above," Li x by X-ray diffractometry Al y A z a B w PO 4 compound identified as "a" mainly composed of Li x Al y a z consisting B w PO 4 compound "is meant that the compound comprises at least 90 wt% or more, Other compounds may be less than 10% by weight of the balance.

本発明の電極は、本発明の電極材料とバインダー樹脂とを混練し、その後、この混練物を圧延して電極材料合剤フィルムとし、次いで、この電極材料合剤フィルムを、例えば、ステンレスメッシュ集電体上に圧着し、この圧着体を成形機を用いて所定の面積の円板状に打ち抜いたものである。
このバインダー樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)樹脂、ポリフッ化ビニリデン(PVdF)樹脂等を例示することができる。
この電極材料とバインダー樹脂との混合比は、特に限定されることはないが、例えば、電極材料100重量部に対してバインダー樹脂を3重量部〜20重量部程度である。
In the electrode of the present invention, the electrode material of the present invention and the binder resin are kneaded, and then the kneaded product is rolled to form an electrode material mixture film. It is crimped onto an electric body, and this crimped body is punched out into a disk shape having a predetermined area using a molding machine.
Examples of the binder resin include polytetrafluoroethylene (PTFE) resin and polyvinylidene fluoride (PVdF) resin.
The mixing ratio of the electrode material and the binder resin is not particularly limited. For example, the binder resin is about 3 to 20 parts by weight with respect to 100 parts by weight of the electrode material.

本発明のリチウム電池は、本発明の電極を正電極として用いたものであり、負電極、電解質、セパレーター及び電池形状等は特に限定されるものではない。このリチウム電池は、その正極が、高純度であり、粒径が揃った微細な球状粉体である本発明の電極材料によって形成されたものであるから、高い充放電容量、安定した充放電サイクル性能を備えたものであり、高出力化が達成されたものである。   The lithium battery of the present invention uses the electrode of the present invention as a positive electrode, and the negative electrode, electrolyte, separator, battery shape and the like are not particularly limited. This lithium battery is formed by the electrode material of the present invention, which is a fine spherical powder having a high purity and a uniform particle size, and thus has a high charge / discharge capacity and a stable charge / discharge cycle. High performance is achieved with high performance.

以下、実施例1〜4及び比較例1、2により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
例えば、本実施例では、電極材料自体の挙動をデータに反映させるため、負極に金属Liを用いたが、炭素材料、Li合金、LiTi12等の負極材料を用いてもかまわない。また電解液とセパレータの代わりに固体電解質を用いても良い。
EXAMPLES Hereinafter, although this invention is demonstrated concretely by Examples 1-4 and Comparative Examples 1 and 2, this invention is not limited by these Examples.
For example, in this embodiment, metal Li is used for the negative electrode in order to reflect the behavior of the electrode material itself in the data. However, a negative electrode material such as a carbon material, a Li alloy, or Li 4 Ti 5 O 12 may be used. . A solid electrolyte may be used instead of the electrolytic solution and the separator.

「実施例1」
純水100mlに、0.3molの水酸化リチウム(LiOH)、0.1molの硫酸鉄(II)(FeSO)、0.0002molの硫酸アルミニウム(Al(SO)、0.1molのリン酸(HPO)、0.1molのクエン酸及び純水を、全体量が0.2リットル(L)になるように混合し、均一な透明溶液Aを作製した。
次いで、この溶液Aを耐圧密閉容器に収容し、最高到達温度:170℃にて6時間保持し、反応させた。
得られた粉末を水で洗浄後、乾燥し、実施例1の試料を得た。
"Example 1"
In 100 ml of pure water, 0.3 mol of lithium hydroxide (LiOH), 0.1 mol of iron (II) sulfate (FeSO 4 ), 0.0002 mol of aluminum sulfate (Al 2 (SO 4 ) 3 ), 0.1 mol of Phosphoric acid (H 3 PO 4 ), 0.1 mol of citric acid and pure water were mixed so that the total amount was 0.2 liter (L), and a uniform transparent solution A was prepared.
Subsequently, this solution A was accommodated in a pressure-resistant airtight container and kept at a maximum attained temperature: 170 ° C. for 6 hours to be reacted.
The obtained powder was washed with water and dried to obtain a sample of Example 1.

「実施例2」
硫酸アルミニウム(Al(SO)の添加量を0.005molとした点以外は、実施例1と同様にして、実施例2の試料を得た。
"Example 2"
A sample of Example 2 was obtained in the same manner as Example 1 except that the addition amount of aluminum sulfate (Al 2 (SO 4 ) 3 ) was 0.005 mol.

「実施例3」
硫酸アルミニウム(Al(SO)の添加量を0.010molとした点以外は、実施例1と同様にして、実施例3の試料を得た。
"Example 3"
A sample of Example 3 was obtained in the same manner as Example 1 except that the addition amount of aluminum sulfate (Al 2 (SO 4 ) 3 ) was 0.010 mol.

「実施例4」
さらに、硫酸マグネシウム(MgSO)を0.002mol添加した点以外は、実施例2と同様にして、実施例4の試料を得た。
Example 4
Further, a sample of Example 4 was obtained in the same manner as Example 2 except that 0.002 mol of magnesium sulfate (MgSO 4 ) was added.

「比較例1」
硫酸アルミニウム(Al(SO)を添加しない点以外は、実施例1と同様にして、比較例1の試料を得た。
“Comparative Example 1”
A sample of Comparative Example 1 was obtained in the same manner as in Example 1 except that aluminum sulfate (Al 2 (SO 4 ) 3 ) was not added.

「比較例2」
硫酸アルミニウム(Al(SO)の添加量を0.015molとした点以外は、実施例1と同様にして、比較例2の試料を得た。
“Comparative Example 2”
A sample of Comparative Example 2 was obtained in the same manner as in Example 1 except that the amount of aluminum sulfate (Al 2 (SO 4 ) 3 ) was 0.015 mol.

「生成相同定」
得られた実施例1〜4及び比較例1、2それぞれの試料の相同定を行った。
ここでは、X線回折装置を用いて、これらの試料の粉末X線回折図形(チャート)を得た。
X線としては、CuKα線(波長:λ=1.5418Å)を用い、これらの試料の同定をハナワルト法(Hanawait method)により行い、これらの試料の相を調べた。実施例1〜4及び比較例1、2それぞれの粉末X線回折図形を図1に、また、比較例2の拡大した粉末X線回折図形を図2に、それぞれ示す。なお、図1及び図2中、「●」印はLiFePO(トリフィライト)の回折線を示し、図2中、「×」印は同定が困難な不純物相の回折線を示している。
`` Generation phase identification ''
The obtained samples of Examples 1 to 4 and Comparative Examples 1 and 2 were phase-identified.
Here, powder X-ray diffraction patterns (charts) of these samples were obtained using an X-ray diffractometer.
The X-ray, CuKa 1 line (wavelength: lambda = 1.5418 Å) with the identification of these samples performed by Hanawaruto method (Hanawait method), it was examined phases of these samples. The powder X-ray diffraction patterns of Examples 1 to 4 and Comparative Examples 1 and 2 are shown in FIG. 1, and the enlarged powder X-ray diffraction pattern of Comparative Example 2 is shown in FIG. In FIG. 1 and FIG. 2, “●” marks indicate diffraction lines of LiFePO 4 (triphyllite), and in FIG. 2, “×” marks indicate diffraction lines of impurity phases that are difficult to identify.

「走査型電子顕微鏡(SEM)による観察」
得られた実施例1〜4及び比較例1、2それぞれの試料のSEM像により、各試料の粒子径を測定し、粒子の状態を観察した。
実施例1のSEM像を図3に、実施例2のSEM像を図4に、実施例3のSEM像を図5に、実施例4のSEM像を図6に、それぞれ示す。また、比較例1のSEM像を図7に、比較例2のSEM像を図8に、それぞれ示している。さらに、実施例1〜4及び比較例1、2それぞれの比表面積及び粒子径を表1に示す。
“Observation with a scanning electron microscope (SEM)”
From the obtained SEM images of Examples 1 to 4 and Comparative Examples 1 and 2, the particle diameter of each sample was measured, and the state of the particles was observed.
The SEM image of Example 1 is shown in FIG. 3, the SEM image of Example 2 is shown in FIG. 4, the SEM image of Example 3 is shown in FIG. 5, and the SEM image of Example 4 is shown in FIG. Further, the SEM image of Comparative Example 1 is shown in FIG. 7, and the SEM image of Comparative Example 2 is shown in FIG. Furthermore, Table 1 shows specific surface areas and particle sizes of Examples 1 to 4 and Comparative Examples 1 and 2, respectively.

「リチウム電池の作製」
実施例1の試料85重量部と、平均一次粒子径が14nm、比表面積が290m−1のカーボンブラック(CB)10重量部を、ポリビニリデンフルオライド(PVdF)5重量部と共に混練し、得られた混練物をアルミニウム(Al)箔上に塗布し、真空乾燥した。その後、圧着し、正極(正の電極)とした。
次いで、この正極を真空乾燥した後、乾燥Ar雰囲気下でステンレススチール(SUS)製の2016コイン型セルを用いて、実施例1のリチウム電池を作製した。なお、負極には金属Liを、セパレーターには多孔質ボリプロピレン膜を、電解質溶液には1MのLiPF溶液を、それぞれ用いた。このLiPF溶液の溶媒としては、炭酸エチレンと炭酸ジエチルとの比が1:1のものを用いた。
"Production of lithium battery"
Kneading 85 parts by weight of the sample of Example 1 and 10 parts by weight of carbon black (CB) having an average primary particle diameter of 14 nm and a specific surface area of 290 m 2 g −1 together with 5 parts by weight of polyvinylidene fluoride (PVdF), The obtained kneaded material was applied on an aluminum (Al) foil and vacuum-dried. Then, it crimped | bonded and it was set as the positive electrode (positive electrode).
Next, after the positive electrode was vacuum-dried, a lithium battery of Example 1 was produced using a 2016 coin type cell made of stainless steel (SUS) in a dry Ar atmosphere. Metal Li was used for the negative electrode, a porous polypropylene film was used for the separator, and a 1M LiPF 6 solution was used for the electrolyte solution. As a solvent for this LiPF 6 solution, a solvent having a ratio of ethylene carbonate to diethyl carbonate of 1: 1 was used.

また、実施例2〜4及び比較例1、2それぞれの試料を用い、実施例1のリチウム電池と全く同様にして実施例2〜4及び比較例1、2それぞれのリチウム電池を作製した。   Moreover, using the samples of Examples 2 to 4 and Comparative Examples 1 and 2, lithium batteries of Examples 2 to 4 and Comparative Examples 1 and 2 were fabricated in exactly the same manner as the lithium battery of Example 1.

「電池充放電試験」
実施例1〜4及び比較例1、2各々のリチウム電池の充放電試験を、カットオフ電圧2−4.5V、充放電レート1Cの定電流(1時間充電の後、1時間放電)下にて実施した。なお、環境温度は、0℃、室温(25℃)の2点とした。
実施例1〜4及び比較例1、2各々の0℃、室温(25℃)それぞれにおける放電容量を表1に示す。
"Battery charge / discharge test"
The charge / discharge test of each of the lithium batteries of Examples 1 to 4 and Comparative Examples 1 and 2 was performed under a constant current (cut off for 1 hour after charging for 1 hour) at a cutoff voltage of 2-4.5V and a charge / discharge rate of 1C. Carried out. In addition, environmental temperature was made into two points, 0 degreeC and room temperature (25 degreeC).
Table 1 shows the discharge capacities of Examples 1 to 4 and Comparative Examples 1 and 2 at 0 ° C. and room temperature (25 ° C.).

Figure 2006261060
Figure 2006261060

以上の結果によれば、実施例1〜4の試料では、AlやMgを添加しても不純物相が生成せず、粒子径が400nm以下の単相のLiFePOが得られたことが分かった。また、これらの試料を用いたリチウム電池では、Alの添加量が増加するのに伴って0℃における放電容量が向上し、特に、実施例4では、MgをAlと併用することにより0℃における放電容量が実施例1〜3のAlのみの添加の場合と比べてさらに向上していることが分かった。 According to the above results, it was found that in the samples of Examples 1 to 4, no impurity phase was generated even when Al or Mg was added, and single-phase LiFePO 4 having a particle diameter of 400 nm or less was obtained. . In addition, in the lithium battery using these samples, the discharge capacity at 0 ° C. was improved as the amount of Al added increased. In particular, in Example 4, Mg was used together with Al at 0 ° C. It was found that the discharge capacity was further improved as compared with the case of adding only Al in Examples 1 to 3.

一方、比較例1の試料では、Alを添加しなかったために、単相のLiFePOは得られたが、0℃における放電容量が実施例1〜3と比べて大きく低下していることが分かった。
また、比較例2の試料では、Alを過剰に添加したために、同定が困難な回折線が若干生じていることが分かった。この回折線は不純物相と考えられる。また、粒子径が200nm以下の単相のLiFePOは得られたが、Alの過剰添加に伴い、粒子が微細化し、比表面積も増大した。
On the other hand, in the sample of Comparative Example 1, since Al was not added, single-phase LiFePO 4 was obtained, but it was found that the discharge capacity at 0 ° C. was greatly reduced as compared with Examples 1-3. It was.
Further, it was found that the sample of Comparative Example 2 produced some diffraction lines that were difficult to identify because of excessive addition of Al. This diffraction line is considered an impurity phase. Moreover, although single-phase LiFePO 4 with a particle size of 200 nm or less was obtained, the particles became finer and the specific surface area increased with the excessive addition of Al.

水を主成分とする溶媒に、Li源、A源(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上)、Al源、PO4源及び有機酸を加えて溶液とし、この溶液を高温高圧下にて反応させることにより、LiAlPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上、x+3y+2z=3、x、y、zは正の数)からなる化合物を主成分とする電極材料を容易に得ることができるものであるから、リチウム電池のさらなる充放電容量(特に、放電容量)の向上、充放電サイクルの安定化、高出力化が可能なのはもちろんのこと、より小型化、軽量化、高容量化が期待される次世代の二次電池に対しても適用することが可能であり、次世代の二次電池の場合、その効果は非常に大きなものである。 Solvents mainly composed of water include Li source, A source (where A is one or more selected from the group of Co, Mn, Ni, Fe, Cu, Cr), Al source, PO4 source, and adding an organic acid to form a solution, by reacting the solution at a high temperature under high pressure, Li x Al y a z PO 4 ( where, a is selected Co, Mn, Ni, Fe, Cu, from the group of Cr In addition, it is possible to easily obtain an electrode material mainly composed of a compound consisting of one or more kinds, x + 3y + 2z = 3, x, y, and z are positive numbers). For next-generation secondary batteries that are expected to be smaller, lighter and have higher capacity, as well as improved capacity (particularly discharge capacity), stable charge / discharge cycles, and higher output. Next generation secondary battery Case, the effect is very large.

本発明の実施例1〜4及び比較例1、2それぞれの試料の粉末X線回折図形を示す図である。It is a figure which shows the powder X-ray-diffraction figure of each sample of Examples 1-4 of this invention, and Comparative Examples 1 and 2. FIG. 比較例2の試料の拡大した粉末X線回折図形を示す図である。It is a figure which shows the powder X-ray-diffraction figure which the sample of the comparative example 2 expanded. 本発明の実施例1の試料の形状を示すSEM像である。It is a SEM image which shows the shape of the sample of Example 1 of this invention. 本発明の実施例2の試料の形状を示すSEM像である。It is a SEM image which shows the shape of the sample of Example 2 of this invention. 本発明の実施例3の試料の形状を示すSEM像である。It is a SEM image which shows the shape of the sample of Example 3 of this invention. 本発明の実施例4の試料の形状を示すSEM像である。It is a SEM image which shows the shape of the sample of Example 4 of this invention. 比較例1の試料の形状を示すSEM像である。3 is an SEM image showing the shape of a sample of Comparative Example 1. 比較例2の試料の形状を示すSEM像である。10 is a SEM image showing the shape of a sample of Comparative Example 2.

Claims (7)

LiAlPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上、x+3y+2z=3、x、y、zは正の数)からなる化合物を主成分とする電極材料の製造方法であって、
水を主成分とする溶媒に、Li源、A源(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上)、Al源、PO源及び有機酸を加えて溶液とし、
次いで、この溶液を高温高圧下にて反応させることを特徴とする電極材料の製造方法。
Li x Al y A z PO 4 ( where, A is Co, Mn, Ni, Fe, Cu, Cr 1 , two or more selected from the group of, x + 3y + 2z = 3 , x, y, z is a positive number A method for producing an electrode material mainly comprising a compound comprising:
In a solvent mainly containing water, Li source, A source (where A is one or more selected from the group of Co, Mn, Ni, Fe, Cu, Cr), Al source, PO 4 source And an organic acid to make a solution,
Next, a method for producing an electrode material, wherein the solution is reacted under high temperature and high pressure.
LiAlPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上、BはMg、Ca、Sr、Sc、Y、Ti、Zr、V、Nb、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Ag、Zn、In、Sn、Sb、希土類元素の群から選択された1種または2種以上かつ前記Aとは異なる、x+3y+2z+n・w=3、x、y、z、wは正の数、nはBの価数)からなる化合物を主成分とする電極材料の製造方法であって、
水を主成分とする溶媒に、Li源、A源(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択された1種または2種以上)、B源(但し、BはMg、Ca、Sr、Sc、Y、Ti、Zr、V、Nb、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Ag、Zn、In、Sn、Sb、希土類元素の群から選択された1種または2種以上かつ前記Aとは異なる)、Al源、PO源及び有機酸を加えて溶液とし、
次いで、この溶液を高温高圧下にて反応させることを特徴とする電極材料の製造方法。
Li x Al y A z B w PO 4 ( where, A is Co, Mn, Ni, Fe, Cu, Cr 1 , two or more selected from the group of, B is Mg, Ca, Sr, Sc, Y , Ti, Zr, V, Nb, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Ag, Zn, In, Sn, Sb, one or more selected from the group of rare earth elements and A method for producing an electrode material comprising as a main component a compound consisting of x + 3y + 2z + n · w = 3, x, y, z, w being a positive number and n being a valence of B, different from A,
Solvents mainly composed of water include Li source, A source (where A is one or more selected from the group of Co, Mn, Ni, Fe, Cu, Cr), B source (provided that B Is Mg, Ca, Sr, Sc, Y, Ti, Zr, V, Nb, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Ag, Zn, In, Sn, Sb, from the group of rare earth elements 1 type or two or more selected and different from A), an Al source, a PO 4 source and an organic acid are added to form a solution,
Next, a method for producing an electrode material, wherein the solution is reacted under high temperature and high pressure.
前記有機酸は、クエン酸、リンゴ酸、マロン酸、アクリル酸、ポリアクリル酸、メタクリル酸、ギ酸、乳酸、酒石酸、マレイン酸、コハク酸の群から選択された1種または2種以上であることを特徴とする請求項1または2記載の電極材料の製造方法。   The organic acid is one or more selected from the group consisting of citric acid, malic acid, malonic acid, acrylic acid, polyacrylic acid, methacrylic acid, formic acid, lactic acid, tartaric acid, maleic acid, and succinic acid. The method for producing an electrode material according to claim 1 or 2. 前記yの範囲は、0.001以上かつ0.1以下であることを特徴とする請求項1、2または3記載の電極材料の製造方法。   The method for producing an electrode material according to claim 1, 2 or 3, wherein the range of y is 0.001 or more and 0.1 or less. 請求項1ないし4のいずれか1項記載の電極材料の製造方法により得られたことを特徴とする電極材料。   An electrode material obtained by the method for producing an electrode material according to any one of claims 1 to 4. 請求項5記載の電極材料を用いてなることを特徴とする電極。   An electrode comprising the electrode material according to claim 5. 請求項6記載の電極を正電極として備えてなることを特徴とするリチウム電池。   A lithium battery comprising the electrode according to claim 6 as a positive electrode.
JP2005080159A 2005-03-18 2005-03-18 Manufacturing method of electrode material, electrode material, electrode, and lithium battery Expired - Fee Related JP4823540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005080159A JP4823540B2 (en) 2005-03-18 2005-03-18 Manufacturing method of electrode material, electrode material, electrode, and lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005080159A JP4823540B2 (en) 2005-03-18 2005-03-18 Manufacturing method of electrode material, electrode material, electrode, and lithium battery

Publications (2)

Publication Number Publication Date
JP2006261060A true JP2006261060A (en) 2006-09-28
JP4823540B2 JP4823540B2 (en) 2011-11-24

Family

ID=37100042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005080159A Expired - Fee Related JP4823540B2 (en) 2005-03-18 2005-03-18 Manufacturing method of electrode material, electrode material, electrode, and lithium battery

Country Status (1)

Country Link
JP (1) JP4823540B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105490A1 (en) * 2007-02-28 2008-09-04 Santoku Corporation Compound having olivine-type structure, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2009032678A (en) * 2007-06-29 2009-02-12 Gs Yuasa Corporation:Kk Cathode active substance and nonaqueous electrolyte battery
JP2009081072A (en) * 2007-09-26 2009-04-16 Furukawa Battery Co Ltd:The Method of manufacturing positive electrode plate for nonaqueous electrolytic liquid secondary battery, and nonaqueous electrolytic liquid secondary battery using positive electrode plate
JP2010218829A (en) * 2009-03-16 2010-09-30 Tdk Corp ACTIVE MATERIAL PARTICLE MAINLY COMPOSED OF LIVOPO4 HAVING alpha TYPE CRYSTAL STRUCTURE, ELECTRODE CONTAINING THE ACTIVE MATERIAL PARTICLE, LITHIUM SECONDARY BATTERY INCLUDING THE ELECTRODE, AND METHOD FOR MANUFACTURING THE ACTIVE MATERIAL PARTICLE
JP2010232091A (en) * 2009-03-27 2010-10-14 Sumitomo Osaka Cement Co Ltd Method for manufacturing positive active material for lithium ion battery, positive active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP5364865B2 (en) * 2011-09-30 2013-12-11 昭和電工株式会社 Method for producing positive electrode active material for lithium secondary battery
JP2015146307A (en) * 2014-02-04 2015-08-13 公立大学法人兵庫県立大学 Positive electrode material consisting of composition-modulated cobalt phosphate lithium compound and a method of manufacturing the same, and high-voltage lithium ion secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095385A (en) * 2002-08-30 2004-03-25 Sumitomo Osaka Cement Co Ltd Method of manufacturing positive electrode material for lithium ion battery and lithium ion battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095385A (en) * 2002-08-30 2004-03-25 Sumitomo Osaka Cement Co Ltd Method of manufacturing positive electrode material for lithium ion battery and lithium ion battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105490A1 (en) * 2007-02-28 2008-09-04 Santoku Corporation Compound having olivine-type structure, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPWO2008105490A1 (en) * 2007-02-28 2010-06-03 株式会社三徳 Particles containing compound having olivine structure, method for producing the same, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP2009032678A (en) * 2007-06-29 2009-02-12 Gs Yuasa Corporation:Kk Cathode active substance and nonaqueous electrolyte battery
JP2009081072A (en) * 2007-09-26 2009-04-16 Furukawa Battery Co Ltd:The Method of manufacturing positive electrode plate for nonaqueous electrolytic liquid secondary battery, and nonaqueous electrolytic liquid secondary battery using positive electrode plate
JP2010218829A (en) * 2009-03-16 2010-09-30 Tdk Corp ACTIVE MATERIAL PARTICLE MAINLY COMPOSED OF LIVOPO4 HAVING alpha TYPE CRYSTAL STRUCTURE, ELECTRODE CONTAINING THE ACTIVE MATERIAL PARTICLE, LITHIUM SECONDARY BATTERY INCLUDING THE ELECTRODE, AND METHOD FOR MANUFACTURING THE ACTIVE MATERIAL PARTICLE
JP2010232091A (en) * 2009-03-27 2010-10-14 Sumitomo Osaka Cement Co Ltd Method for manufacturing positive active material for lithium ion battery, positive active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP5364865B2 (en) * 2011-09-30 2013-12-11 昭和電工株式会社 Method for producing positive electrode active material for lithium secondary battery
US8968594B2 (en) 2011-09-30 2015-03-03 Showa Denko K.K. Production method of positive electrode active material for lithium secondary battery
JP2015146307A (en) * 2014-02-04 2015-08-13 公立大学法人兵庫県立大学 Positive electrode material consisting of composition-modulated cobalt phosphate lithium compound and a method of manufacturing the same, and high-voltage lithium ion secondary battery

Also Published As

Publication number Publication date
JP4823540B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP4703985B2 (en) Method for producing positive electrode active material for lithium battery
Ryu et al. 3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries
JP4654686B2 (en) Carbon-coated Li-containing powder and method for producing the same
US10461312B2 (en) Positive-electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery
JP4926607B2 (en) Electrode material manufacturing method, positive electrode material, and battery
JP6708326B2 (en) Positive electrode material for sodium secondary batteries
Shi et al. Core–shell structured Li [(Ni0. 8Co0. 1Mn0. 1) 0.7 (Ni0. 45Co0. 1Mn0. 45) 0.3] O2 cathode material for high-energy lithium ion batteries
US20160130145A1 (en) Method for making cathode material of lithium ion battery
JP4823540B2 (en) Manufacturing method of electrode material, electrode material, electrode, and lithium battery
Yi et al. Comparison of structure and electrochemical properties for 5 V LiNi 0. 5 Mn 1. 5 O 4 and LiNi 0. 4 Cr 0. 2 Mn 1. 4 O 4 cathode materials
JP2007502249A (en) Boron-substituted lithium insertion compounds, electrode active materials, batteries and electrochromic devices
Wang et al. High capacity spherical Li [Li0. 24Mn0. 55Co0. 14Ni0. 07] O2 cathode material for lithium ion batteries
JP2010232091A (en) Method for manufacturing positive active material for lithium ion battery, positive active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
CN102867953B (en) Method for producing lithium ion battery cathode material by using hydroxide or hydroxyl oxide
JP7167540B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5900852B2 (en) Iron-containing composite phosphate fluoride, method for producing the same, and secondary battery using the same as a positive electrode active material
JP2020009756A (en) Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
Yi et al. Advanced electrochemical performance of LiMn1. 4Cr0. 2Ni0. 4O4 as 5 V cathode material by citric-acid-assisted method
Xue et al. Synthesis and properties of Li2MnO3-based cathode materials for lithium-ion batteries
Kim et al. Solvothermal synthesis-driven quaternary Ni-rich cathode for stability-improved Li-ion batteries
CN114864894B (en) High-pressure-resistant coating modified lithium-rich manganese-based positive electrode material and preparation method and application thereof
JP4401833B2 (en) Method for producing positive electrode active material for lithium battery, positive electrode active material for lithium battery, electrode for lithium battery, and lithium battery
Wu et al. Synthesis and characterization of abundant Ni-doped LiNixMn2− xO4 (x= 0.1–0.5) powders by spray-drying method
JP4651960B2 (en) Method for producing positive electrode active material for lithium battery, positive electrode active material for lithium battery, positive electrode material for lithium battery, and lithium battery
KR101948549B1 (en) Cathode Active Material for Secondary Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R150 Certificate of patent or registration of utility model

Ref document number: 4823540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees