JP2010217867A - Liquid crystal aligning agent, process for forming liquid crystal alignment layer and process for producing liquid crystal display device - Google Patents

Liquid crystal aligning agent, process for forming liquid crystal alignment layer and process for producing liquid crystal display device Download PDF

Info

Publication number
JP2010217867A
JP2010217867A JP2009280139A JP2009280139A JP2010217867A JP 2010217867 A JP2010217867 A JP 2010217867A JP 2009280139 A JP2009280139 A JP 2009280139A JP 2009280139 A JP2009280139 A JP 2009280139A JP 2010217867 A JP2010217867 A JP 2010217867A
Authority
JP
Japan
Prior art keywords
liquid crystal
group
aligning agent
compound
crystal aligning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009280139A
Other languages
Japanese (ja)
Other versions
JP5626510B2 (en
Inventor
Toshiyuki Akiike
利之 秋池
Shoichi Nakada
正一 中田
Tsutomu Kumagai
勉 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2009280139A priority Critical patent/JP5626510B2/en
Publication of JP2010217867A publication Critical patent/JP2010217867A/en
Application granted granted Critical
Publication of JP5626510B2 publication Critical patent/JP5626510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Silicon Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal aligning agent providing a liquid crystal alignment layer which can be given a pretilt angle by an optical alignment method and includes superior temporal stability in given pretilt angle. <P>SOLUTION: The liquid crystal aligning agent includes radiation-sensitive polyorganosiloxane having a structure expressed by formula (1). The radiation-sensitive polyorganosiloxane is a reaction product of, preferably, (a) polyorganosiloxane having an epoxy group and (b) a compound having the structure expressed by formula (1) and a carboxyl group or a compound having a group expressed by formula (2). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、液晶配向剤、液晶配向膜の形成方法および液晶表示素子の製造方法に関する。   The present invention relates to a liquid crystal aligning agent, a method for forming a liquid crystal alignment film, and a method for manufacturing a liquid crystal display element.

従来、正の誘電異方性を有するネマチック型液晶を、液晶配向膜を有する透明電極付き基板でサンドイッチ構造にし、必要に応じて液晶分子の長軸が基板間で0〜360°連続的に捻れるようにしてなる、TN(Twisted Nematic)型、STN(Super Twisted Nematic)型、IPS(In Plane Switching)型等の液晶セルを有する液晶表示素子が知られている(特許文献1および2参照)。
このような液晶セルにおいては、液晶分子を基板面に対し所定の方向に配向させるため、基板表面に液晶配向膜を設ける必要がある。この液晶配向膜は、通常、基板表面に形成された有機膜表面をレーヨン等の布材で一方向にこする方法(ラビング法)により形成されている。しかし、液晶配向膜の形成をラビング処理により行うと、工程内でほこりや静電気が発生し易いため、配向膜表面にほこりが付着して表示不良発生の原因となるという問題があった。特にTFT(Thin Film Transistor)素子を有する基板の場合には、発生した静電気によってTFT素子の回路破壊が起こり、歩留まり低下の原因となるという問題もあった。さらに、今後ますます高精細化される液晶表示素子においては、画素の高密度化に伴い基板表面に凹凸が生じるために、均一にラビング処理を行うことが困難となりつつある。
液晶セルにおける液晶を配向させる別の手段として、基板表面に形成したポリビニルシンナメート、ポリイミド、アゾベンゼン誘導体等の感光性薄膜に偏光または非偏光の放射線を照射することにより、液晶配向能を付与する光配向法が知られている。この方法によれば、静電気やほこりを発生することなく、均一な液晶配向を実現することができる(特許文献3〜13参照)。ここで、TN(Twisted Nematic)型、STN(Super Twisted Nematic)型等の液晶セルにおいては、液晶配向膜は、液晶分子を基板面に対して所定の角度で傾斜配向させる、プレチルト角特性を有する必要がある。光配向法により液晶配向膜を形成する場合においては、プレチルト角は、通常、照射する放射線の基板面への入射方向を基板法線から傾斜させることにより付与される。
Conventionally, a nematic liquid crystal having positive dielectric anisotropy is sandwiched with a substrate with a transparent electrode having a liquid crystal alignment film, and the major axis of the liquid crystal molecules is continuously twisted between 0 and 360 ° between the substrates as necessary. There are known liquid crystal display elements having liquid crystal cells such as TN (Twisted Nematic) type, STN (Super Twisted Nematic) type, and IPS (In Plane Switching) type (see Patent Documents 1 and 2). .
In such a liquid crystal cell, it is necessary to provide a liquid crystal alignment film on the substrate surface in order to align liquid crystal molecules in a predetermined direction with respect to the substrate surface. This liquid crystal alignment film is usually formed by a method (rubbing method) in which the organic film surface formed on the substrate surface is rubbed in one direction with a cloth material such as rayon. However, when the liquid crystal alignment film is formed by a rubbing process, dust and static electricity are likely to be generated in the process, so that there is a problem that dust adheres to the alignment film surface and causes display defects. In particular, in the case of a substrate having a TFT (Thin Film Transistor) element, there has been a problem that the circuit damage of the TFT element occurs due to the generated static electricity, resulting in a decrease in yield. Furthermore, in liquid crystal display elements that will be further refined in the future, unevenness is generated on the substrate surface as the density of pixels increases, and it is becoming difficult to perform rubbing treatment uniformly.
As another means of aligning the liquid crystal in the liquid crystal cell, light that imparts liquid crystal alignment ability by irradiating a photosensitive thin film such as polyvinyl cinnamate, polyimide, or azobenzene derivative formed on the substrate surface with polarized or non-polarized radiation. Orientation methods are known. According to this method, uniform liquid crystal alignment can be realized without generating static electricity or dust (see Patent Documents 3 to 13). Here, in a liquid crystal cell of TN (Twisted Nematic) type, STN (Super Twisted Nematic) type, etc., the liquid crystal alignment film has a pretilt angle characteristic in which liquid crystal molecules are tilted and aligned at a predetermined angle with respect to the substrate surface. There is a need. In the case of forming a liquid crystal alignment film by the photo-alignment method, the pretilt angle is usually given by tilting the incident direction of the irradiated radiation to the substrate surface from the substrate normal.

一方、上記とは別の液晶表示素子の動作モードとして、負の誘電異方性を有する液晶分子を基板に垂直に配向させる垂直(ホメオトロピック)配向モードによるVA(Vertical Alignment)型の液晶セルも知られている。この動作モードでは、基板間に電圧を印加して液晶分子が基板に平行な方向に向かって傾く際に、液晶分子が基板法線方向から基板面内の一方向に向かって傾くようにする必要がある。このための手段として、例えば、基板表面に突起を設ける方法、透明電極にストライプを設ける方法、ラビング配向膜を用いることにより液晶分子を基板法線方向から基板面内の一方向に向けてわずかに傾けておく(プレチルトさせる)方法等が提案されている。
前記光配向法は、垂直配向モードの液晶セルにおいて液晶分子の傾き方向を制御する方法としても有用であることが知られている。すなわち、光配向法により配向規制能およびプレチルト角発現性を付与した垂直配向性の液晶配向膜を用いることにより、電圧印加時の液晶分子の傾き方向を均一に制御できることが知られている(特許文献11〜12および14〜16参照)。
このように、光配向法により製造した液晶配向膜は、各種の液晶表示素子に有効に適用されうるものである。しかしながら、これらの技術により形成された液晶配向膜は、形成当初は良好なプレチルト角を示したとしても、経時的にプレチルト角発現性が失われる現象が起こり、プレチルト角の経時的安定性に欠けることが指摘されている。
On the other hand, as an operation mode of a liquid crystal display element different from the above, a VA (Vertical Alignment) type liquid crystal cell in a vertical (homeotropic) alignment mode in which liquid crystal molecules having negative dielectric anisotropy are aligned perpendicularly to a substrate is also available. Are known. In this operation mode, when a voltage is applied between the substrates and the liquid crystal molecules are tilted in the direction parallel to the substrate, the liquid crystal molecules must be tilted from the substrate normal direction to one direction in the substrate surface. There is. As a means for this, for example, a method of providing protrusions on the substrate surface, a method of providing stripes on the transparent electrode, or using a rubbing alignment film, liquid crystal molecules are slightly directed from the substrate normal direction to one direction in the substrate surface. A method of tilting (pretilting) has been proposed.
The photo-alignment method is known to be useful as a method for controlling the tilt direction of liquid crystal molecules in a vertical alignment mode liquid crystal cell. That is, it is known that the tilt direction of liquid crystal molecules during voltage application can be uniformly controlled by using a vertical alignment liquid crystal alignment film imparted with alignment regulating ability and pretilt angle expression by a photo alignment method (patent) Reference 11-12 and 14-16).
Thus, the liquid crystal alignment film manufactured by the photo-alignment method can be effectively applied to various liquid crystal display elements. However, even if the liquid crystal alignment film formed by these techniques exhibits a good pretilt angle at the beginning of formation, a phenomenon in which the pretilt angle develops over time occurs and the temporal stability of the pretilt angle is lacking. It has been pointed out.

ところで、垂直配向モードの液晶パネルにおいて視野角の拡大を図るべく、液晶パネル中に突起物を形成し、これにより液晶分子の倒れ込み方向を規制するMVA(Multi−Domain Vertical Alignment)型パネルが知られている。しかし、この方式によると、突起物に由来する透過率およびコントラストの不足が不可避であり、さらに液晶分子の応答速度が遅いという問題がある。
このようなMVA型パネルの問題点を解決すべく、近年、PSA(Polymer Sustained Alignment)モードが提案された。PSAモードは、パターン状導電膜付き基板およびパターンを有さない導電膜付き基板からなる一対の基板の間隙、あるいは2枚のパターン状導電膜付き基板からなる一対の基板の間隙に重合性の化合物を含有する液晶組成物を狭持し、導電膜間に電圧を印加した状態で紫外線を照射して重合性化合物を重合し、これによりプレチルト角特性を発現して液晶の配向方向を制御しようとする技術である。この技術によると、導電膜を特定の構成とすることにより視野角の拡大および液晶分子応答の高速化を図ることができ、MVA型パネルにおいて不可避であった透過率およびコントラストの不足の問題も解消される。しかしながら、前記重合性化合物の重合のために、例えば100,000J/mといった多量の紫外線の照射が必要であり、そのため液晶分子が分解する不具合が生ずるほか、紫外線照射によっても重合しなかった未反応化合物が液晶層中に残存することとなり、これらが相俟って表示ムラが発生し、電圧保持特性に悪影響を及ぼし、あるいはパネルの長期信頼性に問題が生じることが明らかとなり、未だ実用には至っていない。
By the way, in order to increase the viewing angle in a vertical alignment mode liquid crystal panel, there is known an MVA (Multi-Domain Vertical Alignment) type panel in which protrusions are formed in the liquid crystal panel, thereby restricting the tilting direction of liquid crystal molecules. ing. However, according to this method, the lack of transmittance and contrast due to the protrusions is unavoidable, and there is a problem that the response speed of the liquid crystal molecules is slow.
Recently, a PSA (Polymer Sustained Alignment) mode has been proposed in order to solve such problems of the MVA type panel. The PSA mode is a polymerizable compound in a gap between a pair of substrates composed of a substrate with a patterned conductive film and a substrate with a conductive film having no pattern, or between a pair of substrates composed of two substrates with a patterned conductive film. An attempt is made to control the alignment direction of the liquid crystal by expressing a pretilt angle characteristic by irradiating ultraviolet rays in a state where a voltage is applied between the conductive films while sandwiching the liquid crystal composition containing the liquid crystal and polymerizing the polymerizable compound. Technology. According to this technology, it is possible to increase the viewing angle and speed up the liquid crystal molecule response by making the conductive film into a specific configuration, and also solve the problem of lack of transmittance and contrast that was inevitable in the MVA type panel. Is done. However, in order to polymerize the polymerizable compound, it is necessary to irradiate a large amount of ultraviolet light, for example, 100,000 J / m 2. It becomes clear that the reactive compounds remain in the liquid crystal layer, which together cause display unevenness, adversely affect the voltage holding characteristics, or cause problems in the long-term reliability of the panel. Has not reached.

これらに対し非特許文献3は、反応性メソゲンを含有するポリイミド系液晶配向剤から形成された液晶配向膜を用いる方法を提案している。非特許文献3によると、かかる方法により形成された液晶配向膜を具備する液晶表示素子は、液晶分子の応答が高速であるという。しかしながら非特許文献3には、いかなる反応性メソゲンをいかなる量で使用すべきかについての指針は全く記載されておらず、また必要な紫外線照射量も依然として多く、表示特性、特に電圧保持特性に関する懸念は払拭されていない。   On the other hand, Non-Patent Document 3 proposes a method using a liquid crystal alignment film formed from a polyimide liquid crystal aligning agent containing a reactive mesogen. According to Non-Patent Document 3, a liquid crystal display element including a liquid crystal alignment film formed by such a method is said to respond quickly to liquid crystal molecules. However, Non-Patent Document 3 does not provide any guidance on what kind of reactive mesogen should be used, and the amount of necessary UV irradiation is still large, and there are concerns regarding display characteristics, particularly voltage holding characteristics. Not wiped out.

特開昭56−91277号公報JP 56-91277 A 特開平1−120528号公報JP-A-1-120528 特開平6−287453号公報JP-A-6-287453 特開平10−251646号公報JP-A-10-251646 特開平11−2815号公報Japanese Patent Laid-Open No. 11-2815 特開平11−152475号公報JP-A-11-152475 特開2000−144136号公報JP 2000-144136 A 特開2000−319510号公報JP 2000-319510 A 特開2000−281724号公報JP 2000-281724 A 特開平9−297313号公報JP-A-9-297313 特開2003−307736号公報JP 2003-307736 A 特開2004−163646号公報JP 2004-163646 A 特開2002−250924号公報JP 2002-250924 A 特開2004−83810号公報JP 2004-83810 A 特開平9−211468号公報Japanese Patent Laid-Open No. 9-21468 特開2003−114437号公報JP 2003-114437 A 特開平5−107544号公報JP-A-5-107544

Chemical Reviews、95巻、p1409(1995年)Chemical Reviews, Volume 95, p1409 (1995) T. J. Scheffer et. al. J. Appl. Phys. vo. 19, p2013(1980)T.A. J. et al. Scheffer et. al. J. et al. Appl. Phys. vo. 19, p2013 (1980) Y.−J. Lee et. al., SID 09 DIGEST, p666(2009)Y. -J. Lee et. al. , SID 09 DIGEST, p666 (2009)

本発明は、上記の事情に鑑みてなされたものであり、その目的は、光配向法によりプレチルト角を付与することができ、付与されたプレチルト角の経時的安定性に優れる液晶配向膜を与える液晶配向剤を提供することを目的とする。
本発明の別の目的は、上記液晶配向剤から液晶配向膜を形成する方法を提供することにある。
本発明のさらに別の目的は、電気特性および長期信頼性に優れる液晶表示素子を製造する方法を提供することにある。
本発明のさらに別の目的および利点は、以下の説明から明らかになろう。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a liquid crystal alignment film that can impart a pretilt angle by a photo-alignment method and is excellent in temporal stability of the applied pretilt angle. It aims at providing a liquid crystal aligning agent.
Another object of the present invention is to provide a method for forming a liquid crystal alignment film from the liquid crystal alignment agent.
Still another object of the present invention is to provide a method for manufacturing a liquid crystal display device having excellent electrical characteristics and long-term reliability.
Further objects and advantages of the present invention will become apparent from the following description.

本発明によれば、本発明の上記目的および利点は、第一に、
下記式(1)
In accordance with the present invention, the above objects and advantages of the present invention are primarily as follows:
Following formula (1)

で表される構造を有する感放射線性ポリオルガノシロキサンを含有する液晶配向剤によって達成される。
上記の液晶配向剤は、TN型、STN型、IPS型、VA型等の公知の構造の液晶表示素子の液晶配向膜を、少ない露光量の光配向法によって形成するために好適に使用することができるほか、MVAパネルの問題点が解消された新規な液晶表示素子を製造するために用いることができる。
従って本発明の上記目的および利点は、第二に、
上記の液晶配向剤を塗布して塗膜を形成し、該塗膜に放射線を照射する工程を経る液晶配向膜の形成方法によって達成され、第三に、
導電膜を有する一対の基板の該導電膜上に、それぞれ、上記の液晶配向剤を塗布して塗膜を形成し、
前記塗膜を形成した一対の基板の前記塗膜が、液晶分子の層を介して相対して対向配置した構成の液晶セルを形成し、
前記一対の基板の有する導電膜間に電圧を印加した状態で前記液晶セルに光照射する工程を経る、液晶表示素子の製造方法によって達成される。
It is achieved by a liquid crystal aligning agent containing a radiation-sensitive polyorganosiloxane having a structure represented by:
The above liquid crystal aligning agent is preferably used for forming a liquid crystal alignment film of a liquid crystal display element having a known structure such as TN type, STN type, IPS type, VA type, etc. by a photo-alignment method with a small exposure amount. In addition, it can be used to manufacture a novel liquid crystal display element in which the problems of the MVA panel are solved.
Therefore, the above objects and advantages of the present invention are secondly,
The liquid crystal aligning agent is applied to form a coating film, which is achieved by a method of forming a liquid crystal alignment film through a step of irradiating the coating film with radiation,
On the conductive film of a pair of substrates having a conductive film, respectively, the liquid crystal aligning agent is applied to form a coating film,
The coating film of the pair of substrates on which the coating film is formed forms a liquid crystal cell having a configuration in which the coating film is opposed to each other through a layer of liquid crystal molecules,
This is achieved by a method for manufacturing a liquid crystal display element, which includes a step of irradiating light to the liquid crystal cell in a state where a voltage is applied between conductive films of the pair of substrates.

本発明によれば、少ない露光量の光配向法によりプレチルト角を付与することができ、付与されたプレチルト角の経時的安定性に優れる液晶配向膜を与える液晶配向剤が提供される。
上記本発明の液晶配向剤より形成された液晶配向膜を具備する液晶表示素子は、長期信頼性に優れるものであるため、各種の表示装置に好適に適用することができる。
また、上記の本発明の液晶表示素子の製造方法によって製造された液晶表示素子は、視野角が広く、液晶分子の応答速度が速く、良好な電気特性ならびに十分な透過率およびコントラストを示し、表示特定に優れるうえ、長時間連続駆動しても表示特性が損なわれることがない。
さらに、本発明の方法によると、照射に必要な光の量が少なくてすむため、液晶配向膜および液晶表示素子の製造コストの削減に資する。
ADVANTAGE OF THE INVENTION According to this invention, the liquid crystal aligning agent which can provide a pretilt angle by the photo-alignment method of a small exposure amount, and provides the liquid crystal aligning film excellent in the temporal stability of the provided pretilt angle is provided.
Since the liquid crystal display element provided with the liquid crystal aligning film formed from the liquid crystal aligning agent of the said invention is excellent in long-term reliability, it can be applied suitably for various display apparatuses.
In addition, the liquid crystal display element manufactured by the above-described method for manufacturing a liquid crystal display element of the present invention has a wide viewing angle, a high response speed of liquid crystal molecules, good electrical characteristics, sufficient transmittance and contrast, and display. In addition to being excellent in particular, the display characteristics are not impaired even when driven continuously for a long time.
Furthermore, according to the method of the present invention, the amount of light required for irradiation can be reduced, which contributes to a reduction in manufacturing costs of the liquid crystal alignment film and the liquid crystal display element.

実施例42において製造した、パターニングされた透明導電膜を有する液晶セルにおける透明導電膜のパターンを示す説明図である。It is explanatory drawing which shows the pattern of the transparent conductive film in the liquid crystal cell which has the patterned transparent conductive film manufactured in Example 42.

本発明の液晶配向剤は、上記式(1)で表される構造を有する感放射線性ポリオルガノシロキサンを含有する。
<感放射線性ポリオルガノシロキサン>
本発明の液晶配向剤に含有される感放射線性ポリオルガノシロキサンは、上記式(1)で表される構造を有するものである。
本発明の液晶配向剤に含有される感放射線性ポリオルガノシロキサンにおける上記式(1)で表される構造の含有割合は、0.2〜6ミリモル/g−ポリマーであることが好ましく、0.3〜5ミリモル/g−ポリマーであることがより好ましい。
本発明の液晶配向剤に含有される感放射線性ポリオルガノシロキサンは、上記式(1)で表される構造のほかに、さらにエポキシ基を有することが好ましい。この場合、感放射線性ポリオルガノシロキサンのエポキシ当量は、好ましくは150g/モル以上であり、より好ましくは200〜10,000g/モルであり、さらに200〜2,000g/モルであることが好ましい。このような割合でエポキシ当量の感放射線性ポリオルガノシロキサンを用いることにより、本発明の液晶配向剤は、液晶配向剤の保存安定性を損なうことなく、液晶配向性により優れ、プレチルト角の経時的安定性に優れる液晶配向膜を形成しうることとなり、好ましい。
本発明の液晶配向剤に含有される感放射線性ポリオルガノシロキサンにつき、ゲルパーミエーションクロマトグラフィーによって測定したポリスチレン換算の重量平均分子量は、500〜1,000,000であることが好ましく、1,000〜100,000であることがより好ましく、特に2,000〜50,000であることが好ましい。
The liquid crystal aligning agent of this invention contains the radiation sensitive polyorganosiloxane which has a structure represented by the said Formula (1).
<Radiation sensitive polyorganosiloxane>
The radiation-sensitive polyorganosiloxane contained in the liquid crystal aligning agent of the present invention has a structure represented by the above formula (1).
The content ratio of the structure represented by the above formula (1) in the radiation-sensitive polyorganosiloxane contained in the liquid crystal aligning agent of the present invention is preferably 0.2 to 6 mmol / g-polymer. More preferably, it is 3-5 mmol / g-polymer.
The radiation-sensitive polyorganosiloxane contained in the liquid crystal aligning agent of the present invention preferably further has an epoxy group in addition to the structure represented by the above formula (1). In this case, the epoxy equivalent of the radiation-sensitive polyorganosiloxane is preferably 150 g / mol or more, more preferably 200 to 10,000 g / mol, and further preferably 200 to 2,000 g / mol. By using an epoxy equivalent radiation-sensitive polyorganosiloxane at such a ratio, the liquid crystal aligning agent of the present invention is superior in liquid crystal aligning property without deteriorating the storage stability of the liquid crystal aligning agent, and the pretilt angle over time. A liquid crystal alignment film having excellent stability can be formed, which is preferable.
Regarding the radiation-sensitive polyorganosiloxane contained in the liquid crystal aligning agent of the present invention, the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography is preferably 500 to 1,000,000, and 1,000. More preferably, it is ˜100,000, and particularly preferably 2,000 to 50,000.

<感放射線性ポリオルガノシロキサンの合成>
本発明の液晶配向剤に含有される感放射線性ポリオルガノシロキサンは、上記の如きものである限り、どのような方法によって合成されたものを用いてもよい。本発明の液晶配向剤に含有される感放射線性ポリオルガノシロキサンの合成方法としては、例えば
上記式(1)で表される構造を有する加水分解性シラン化合物、または該加水分解性シラン化合物とその他の加水分解性シラン化合物との混合物を加水分解および縮合する方法、
(a)エポキシ基を有するポリオルガノシロキサン(以下、「エポキシ基を有するポリオルガノシロキサン(a)」という。)と、
(b)上記式(1)で表される構造およびカルボキシル基を有する化合物または下記式(2)
<Synthesis of radiation-sensitive polyorganosiloxane>
The radiation-sensitive polyorganosiloxane contained in the liquid crystal aligning agent of the present invention may be synthesized by any method as long as it is as described above. Examples of the method for synthesizing the radiation-sensitive polyorganosiloxane contained in the liquid crystal aligning agent of the present invention include a hydrolyzable silane compound having a structure represented by the above formula (1), or the hydrolyzable silane compound and others. Hydrolyzing and condensing a mixture of a hydrolyzable silane compound with
(A) a polyorganosiloxane having an epoxy group (hereinafter referred to as “polyorganosiloxane having an epoxy group (a)”);
(B) A compound having a structure and a carboxyl group represented by the above formula (1) or the following formula (2)

で表される基を有する化合物(以下、「化合物(b)」という。)とを反応させる方法等によることができる。
これらのうち、原料化合物の合成の容易性、反応の容易性等の観点から、後者の方法によることが好ましい。
以下、本発明の液晶配向剤に含有される感放射線性ポリオルガノシロキサンを合成するための好ましい方法である、エポキシ基を有するポリオルガノシロキサン(a)と、化合物(b)との反応方法について説明する。
[エポキシ基を有するポリオルガノシロキサン(a)]
エポキシ基を有するポリオルガノシロキサン(a)におけるエポキシ基は、酸化エチレン骨格または1,2−エポキシシクロアルカン骨格が、直接に、または途中が酸素原子によって中断されていてもよいアルキレンを介して、ケイ素原子に結合している基(エポキシ基を有する基)に含まれるものとしてポリオルガノシロキサン中に存在することが好ましい。このようなエポキシ基を有する基としては、例えば下記式(X−1)または(X−2)
Or the like (hereinafter referred to as “compound (b)”).
Of these, the latter method is preferred from the viewpoints of ease of synthesis of the raw material compound, ease of reaction, and the like.
Hereinafter, the reaction method of the polyorganosiloxane (a) having an epoxy group and the compound (b), which is a preferred method for synthesizing the radiation-sensitive polyorganosiloxane contained in the liquid crystal aligning agent of the present invention, will be described. To do.
[Polyorganosiloxane having epoxy group (a)]
The epoxy group in the polyorganosiloxane (a) having an epoxy group is an ethylene oxide skeleton or a 1,2-epoxycycloalkane skeleton directly or via an alkylene which may be interrupted by an oxygen atom. It is preferably present in the polyorganosiloxane as contained in a group bonded to an atom (group having an epoxy group). Examples of the group having such an epoxy group include the following formula (X 1 -1) or (X 1 -2)

(式(X−1)および(X−2)において、「*」は、それぞれ、結合手であることを示す。)
で表される基であることが好ましい。
エポキシ基を有するポリオルガノシロキサン(a)のエポキシ当量は、好ましくは100〜10,000g/モルであり、より好ましくは150〜1,000g/モルであり、さらに150〜300g/モルであることが好ましい。
エポキシ基を有するポリオルガノシロキサン(a)につき、ゲルパーミエーションクロマトグラフィーによって測定したポリスチレン換算の重量平均分子量は、500〜100,000であることが好ましく、1,000〜10,000であることがより好ましく、特に1,000〜5,000であることが好ましい。
このような、エポキシ基を有するポリオルガノシロキサンは、例えばエポキシ基を有するシラン化合物、またはエポキシ基を有するシラン化合物と他のシラン化合物の混合物を、好ましくは適当な有機溶媒、水および触媒の存在下において加水分解および縮合することにより合成することができる。 上記エポキシ基を有するシラン化合物としては、例えば3−グリシジロキシプロピルトリメトキシシラン、3−グリシジロキシプロピルトリエトキシシラン、3−グリシジロキシプロピルメチルジメトキシシラン、3−グリシジロキシプロピルメチルジエトキシシラン、3−グリシジロキシプロピルジメチルメトキシシラン、3−グリシジロキシプロピルジメチルエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等を挙げることができる。
(In formulas (X 1 -1) and (X 1 -2), “*” indicates a bond, respectively.)
It is preferable that it is group represented by these.
The epoxy equivalent of the polyorganosiloxane (a) having an epoxy group is preferably 100 to 10,000 g / mol, more preferably 150 to 1,000 g / mol, and further 150 to 300 g / mol. preferable.
Regarding the polyorganosiloxane (a) having an epoxy group, the polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography is preferably 500 to 100,000, and preferably 1,000 to 10,000. More preferably, it is preferably 1,000 to 5,000.
Such polyorganosiloxane having an epoxy group is, for example, a silane compound having an epoxy group or a mixture of a silane compound having an epoxy group and another silane compound, preferably in the presence of a suitable organic solvent, water and a catalyst. Can be synthesized by hydrolysis and condensation. Examples of the silane compound having an epoxy group include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropylmethyldimethoxysilane, and 3-glycidyloxypropylmethyldiethoxy. Silane, 3-glycidyloxypropyldimethylmethoxysilane, 3-glycidyloxypropyldimethylethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxy A silane etc. can be mentioned.

上記他のシラン化合物としては、例えばテトラクロロシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン、テトラ−n−ブトキシラン、テトラ−sec−ブトキシシラン、トリクロロシラン、トリメトキシシラン、トリエトキシシラン、トリ−n−プロポキシシラン、トリ−i−プロポキシシラン、トリ−n−ブトキシシラン、トリ−sec−ブトキシシラン、フルオロトリクロロシラン、フルオロトリメトキシシラン、フルオロトリエトキシシラン、フルオロトリ−n−プロポキシシラン、フルオロトリ−i−プロポキシシラン、フルオロトリ−n−ブトキシシラン、フルオロトリ−sec−ブトキシシラン、メチルトリクロロシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリ−i−プロポキシシラン、メチルトリ−n−ブトキシシラン、メチルトリ−sec−ブトキシシラン、2−(トリフルオロメチル)エチルトリクロロシシラン、2−(トリフルオロメチル)エチルトリメトキシシラン、2−(トリフルオロメチル)エチルトリエトキシシラン、2−(トリフルオロメチル)エチルトリ−n−プロポキシシラン、2−(トリフルオロメチル)エチルトリ−i−プロポキシシラン、2−(トリフルオロメチル)エチルトリ−n−ブトキシシラン、2−(トリフルオロメチル)エチルトリ−sec−ブトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリクロロシラン、2−(パーフルオロ−n−ヘキシル)エチルトリメトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリエトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−n−プロポキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−i−プロポキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−n−ブトキシシラン、2−(パーフルオロ−n−ヘキシル)エチルトリ−sec−ブトキシシラン、   Examples of the other silane compounds include tetrachlorosilane, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, trichlorosilane, Trimethoxysilane, triethoxysilane, tri-n-propoxysilane, tri-i-propoxysilane, tri-n-butoxysilane, tri-sec-butoxysilane, fluorotrichlorosilane, fluorotrimethoxysilane, fluorotriethoxysilane, Fluorotri-n-propoxysilane, fluorotri-i-propoxysilane, fluorotri-n-butoxysilane, fluorotri-sec-butoxysilane, methyltrichlorosilane, methyltrimethoxysilane, Rutriethoxysilane, methyltri-n-propoxysilane, methyltri-i-propoxysilane, methyltri-n-butoxysilane, methyltri-sec-butoxysilane, 2- (trifluoromethyl) ethyltrichlorosilane, 2- (trifluoromethyl) ) Ethyltrimethoxysilane, 2- (trifluoromethyl) ethyltriethoxysilane, 2- (trifluoromethyl) ethyltri-n-propoxysilane, 2- (trifluoromethyl) ethyltri-i-propoxysilane, 2- (tri Fluoromethyl) ethyltri-n-butoxysilane, 2- (trifluoromethyl) ethyltri-sec-butoxysilane, 2- (perfluoro-n-hexyl) ethyltrichlorosilane, 2- (perfluoro-n-hexyl) ethyltri Methoxy Lan, 2- (perfluoro-n-hexyl) ethyltriethoxysilane, 2- (perfluoro-n-hexyl) ethyltri-n-propoxysilane, 2- (perfluoro-n-hexyl) ethyltri-i-propoxysilane 2- (perfluoro-n-hexyl) ethyltri-n-butoxysilane, 2- (perfluoro-n-hexyl) ethyltri-sec-butoxysilane,

2−(パーフルオロ−n−オクチル)エチルトリクロロシラン、2−(パーフルオロ−n−オクチル)エチルトリメトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリエトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−n−プロポキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−i−プロポキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−n−ブトキシシラン、2−(パーフルオロ−n−オクチル)エチルトリ−sec−ブトキシシラン、ヒドロキシメチルトリクロロシラン、ヒドロキシメチルトリメトキシシラン、ヒドロキシエチルトリメトキシシラン、ヒドロキシメチルトリ−n−プロポキシシラン、ヒドロキシメチルトリ−i−プロポキシシラン、ヒドロキシメチルトリ−n−ブトキシシラン、ヒドロキシメチルトリ−sec−ブトキシシラン、3−(メタ)アクリロキシプロピルトリクロロシラン、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルトリエトキシシラン、3−(メタ)アクリロキシプロピルトリ−n−プロポキシシラン、3−(メタ)アクリロキシプロピルトリ−i−プロポキシシラン、3−(メタ)アクリロキシプロピルトリ−n−ブトキシシラン、3−(メタ)アクリロキシプロピルトリ−sec−ブトキシシラン、3−メルカプトプロピルトリクロロシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルトリ−n−プロポキシシラン、3−メルカプトプロピルトリ−i−プロポキシシラン、3−メルカプトプロピルトリ−n−ブトキシシラン、3−メルカプトプロピルトリ−sec−ブトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ−n−プロポキシシラン、ビニルトリ−i−プロポキシシラン、ビニルトリ−n−ブトキシシラン、ビニルトリ−sec−ブトキシシラン、アリルトリクロロシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリ−n−プロポキシシラン、アリルトリ−i−プロポキシシラン、アリルトリ−n−ブトキシシラン、アリルトリ−sec−ブトキシシラン、フェニルトリクロロシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリ−n−プロポキシシラン、フェニルトリ−i−プロポキシシラン、フェニルトリ−n−ブトキシシラン、フェニルトリ−sec−ブトキシシラン、メチルジクロロシラン、メチルジメトキシシラン、メチルジエトキシシラン、メチルジ−n−プロポキシシラン、メチルジ−i−プロポキシシラン、メチルジ−n−ブトキシシラン、メチルジ−sec−ブトキシシラン、ジメチルジクロロシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ−n−プロポキシシラン、ジメチルジ−i−プロポキシシラン、ジメチルジ−n−ブトキシシラン、ジメチルジ−sec−ブトキシシラン、 2- (perfluoro-n-octyl) ethyltrichlorosilane, 2- (perfluoro-n-octyl) ethyltrimethoxysilane, 2- (perfluoro-n-octyl) ethyltriethoxysilane, 2- (perfluoro- n-octyl) ethyltri-n-propoxysilane, 2- (perfluoro-n-octyl) ethyltri-i-propoxysilane, 2- (perfluoro-n-octyl) ethyltri-n-butoxysilane, 2- (perfluoro) -N-octyl) ethyltri-sec-butoxysilane, hydroxymethyltrichlorosilane, hydroxymethyltrimethoxysilane, hydroxyethyltrimethoxysilane, hydroxymethyltri-n-propoxysilane, hydroxymethyltri-i-propoxysilane, hydroxymethyltri − -Butoxysilane, hydroxymethyltri-sec-butoxysilane, 3- (meth) acryloxypropyltrichlorosilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3- (Meth) acryloxypropyltri-n-propoxysilane, 3- (meth) acryloxypropyltri-i-propoxysilane, 3- (meth) acryloxypropyltri-n-butoxysilane, 3- (meth) acryloxy Propyltri-sec-butoxysilane, 3-mercaptopropyltrichlorosilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyltri-n-propoxysilane, 3-mercaptopropyltri-i- Lopoxysilane, 3-mercaptopropyltri-n-butoxysilane, 3-mercaptopropyltri-sec-butoxysilane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, Vinyltri-n-propoxysilane, vinyltri-i-propoxysilane, vinyltri-n-butoxysilane, vinyltri-sec-butoxysilane, allyltrichlorosilane, allyltrimethoxysilane, allyltriethoxysilane, allyltri-n-propoxysilane, allyltri -I-propoxysilane, allyltri-n-butoxysilane, allyltri-sec-butoxysilane, phenyltrichlorosilane, phenyltrimethoxysilane, Phenyltriethoxysilane, phenyltri-n-propoxysilane, phenyltri-i-propoxysilane, phenyltri-n-butoxysilane, phenyltri-sec-butoxysilane, methyldichlorosilane, methyldimethoxysilane, methyldiethoxysilane, Methyldi-n-propoxysilane, methyldi-i-propoxysilane, methyldi-n-butoxysilane, methyldi-sec-butoxysilane, dimethyldichlorosilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-propoxysilane, dimethyldi- i-propoxysilane, dimethyldi-n-butoxysilane, dimethyldi-sec-butoxysilane,

(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジクロロシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジメトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジエメトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−n−プロポキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−i−プロポキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−n−ブトキシシラン、(メチル)〔2−(パーフルオロ−n−オクチル)エチル〕ジ−sec−ブトキシシラン、(メチル)(3−メルカプトプロピル)ジクロロシラン、(メチル)(3−メルカプトプロピル)ジメトキシシラン、(メチル)(3−メルカプトプロピル)ジエトキシシラン、(メチル)(3−メルカプトプロピル)ジ−n−プロポキシシラン、(メチル)(3−メルカプトプロピル)ジ−i−プロポキシシラン、(メチル)(3−メルカプトプロピル)ジ−n−ブトキシシラン、(メチル)(3−メルカプトプロピル)ジ−sec−ブトキシシラン、(メチル)(ビニル)ジクロロシラン、(メチル)(ビニル)ジメトキシシラン、(メチル)(ビニル)ジエトキシシラン、(メチル)(ビニル)ジ−n−プロポキシシラン、(メチル)(ビニル)ジ−i−プロポキシシラン、(メチル)(ビニル)ジ−n−ブトキシシラン、(メチル)(ビニル)ジ−sec−ブトキシシラン、ジビニルジクロロシラン、ジビニルジメトキシシラン、ジビニルジエトキシシラン、ジビニルジ−n−プロポキシシラン、ジビニルジ−i−プロポキシシラン、ジビニルジ−n−ブトキシシラン、ジビニルジ−sec−ブトキシシラン、ジフェニルジクロロシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジ−n−プロポキシシラン、ジフェニルジ−i−プロポキシシラン、ジフェニルジ−n−ブトキシシラン、ジフェニルジ−sec−ブトキシシラン、クロロジメチルシラン、メトキシジメチルシラン、エトキシジメチルシラン、クロロトリメチルシラン、ブロモトリメチルシラン、ヨードトリメチルシラン、メトキシトリメチルシラン、エトキシトリメチルシラン、n−プロポキシトリメチルシラン、i−プロポキシトリメチルシラン、n−ブトキシトリメチルシラン、sec−ブトキシトリメチルシラン、t−ブトキシトリメチルシラン、(クロロ)(ビニル)ジメチルシラン、(メトキシ)(ビニル)ジメチルシラン、(エトキシ)(ビニル)ジメチルシラン、(クロロ)(メチル)ジフェニルシラン、(メトキシ)(メチル)ジフェニルシラン、(エトキシ)(メチル)ジフェニルシラン等のケイ素原子を1個有するシラン化合物のほか、 (Methyl) [2- (perfluoro-n-octyl) ethyl] dichlorosilane, (methyl) [2- (perfluoro-n-octyl) ethyl] dimethoxysilane, (methyl) [2- (perfluoro-n- Octyl) ethyl] dimethoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-n-propoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-i -Propoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-n-butoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-sec-butoxysilane, (Methyl) (3-mercaptopropyl) dichlorosilane, (methyl) (3-mercaptopropyl) dimethoxysilane, (methyl) (3-mercapto Propyl) diethoxysilane, (methyl) (3-mercaptopropyl) di-n-propoxysilane, (methyl) (3-mercaptopropyl) di-i-propoxysilane, (methyl) (3-mercaptopropyl) di-n -Butoxysilane, (methyl) (3-mercaptopropyl) di-sec-butoxysilane, (methyl) (vinyl) dichlorosilane, (methyl) (vinyl) dimethoxysilane, (methyl) (vinyl) diethoxysilane, (methyl ) (Vinyl) di-n-propoxysilane, (methyl) (vinyl) di-i-propoxysilane, (methyl) (vinyl) di-n-butoxysilane, (methyl) (vinyl) di-sec-butoxysilane, Divinyldichlorosilane, divinyldimethoxysilane, divinyldiethoxysilane, divinyldi-n- Lopoxysilane, divinyldi-i-propoxysilane, divinyldi-n-butoxysilane, divinyldi-sec-butoxysilane, diphenyldichlorosilane, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldi-n-propoxysilane, diphenyldi-i-propoxy Silane, diphenyldi-n-butoxysilane, diphenyldi-sec-butoxysilane, chlorodimethylsilane, methoxydimethylsilane, ethoxydimethylsilane, chlorotrimethylsilane, bromotrimethylsilane, iodotrimethylsilane, methoxytrimethylsilane, ethoxytrimethylsilane, n-propoxytrimethylsilane, i-propoxytrimethylsilane, n-butoxytrimethylsilane, sec-butoxytrimethylsilane, t-butoxytrimethylsilane, (chloro) (vinyl) dimethylsilane, (methoxy) (vinyl) dimethylsilane, (ethoxy) (vinyl) dimethylsilane, (chloro) (methyl) diphenylsilane, (methoxy) (methyl) diphenylsilane In addition to silane compounds having one silicon atom such as (ethoxy) (methyl) diphenylsilane,

商品名で、例えばKC−89、KC−89S、X−21−3153、X−21−5841、X−21−5842、X−21−5843、X−21−5844、X−21−5845、X−21−5846、X−21−5847、X−21−5848、X−22−160AS、X−22−170B、X−22−170BX、X−22−170D、X−22−170DX、X−22−176B、X−22−176D、X−22−176DX、X−22−176F、X−40−2308、X−40−2651、X−40−2655A、X−40−2671、X−40−2672、X−40−9220、X−40−9225、X−40−9227、X−40−9246、X−40−9247、X−40−9250、X−40−9323、X−41−1053、X−41−1056、X−41−1805、X−41−1810、KF6001、KF6002、KF6003、KR212、KR−213、KR−217、KR220L、KR242A、KR271、KR282、KR300、KR311、KR401N、KR500、KR510、KR5206、KR5230、KR5235、KR9218、KR9706(以上、信越化学工業(株)製);グラスレジン(昭和電工(株)製);SH804、SH805、SH806A、SH840、SR2400、SR2402、SR2405、SR2406、SR2410、SR2411、SR2416、SR2420(以上、東レ・ダウコーニング(株)製);FZ3711、FZ3722(以上、日本ユニカー(株)製);DMS−S12、DMS−S15、DMS−S21、DMS−S27、DMS−S31、DMS−S32、DMS−S33、DMS−S35、DMS−S38、DMS−S42、DMS−S45、DMS−S51、DMS−227、PSD−0332、PDS−1615、PDS−9931、XMS−5025(以上、チッソ(株)製);メチルシリケートMS51、メチルシリケートMS56(以上、三菱化学(株)製);エチルシリケート28、エチルシリケート40、エチルシリケート48(以上、コルコート(株)製);GR100、GR650、GR908、GR950(以上、昭和電工(株)製)等の部分縮合物を挙げることができる。 Product names such as KC-89, KC-89S, X-21-3153, X-21-5841, X-21-5842, X-21-5843, X-21-5844, X-21-5845, X -21-5848, X-21-5847, X-21-5848, X-22-160AS, X-22-170B, X-22-170BX, X-22-170D, X-22-170DX, X-22 -176B, X-22-176D, X-22-176DX, X-22-176F, X-40-2308, X-40-2651, X-40-2655A, X-40-2671, X-40-2672 , X-40-9220, X-40-9225, X-40-9227, X-40-9246, X-40-9247, X-40-9250, X-40-9323, X-41-10 3, X-41-1056, X-41-1805, X-41-1810, KF6001, KF6002, KF6003, KR212, KR-213, KR-217, KR220L, KR242A, KR271, KR282, KR300, KR311, KR401N, KR500, KR510, KR5206, KR5230, KR5235, KR9218, KR9706 (manufactured by Shin-Etsu Chemical Co., Ltd.); glass resin (manufactured by Showa Denko KK); SH804, SH805, SH806A, SH840, SR2400, SR2402, SR2405, SR2406, SR2410, SR2411, SR2416, SR2420 (above, manufactured by Toray Dow Corning Co., Ltd.); FZ3711, FZ3722 (above, manufactured by Nihon Unicar Corporation); DMS-S1 , DMS-S15, DMS-S21, DMS-S27, DMS-S31, DMS-S32, DMS-S33, DMS-S35, DMS-S38, DMS-S42, DMS-S45, DMS-S51, DMS-227, PSD -0332, PDS-1615, PDS-9931, XMS-5025 (above, manufactured by Chisso Corporation); Methyl silicate MS51, Methyl silicate MS56 (above, manufactured by Mitsubishi Chemical Corporation); Ethyl silicate 28, Ethyl silicate 40, Examples thereof include partial condensates such as ethyl silicate 48 (manufactured by Colcoat Co., Ltd.); GR100, GR650, GR908, GR950 (manufactured by Showa Denko Co., Ltd.).

これらの他のシラン化合物のうち、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、ジメチルジメトキシシランまたはジメチルジエトキシシランが好ましい。
本発明におけるエポキシ基を有するポリオルガノシロキサン(a)を合成するにあたっては、エポキシ基を有するシラン化合物と他のシラン化合物との使用割合を、得られるポリオルガノシロキサン(a)のエポキシ当量が上記の好ましい範囲になるように調製して設定することが好ましい。
Among these other silane compounds, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane , Vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltri Methoxysilane, mercaptomethyltriethoxysilane, dimethyldimethoxysilane or dimethyldiethoxysilane is preferred.
In synthesizing the polyorganosiloxane (a) having an epoxy group in the present invention, the proportion of the silane compound having an epoxy group and the other silane compound is used, and the epoxy equivalent of the obtained polyorganosiloxane (a) is as described above. It is preferable to prepare and set so as to be within a preferable range.

エポキシ基を有するポリオルガノシロキサン(a)を合成するにあたって使用することのできる有機溶媒としては、例えば炭化水素、ケトン、エステル、エーテル、アルコール等を挙げることができる。
上記炭化水素としては、例えばトルエン、キシレン等;上記ケトンとしては、例えばメチルエチルケトン、メチルイソブチルケトン、メチルn−アミルケトン、ジエチルケトン、シクロヘキサノン等を;
上記エステルとしては、例えば酢酸エチル、酢酸n−ブチル、酢酸i−アミル、プロピレングリコールモノメチルエーテルアセテート、3−メトキシブチルアセテート、乳酸エチル等を;
上記エーテルとしては、例えばエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、テトラヒドロフラン、ジオキサン等を;
上記アルコールとしては、例えば1−ヘキサノール、4−メチル−2−ペンタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ−n−プロピルエーテル、エチレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−n−プロピルエーテル等を、それぞれ挙げることができる。これらのうち非水溶性のものが好ましい。
これらの有機溶媒は、単独でまたは2種以上を混合して使用することができる。
有機溶媒の使用量は、全シラン化合物100重量部に対して、好ましくは10〜10,000重量部、より好ましくは50〜1,000重量部である。
エポキシ基を有するポリオルガノシロキサン(a)を製造する際の水の使用量は、全シラン化合物に対して、好ましくは0.5〜100倍モルであり、より好ましくは1〜30倍モルである。
Examples of the organic solvent that can be used for synthesizing the polyorganosiloxane (a) having an epoxy group include hydrocarbons, ketones, esters, ethers, alcohols, and the like.
Examples of the hydrocarbon include toluene and xylene; examples of the ketone include methyl ethyl ketone, methyl isobutyl ketone, methyl n-amyl ketone, diethyl ketone, and cyclohexanone;
Examples of the ester include ethyl acetate, n-butyl acetate, i-amyl acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, and ethyl lactate;
Examples of the ether include ethylene glycol dimethyl ether, ethylene glycol diethyl ether, tetrahydrofuran, dioxane and the like;
Examples of the alcohol include 1-hexanol, 4-methyl-2-pentanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, propylene glycol monomethyl. Examples include ether, propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, and the like. Of these, water-insoluble ones are preferred.
These organic solvents can be used alone or in admixture of two or more.
The amount of the organic solvent used is preferably 10 to 10,000 parts by weight, more preferably 50 to 1,000 parts by weight with respect to 100 parts by weight of the total silane compounds.
The amount of water used in producing the polyorganosiloxane (a) having an epoxy group is preferably 0.5 to 100 times mol, more preferably 1 to 30 times mol, based on the total silane compound. .

上記触媒としては例えば酸、アルカリ金属化合物、有機塩基、チタン化合物、ジルコニウム化合物等を用いることができる。
上記アルカリ金属化合物としては、例えば水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド等を挙げることができる。
上記有機塩基としては、例えばエチルアミン、ジエチルアミン、ピペラジン、ピペリジン、ピロリジン、ピロールの如き1〜2級有機アミン;トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、ピリジン、4−ジメチルアミノピリジン、ジアザビシクロウンデセンの如き3級の有機アミン;テトラメチルアンモニウムヒドロキシドの如き4級の有機アミン等を挙げることができる。これらの有機塩基のうち、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、ピリジン、4−ジメチルアミノピリジンの如き3級の有機アミン;テトラメチルアンモニウムヒドロキシドの如き4級の有機アミンが好ましい。
As said catalyst, an acid, an alkali metal compound, an organic base, a titanium compound, a zirconium compound etc. can be used, for example.
Examples of the alkali metal compound include sodium hydroxide, potassium hydroxide, sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide and the like.
Examples of the organic base include primary and secondary organic amines such as ethylamine, diethylamine, piperazine, piperidine, pyrrolidine and pyrrole; triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine, 4-dimethylaminopyridine, And tertiary organic amines such as diazabicycloundecene; quaternary organic amines such as tetramethylammonium hydroxide. Among these organic bases, tertiary organic amines such as triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine and 4-dimethylaminopyridine; quaternary organic amines such as tetramethylammonium hydroxide preferable.

エポキシ基を有するポリオルガノシロキサン(a)を製造する際の触媒としては、アルカリ金属化合物または有機塩基が好ましい。アルカリ金属化合物または有機塩基を触媒として用いることにより、エポキシ基の開環等の副反応を生じることなく、高い加水分解・縮合速度で目的とするポリオルガノシロキサン(a)を得ることができるため、生産安定性に優れることとなり好ましい。また、触媒としてアルカリ金属化合物または有機塩基を用いて合成されたエポキシ基を有するポリオルガノシロキサン(a)と化合物(b)との反応物を含有する本発明の液晶配向剤は、保存安定性が極めて優れるため好都合である。その理由は、非特許文献1(Chemical Reviews、95巻、p1409(1995年))に指摘されているように、加水分解、縮合反応において触媒としてアルカリ金属化合物または有機塩基を用いると、ランダム構造、はしご型構造またはかご型構造が形成され、シラノール基の含有割合が少ないポリオルガノシロキサンが得られるためではないかと推察される。すなわち、かかるポリオルガノシロキサンはシラノール基の含有割合が少ないため、このようなエポキシ基を有するポリオルガノシロキサン(a)から得られた感放射線性ポリオルガノシロキサンを含有する本発明の液晶配向剤は、感放射線性ポリオルガノシロキサン間のシラノール基同士の縮合反応が抑えられ、さらに本発明の液晶配向剤が後述の他の重合体を含有するものである場合には感放射線性ポリオルガノシロキサンのシラノール基と他の重合体との縮合反応が抑えられるため、保存安定性に優れる結果になるものと推察される。
触媒としては、特に有機塩基が好ましい。有機塩基の使用量は、有機塩基の種類、温度等の反応条件等により異なり、適宜に設定されるべきであるが、例えば全シラン化合物に対して好ましくは0.01〜3倍モルであり、より好ましくは0.05〜1倍モルである。
As a catalyst for producing the polyorganosiloxane (a) having an epoxy group, an alkali metal compound or an organic base is preferable. By using an alkali metal compound or an organic base as a catalyst, the desired polyorganosiloxane (a) can be obtained at a high hydrolysis / condensation rate without causing side reactions such as ring opening of an epoxy group. It is preferable because it is excellent in production stability. The liquid crystal aligning agent of the present invention containing a reaction product of a polyorganosiloxane (a) having an epoxy group synthesized using an alkali metal compound or an organic base as a catalyst and the compound (b) has storage stability. It is convenient because it is extremely excellent. The reason for this is that, as pointed out in Non-Patent Document 1 (Chemical Reviews, Vol. 95, p1409 (1995)), when an alkali metal compound or an organic base is used as a catalyst in the hydrolysis and condensation reaction, a random structure, It is presumed that a ladder structure or a cage structure is formed and a polyorganosiloxane having a low silanol group content is obtained. That is, since the polyorganosiloxane has a small content of silanol groups, the liquid crystal aligning agent of the present invention containing the radiation-sensitive polyorganosiloxane obtained from the polyorganosiloxane (a) having such an epoxy group is In the case where the condensation reaction between silanol groups between the radiation-sensitive polyorganosiloxanes is suppressed, and the liquid crystal aligning agent of the present invention contains other polymers described later, the silanol groups of the radiation-sensitive polyorganosiloxanes It is surmised that the condensation reaction between the polymer and other polymers is suppressed, resulting in excellent storage stability.
As the catalyst, an organic base is particularly preferable. The amount of the organic base used varies depending on the reaction conditions such as the type of organic base, temperature, and the like, and should be set as appropriate. More preferably, it is 0.05-1 times mole.

エポキシ基を有するポリオルガノシロキサン(a)を製造する際の加水分解および縮合反応は、エポキシ基を有するシラン化合物と必要に応じて他のシラン化合物とを有機溶媒に溶解し、この溶液を有機塩基および水と混合して、例えば油浴等により加熱することにより実施することが好ましい。
加水分解・縮合反応時には、加熱温度を好ましくは130℃以下、より好ましくは40〜100℃として、好ましくは0.5〜12時間、より好ましくは1〜8時間加熱することが望ましい。加熱中は、混合液を撹拌してもよいし、還流下においてもよい。
反応終了後、反応液から分取した有機溶媒層を水で洗浄することが好ましい。この洗浄に際しては、少量の塩を含む水、例えば0.2重量%程度の硝酸アンモニウム水溶液等で洗浄することにより、洗浄操作が容易になる点で好ましい。洗浄は洗浄後の水層が中性になるまで行い、その後有機溶媒層を、必要に応じて無水硫酸カルシウム、モレキュラーシーブス等の乾燥剤で乾燥した後、溶媒を除去することにより、目的とするエポキシ基を有するポリオルガノシロキサン(a)を得ることができる。
本発明においては、エポキシ基を有するポリオルガノシロキサンとして市販されているものを用いてもよい。このような市販品としては、例えばDMS−E01,DMS−E12、DMS−E21,EMS−32(以上、チッソ(株)製)等を挙げることができる。
In the hydrolysis and condensation reaction in producing the polyorganosiloxane (a) having an epoxy group, a silane compound having an epoxy group and, if necessary, another silane compound are dissolved in an organic solvent, and this solution is dissolved in an organic base. It is preferable to carry out by mixing with water and heating with, for example, an oil bath.
During the hydrolysis / condensation reaction, the heating temperature is preferably 130 ° C. or lower, more preferably 40 to 100 ° C., and preferably 0.5 to 12 hours, more preferably 1 to 8 hours. During heating, the mixed solution may be stirred or refluxed.
After completion of the reaction, the organic solvent layer separated from the reaction solution is preferably washed with water. In this washing, washing with water containing a small amount of salt, for example, an aqueous ammonium nitrate solution of about 0.2% by weight is preferable because the washing operation becomes easy. Washing is performed until the aqueous layer after washing becomes neutral, and then the organic solvent layer is dried with a desiccant such as anhydrous calcium sulfate or molecular sieves as necessary, and then the target is removed by removing the solvent. A polyorganosiloxane (a) having an epoxy group can be obtained.
In the present invention, a commercially available polyorganosiloxane having an epoxy group may be used. Examples of such commercially available products include DMS-E01, DMS-E12, DMS-E21, EMS-32 (manufactured by Chisso Corporation).

<化合物(b)>
本発明で使用される化合物(b)は、上記式(1)で表される構造およびカルボキシル基を有する化合物または上記式(2)で表される基を有する化合物である。化合物(b)が上記式(1)で表される構造およびカルボキシル基を有する化合物である場合、化合物(b)の有するカルボキシル基は上記式(1)で表される構造に対して左右どちら側にあってもよい。
本発明で使用される化合物(b)としては、下記式(3)または(4)
<Compound (b)>
The compound (b) used in the present invention is a compound having a structure and a carboxyl group represented by the above formula (1) or a compound having a group represented by the above formula (2). When the compound (b) is a compound having a structure represented by the above formula (1) and a carboxyl group, the carboxyl group possessed by the compound (b) is on the left or right side with respect to the structure represented by the above formula (1) May be.
As the compound (b) used in the present invention, the following formula (3) or (4)

(式(3)中のRは水素原子、炭素数1〜40のアルキル基、炭素数1〜40のフルオロアルキル基であるか、または脂環式基を含む炭素数3〜40の1価の有機基であり、Rは単結合、酸素原子、硫黄原子、−COO−、−COS−、−SCO−または−OCO−(ただし以上において、「*」を付した結合手がRと結合する。)であり、Rは2価の芳香族基、2価の脂環式基、2価の複素環式基もしく2価の縮合環式基であるか、または複素環と芳香環とが縮合した構造を有する2価の基もしくは複素環と脂環とが縮合した構造を有する2価の基であり、Rは単結合、酸素原子、硫黄原子、−COO−、−COS−、−SCO−または−OCO−(ただし以上において、「*」を付した結合手がRと結合する。)であり、Rはフッ素原子またはシアノ基であり、aは0〜3の整数であり、bは0〜4の整数であり、
式(4)中のRは水素原子、炭素数1〜40のアルキル基、炭素数1〜40のフルオロアルキル基であるか、または脂環式基を含む炭素数3〜40の1価の有機基であり、Rは酸素原子または2価の芳香族基であり、Rは酸素原子、−COO−または−OCO−(ただし以上において、「*」を付した結合手がRと結合する。)であり、Rは2価の芳香族基、2価の脂環式基、2価の複素環式基もしく2価の縮合環式基であるか、または複素環と芳香環とが縮合した構造を有する2価の基もしくは複素環と脂環とが縮合した構造を有する2価の基であり、R10は単結合、−OCO−(CHまたは−O−(CH(ただし以上において、「*」を付した結合手がカルボキシル基と結合する。)であり、ただしeおよびfはそれぞれ1〜10の整数であり、R11はフッ素原子またはシアノ基であり、cは0〜3の整数であり、dは0〜4の整数である。)
で表される化合物であることが好ましい。
(R 1 in Formula (3) is a hydrogen atom, an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, or a monovalent group having 3 to 40 carbon atoms including an alicyclic group. R 2 is a single bond, an oxygen atom, a sulfur atom, * —COO—, * —COS—, * —SCO— or * —OCO— (in the above, a bond marked with “*”) There binds to R 1.) a and, if R 3 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group properly divalent condensed cyclic group, or A divalent group having a structure in which a heterocycle and an aromatic ring are condensed or a divalent group having a structure in which a heterocycle and an alicyclic ring are condensed, and R 4 is a single bond, an oxygen atom, a sulfur atom, * − COO-, * -COS-, * -SCO- or * -OCO- (in the above, the bonding hand marked with "*" A bind R 3.), R 5 is a fluorine atom or a cyano group, a is an integer of 0 to 3, b is an integer from 0 to 4,
R 6 in Formula (4) is a hydrogen atom, an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, or a monovalent monovalent having 3 to 40 carbon atoms including an alicyclic group. An organic group, R 7 is an oxygen atom or a divalent aromatic group, and R 8 is an oxygen atom, —COO— * or —OCO— * (in the above, the bond marked with “*” is R binds 9.), and, R 9 is a divalent aromatic group, a divalent alicyclic group, a divalent or heterocyclic group is properly divalent condensed cyclic group, or a heterocyclic Is a divalent group having a structure in which an aromatic ring is condensed or a divalent group having a structure in which a heterocyclic ring and an alicyclic ring are condensed, and R 10 is a single bond, —OCO— (CH 2 ) e*. or -O- (CH 2) f - * ( except at least a bond marked with "*" is bonded to the carboxyl group. And with the proviso e and f represents an integer of 1 to 10, respectively, R 11 is a fluorine atom or a cyano group, c is an integer of 0 to 3, d is an integer of 0-4. )
It is preferable that it is a compound represented by these.

上記式(3)におけるRの炭素数1〜40のアルキル基としては、炭素数1〜20のアルキル基が好ましく、炭素数4〜20のアルキル基がより好ましい。このような好ましいアルキル基の例としては、例えばn−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ラウリル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−エイコシル基等を挙げることができる。
の炭素数1〜40のフルオロアルキル基としては、炭素数1〜20のフルオロアルキル基が好ましく、炭素数4〜20のフルオロアルキル基がより好ましい。このような好ましいフルオロアルキル基の例としては、例えば4,4,4−トリフロロブチル基、4,4,5,5,5−ペンタフルオロペンチル基、4,4,5,5,6,6,6−ヘプタフルオロヘキシル基、3,3,4,4,5,5,5−ヘプタフルオロペンチル基、2,2,2−トリフルオロエチル基、2,2,3,3,3−ペンタフルオロプロピル基、2−(パーフルオロブチル)エチル基、2−(パーフルオロオクチル)エチル基、2−(パーフルオロデシル)エチル基等を挙げることができる。
の脂環式基を含む炭素数3〜40の1価の有機基としては、例えばコレステニル基、コレスタニル基、アダマンチル基等を挙げることができる。
としては、単結合、酸素原子または−COO−(ただし、「*」を付した結合手がRと結合する。)であることが;
としては、単結合、酸素原子または−COO−(ただし、「*」を付した結合手がRと結合する。)であることが、それぞれ好ましい。
の2価の芳香族基としては、例えば1,4−フェニレン基、2−フルオロ−1,4−フェニレン基、3−フルオロ−1,4−フェニレン基、2,3,5,6−テトラフルオロ−1,4−フェニレン基等を;
の2価の脂環式基としては、例えば1,4−シクロへキシレン基等を;
の2価の複素環式基としては、例えば1,4−ピリジレン基、2,5−ピリジレン基、1,4−フラニレン基、下記式
Examples of the alkyl group having 1 to 40 carbon atoms of R 1 in the formula (3) is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 4 to 20 carbon atoms. Examples of such preferable alkyl groups include, for example, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-lauryl group, and n-dodecyl. Group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosyl group and the like.
The fluoroalkyl group of 1 to 40 carbon atoms in R 1, preferably a fluoroalkyl group having 1 to 20 carbon atoms, more preferably a fluoroalkyl group having 4 to 20 carbon atoms. Examples of such preferred fluoroalkyl groups include 4,4,4-trifluorobutyl group, 4,4,5,5,5-pentafluoropentyl group, 4,4,5,5,6,6, for example. , 6-heptafluorohexyl group, 3,3,4,4,5,5,5-heptafluoropentyl group, 2,2,2-trifluoroethyl group, 2,2,3,3,3-pentafluoro A propyl group, 2- (perfluorobutyl) ethyl group, 2- (perfluorooctyl) ethyl group, 2- (perfluorodecyl) ethyl group and the like can be mentioned.
The monovalent organic group having 3 to 40 carbon atoms containing an alicyclic group R 1, may include, for example Koresuteniru group, cholestanyl group, an adamantyl group.
R 2 is a single bond, an oxygen atom, or * —COO— (where a bond marked with “*” is bonded to R 1 );
R 4 is preferably a single bond, an oxygen atom or * —COO— (wherein a bond marked with “*” is bonded to R 3 ).
Examples of the divalent aromatic group for R 3 include 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 2,3,5,6- A tetrafluoro-1,4-phenylene group or the like;
Examples of the divalent alicyclic group for R 3 include a 1,4-cyclohexylene group;
Examples of the divalent heterocyclic group represented by R 3 include 1,4-pyridylene group, 2,5-pyridylene group, 1,4-furylene group,

(上記式中、「*」を付した結合手がRと結合する。)
で表される基等を;
の2価の縮合環式基としては、例えばナフチレン基等を、
の複素環と芳香環とが縮合した構造を有する2価の基としては、例えば下記式
(In the above formula, a bond marked with “*” is bonded to R 4. )
A group represented by:
Examples of the divalent condensed cyclic group represented by R 3 include a naphthylene group.
Examples of the divalent group having a structure in which a heterocycle of R 3 and an aromatic ring are condensed include the following formulas:

(上記式中、「*」を付した結合手がRと結合する。)
で表される基等を;
の複素環と脂環とが縮合した構造を有する2価の基としては、例えば下記式
(In the above formula, a bond marked with “*” is bonded to R 4. )
A group represented by:
Examples of the divalent group having a structure in which the heterocyclic ring of R 3 and the alicyclic ring are condensed include the following formulas:

(上記式中、「*」を付した結合手がRと結合する。)
で表される基等を、それぞれ挙げることができる。
式(3)におけるaは0または1であることが;
bは0であることが、それぞれ好ましい。
上記式(3)で表される化合物のより具体的な例としては、例えば下記式(3−1)〜(3−19)
(In the above formula, a bond marked with “*” is bonded to R 4. )
The group etc. which are represented by each can be mentioned.
A in formula (3) is 0 or 1;
b is preferably 0.
More specific examples of the compound represented by the above formula (3) include, for example, the following formulas (3-1) to (3-19):

(上記式中、Rは、それぞれ、上記式(3)におけるのと同義である。)
のそれぞれで表される化合物等を挙げることができる。
かかる上記式(3)で表される化合物は、有機化学の定法を適宜に組み合わせることにより、合成することができる。例えば上記式(3−2)で表される化合物は、下記スキーム1
(In the above formula, each R 1 has the same meaning as in the above formula (3).)
The compound etc. which are represented by each of these can be mentioned.
The compound represented by the above formula (3) can be synthesized by appropriately combining organic chemistry methods. For example, the compound represented by the above formula (3-2) is represented by the following scheme 1.

(上記式中、Rは上記式(3)におけるのと同義であり、Xはハロゲン原子である。)
で示される如く、所望の基Rを有するハロゲン化アリール化合物とプロピオン酸とを、パラジウム触媒、塩化第一銅およびアミン化合物の存在下に反応させることにより合成することができる。この反応は、当業者間で「ソノガシラ・カップリング」と呼ばれているものである。
上記式(4)におけるRの炭素数1〜40のアルキル基、炭素数1〜40のフルオロアルキル基、脂環式基を含む炭素数3〜40の1価の有機基については、それぞれ、上記式(3)におけるRについて上記したところと同様である。
としては、単結合であることが;
cは0であることが;
10は−OCO−(CH(ただし、eは1〜10の整数であり、「*」を付した結合手がカルボキシル基と結合する。)であることが、それぞれ好ましい。
上記式(4)で表される化合物のより具体的な例としては、例えば下記式(4−1)
(In the above formula, R 1 has the same meaning as in the above formula (3), and X is a halogen atom.)
As shown in the above, it can be synthesized by reacting a halogenated aryl compound having a desired group R 1 and propionic acid in the presence of a palladium catalyst, cuprous chloride and an amine compound. This reaction is what is referred to by those skilled in the art as “Sonogashira coupling”.
In the above formula (4), the monovalent organic group having 3 to 40 carbon atoms including the alkyl group having 1 to 40 carbon atoms, the fluoroalkyl group having 1 to 40 carbon atoms, and the alicyclic group represented by R 6 , respectively, The same as described above for R 1 in the above formula (3).
R 7 is a single bond;
c must be 0;
R 10 is preferably —OCO— (CH 2 ) e* (where e is an integer of 1 to 10, and a bond marked with “*” is bonded to a carboxyl group).
As a more specific example of the compound represented by the above formula (4), for example, the following formula (4-1)

(上記式中、Rは上記式(4)におけるのと同義であり、eは1〜10の整数である。)
で表される化合物等を挙げることができる。このeは2または3であることが好ましい。
かかる上記式(4)で表される化合物は、有機化学の定法を適宜に組み合わせることにより、合成することができる。例えば上記式(4−1)においてeが2または3である化合物は、先ず4−ブロモフェノールに無水こはく酸(e=2の場合)または無水グルタル酸(e=3の場合)を開環付加した中間体を合成し、これに所望の基Rを有するプロピオール酸エステルをソノガシラカップリングさせることにより得ることができる。
(In the above formula, R 6 has the same meaning as in the above formula (4), and e is an integer of 1 to 10.)
The compound etc. which are represented by these can be mentioned. This e is preferably 2 or 3.
The compound represented by the above formula (4) can be synthesized by appropriately combining organic chemistry methods. For example, in the above formula (4-1), in the case where e is 2 or 3, ring-opening addition of succinic anhydride (when e = 2) or glutaric anhydride (when e = 3) to 4-bromophenol This intermediate can be synthesized, and a propiolic acid ester having the desired group R 6 can be obtained by Sonogashira coupling.

[感放射線性ポリオルガノシロキサンの合成]
本発明で使用される感放射線性ポリオルガノシロキサンは、上記の如きエポキシ基を有するポリオルガノシロキサン(a)と化合物(b)とを、好ましくは触媒の存在下に反応させることにより合成することができる。
ここで化合物(b)は、ポリオルガノシロキサンの有するエポキシ基1モルに対して好ましくは0.001〜10モル、より好ましくは0.01〜5モル、さらに好ましくは0.05〜2モル使用される。
本発明においては、本発明の効果を損なわない範囲で化合物(b)の一部を下記式(5)
12−R13−COOH (5)
(式(5)中、R12は炭素数4〜20のアルキル基、炭素数4〜20のアルコキシル基、炭素数4〜20のフルオロアルキル基もしくは炭素数4〜20のフルオロアルコキシル基であるか、または脂環式基を含む炭素数3〜40の1価の有機基であり、R13は単結合またはフェニレン基であり、ただしR12がアルコキシル基であるときR13はフェニレン基である。)
で表される化合物で置き換えて使用してもよい。この場合、感放射線性ポリオルガノシロキサンの合成は、エポキシ基を有するポリオルガノシロキサン(a)と、化合物(b)および上記式(5)で表される化合物の混合物とを反応させることにより行われる。
上記式(5)におけるR12としては炭素数8〜20のアルキル基もしくはアルコキシル基または炭素数4〜21のフルオロアルキル基もしくはフルオロアルコキシル基であることが好ましく、R13としては単結合、1,4−シクロヘキシレン基または1,4−フェニレン基であることが好ましい。
上記式(5)で表される化合物の好ましい例として、例えば下記式(5−1)〜(5〜4)
[Synthesis of radiation-sensitive polyorganosiloxane]
The radiation-sensitive polyorganosiloxane used in the present invention can be synthesized by reacting the polyorganosiloxane (a) having an epoxy group as described above with the compound (b), preferably in the presence of a catalyst. it can.
Here, the compound (b) is preferably used in an amount of 0.001 to 10 mol, more preferably 0.01 to 5 mol, still more preferably 0.05 to 2 mol based on 1 mol of the epoxy group of the polyorganosiloxane. The
In the present invention, a part of the compound (b) is represented by the following formula (5) as long as the effects of the present invention are not impaired.
R 12 -R 13 -COOH (5)
(In formula (5), is R 12 an alkyl group having 4 to 20 carbon atoms, an alkoxyl group having 4 to 20 carbon atoms, a fluoroalkyl group having 4 to 20 carbon atoms, or a fluoroalkoxyl group having 4 to 20 carbon atoms? Or a monovalent organic group having 3 to 40 carbon atoms including an alicyclic group, R 13 is a single bond or a phenylene group, provided that when R 12 is an alkoxyl group, R 13 is a phenylene group. )
It may be used by replacing with a compound represented by In this case, the radiation-sensitive polyorganosiloxane is synthesized by reacting the polyorganosiloxane (a) having an epoxy group with the compound (b) and a mixture of the compounds represented by the above formula (5). .
R 12 in the above formula (5) is preferably an alkyl group or alkoxyl group having 8 to 20 carbon atoms, a fluoroalkyl group or fluoroalkoxyl group having 4 to 21 carbon atoms, and R 13 is a single bond, A 4-cyclohexylene group or a 1,4-phenylene group is preferred.
As preferable examples of the compound represented by the above formula (5), for example, the following formulas (5-1) to (5-4):

(上記式中、hは1〜3の整数であり、iは3〜18の整数であり、jは5〜20の整数であり、kは1〜3の整数であり、mは0〜18の整数であり、nは1〜18の整数である。)
のいずれかで表される化合物を挙げることができ、そのうち、下記式(5−3−1)〜(5−3−3)
(In the above formula, h is an integer of 1 to 3, i is an integer of 3 to 18, j is an integer of 5 to 20, k is an integer of 1 to 3, and m is 0 to 18) And n is an integer of 1 to 18.)
The compound represented by either of these can be mentioned, Among these, following formula (5-3-1)-(5-3-3)

のいずれかで表される化合物が好ましい。
上記式(5)で表される化合物は、上記化合物(b)とともにエポキシ基を有するポリオルガノシロキサン(a)と反応し、得られる液晶配向膜にプレチルト角発現性を付与する部位となる化合物である。本明細書においては上記式(5)で表される化合物を、以下、「他のプレチルト角発現性化合物」という。
本発明において、上記化合物(b)とともに他のプレチルト角発現性化合物を使用する場合、化合物(b)および他のプレチルト角発現性化合物の合計の使用割合は、エポキシ基を有するポリオルガノシロキサン(a)の有するエポキシ基1モルに対して好ましくは0.001〜1.5モル、より好ましくは0.01〜1モル、さらに好ましくは0.05〜0.9モルである。この場合、他のプレチルト角発現性化合物は、化合物(b)との合計に対して好ましくは50モル%以下、より好ましくは25モル%以下の範囲で使用される。他のプレチルト角発現性化合物の使用割合が50モル%を超えると、液晶表示素子をONにしたときに異常ドメインが発生する不具合を生じる場合がある。
上記触媒としては、有機塩基、またはエポキシ化合物と酸無水物との反応を促進するいわゆる硬化促進剤として公知の化合物を用いることができる。
上記有機塩基としては、例えばエチルアミン、ジエチルアミン、ピペラジン、ピペリジン、ピロリジン、ピロールの如き1〜2級有機アミン;
トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、ピリジン、4−ジメチルアミノピリジン、ジアザビシクロウンデセンの如き3級の有機アミン;
テトラメチルアンモニウムヒドロキシドの如き4級の有機アミン等を挙げることができる。これらの有機塩基のうち、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、ピリジン、4−ジメチルアミノピリジンの如き3級の有機アミン;テトラメチルアンモニウムヒドロキシドの如き4級の有機アミンが好ましい。
The compound represented by either is preferable.
The compound represented by the above formula (5) is a compound that reacts with the polyorganosiloxane (a) having an epoxy group together with the compound (b) and becomes a site that imparts pretilt angle expression to the obtained liquid crystal alignment film. is there. In the present specification, the compound represented by the formula (5) is hereinafter referred to as “another pretilt angle developing compound”.
In the present invention, when another pretilt angle-expressing compound is used together with the compound (b), the total use ratio of the compound (b) and the other pretilt angle-expressing compound is the polyorganosiloxane having an epoxy group (a ) Is preferably 0.001 to 1.5 mol, more preferably 0.01 to 1 mol, and still more preferably 0.05 to 0.9 mol, relative to 1 mol of the epoxy group possessed by). In this case, another pretilt angle-expressing compound is preferably used in a range of 50 mol% or less, more preferably 25 mol% or less, based on the total with the compound (b). If the proportion of other pretilt angle-expressing compounds exceeds 50 mol%, there may be a problem that abnormal domains occur when the liquid crystal display element is turned on.
As said catalyst, a well-known compound can be used as what is called a hardening accelerator which accelerates | stimulates reaction with an organic base or an epoxy compound, and an acid anhydride.
Examples of the organic base include primary and secondary organic amines such as ethylamine, diethylamine, piperazine, piperidine, pyrrolidine, and pyrrole;
Tertiary organic amines such as triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine, 4-dimethylaminopyridine, diazabicycloundecene;
A quaternary organic amine such as tetramethylammonium hydroxide can be used. Among these organic bases, tertiary organic amines such as triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine and 4-dimethylaminopyridine; quaternary organic amines such as tetramethylammonium hydroxide preferable.

上記硬化促進剤としては、例えばベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、シクロヘキシルジメチルアミン、トリエタノールアミンの如き3級アミン;
2−メチルイミダゾール、2−n−ヘプチルイミダゾール、2−n−ウンデシルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、1−(2−シアノエチル)−2−メチルイミダゾール、1−(2−シアノエチル)−2−n−ウンデシルイミダゾール、1−(2−シアノエチル)−2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジ(ヒドロキシメチル)イミダゾール、1−(2−シアノエチル)−2−フェニル−4,5−ジ〔(2’−シアノエトキシ)メチル〕イミダゾール、1−(2−シアノエチル)−2−n−ウンデシルイミダゾリウムトリメリテート、1−(2−シアノエチル)−2−フェニルイミダゾリウムトリメリテート、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾリウムトリメリテート、2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1’)〕エチル−s−トリアジン、2,4−ジアミノ−6−(2’−n−ウンデシルイミダゾリル)エチル−s−トリアジン、2,4−ジアミノ−6−〔2’−エチル−4’−メチルイミダゾリル−(1’)〕エチル−s−トリアジン、2−メチルイミダゾールのイソシアヌル酸付加物、2−フェニルイミダゾールのイソシアヌル酸付加物、2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1’)〕エチル−s−トリアジンのイソシアヌル酸付加物の如きイミダゾール化合物;ジフェニルフォスフィン、トリフェニルフォスフィン、亜リン酸トリフェニルの如き有機リン化合物;
Examples of the curing accelerator include tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, cyclohexyldimethylamine, and triethanolamine;
2-methylimidazole, 2-n-heptylimidazole, 2-n-undecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenyl Imidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1- (2-cyanoethyl) -2-methylimidazole, 1- (2-cyanoethyl) -2-n-undecylimidazole, 1- ( 2-cyanoethyl) -2-phenylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-di (Hydroxymethyl) imidazole, 1- (2-cyanoethyl) -2-fur Nyl-4,5-di [(2′-cyanoethoxy) methyl] imidazole, 1- (2-cyanoethyl) -2-n-undecylimidazolium trimellitate, 1- (2-cyanoethyl) -2-phenyl Imidazolium trimellitate, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')] ethyl-s -Triazine, 2,4-diamino-6- (2'-n-undecylimidazolyl) ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1 ' )] Ethyl-s-triazine, isocyanuric acid adduct of 2-methylimidazole, isocyanuric acid adduct of 2-phenylimidazole, 2,4-diamino-6- [2′-methyl] Ruimidazolyl- (1 ′)] ethyl-s-triazine imidazole compounds such as isocyanuric acid adducts; organophosphorus compounds such as diphenylphosphine, triphenylphosphine, triphenyl phosphite;

ベンジルトリフェニルフォスフォニウムクロライド、テトラ−n−ブチルフォスフォニウムブロマイド、メチルトリフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムブロマイド、n−ブチルトリフェニルフォスフォニウムブロマイド、テトラフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムヨーダイド、エチルトリフェニルフォスフォニウムアセテート、テトラ−n−ブチルフォスフォニウムo,o−ジエチルフォスフォロジチオネート、テトラ−n−ブチルフォスフォニウムベンゾトリアゾレート、テトラ−n−ブチルフォスフォニウムテトラフルオロボレート、テトラ−n−ブチルフォスフォニウムテトラフェニルボレート、テトラフェニルフォスフォニウムテトラフェニルボレートの如き4級フォスフォニウム塩;
1,8−ジアザビシクロ[5.4.0]ウンデセン−7やその有機酸塩の如きジアザビシクロアルケン;
オクチル酸亜鉛、オクチル酸錫、アルミニウムアセチルアセトン錯体の如き有機金属化合物;
テトラエチルアンモニウムブロマイド、テトラ−n−ブチルアンモニウムブロマイド、テトラエチルアンモニウムクロライド、テトラ−n−ブチルアンモニウムクロライドの如き4級アンモニウム塩;
三フッ化ホウ素、ホウ酸トリフェニルの如きホウ素化合物;
塩化亜鉛、塩化第二錫の如き金属ハロゲン化合物;
ジシアンジアミドやアミンとエポキシ樹脂との付加物等のアミン付加型促進剤等の高融点分散型潜在性硬化促進剤;
前記イミダゾール化合物、有機リン化合物や4級フォスフォニウム塩等の硬化促進剤の表面をポリマーで被覆したマイクロカプセル型潜在性硬化促進剤;アミン塩型潜在性硬化促進剤;
ルイス酸塩、ブレンステッド酸塩等の高温解離型の熱カチオン重合型潜在性硬化促進剤等の潜在性硬化促進剤等を挙げることができる。
これらのうち、好ましくはテトラエチルアンモニウムブロマイド、テトラ−n−ブチルアンモニウムブロマイド、テトラエチルアンモニウムクロライド、テトラ−n−ブチルアンモニウムクロライドの如き4級アンモニウム塩である。
Benzyltriphenylphosphonium chloride, tetra-n-butylphosphonium bromide, methyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, n-butyltriphenylphosphonium bromide, tetraphenylphosphonium bromide , Ethyltriphenylphosphonium iodide, ethyltriphenylphosphonium acetate, tetra-n-butylphosphonium o, o-diethylphosphorodithionate, tetra-n-butylphosphonium benzotriazolate, tetra -N-butylphosphonium tetrafluoroborate, tetra-n-butylphosphonium tetraphenylborate, tetraphenylphosphonium tetraphenylborate Such bets quaternary phosphonium salts;
Diazabicycloalkenes such as 1,8-diazabicyclo [5.4.0] undecene-7 and organic acid salts thereof;
Organometallic compounds such as zinc octylate, tin octylate, aluminum acetylacetone complex;
Quaternary ammonium salts such as tetraethylammonium bromide, tetra-n-butylammonium bromide, tetraethylammonium chloride, tetra-n-butylammonium chloride;
Boron compounds such as boron trifluoride and triphenyl borate;
Metal halides such as zinc chloride and stannic chloride;
High melting point dispersion type latent curing accelerators such as amine addition accelerators such as dicyandiamide and adducts of amine and epoxy resin;
A microcapsule type latent curing accelerator in which the surface of a curing accelerator such as an imidazole compound, an organic phosphorus compound or a quaternary phosphonium salt is coated with a polymer; an amine salt type latent curing accelerator;
Examples include latent curing accelerators such as high-temperature dissociation type thermal cationic polymerization type latent curing accelerators such as Lewis acid salts and Bronsted acid salts.
Of these, quaternary ammonium salts such as tetraethylammonium bromide, tetra-n-butylammonium bromide, tetraethylammonium chloride, and tetra-n-butylammonium chloride are preferable.

触媒は、エポキシ基を有するポリオルガノシロキサン(a)100重量部に対して好ましくは100重量部以下、より好ましくは0.01〜100重量部、さらに好ましくは0.1〜20重量部の量で使用される。
反応温度は、好ましくは0〜200℃、より好ましくは50〜150℃である。反応時間は、好ましくは0.1〜50時間、より好ましくは0.5〜20時間である。
感放射線性ポリオルガノシロキサンの合成反応は、必要に応じて有機溶剤の存在下に行うことができる。かかる有機溶媒としては、例えば炭化水素化合物、エーテル化合物、エステル化合物、ケトン化合物、アミド化合物、アルコール化合物等を挙げることができる。これらのうち、エーテル化合物、エステル化合物、ケトン化合物が原料および生成物の溶解性ならびに生成物の精製のし易さの観点から好ましい。溶媒は、固形分濃度(反応溶液中の溶媒以外の成分の重量が溶液の全重量に占める割合)が、好ましくは0.1重量%以上、より好ましくは5〜50重量%となる量で使用される。
本発明の感放射線性ポリオルガノシロキサンはエポキシ基を有するポリオルガノシロキサン(a)にエポキシの開環付加により化合物(b)に由来する構造を導入している。この製造方法は簡便であり、しかも化合物(b)に由来する構造の導入率を高くすることができる点で極めて好適な方法である。
The catalyst is preferably 100 parts by weight or less, more preferably 0.01 to 100 parts by weight, and still more preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the polyorganosiloxane (a) having an epoxy group. used.
The reaction temperature is preferably 0 to 200 ° C, more preferably 50 to 150 ° C. The reaction time is preferably 0.1 to 50 hours, more preferably 0.5 to 20 hours.
The synthesis reaction of the radiation-sensitive polyorganosiloxane can be carried out in the presence of an organic solvent, if necessary. Examples of such organic solvents include hydrocarbon compounds, ether compounds, ester compounds, ketone compounds, amide compounds, alcohol compounds and the like. Of these, ether compounds, ester compounds, and ketone compounds are preferred from the viewpoints of solubility of raw materials and products and ease of purification of the products. The solvent is used in such an amount that the solid content concentration (the ratio of the weight of components other than the solvent in the reaction solution to the total weight of the solution) is preferably 0.1% by weight or more, more preferably 5 to 50% by weight. Is done.
In the radiation-sensitive polyorganosiloxane of the present invention, a structure derived from the compound (b) is introduced into the polyorganosiloxane (a) having an epoxy group by ring-opening addition of epoxy. This production method is simple and is a very suitable method in that the introduction rate of the structure derived from the compound (b) can be increased.

<その他の成分>
本発明の液晶配向剤は、上記の如き感放射線性ポリオルガノシロキサンを含有する。
本発明の液晶配向剤は、上記の如き感放射線性ポリオルガノシロキサンのほかに、本発明の効果を損なわない限り、さらに他の成分を含有していてもよい。このような他の成分としては、例えば感放射線性ポリオルガノシロキサン以外の重合体(以下、「他の重合体」という。)、硬化剤、硬化触媒、硬化促進剤、分子内に少なくとも一つのエポキシ基を有する化合物(以下、「エポキシ化合物」という。)、官能性シラン化合物、界面活性剤等を挙げることができる。
[他の重合体]
上記他の重合体は、本発明の液晶配向剤の溶液特性および得られる液晶配向膜の電気特性をより改善するために使用することができる。かかる他の重合体としては、例えばポリアミック酸およびポリイミドよりなる群から選択される少なくとも1種の重合体、上記感放射線性ポリオルガノシロキサン以外のポリオルガノシロキサン(以下、「他のポリオルガノシロキサン」という。)、ポリアミック酸エステル、ポリエステル、ポリアミド、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン−フェニルマレイミド)誘導体、ポリ(メタ)アクリレート等を挙げることができる。
<Other ingredients>
The liquid crystal aligning agent of this invention contains the above radiation sensitive polyorganosiloxane.
In addition to the radiation-sensitive polyorganosiloxane as described above, the liquid crystal aligning agent of the present invention may further contain other components as long as the effects of the present invention are not impaired. Examples of such other components include polymers other than radiation-sensitive polyorganosiloxane (hereinafter referred to as “other polymers”), curing agents, curing catalysts, curing accelerators, and at least one epoxy in the molecule. Examples thereof include a compound having a group (hereinafter referred to as “epoxy compound”), a functional silane compound, and a surfactant.
[Other polymers]
Said other polymer can be used in order to improve the solution characteristic of the liquid crystal aligning agent of this invention, and the electrical property of the liquid crystal aligning film obtained. Examples of such other polymers include at least one polymer selected from the group consisting of polyamic acid and polyimide, and polyorganosiloxanes other than the radiation-sensitive polyorganosiloxane (hereinafter referred to as “other polyorganosiloxanes”). .), Polyamic acid ester, polyester, polyamide, cellulose derivative, polyacetal, polystyrene derivative, poly (styrene-phenylmaleimide) derivative, poly (meth) acrylate, and the like.

{ポリアミック酸}
上記ポリアミック酸は、テトラカルボン酸二無水物とジアミン化合物とを反応させることにより得ることができる。
ポリアミック酸の合成に用いることのできるテトラカルボン酸二無水物としては、例えば2,3,5−トリカルボキシシクロペンチル酢酸二無水物、ブタンテトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物、3,5,6−トリカルボキシノルボルナン−2−酢酸二無水物、2,3,4,5−テトラヒドロフランテトラカルボン酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]−フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−8−メチル−ナフト[1,2−c]−フラン−1,3−ジオン、5−(2,5−ジオキソテトラヒドロフラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、ビシクロ[2.2.2]−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、下記式(T−1)〜(T−14)
{Polyamic acid}
The polyamic acid can be obtained by reacting tetracarboxylic dianhydride with a diamine compound.
Examples of tetracarboxylic dianhydrides that can be used for the synthesis of polyamic acid include 2,3,5-tricarboxycyclopentylacetic acid dianhydride, butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutane. Tetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 3,5, 6-tricarboxynorbornane-2-acetic acid dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2, 5-Dioxo-3-furanyl) -naphtho [1,2-c] -furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydride) -2,5-dioxo-3-furanyl) -8-methyl-naphtho [1,2-c] -furan-1,3-dione, 5- (2,5-dioxotetrahydrofuranyl) -3-methyl- 3-cyclohexene-1,2-dicarboxylic anhydride, bicyclo [2.2.2] -oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, the following formula (T-1) ~ (T-14)

のそれぞれで表されるテトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物および脂環式テトラカルボン酸二無水物;
ピロメリット酸二無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’−ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’−テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4−フランテトラカルボン酸二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’−パーフルオロイソプロピリデンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p−フェニレン−ビス(トリフェニルフタル酸)二無水物、m−フェニレン−ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルメタン二無水物、下記式(T−15)〜(T−18)
An aliphatic tetracarboxylic dianhydride such as a tetracarboxylic dianhydride and an alicyclic tetracarboxylic dianhydride represented by each of the following:
Pyromellitic dianhydride, 3,3 ′, 4,4′-biphenylsulfonetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7- Naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride, 3,3 ′, 4,4′-dimethyldiphenylsilanetetracarboxylic dianhydride, 3,3 ', 4,4'-Tetraphenylsilane tetracarboxylic dianhydride, 1,2,3,4-furantetracarboxylic dianhydride, 4,4'-bis (3,4-dicarboxyphenoxy) diphenyl sulfide Dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenylsulfone dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenylpropane dianhydride, 3,3 ′ , 4 4′-perfluoroisopropylidenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, bis (phthalic acid) phenylphosphine oxide dianhydride, p-phenylene-bis ( Triphenylphthalic acid) dianhydride, m-phenylene-bis (triphenylphthalic acid) dianhydride, bis (triphenylphthalic acid) -4,4'-diphenyl ether dianhydride, bis (triphenylphthalic acid)- 4,4′-diphenylmethane dianhydride, the following formulas (T-15) to (T-18)

のそれぞれで表されるテトラカルボン酸二無水物等の芳香族テトラカルボン酸二無水物等を挙げることができる。
これらのうち好ましいものとして、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]−フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−8−メチル−ナフト[1,2−c]−フラン−1,3−ジオン、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、ブタンテトラカルボン酸二無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物ならびに上記式(T−1)、(T−2)および(T−15)〜(T−18)のそれぞれで表されるテトラカルボン酸二無水物を挙げることができる。
これらテトラカルボン酸二無水物は単独でまたは2種以上を組み合わせて使用できる。
An aromatic tetracarboxylic dianhydride such as tetracarboxylic dianhydride represented by each of the above.
Among these, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] -furan-1, 3-dione, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -8-methyl-naphtho [1,2-c] -furan-1 , 3-dione, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, butanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1 , 2,3,4-Cyclobutanetetracarboxylic dianhydride, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenylsulfonetetracarboxylic dianhydride, 1,4,5,8-naphthalene Tetracarboxylic Dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride and the above formulas (T-1), (T- Examples thereof include tetracarboxylic dianhydrides represented by 2) and (T-15) to (T-18).
These tetracarboxylic dianhydrides can be used alone or in combination of two or more.

ポリアミック酸の合成に用いることのできるジアミンとしては、例えばp−フェニレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエタン、4,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルホン、3,3’−ジメチル−4,4’−ジアミノビフェニル、4,4’−ジアミノベンズアニリド、4,4’−ジアミノジフェニルエーテル、1,5−ジアミノナフタレン、3,3−ジメチル−4,4’−ジアミノビフェニル、5−アミノ−1−(4’−アミノフェニル)−1,3,3−トリメチルインダン、6−アミノ−1−(4’−アミノフェニル)−1,3,3−トリメチルインダン、3,4’−ジアミノジフェニルエーテル、2,2−ビス(4−アミノフェノキシ)プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]スルホン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、9,9−ビス(4−アミノフェニル)−10−ヒドロアントラセン、2,7−ジアミノフルオレン、9,9−ビス(4−アミノフェニル)フルオレン、4,4’−メチレン−ビス(2−クロロアニリン)、2,2’,5,5’−テトラクロロ−4,4’−ジアミノビフェニル、2,2’−ジクロロ−4,4’−ジアミノ−5,5’−ジメトキシビフェニル、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、4,4’−(p−フェニレンイソプロピリデン)ビスアニリン、4,4’−(m−フェニレンイソプロピリデン)ビスアニリン、2,2−ビス[4−(4−アミノ−2−トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル、4,4’−ビス[(4−アミノ−2−トリフルオロメチル)フェノキシ]−オクタフルオロビフェニル、   Examples of diamines that can be used for the synthesis of polyamic acid include p-phenylenediamine, m-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylethane, 4,4′-diaminodiphenyl sulfide, 4,4′-diaminodiphenyl sulfone, 3,3′-dimethyl-4,4′-diaminobiphenyl, 4,4′-diaminobenzanilide, 4,4′-diaminodiphenyl ether, 1,5-diaminonaphthalene, 3, 3-dimethyl-4,4′-diaminobiphenyl, 5-amino-1- (4′-aminophenyl) -1,3,3-trimethylindane, 6-amino-1- (4′-aminophenyl) -1 , 3,3-trimethylindane, 3,4'-diaminodiphenyl ether, 2,2-bis (4-a Nophenoxy) propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis (4 -Aminophenyl) hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] sulfone, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) Benzene, 1,3-bis (3-aminophenoxy) benzene, 9,9-bis (4-aminophenyl) -10-hydroanthracene, 2,7-diaminofluorene, 9,9-bis (4-aminophenyl) Fluorene, 4,4'-methylene-bis (2-chloroaniline), 2,2 ', 5,5'-tetrachloro-4,4'-diaminobipheny 2,2′-dichloro-4,4′-diamino-5,5′-dimethoxybiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 4,4 ′-(p-phenyleneisopropylidene) Bisaniline, 4,4 ′-(m-phenyleneisopropylidene) bisaniline, 2,2-bis [4- (4-amino-2-trifluoromethylphenoxy) phenyl] hexafluoropropane, 4,4′-diamino-2 , 2′-bis (trifluoromethyl) biphenyl, 4,4′-bis [(4-amino-2-trifluoromethyl) phenoxy] -octafluorobiphenyl,

6−(4−カルコニルオキシ)ヘキシルオキシ(2,4−ジアミノベンゼン)、6−(4’−フルオロ−4−カルコニルオキシ)ヘキシルオキシ(2,4−ジアミノベンゼン)、8−(4−カルコニルオキシ)オクチルオキシ(2,4−ジアミノベンゼン)、8−(4’−フルオロ−4−カルコニルオキシ)オクチルオキシ(2,4−ジアミノベンゼン)、1−ドデシルオキシ−2,4−ジアミノベンゼン、1−テトラデシルオキシ−2,4−ジアミノベンゼン、1−ペンタデシルオキシ−2,4−ジアミノベンゼン、1−ヘキサデシルオキシ−2,4−ジアミノベンゼン、1−オクタデシルオキシ−2,4−ジアミノベンゼン、1−コレステリルオキシ−2,4−ジアミノベンゼン、1−コレスタニルオキシ−2,4−ジアミノベンゼン、ドデシルオキシ(3,5−ジアミノベンゾイル)、テトラデシルオキシ(3,5−ジアミノベンゾイル)、ペンタデシルオキシ(3,5−ジアミノベンゾイル)、ヘキサデシルオキシ(3,5−ジアミノベンゾイル)、オクタデシルオキシ(3,5−ジアミノベンゾイル)、コレステリルオキシ(3,5−ジアミノベンゾイル)、コレスタニルオキシ(3,5−ジアミノベンゾイル)、(2,4−ジアミノフェノキシ)パルミテート、(2,4−ジアミノフェノキシ)ステアリレート、(2,4−ジアミノフェノキシ)−4−トリフルオロメチルベンゾエート、下記式(D−1)〜(D−5) 6- (4-Calconyloxy) hexyloxy (2,4-diaminobenzene), 6- (4′-fluoro-4-chalconyloxy) hexyloxy (2,4-diaminobenzene), 8- (4- Calconyloxy) octyloxy (2,4-diaminobenzene), 8- (4′-fluoro-4-calconyloxy) octyloxy (2,4-diaminobenzene), 1-dodecyloxy-2,4-diamino Benzene, 1-tetradecyloxy-2,4-diaminobenzene, 1-pentadecyloxy-2,4-diaminobenzene, 1-hexadecyloxy-2,4-diaminobenzene, 1-octadecyloxy-2,4- Diaminobenzene, 1-cholesteryloxy-2,4-diaminobenzene, 1-cholestanyloxy-2,4-diaminobenzene, Decyloxy (3,5-diaminobenzoyl), tetradecyloxy (3,5-diaminobenzoyl), pentadecyloxy (3,5-diaminobenzoyl), hexadecyloxy (3,5-diaminobenzoyl), octadecyloxy (3 , 5-diaminobenzoyl), cholesteryloxy (3,5-diaminobenzoyl), cholestanyloxy (3,5-diaminobenzoyl), (2,4-diaminophenoxy) palmitate, (2,4-diaminophenoxy) stearylate , (2,4-diaminophenoxy) -4-trifluoromethylbenzoate, the following formulas (D-1) to (D-5)

のそれぞれで表されるジアミン化合物等の芳香族ジアミン;
ジアミノテトラフェニルチオフェン等のヘテロ原子を有する芳香族ジアミン;
メタキシリレンジアミン、1,3−プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、1,4−ジアミノシクロヘキサン、イソホロンジアミン、テトラヒドロジシクロペンタジエニレンジアミン、ヘキサヒドロ−4,7−メタノインダニレンジメチレンジアミン、トリシクロ[6.2.1.02,7]−ウンデシレンジメチルジアミン、4,4’−メチレンビス(シクロヘキシルアミン)等の脂肪族ジアミンおよび脂環式ジアミン;
ジアミノヘキサメチルジシロキサン等のジアミノオルガノシロキサン等を挙げることができる。
An aromatic diamine such as a diamine compound represented by each of
An aromatic diamine having a heteroatom such as diaminotetraphenylthiophene;
Metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, 1,4-diaminocyclohexane, isophoronediamine, tetrahydrodicyclopenta Aliphatic amines such as dienylenediamine, hexahydro-4,7-methanoindanylene methylenediamine, tricyclo [6.2.1.0 2,7 ] -undecylenedimethyldiamine, 4,4'-methylenebis (cyclohexylamine) Diamines and alicyclic diamines;
Examples include diaminoorganosiloxane such as diaminohexamethyldisiloxane.

これらのうち好ましいものとして、p−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、1,5−ジアミノナフタレン、2,7−ジアミノフルオレン、4,4’−ジアミノジフェニルエーテル、4,4’−(p−フェニレンイソプロピリデン)ビスアニリン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノ−2−トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル、4,4’−ビス[(4−アミノ−2−トリフルオロメチル)フェノキシ]−オクタフルオロビフェニル、1−ヘキサデシルオキシ−2,4−ジアミノベンゼン、1−オクタデシルオキシ−2,4−ジアミノベンゼン、1−コレステリルオキシ−2,4−ジアミノベンゼン、1−コレスタニルオキシ−2,4−ジアミノベンゼン、ヘキサデシルオキシ(3,5−ジアミノベンゾイル)、オクタデシルオキシ(3,5−ジアミノベンゾイル)、コレステリルオキシ(3,5−ジアミノベンゾイル)、コレスタニルオキシ(3,5−ジアミノベンゾイル)および上記式(D−1)〜(D−5)で表されるジアミンを挙げることができる。
これらジアミンは単独でまたは2種以上を組み合わせて使用できる。
Among these, p-phenylenediamine, 4,4′-diaminodiphenylmethane, 1,5-diaminonaphthalene, 2,7-diaminofluorene, 4,4′-diaminodiphenyl ether, 4,4 ′-(p- Phenylene isopropylidene) bisaniline, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, 2,2-bis [4- ( 4-amino-2-trifluoromethylphenoxy) phenyl] hexafluoropropane, 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl, 4,4′-bis [(4-amino-2 -Trifluoromethyl) phenoxy] -octafluorobiphenyl, 1-hexadecyloxy-2,4-di Minobenzene, 1-octadecyloxy-2,4-diaminobenzene, 1-cholesteryloxy-2,4-diaminobenzene, 1-cholestanyloxy-2,4-diaminobenzene, hexadecyloxy (3,5-diaminobenzoyl) , Octadecyloxy (3,5-diaminobenzoyl), cholesteryloxy (3,5-diaminobenzoyl), cholestanyloxy (3,5-diaminobenzoyl) and the above formulas (D-1) to (D-5) Can be mentioned.
These diamines can be used alone or in combination of two or more.

ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミン化合物の使用割合は、ジアミン化合物に含まれるアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2〜2当量となる割合が好ましく、さらに好ましくは0.3〜1.2当量となる割合である。
ポリアミック酸の合成反応は、好ましくは有機溶媒中において、好ましくは−20〜150℃、より好ましくは0〜100℃の温度条件下において、好ましくは0.5〜24時間、より好ましくは2〜10時間行われる。ここで、有機溶媒としては、合成されるポリアミック酸を溶解できるものであれば特に制限はなく、例えばN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N,N−ジメチルイミダゾリジノン、ジメチルスルホキシド、γ−ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミド等の非プロトン系極性溶媒;m−クレゾール、キシレノール、フェノール、ハロゲン化フェノール等のフェノール系溶媒を挙げることができる。有機溶媒の使用量(a)は、テトラカルボン酸二無水物およびジアミン化合物の総量(b)が反応溶液の全量(a+b)に対して好ましくは0.1〜50重量%、より好ましくは5〜30重量%となるような量である。
The ratio of the tetracarboxylic dianhydride and the diamine compound used in the polyamic acid synthesis reaction is such that the acid anhydride group of the tetracarboxylic dianhydride is 0.001 with respect to 1 equivalent of the amino group contained in the diamine compound. A ratio of 2 to 2 equivalents is preferable, and a ratio of 0.3 to 1.2 equivalents is more preferable.
The polyamic acid synthesis reaction is preferably carried out in an organic solvent, preferably at a temperature of −20 to 150 ° C., more preferably at 0 to 100 ° C., preferably 0.5 to 24 hours, more preferably 2 to 10 Done for hours. Here, the organic solvent is not particularly limited as long as it can dissolve the synthesized polyamic acid. For example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, Aprotic polar solvents such as N-dimethylimidazolidinone, dimethyl sulfoxide, γ-butyrolactone, tetramethylurea, hexamethylphosphoric triamide; and phenolic solvents such as m-cresol, xylenol, phenol, halogenated phenol, etc. Can do. The amount (a) of the organic solvent used is such that the total amount (b) of tetracarboxylic dianhydride and diamine compound is preferably 0.1 to 50% by weight, more preferably 5 to 5%, based on the total amount (a + b) of the reaction solution. The amount is 30% by weight.

以上のようにして、ポリアミック酸を溶解してなる反応溶液が得られる。この反応溶液はそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸を単離したうえで液晶配向剤の調製に供してもよく、または単離したポリアミック酸を精製したうえで液晶配向剤の調製に供してもよい。ポリアミック酸を脱水閉環してポリイミドとする場合には、上記反応溶液はそのまま脱水閉環反応に供してもよく、反応溶液中に含まれるポリアミック酸を単離したうえで脱水閉環反応に供してもよく、または単離したポリアミック酸を精製したうえで脱水閉環反応に供してもよい。
ポリアミック酸の単離は、上記反応溶液を大量の貧溶媒中に注いで析出物を得、この析出物を減圧下乾燥する方法、あるいは、反応溶液中の有機溶媒をエバポレーターで減圧留去する方法により行うことができる。また、このポリアミック酸を再び有機溶媒に溶解し、次いで貧溶媒で析出させる方法、あるいは、ポリアミック酸を再び有機溶媒に溶解した溶液とし、該溶液を洗浄した後にエバポレーターで減圧留去する工程を1回または数回行う方法により、ポリアミック酸を精製することができる。
As described above, a reaction solution obtained by dissolving polyamic acid is obtained. This reaction solution may be used as it is for the preparation of the liquid crystal aligning agent, may be used for the preparation of the liquid crystal aligning agent after isolating the polyamic acid contained in the reaction solution, or the isolated polyamic acid was purified. You may use for preparation of a liquid crystal aligning agent. When polyamic acid is dehydrated and cyclized to form polyimide, the reaction solution may be subjected to dehydration and cyclization reaction as it is, or may be subjected to dehydration and cyclization reaction after isolating the polyamic acid contained in the reaction solution. Alternatively, the isolated polyamic acid may be purified and then subjected to a dehydration ring closure reaction.
Polyamic acid is isolated by pouring the reaction solution into a large amount of poor solvent to obtain a precipitate and drying the precipitate under reduced pressure, or by distilling off the organic solvent in the reaction solution under reduced pressure using an evaporator. Can be performed. In addition, a method of dissolving this polyamic acid in an organic solvent again and then precipitating with a poor solvent, or a step in which a polyamic acid is again dissolved in an organic solvent, and the solution is washed and then distilled off under reduced pressure with an evaporator. The polyamic acid can be purified by a method performed once or several times.

{ポリイミド}
上記ポリイミドは、上記の如くして得られたポリアミック酸の有するアミック酸構造を脱水閉環することにより製造することができる。このとき、アミック酸構造の全部を脱水閉環して完全にイミド化してもよく、あるいはアミック酸構造のうちの一部のみを脱水閉環してアミック酸構造とイミド構造とが併存する部分イミド化物としてもよい。
ポリアミック酸の脱水閉環は、(i)ポリアミック酸を加熱する方法により、または(ii)ポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤および脱水閉環触媒を添加し必要に応じて加熱する方法により行われる。
上記(i)のポリアミック酸を加熱する方法における反応温度は、好ましくは50〜200℃であり、より好ましくは60〜170℃である。反応温度が50℃未満では脱水閉環反応が十分に進行せず、反応温度が200℃を超えると得られるイミド化重合体の分子量が低下する場合がある。ポリアミック酸を加熱する方法における反応時間は、好ましくは0.5〜48時間であり、より好ましくは2〜20時間である。
一方、上記(ii)のポリアミック酸の溶液中に脱水剤および脱水閉環触媒を添加する方法において、脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸等の酸無水物を用いることができる。脱水剤の使用量は、ポリアミック酸構造単位の1モルに対して0.01〜20モルとすることが好ましい。また、脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミン等の3級アミンを用いることができる。しかし、これらに限定されるものではない。脱水閉環触媒の使用量は、使用する脱水剤1モルに対して0.01〜10モルとすることが好ましい。脱水閉環反応に用いられる有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒を挙げることができる。脱水閉環反応の反応温度は好ましくは0〜180℃、より好ましくは10〜150℃であり、反応時間は好ましくは0.5〜20時間であり、より好ましくは1〜8時間である。
{Polyimide}
The polyimide can be produced by dehydrating and ring-closing the amic acid structure of the polyamic acid obtained as described above. At this time, all of the amic acid structure may be dehydrated and closed to completely imidize, or only a part of the amic acid structure may be dehydrated and closed to form a partially imidized product in which the amic acid structure and the imide structure coexist. Also good.
The polyamic acid is dehydrated and closed by (i) a method of heating the polyamic acid, or (ii) dissolving the polyamic acid in an organic solvent, adding a dehydrating agent and a dehydrating ring-closing catalyst to this solution, and heating as necessary. By the method.
The reaction temperature in the method of heating the polyamic acid (i) is preferably 50 to 200 ° C, more preferably 60 to 170 ° C. When the reaction temperature is less than 50 ° C., the dehydration ring-closing reaction does not proceed sufficiently, and when the reaction temperature exceeds 200 ° C., the molecular weight of the imidized polymer obtained may decrease. The reaction time in the method of heating the polyamic acid is preferably 0.5 to 48 hours, more preferably 2 to 20 hours.
On the other hand, in the method (ii) of adding a dehydrating agent and a dehydrating ring-closing catalyst to the polyamic acid solution, for example, an acid anhydride such as acetic anhydride, propionic anhydride, or trifluoroacetic anhydride is used as the dehydrating agent. Can do. It is preferable that the usage-amount of a dehydrating agent shall be 0.01-20 mol with respect to 1 mol of a polyamic acid structural unit. Moreover, as a dehydration ring closure catalyst, tertiary amines, such as a pyridine, a collidine, a lutidine, a triethylamine, can be used, for example. However, it is not limited to these. It is preferable that the usage-amount of a dehydration ring-closing catalyst shall be 0.01-10 mol with respect to 1 mol of dehydrating agents to be used. Examples of the organic solvent used in the dehydration ring-closing reaction include the organic solvents exemplified as those used for the synthesis of polyamic acid. The reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C., more preferably 10 to 150 ° C., and the reaction time is preferably 0.5 to 20 hours, more preferably 1 to 8 hours.

上記方法(i)において得られるポリイミドは、これをそのまま液晶配向剤の調製に供してもよく、あるいは得られるポリイミドを精製したうえで液晶配向剤の調製に供してもよい。一方、上記方法(ii)においてはポリイミドを含有する反応溶液が得られる。この反応溶液は、これをそのまま液晶配向剤の調製に供してもよく、反応溶液から脱水剤及び脱水閉環触媒を除いたうえで液晶配向剤の調製に供してもよく、ポリイミドを単離したうえで液晶配向剤の調製に供してもよく、または単離したポリイミドを精製したうえで液晶配向剤の調製に供してもよい。反応溶液から脱水剤及び脱水閉環触媒を除くには、例えば溶媒置換等の方法を適用することができる。ポリイミドの単離、精製は、ポリアミック酸の単離、精製方法として上記したのと同様の操作を行うことにより行うことができる。   The polyimide obtained in the above method (i) may be used for the preparation of the liquid crystal aligning agent as it is, or may be used for the preparation of the liquid crystal aligning agent after purifying the obtained polyimide. On the other hand, in the method (ii), a reaction solution containing polyimide is obtained. This reaction solution may be used as it is for the preparation of the liquid crystal aligning agent, or may be used for the preparation of the liquid crystal aligning agent after removing the dehydrating agent and the dehydrating ring-closing catalyst from the reaction solution. It may be used for the preparation of a liquid crystal aligning agent or may be used for the preparation of a liquid crystal aligning agent after purifying the isolated polyimide. In order to remove the dehydrating agent and the dehydration ring closure catalyst from the reaction solution, for example, a method such as solvent replacement can be applied. The isolation and purification of the polyimide can be performed by performing the same operation as described above as the isolation and purification method of the polyamic acid.

{他のポリオルガノシロキサン}
本発明における他のポリオルガノシロキサンは、上記の感放射線性ポリオルガノシロキサン以外のポリオルガノシロキサンである。かかる他のポリオルガノシロキサンは、例えばアルコキシシラン化合物およびハロゲン化シラン化合物よりなる群から選択される少なくとも1種のシラン化合物(以下、「原料シラン化合物」ともいう。)を、好ましくは適当な有機溶媒中で、水および触媒の存在下において加水分解および縮合することにより合成することができる。 ここで使用できる原料シラン化合物としては、例えばテトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−iso−プロポキシシラン、テトラ−n−ブトキシラン、テトラ−sec−ブトキシシラン、テトラ−tert−ブトキシシラン、テトラクロロシラン;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリ−iso−プロポキシシラン、メチルトリ−n−ブトキシシラン、メチルトリ−sec−ブトキシシラン、メチルトリ−tert−ブトキシシラン、メチルトリフェノキシシラン、メチルトリクロロシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ−n−プロポキシシラン、エチルトリ−iso−プロポキシシラン、エチルトリ−n−ブトキシシラン、エチルトリ−sec−ブトキシシラン、エチルトリ−tert−ブトキシシラン、エチルトリクロロシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリクロロシラン;ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジクロロシラン;
トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルクロロシラン等を挙げることができる。これらのうち好ましい原料シラン化合物として、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシランおよびトリメチルエトキシシランを挙げることができる。
{Other polyorganosiloxanes}
The other polyorganosiloxane in the present invention is a polyorganosiloxane other than the above-mentioned radiation-sensitive polyorganosiloxane. Such other polyorganosiloxane is, for example, at least one silane compound selected from the group consisting of an alkoxysilane compound and a halogenated silane compound (hereinafter also referred to as “raw silane compound”), preferably an appropriate organic solvent. In which it can be synthesized by hydrolysis and condensation in the presence of water and a catalyst. Examples of the raw material silane compound that can be used here include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-iso-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, and tetra-tert- Butoxysilane, tetrachlorosilane; methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltri-iso-propoxysilane, methyltri-n-butoxysilane, methyltri-sec-butoxysilane, methyltri-tert-butoxysilane , Methyltriphenoxysilane, methyltrichlorosilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltri-n-propoxysilane, ethyltri-iso-propoxy Lan, ethyltri-n-butoxysilane, ethyltri-sec-butoxysilane, ethyltri-tert-butoxysilane, ethyltrichlorosilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltrichlorosilane; dimethyldimethoxysilane, dimethyldiethoxysilane, Dimethyldichlorosilane;
Examples thereof include trimethylmethoxysilane, trimethylethoxysilane, and trimethylchlorosilane. Among these, preferable raw material silane compounds include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane and Mention may be made of trimethylethoxysilane.

本発明における他のポリオルガノシロキサンは、上記の如き原料シラン化合物を使用するほかは、エポキシ基を有するポリオルガノシロキサン(a)の合成方法として上記したところと同様にして合成することができる。
他のポリオルガノシロキサンにつき、ゲルパーミエーションクロマトグラフィーによって測定したポリスチレン換算の重量平均分子量は、100〜100,000であることが好ましく、500〜20,000であることがより好ましい。
Other polyorganosiloxanes in the present invention can be synthesized in the same manner as described above as a method for synthesizing the polyorganosiloxane (a) having an epoxy group, except that the raw material silane compound as described above is used.
For other polyorganosiloxanes, the polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography is preferably 100 to 100,000, and more preferably 500 to 20,000.

{他の重合体の使用割合}
本発明の液晶配向剤が、前述の感放射線性ポリオルガノシロキサンとともに他の重合体を含有するものである場合、他の重合体の含有量としては、感放射線性ポリオルガノシロキサン100重量部に対して10,000重量部以下であることが好ましい。他の重合体のより好ましい含有量は、他の重合体の種類により異なる。
本発明の液晶配向剤が、感放射線性ポリオルガノシロキサンならびにポリアミック酸およびポリイミドよりなる群から選択される少なくとも1種の重合体を含有するものである場合における両者のより好ましい使用割合は、感放射線性ポリオルガノシロキサン100重量部に対するポリアミック酸およびポリイミドの合計量として100〜5,000重量部であり、さらにこの値が200〜2,000重量部であることが好ましい。
一方、本発明の液晶配向剤が、感放射線性ポリオルガノシロキサンおよび他のポリオルガノシロキサンを含有するものである場合における両者のより好ましい使用割合は、感放射線性ポリオルガノシロキサン100重量部に対する他のポリオルガノシロキサンの量として100〜2,000重量部である。
本発明の液晶配向剤が、感放射線性ポリオルガノシロキサンとともに他の重合体を含有するものである場合、他の重合体の種類としては、ポリアミック酸およびポリイミドよりなる群から選択される少なくとも1種の重合体、または他のポリオルガノシロキサンであることが好ましい。
{Use ratio of other polymers}
When the liquid crystal aligning agent of the present invention contains another polymer together with the aforementioned radiation-sensitive polyorganosiloxane, the content of the other polymer is based on 100 parts by weight of the radiation-sensitive polyorganosiloxane. It is preferably 10,000 parts by weight or less. The more preferable content of the other polymer varies depending on the type of the other polymer.
In the case where the liquid crystal aligning agent of the present invention contains at least one polymer selected from the group consisting of radiation-sensitive polyorganosiloxane and polyamic acid and polyimide, a more preferable use ratio of both is radiation-sensitive. The total amount of polyamic acid and polyimide with respect to 100 parts by weight of the functional polyorganosiloxane is 100 to 5,000 parts by weight, and this value is preferably 200 to 2,000 parts by weight.
On the other hand, in the case where the liquid crystal aligning agent of the present invention contains a radiation-sensitive polyorganosiloxane and another polyorganosiloxane, the more preferable use ratio of both is other than 100 parts by weight of the radiation-sensitive polyorganosiloxane. The amount of polyorganosiloxane is 100 to 2,000 parts by weight.
When the liquid crystal aligning agent of this invention contains another polymer with radiation sensitive polyorganosiloxane, as a kind of other polymer, at least 1 sort (s) selected from the group which consists of a polyamic acid and a polyimide. It is preferable that the polymer or other polyorganosiloxane.

[硬化剤および硬化触媒]
上記硬化剤および硬化触媒は感放射線性ポリオルガノシロキサンの架橋反応をより強固にする目的で本発明の液晶配向剤に含有されることができ、上記硬化促進剤は硬化剤の司る硬化反応を促進する目的で本発明の液晶配向剤に含有されることができる。
上記硬化剤としては、エポキシ基を有する硬化性化合物またはエポキシ基を有する化合物を含有する硬化性組成物の硬化に一般に用いられている硬化剤を用いることができ、例えば多価アミン、多価カルボン酸無水物、多価カルボン酸を例示することができる。
上記多価カルボン酸無水物としては、例えばシクロヘキサントリカルボン酸の無水物およびその他の多価カルボン酸無水物を挙げることができる。
シクロヘキサントリカルボン酸無水物の具体例としては、例えばシクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物、シクロヘキサン−1,3,5−トリカルボン酸−3,5−無水物、シクロヘキサン−1,2,3−トリカルボン酸−2,3−酸無水物等を挙げることができ、その他の多価カルボン酸無水物としては、例えば4−メチルテトラヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物、無水こはく酸、無水マレイン酸、無水フタル酸、無水トリメリット酸、下記式(7)
[Curing agent and curing catalyst]
The curing agent and the curing catalyst can be contained in the liquid crystal aligning agent of the present invention for the purpose of further strengthening the crosslinking reaction of the radiation-sensitive polyorganosiloxane, and the curing accelerator accelerates the curing reaction controlled by the curing agent. Therefore, it can be contained in the liquid crystal aligning agent of the present invention.
As the curing agent, a curable compound having an epoxy group or a curing agent generally used for curing a curable composition containing a compound having an epoxy group can be used. An acid anhydride and polyhydric carboxylic acid can be illustrated.
Examples of the polyvalent carboxylic acid anhydride include cyclohexanetricarboxylic acid anhydride and other polyvalent carboxylic acid anhydrides.
Specific examples of the cyclohexanetricarboxylic acid anhydride include, for example, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, cyclohexane-1,3,5-tricarboxylic acid-3,5-anhydride, cyclohexane- 1,2,3-tricarboxylic acid-2,3-acid anhydride, and the like. Examples of other polyvalent carboxylic acid anhydrides include 4-methyltetrahydrophthalic acid anhydride, methylnadic acid anhydride, Dodecenyl succinic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, trimellitic anhydride, formula (7)

(式(7)中、pは1〜20の整数である。)
で表される化合物およびポリアミック酸の合成に一般に用いられるテトラカルボン酸二無水物のほか、α−テルピネン、アロオシメン等の共役二重結合を有する脂環式化合物と無水マレイン酸とのディールス・アルダー反応生成物およびこれらの水素添加物等を挙げることができる。
上記硬化触媒としては、例えば6フッ化アンチモン化合物、6フッ化リン化合物、アルミニウムトリスアセチルアセトナート等を用いることができる。これらの触媒は加熱によりエポキシ基のカチオン重合を触媒することができる。
上記硬化促進剤としては、例えばイミダゾール化合物;
4級リン化合物;
4級アミン化合物;
1,8−ジアザビシクロ[5.4.0]ウンデセン−7やその有機酸塩の如きジアザビシクロアルケン;
オクチル酸亜鉛、オクチル酸錫、アルミニウムアセチルアセトン錯体の如き有機金属化合物;
三フッ化ホウ素、ホウ酸トリフェニルの如きホウ素化合物;塩化亜鉛、塩化第二錫の如き金属ハロゲン化合物;
ジシアンジアミド、アミンとエポキシ樹脂との付加物の如きアミン付加型促進剤等の高融点分散型潜在性硬化促進剤;
4級フォスフォニウム塩等の表面をポリマーで被覆したマイクロカプセル型潜在性硬化促進剤;
アミン塩型潜在性硬化促進剤;
ルイス酸塩、ブレンステッド酸塩の如き高温解離型の熱カチオン重合型潜在性硬化促進剤、等を挙げることができる。
(In Formula (7), p is an integer of 1-20.)
Diels-Alder reaction of maleic anhydride with cycloaliphatic compounds having conjugated double bonds such as α-terpinene and allocymene, in addition to tetracarboxylic dianhydrides generally used for the synthesis of compounds and polyamic acids Products and their hydrogenated products can be mentioned.
As the curing catalyst, for example, an antimony hexafluoride compound, a phosphorus hexafluoride compound, aluminum trisacetylacetonate, or the like can be used. These catalysts can catalyze the cationic polymerization of epoxy groups by heating.
Examples of the curing accelerator include imidazole compounds;
Quaternary phosphorus compounds;
Quaternary amine compounds;
Diazabicycloalkenes such as 1,8-diazabicyclo [5.4.0] undecene-7 and organic acid salts thereof;
Organometallic compounds such as zinc octylate, tin octylate, aluminum acetylacetone complex;
Boron compounds such as boron trifluoride and triphenyl borate; metal halides such as zinc chloride and stannic chloride;
High melting point dispersion type latent curing accelerators such as dicyandiamide, amine addition type accelerators such as adducts of amine and epoxy resin;
A microcapsule type latent curing accelerator whose surface is covered with a polymer such as a quaternary phosphonium salt;
An amine salt type latent curing accelerator;
And high temperature dissociation type thermal cationic polymerization type latent curing accelerators such as Lewis acid salts and Bronsted acid salts.

[エポキシ化合物]
上記エポキシ化合物は、形成される液晶配向膜の基板表面に対する接着性をより向上する観点から本発明の液晶配向剤に含有されることができる。
かかるエポキシ化合物としては、例えばエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、N,N,−ジグリシジル−ベンジルアミン、N,N−ジグリシジル−アミノメチルシクロヘキサン等を好ましいものとして挙げることができる。
本発明の液晶配向剤がエポキシ化合物を含有する場合、その含有割合としては、上記の感放射線性ポリオルガノシロキサンと任意的に使用される他の重合体との合計100重量部に対して、好ましくは40重量部以下、より好ましくは0.1〜30重量部である。
なお、本発明の液晶配向剤がエポキシ化合物を含有する場合、その架橋反応を効率良く起こす目的で、1−ベンジル−2−メチルイミダゾール等の塩基触媒を併用してもよい。
[Epoxy compound]
The said epoxy compound can be contained in the liquid crystal aligning agent of this invention from a viewpoint which improves the adhesiveness with respect to the substrate surface of the liquid crystal aligning film formed.
Examples of such epoxy compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, and 1,6-hexane. Diol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ′, N′— Tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N′-tetraglycidyl-4,4′-dia Bruno diphenylmethane, N, N, - diglycidyl - benzylamine, N, N-diglycidyl - may be mentioned as being preferred amino methyl cyclohexane.
When the liquid crystal aligning agent of the present invention contains an epoxy compound, the content is preferably 100 parts by weight with respect to the total of 100 parts by weight of the above-mentioned radiation-sensitive polyorganosiloxane and other polymers optionally used. Is 40 parts by weight or less, more preferably 0.1 to 30 parts by weight.
In addition, when the liquid crystal aligning agent of this invention contains an epoxy compound, you may use together basic catalysts, such as 1-benzyl-2-methylimidazole, in order to raise | generate the crosslinking reaction efficiently.

[官能性シラン化合物]
上記官能性シラン化合物は、得られる液晶配向膜の基板との接着性をより向上する目的で使用することができる。官能性シラン化合物としては、例えば3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−アミノプロピルトリメトキシシラン、2−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリメトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリエトキシシラン、N−トリエトキシシリルプロピルトリエチレントリアミン、N−トリメトキシシリルプロピルトリエチレントリアミン、10−トリメトキシシリル−1,4,7−トリアザデカン、10−トリエトキシシリル−1,4,7−トリアザデカン、9−トリメトキシシリル−3,6−ジアザノニルアセテート、9−トリエトキシシリル−3,6−ジアザノニルアセテート、N−ベンジル−3−アミノプロピルトリメトキシシラン、N−ベンジル−3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリエトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリメトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリエトキシシラン、3−グリシジロキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等を挙げることができ、さらに特開昭63−291922号公報に記載されている、テトラカルボン酸二無水物とアミノ基を有するシラン化合物との反応物等を挙げることができる。
本発明の液晶配向剤が官能性シラン化合物を含有する場合、その含有割合としては、上記の感放射線性ポリオルガノシロキサンと任意的に使用される他の重合体との合計100重量部に対して、好ましくは50重量部以下であり、より好ましくは20重量部以下である。
[Functional silane compounds]
The said functional silane compound can be used in order to improve the adhesiveness with the board | substrate of the liquid crystal aligning film obtained. Examples of the functional silane compound include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, and N- (2-aminoethyl) -3. -Aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltri Methoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7 Triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl- 3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene ) -3-Aminopropyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane In addition, JP-A Is described in 3-291922 JP include a reaction product of a silane compound having a tetracarboxylic dianhydride and an amino group.
When the liquid crystal aligning agent of this invention contains a functional silane compound, as the content rate, it is with respect to a total of 100 weight part of said radiation sensitive polyorganosiloxane and the other polymer arbitrarily used. , Preferably 50 parts by weight or less, more preferably 20 parts by weight or less.

[界面活性剤]
上記界面活性剤としては、例えばノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、シリコーン界面活性剤、ポリアルキレンオキシド界面活性剤、含フッ素界面活性剤等を挙げることができる。
本発明の液晶配向剤が界面活性剤を含有する場合、その含有割合としては、液晶配向剤の全体100重量部に対して、好ましくは10重量部以下であり、より好ましくは1重量部以下である。
[Surfactant]
Examples of the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, silicone surfactants, polyalkylene oxide surfactants, and fluorine-containing surfactants. it can.
When the liquid crystal aligning agent of this invention contains surfactant, as the content rate, Preferably it is 10 weight part or less with respect to 100 weight part of the whole liquid crystal aligning agent, More preferably, it is 1 weight part or less. is there.

<液晶配向剤>
本発明の液晶配向剤は、上述の通り、感放射線性ポリオルガノシロキサンを必須成分として含有し、そのほかに必要に応じて他の成分を含有するものであるが、好ましくは各成分が有機溶媒に溶解された溶液状の組成物として調製される。
本発明の液晶配向剤を調製するために使用することのできる有機溶媒としては、感放射線性ポリオルガノシロキサンおよび任意的に使用される他の成分を溶解し、これらと反応しないものが好ましい。
本発明の液晶配向剤に好ましく使用することのできる有機溶媒は、任意的に添加される他の重合体の種類により異なる。
本発明の液晶配向剤が感放射線性ポリオルガノシロキサンならびにポリアミック酸およびポリイミドよりなる群から選択される少なくとも1種の重合体を含有するものである場合における好ましい有機溶剤としては、ポリアミック酸の合成に用いられるものとして上記に例示した有機溶媒を挙げることができる。これら有機溶媒は、単独でまたは2種以上組み合わせて使用することができる。
<Liquid crystal aligning agent>
As described above, the liquid crystal aligning agent of the present invention contains a radiation-sensitive polyorganosiloxane as an essential component, and additionally contains other components as necessary. Preferably, each component is an organic solvent. It is prepared as a dissolved solution composition.
The organic solvent that can be used for preparing the liquid crystal aligning agent of the present invention is preferably one that dissolves the radiation-sensitive polyorganosiloxane and other optional components and does not react with them.
The organic solvent that can be preferably used in the liquid crystal aligning agent of the present invention varies depending on the type of other polymer that is optionally added.
As a preferable organic solvent in the case where the liquid crystal aligning agent of the present invention contains at least one polymer selected from the group consisting of radiation-sensitive polyorganosiloxane and polyamic acid and polyimide, the synthesis of polyamic acid is preferable. The organic solvent illustrated above can be mentioned as what is used. These organic solvents can be used alone or in combination of two or more.

一方、本発明の液晶配向剤が、重合体として感放射線性ポリオルガノシロキサンのみを含有するものである場合、または感放射線性ポリオルガノシロキサンおよび他のポリオルガノシロキサンを含有するものである場合における好ましい有機溶剤としては、例えば1−エトキシ−2−プロパノール、プロピレングリコールモノエチルエーテル、プロピレンブリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノアセテート、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールモノアミルエーテル、エチレングリコールモノヘキシルエーテル、ジエチレングリコール、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピルセロソルブアセテート、ブチルセロソルブアセテート、メチルカルビトール、エチルカルビトール、プロピルカルビトール、ブチルカルビトール、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸ベンジル、酢酸n−ヘキシル、酢酸シクロヘキシル、酢酸オクチル、酢酸アミル、酢酸イソアミル等が挙げられる。この中で好ましくは、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル等を挙げることができる。   On the other hand, when the liquid crystal aligning agent of the present invention contains only a radiation-sensitive polyorganosiloxane as a polymer, or is preferable when it contains a radiation-sensitive polyorganosiloxane and another polyorganosiloxane. Examples of the organic solvent include 1-ethoxy-2-propanol, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol monoacetate, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, dipropylene glycol Propylene glycol propyl ether, dipropylene glycol dimethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Recall monopropyl ether, ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol monoamyl ether, ethylene glycol monohexyl ether, diethylene glycol, methyl cellosolve acetate, ethyl cellosolve acetate, propyl cellosolve acetate, butyl cellosolve acetate, methyl carbitol, ethyl carbitol, Propyl carbitol, butyl carbitol, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, acetic acid Methylpentyl, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, n-hexyl acetate, cyclohexyl acetate, octyl acetate , Amyl acetate, isoamyl acetate, and the like. Of these, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate and the like can be mentioned.

本発明の液晶配向剤の調製に用いられる好ましい溶媒は、他の重合体の使用の有無およびその種類に従い、上記した有機溶媒の1種または2種以上を組み合わせて得られるものであって、下記の好ましい固形分濃度において液晶配向剤に含有される各成分が析出せず、且つ液晶配向剤の表面張力が25〜40mN/mの範囲となるものである。
本発明の液晶配向剤の固形分濃度、すなわち液晶配向剤中の溶媒以外の全成分の重量が液晶配向剤の全重量に占める割合は、粘性、揮発性等を考慮して選択されるが、好ましくは1〜10重量%の範囲である。本発明の液晶配向剤は、基板表面に塗布され、液晶配向膜となる塗膜を形成するが、固形分濃度が1重量%未満である場合には、この塗膜の膜厚が過小となって良好な液晶配向膜を得難い場合がある。一方、固形分濃度が10重量%を超える場合には、塗膜の膜厚が過大となって良好な液晶配向膜を得難く、また、液晶配向剤の粘性が増大して塗布特性が不足する場合がある。特に好ましい固形分濃度の範囲は、基板に液晶配向剤を塗布する際に採用する方法によって異なる。例えばスピンナー法による場合には1.5〜4.5重量%の範囲が特に好ましい。印刷法による場合には、固形分濃度を3〜9重量%の範囲とし、それによって溶液粘度を12〜50mPa・sの範囲とするのが特に好ましい。インクジェット法による場合には、固形分濃度を1〜5重量%の範囲とし、それによって溶液粘度を3〜15mPa・sの範囲とするのが特に好ましい。
本発明の液晶配向剤を調製する際の温度は、好ましくは、0℃〜200℃、より好ましくは0℃〜40℃である。
A preferred solvent used for the preparation of the liquid crystal aligning agent of the present invention is obtained by combining one or more of the above organic solvents according to the presence or absence of other polymers and their types, The components contained in the liquid crystal aligning agent do not precipitate at the preferred solid content concentration, and the surface tension of the liquid crystal aligning agent is in the range of 25 to 40 mN / m.
The solid content concentration of the liquid crystal aligning agent of the present invention, that is, the ratio of the weight of all components other than the solvent in the liquid crystal aligning agent to the total weight of the liquid crystal aligning agent is selected in consideration of viscosity, volatility, Preferably it is the range of 1-10 weight%. The liquid crystal aligning agent of the present invention is applied to the substrate surface to form a coating film that becomes a liquid crystal alignment film. When the solid content concentration is less than 1% by weight, the film thickness of this coating film becomes too small. In some cases, it is difficult to obtain a good liquid crystal alignment film. On the other hand, when the solid content concentration exceeds 10% by weight, it is difficult to obtain a good liquid crystal alignment film due to excessive film thickness, and the viscosity of the liquid crystal alignment agent increases, resulting in insufficient coating characteristics. There is a case. The particularly preferable range of the solid content concentration varies depending on the method employed when the liquid crystal aligning agent is applied to the substrate. For example, when the spinner method is used, the range of 1.5 to 4.5% by weight is particularly preferable. In the case of the printing method, it is particularly preferable that the solid content concentration is in the range of 3 to 9% by weight, and thereby the solution viscosity is in the range of 12 to 50 mPa · s. In the case of the inkjet method, it is particularly preferable that the solid content concentration is in the range of 1 to 5% by weight, and thereby the solution viscosity is in the range of 3 to 15 mPa · s.
The temperature for preparing the liquid crystal aligning agent of the present invention is preferably 0 ° C to 200 ° C, more preferably 0 ° C to 40 ° C.

上記の如くして得られる本発明の液晶配向剤は、TN型、STN型、IPS型、VA型等の公知の構造の液晶表示素子の液晶配向膜を、少ない露光量の光配向法によって形成するために好適に使用することができるほか、MVAパネルの問題点が解消された新規な液晶表示素子を製造するために用いることができる。
以下、本発明の液晶配向剤を用いて行う液晶配向膜の形成方法および該液晶配向膜を具備する液晶表示素子の製造方法、ならびに本発明の液晶配向剤を用いて行う新規な液晶表示素子の製造方法について、順に説明する。
The liquid crystal aligning agent of the present invention obtained as described above forms a liquid crystal alignment film of a liquid crystal display element having a known structure such as a TN type, STN type, IPS type, VA type, etc. by a photo-alignment method with a small exposure amount. In addition to being able to be used suitably, it can be used for manufacturing a novel liquid crystal display element in which the problems of the MVA panel are solved.
Hereinafter, a method for forming a liquid crystal alignment film performed using the liquid crystal alignment agent of the present invention, a method for manufacturing a liquid crystal display element including the liquid crystal alignment film, and a novel liquid crystal display element performed using the liquid crystal alignment agent of the present invention A manufacturing method is demonstrated in order.

<液晶配向膜の形成方法>
液晶配向膜を形成する方法としては、例えば基板上に本発明の液晶配向膜の塗膜を形成し、次いで該塗膜に放射線を照射する工程を経る方法を挙げることができる。
本発明の液晶配向剤をTN型、STN型またはVA型に適用する場合、パターン状の透明導電膜が設けられた基板の2枚を一対として使用する。一方、本発明の液晶配向剤をIPS型に適用する場合、櫛歯状のパターンを有する透明導電膜が設けられた基板と導電膜を有さない基板とを一対として使用する。
まず、透明導電膜が設けられた基板の透明導電膜側または導電膜を有さない基板の片面に、本発明の液晶配向剤を、例えばロールコーター法、スピンナー法、印刷法、インクジェット法等の適宜の塗布方法により塗布する。そして、該塗布面を、予備加熱(プレベーク)し、次いで焼成(ポストベーク)することにより塗膜を形成する。プレベーク条件は、例えば40〜120℃において0.1〜5分であり、ポストベーク条件は、好ましくは120〜300℃、より好ましくは150〜250℃において、好ましくは5〜200分、より好ましくは10〜100分である。ポストベーク後の塗膜の膜厚は、好ましくは0.001〜1μmであり、より好ましくは0.005〜0.5μmである。
前記基板としては、例えばフロートガラス、ソーダガラスの如きガラス、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネートの如きプラスチックからなる透明基板等を用いることができる。
前記透明導電膜としては、SnOからなるNESA膜、In−SnOからなるITO膜等を用いることができる。パターン状の透明導電膜を得るには、フォト・エッチング法や透明導電膜を形成する際にマスクを用いる方法等が用いられる。
<Method for forming liquid crystal alignment film>
Examples of the method for forming the liquid crystal alignment film include a method of forming a coating film of the liquid crystal alignment film of the present invention on a substrate and then irradiating the coating film with radiation.
When the liquid crystal aligning agent of the present invention is applied to a TN type, STN type, or VA type, two substrates provided with a patterned transparent conductive film are used as a pair. On the other hand, when the liquid crystal aligning agent of the present invention is applied to the IPS type, a pair of a substrate provided with a transparent conductive film having a comb-like pattern and a substrate not having a conductive film are used.
First, the liquid crystal aligning agent of the present invention is applied to one side of a transparent conductive film side of a substrate provided with a transparent conductive film or a substrate having no conductive film, for example, a roll coater method, a spinner method, a printing method, an inkjet method, etc. Application is performed by an appropriate application method. Then, the coated surface is preheated (prebaked) and then baked (postbaked) to form a coating film. The pre-bake conditions are, for example, 0.1 to 5 minutes at 40 to 120 ° C., and the post-bake conditions are preferably 120 to 300 ° C., more preferably 150 to 250 ° C., preferably 5 to 200 minutes, more preferably 10 to 100 minutes. The film thickness of the coating film after post-baking is preferably 0.001-1 μm, more preferably 0.005-0.5 μm.
As the substrate, for example, a glass such as float glass or soda glass, a transparent substrate made of a plastic such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, or polycarbonate can be used.
As the transparent conductive film, a NESA film made of SnO 2 , an ITO film made of In 2 O 3 —SnO 2, or the like can be used. In order to obtain a patterned transparent conductive film, a photo-etching method or a method using a mask when forming the transparent conductive film is used.

液晶配向剤の塗布に際しては、基板または透明導電膜と塗膜との接着性をさらに良好にするために、基板および透明導電膜上に、予め官能性シラン化合物、チタネート等を塗布しておいてもよい。
次いで、前記塗膜に直線偏光もしくは部分偏光された放射線または無偏光の放射線を照射することにより、液晶配向能を付与する。ここで、放射線としては、例えば150〜800nmの波長の光を含む紫外線および可視光線を用いることができるが、300〜400nmの波長の光を含む紫外線が好ましい。用いる放射線が直線偏光または部分偏光している場合には、照射は基板面に垂直の方向から行っても、プレチルト角を付与するために斜め方向から行ってもよく、また、これらを組み合わせて行ってもよい。無偏光の放射線を照射する場合には、照射の方向は斜め方向である必要がある。
使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマーレーザー等を使用することができる。前記の好ましい波長領域の紫外線は、前記光源を、例えばフィルター、回折格子等と併用する手段等により得ることができる。
放射線の照射量としては、好ましくは1J/m以上10,000J/m未満であり、より好ましくは10〜3,000J/mである。なお、従来知られている液晶配向剤から形成された塗膜に光配向法により液晶配向能を付与する場合、10,000J/m以上の放射線照射量が必要であった。しかし本発明の液晶配向剤を用いると、光配向法の際の放射線照射量が3,000J/m以下、さらに1,000J/m以下であっても良好な液晶配向能を付与することができ、液晶表示素子の製造コストの削減に資する。
When applying the liquid crystal aligning agent, in order to further improve the adhesion between the substrate or the transparent conductive film and the coating film, a functional silane compound, titanate or the like is previously applied on the substrate and the transparent conductive film. Also good.
Next, the coating film is irradiated with linearly polarized light, partially polarized radiation, or non-polarized radiation to impart liquid crystal alignment ability. Here, as radiation, for example, ultraviolet rays and visible light containing light having a wavelength of 150 to 800 nm can be used, but ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable. When the radiation used is linearly polarized or partially polarized, irradiation may be performed from a direction perpendicular to the substrate surface, or from an oblique direction to give a pretilt angle, or a combination thereof. May be. When irradiating non-polarized radiation, the direction of irradiation needs to be an oblique direction.
As a light source to be used, for example, a low pressure mercury lamp, a high pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used. The ultraviolet rays in the preferable wavelength region can be obtained by means of using the light source in combination with, for example, a filter, a diffraction grating or the like.
The irradiation dose of radiation, preferably less than 1 J / m 2 or more 10,000 J / m 2, more preferably from 10~3,000J / m 2. In addition, when providing the liquid crystal aligning ability by the photo-alignment method to the coating film formed from the conventionally known liquid crystal aligning agent, the irradiation dose of 10,000 J / m < 2 > or more was required. However, when the liquid crystal aligning agent of the present invention is used, a good liquid crystal aligning ability is imparted even when the radiation irradiation amount in the photo-alignment method is 3,000 J / m 2 or less, and further 1,000 J / m 2 or less. This contributes to the reduction of the manufacturing cost of the liquid crystal display element.

<上記液晶配向膜を具備する液晶表示素子の製造方法>
本発明の液晶配向剤を用いて形成された液晶配向膜を具備する液晶表示素子は、例えば以下のようにして製造することができる。
上記のようにして液晶配向膜が形成された基板を2枚準備し、この2枚の基板間に液晶を配置することにより、液晶セルを製造する。液晶セルを製造するには、例えば以下の2つの方法が挙げられる。
第一の方法は、従来から知られている方法である。先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面およびシール剤により区画されたセルギャップ内に液晶を注入充填した後、注入孔を封止することにより、液晶セルを製造することができる。
第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に例えば紫外光硬化性のシール材を塗布し、さらに液晶配向膜面上に液晶を滴下した後、液晶配向膜が対向するように他方の基板を貼り合わせ、次いで基板の全面に紫外光を照射してシール剤を硬化することにより、液晶セルを製造することができる。
いずれの方法による場合でも、次いで、液晶セルを、用いた液晶が等方相をとる温度まで加熱した後、室温まで徐冷することにより、注入時の流動配向を除去することが望ましい。
<Method for Producing Liquid Crystal Display Device Comprising the Liquid Crystal Alignment Film>
A liquid crystal display device comprising a liquid crystal alignment film formed using the liquid crystal aligning agent of the present invention can be produced, for example, as follows.
A liquid crystal cell is manufactured by preparing two substrates on which a liquid crystal alignment film is formed as described above, and disposing a liquid crystal between the two substrates. In order to manufacture a liquid crystal cell, the following two methods are mentioned, for example.
The first method is a conventionally known method. First, two substrates are arranged to face each other through a gap (cell gap) so that the respective liquid crystal alignment films are opposed to each other, and the peripheral portions of the two substrates are bonded using a sealant, and the substrate surface and the sealant are bonded. A liquid crystal cell can be manufactured by injecting and filling liquid crystal into the cell gap partitioned by the step, and then sealing the injection hole.
The second method is a method called an ODF (One Drop Fill) method. For example, an ultraviolet light curable sealing material is applied to a predetermined location on one of the two substrates on which the liquid crystal alignment film is formed, and liquid crystal is dropped on the liquid crystal alignment film surface. The other substrate is bonded so as to face each other, and then the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant, whereby a liquid crystal cell can be manufactured.
In any case, it is desirable to remove the flow alignment at the time of injection by heating the liquid crystal cell to a temperature at which the liquid crystal used has an isotropic phase and then slowly cooling it to room temperature.

そして、液晶セルの外側表面に偏光板を貼り合わせることにより、本発明の液晶表示素子を得ることができる。ここで、液晶配向膜が水平配向性である場合、液晶配向膜が形成された2枚の基板における、照射した直線偏光放射線の偏光方向のなす角度およびそれぞれの基板と偏光板との角度を調整することにより、TN型、STN型またはIPS型の液晶セルを有する液晶表示素子を得ることができる。一方、液晶配向膜が垂直配向性である場合には、液晶配向膜が形成された2枚の基板における配向容易軸の方向が平行となるようにセルを構成し、これに、偏光板を、その偏光方向が配向容易軸と45°の角度をなすように貼り合わせることにより、VA型液晶セルを有する液晶表示素子とすることができる。
前記シール剤としては、例えばスペーサーとしての酸化アルミニウム球および硬化剤を含有するエポキシ樹脂等を用いることができる。
前記液晶としては、例えばネマティック型液晶、スメクティック型液晶等を用いることができる。TN型液晶セル、STN型液晶セルまたはIPS型液晶セルの場合、ネマティック型液晶を形成する正の誘電異方性を有するものが好ましく、例えばビフェニル系液晶、フェニルシクロヘキサン系液晶、エステル系液晶、ターフェニル系液晶、ビフェニルシクロヘキサン系液晶、ピリミジン系液晶、ジオキサン系液晶、ビシクロオクタン系液晶、キュバン系液晶等が用いられる。また前記液晶に、例えばコレスチルクロライド、コレステリルノナエート、コレステリルカーボネート等のコレステリック液晶;商品名「C−15」、「CB−15」(メルク社製)として市販されているようなカイラル剤;p−デシロキシベンジリデン−p−アミノ−2−メチルブチルシンナメート等の強誘電性液晶等を、さらに添加して使用してもよい。一方、VA型液晶セルの場合には、ネマティック型液晶を形成する負の誘電異方性を有するものが好ましく、例えばジシアノベンゼン系液晶、ピリダジン系液晶、シッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶等が用いられる。
液晶セルの外側に使用される偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と呼ばれる偏光膜を酢酸セルロース保護膜で挟んだ偏光板、またはH膜そのものからなる偏光板等を挙げることができる。
かくして製造された本発明の液晶表示素子は、表示特性、信頼性等の諸性能に優れるものである。
And the liquid crystal display element of this invention can be obtained by bonding a polarizing plate on the outer surface of a liquid crystal cell. Here, when the liquid crystal alignment film is horizontally aligned, the angle formed by the polarization direction of the irradiated linearly polarized radiation and the angle between each substrate and the polarizing plate are adjusted on the two substrates on which the liquid crystal alignment film is formed. By doing so, a liquid crystal display element having a TN type, STN type or IPS type liquid crystal cell can be obtained. On the other hand, in the case where the liquid crystal alignment film is vertically aligned, the cell is configured so that the directions of easy alignment axes of the two substrates on which the liquid crystal alignment film is formed are parallel, A liquid crystal display element having a VA type liquid crystal cell can be obtained by bonding so that the polarization direction forms an angle of 45 ° with the easy alignment axis.
As the sealing agent, for example, an aluminum oxide sphere as a spacer and an epoxy resin containing a curing agent can be used.
As the liquid crystal, for example, a nematic liquid crystal, a smectic liquid crystal, or the like can be used. In the case of a TN type liquid crystal cell, STN type liquid crystal cell or IPS type liquid crystal cell, those having positive dielectric anisotropy forming a nematic type liquid crystal are preferable. For example, biphenyl type liquid crystal, phenyl cyclohexane type liquid crystal, ester type liquid crystal, Phenyl liquid crystals, biphenylcyclohexane liquid crystals, pyrimidine liquid crystals, dioxane liquid crystals, bicyclooctane liquid crystals, cubane liquid crystals, and the like are used. Further, for example, cholesteric liquid crystals such as cholestyl chloride, cholesteryl nonate, cholesteryl carbonate; chiral agents such as those commercially available as trade names “C-15” and “CB-15” (manufactured by Merck); p A ferroelectric liquid crystal such as -decyloxybenzylidene-p-amino-2-methylbutylcinnamate may be further added and used. On the other hand, in the case of a VA type liquid crystal cell, those having negative dielectric anisotropy forming a nematic type liquid crystal are preferable. For example, dicyanobenzene liquid crystal, pyridazine liquid crystal, Schiff base liquid crystal, azoxy liquid crystal, biphenyl liquid crystal Phenylcyclohexane-based liquid crystal is used.
The polarizing plate used outside the liquid crystal cell is composed of a polarizing film called “H film” in which polyvinyl alcohol is stretched and oriented while absorbing iodine and sandwiched between cellulose acetate protective films, or the H film itself. A polarizing plate etc. can be mentioned.
The liquid crystal display element of the present invention thus produced is excellent in various properties such as display characteristics and reliability.

<新規な液晶表示素子の製造方法>
本発明の液晶配向剤を用いて行う新規な液晶表示素子の製造方法は、
導電膜を有する一対の基板の該導電膜上に、それぞれ、上記の如き本発明の液晶配向剤を塗布して塗膜を形成し、
前記塗膜を形成した一対の基板の前記塗膜が、液晶分子の層を介して相対して対向配置した構成の液晶セルを形成し、
前記一対の基板の有する導電膜間に電圧を印加した状態で前記液晶セルに光照射する工程を経ることを特徴とする。
ここで、用いられる基板としては、上記の如き本発明の液晶配向剤から形成された液晶配向膜を具備する液晶表示素子の場合と同様である。
上記導電膜としては、透明導電膜を用いることが好ましく、例えばSnOからなるNESA膜、In−SnOからなるITO膜等を用いることができる。この導電膜は、それぞれ、複数の領域に区画されたパターン状導電膜であることが好ましい。このような導電膜構成とすれば、導電膜間に電圧を印加する際(後述)にこの各領域ごとに異なる電圧を印加することによって各領域ごとに液晶分子のプレチルト角の方向を変えることができ、これにより視野角特性をより広くすることが可能となる。
かかる基板の該導電膜上に液晶配向剤を塗布する方法、塗布後のプレベークおよびポストベークならびにポストベーク後の塗膜の膜厚については、上記本発明の液晶配向剤から形成された液晶配向膜を具備する液晶表示素子の場合と同様である。
<Method for manufacturing novel liquid crystal display element>
A method for producing a novel liquid crystal display element performed using the liquid crystal aligning agent of the present invention,
A coating film is formed by applying the liquid crystal aligning agent of the present invention as described above on the conductive film of the pair of substrates having the conductive film,
The coating film of the pair of substrates on which the coating film is formed forms a liquid crystal cell having a configuration in which the coating film is opposed to each other through a layer of liquid crystal molecules,
A step of irradiating the liquid crystal cell with light while applying a voltage between the conductive films of the pair of substrates is characterized.
Here, the substrate used is the same as that of the liquid crystal display device including the liquid crystal alignment film formed from the liquid crystal aligning agent of the present invention as described above.
As the conductive film, a transparent conductive film is preferably used. For example, a NESA film made of SnO 2 or an ITO film made of In 2 O 3 —SnO 2 can be used. Each of the conductive films is preferably a patterned conductive film partitioned into a plurality of regions. With such a conductive film configuration, when a voltage is applied between the conductive films (described later), the direction of the pretilt angle of the liquid crystal molecules can be changed for each region by applying a different voltage for each region. This makes it possible to further widen the viewing angle characteristics.
Regarding the method of applying a liquid crystal aligning agent on the conductive film of the substrate, pre-baking and post-baking after coating, and the film thickness of the coating film after post-baking, the liquid crystal aligning film formed from the liquid crystal aligning agent of the present invention described above It is the same as that of the case of the liquid crystal display element which comprises.

このようにして形成された塗膜はこれをそのまま次工程の液晶セルの製造に供してもよく、あるいは液晶セルの製造に先んじて必要に応じて塗膜面に対するラビング処理を行ってもよい。このラビング処理は、塗膜面に対して、例えばナイロン、レーヨン、コットン等の繊維からなる布を巻き付けたロールで一定方向に擦ることにより行うことができる。ここで、特許文献17(特開平5−107544号公報)に記載されているように、一旦ラビング処理を行った後に塗膜面の一部にレジスト膜を形成し、さらに先のラビング処理と異なる方向にラビング処理を行った後にレジスト膜を除去する処理を行い、領域ごとに異なるラビング方向とすることによって、得られる液晶表示素子の視界特性をさらに改善することが可能である。
次いで、前記塗膜を形成した一対の基板の前記塗膜が、液晶分子の層を介して相対して対向配置した構成の液晶セルを形成する。
ここで使用される液晶分子としては、負の誘電異方性を有するネマティック型液晶が好ましく、例えばジシアノベンゼン系液晶、ピリダジン系液晶、シッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶等を用いることができる。液晶分子の層の厚さは、1〜5μmとすることが好ましい。
かかる液晶を用いて液晶セルを形成する方法は、上記本発明の液晶配向剤から形成された液晶配向膜を具備する液晶表示素子の場合と同様である。
The coating film thus formed may be used as it is for the production of a liquid crystal cell in the next step, or may be subjected to a rubbing treatment on the coating surface as necessary prior to the production of the liquid crystal cell. This rubbing treatment can be performed by rubbing the coating surface with a roll wound with a cloth made of fibers such as nylon, rayon, and cotton. Here, as described in Patent Document 17 (Japanese Patent Application Laid-Open No. 5-107544), a resist film is formed on a part of the coating surface after once rubbing, and is different from the previous rubbing. By performing a process of removing the resist film after performing the rubbing process in the direction and setting the rubbing direction to be different for each region, it is possible to further improve the visual field characteristics of the obtained liquid crystal display element.
Next, a liquid crystal cell having a configuration in which the coating film of the pair of substrates on which the coating film is formed is disposed to face each other through a layer of liquid crystal molecules is formed.
The liquid crystal molecules used here are preferably nematic liquid crystals having negative dielectric anisotropy, such as dicyanobenzene liquid crystals, pyridazine liquid crystals, Schiff base liquid crystals, azoxy liquid crystals, biphenyl liquid crystals, phenyl cyclohexane liquid crystals. Etc. can be used. The thickness of the liquid crystal molecule layer is preferably 1 to 5 μm.
A method for forming a liquid crystal cell using such a liquid crystal is the same as in the case of a liquid crystal display element having a liquid crystal alignment film formed from the liquid crystal alignment agent of the present invention.

その後、前記一対の基板の有する導電膜間に電圧を印加した状態で前記液晶セルに光照射する。
ここで印加する電圧は、例えば5〜50Vの直流または交流とすることができる。
照射する光としては、例えば150〜800nmの波長の光を含む紫外線および可視光線を用いることができるが、300〜400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマーレーザー等を使用することができる。前記の好ましい波長領域の紫外線は、前記光源を、例えばフィルター、回折格子等と併用する手段等により得ることができる。
光の照射量としては、好ましくは1,000J/m以上100,000J/m未満であり、より好ましくは1,000〜50,000J/mである。従来知られているPSAモードの液晶表示素子の製造においては、100,000J/m程度の光を照射することが必要であったが、本発明の方法においては、光照射量を50,000J/m以下、さらに10,000J/m以下とした場合であっても所望の液晶表示素子を得ることができ、液晶表示素子の製造コストの削減に資するほか、強い光の照射に起因する電気特性の低下、長期信頼性の低下を回避することができる。
そして、上記のような処理を施した後の液晶セルの外側表面に偏光板を貼り合わせることにより、液晶表示素子を得ることができる。ここで使用される偏光板としては、H膜を酢酸セルロース保護膜で挟んだ偏光板、またはH膜そのものからなる偏光板等を挙げることができる。
上記の如くして製造される液晶表示素子は、視野角が広く、液晶分子の応答速度が極めて速く、表示特性および長期信頼性の双方に優れるものであり、しかも製造コストが削減された安価なものであるため、種々の用途に好適に適用することができる。
Thereafter, the liquid crystal cell is irradiated with light while a voltage is applied between the conductive films of the pair of substrates.
The voltage applied here can be, for example, 5 to 50 V direct current or alternating current.
As light to irradiate, for example, ultraviolet light and visible light including light having a wavelength of 150 to 800 nm can be used, but ultraviolet light including light having a wavelength of 300 to 400 nm is preferable. As a light source of irradiation light, for example, a low pressure mercury lamp, a high pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used. The ultraviolet rays in the preferable wavelength region can be obtained by means of using the light source in combination with, for example, a filter, a diffraction grating or the like.
The amount of light irradiation is preferably 1,000 J / m 2 or more and less than 100,000 J / m 2 , more preferably 1,000 to 50,000 J / m 2 . In the manufacture of a conventionally known PSA mode liquid crystal display element, it was necessary to irradiate light of about 100,000 J / m 2. In the method of the present invention, the amount of light irradiation was set to 50,000 J / M 2 or less, and even if it is 10,000 J / m 2 or less, a desired liquid crystal display element can be obtained, which contributes to a reduction in manufacturing cost of the liquid crystal display element and is caused by irradiation with strong light. It is possible to avoid deterioration of electrical characteristics and long-term reliability.
And a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell after performing the above-mentioned treatment. Examples of the polarizing plate used here include a polarizing plate in which an H film is sandwiched between cellulose acetate protective films, or a polarizing plate made of the H film itself.
The liquid crystal display device manufactured as described above has a wide viewing angle, an extremely fast response speed of liquid crystal molecules, excellent both in display characteristics and long-term reliability, and at a low cost with reduced manufacturing costs. Therefore, it can be suitably applied to various uses.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に制限されるものではない。
以下の実施例において重量平均分子量は、以下の条件におけるゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算値である。
カラム:東ソー(株)製、TSKgelGRCXLII
溶剤:テトラヒドロフラン
温度:40℃
圧力:68kgf/cm
エポキシ当量は、JIS C2105の“塩酸−メチルエチルケトン法”に準じて測定した。
重合体溶液の溶液粘度は、E型粘度計を用いて25℃において測定した値である。
なお、以下の実施例においては、原料化合物および重合体の合成を下記の合成スケールで必要に応じて繰り返すことにより、実施例における必要量を確保した。
<化合物(b)の合成>
実施例1(化合物(3−2−1)の合成)
下記スキーム2
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
In the following examples, the weight average molecular weight is a polystyrene equivalent value measured by gel permeation chromatography under the following conditions.
Column: Tosoh Corporation, TSKgelGRCXLII
Solvent: Tetrahydrofuran Temperature: 40 ° C
Pressure: 68 kgf / cm 2
The epoxy equivalent was measured according to the “hydrochloric acid-methyl ethyl ketone method” of JIS C2105.
The solution viscosity of the polymer solution is a value measured at 25 ° C. using an E-type viscometer.
In the following examples, the necessary amounts in the examples were ensured by repeating the synthesis of the raw material compound and the polymer as necessary on the following synthesis scale.
<Synthesis of Compound (b)>
Example 1 (Synthesis of Compound (3-2-1))
Scheme 2 below

に従って、化合物(3−2−1)を合成した。
[化合物(3−2−1−1)の合成]
1Lのナスフラスコに、4−ヨードフェノール99g、炭酸カリウム124gおよびN,N−ジメチルアセトアミド585mLを仕込んで室温で30分撹拌した後、ここに4,4,4−トリフルオロ−ヨードブタン96gを加えて、さらに室温で6時間撹拌下に反応を行った。反応終了後、反応混合物にヘキサンを1.8L加えた後、水で1回、濃度1モル/Lの水酸化ナトリウム水溶液で2回、さらに水で1回順次に洗浄を行った後、濃縮、乾固して得られた粗生成物をエタノールから再結晶することにより、淡褐色の化合物(3−2−1−1)を81g得た。
[化合物(3−2−1)の合成]
窒素導入管および温度計を備えた1Lの三口フラスコに、上記で得た化合物(3−2−1−1)66g、プロピオール酸12.2mL、ジイソプロピルアミン70mL、ビストリフェニルホスフィンパラジウムジアセテート2.8g、よう化銅(I)1.54gおよびN,N−ジメチルホルムアミド200mLを仕込み、室温で1時間反応を行った。反応終了後、反応混合物に酢酸エチル1Lを加えて得た有機層につき、希塩酸および水で洗浄を行った後、硫酸マグネシウムで乾燥した後、濃縮し乾固した。得られた固体を酢酸エチルおよびヘキサンを展開溶剤に用いたシリカカラムで精製して得た溶液から溶媒を留去することにより、化合物(3−2−1)の褐色粉末を18g得た。
Thus, compound (3-2-1) was synthesized.
[Synthesis of Compound (3-2-1-1)]
In a 1 L eggplant flask, 99 g of 4-iodophenol, 124 g of potassium carbonate and 585 mL of N, N-dimethylacetamide were charged and stirred at room temperature for 30 minutes, and then 96 g of 4,4,4-trifluoro-iodobutane was added thereto. The reaction was further carried out at room temperature with stirring for 6 hours. After completion of the reaction, 1.8 L of hexane was added to the reaction mixture, and then washed with water, once with 1 mol / L sodium hydroxide aqueous solution, and once with water, and then concentrated, The crude product obtained by drying was recrystallized from ethanol to obtain 81 g of a light brown compound (3-2-1-1).
[Synthesis of Compound (3-2-1)]
In a 1 L three-necked flask equipped with a nitrogen introduction tube and a thermometer, 66 g of the compound (3-2-1-1) obtained above, 12.2 mL of propiolic acid, 70 mL of diisopropylamine, 2.8 g of bistriphenylphosphine palladium diacetate Then, 1.54 g of copper (I) iodide and 200 mL of N, N-dimethylformamide were charged, and the reaction was performed at room temperature for 1 hour. After completion of the reaction, the organic layer obtained by adding 1 L of ethyl acetate to the reaction mixture was washed with dilute hydrochloric acid and water, dried over magnesium sulfate, and concentrated to dryness. By purifying the obtained solid with a silica column using ethyl acetate and hexane as a developing solvent, the solvent was distilled off to obtain 18 g of a brown powder of the compound (3-2-1).

<エポキシ基を有するポリオルガノシロキサン(a)の合成>
合成例1
撹拌機、温度計、滴下漏斗および還流冷却管を備えた反応容器に、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン100.0g、メチルイソブチルケトン500gおよびトリエチルアミン10.0gを仕込み、室温で混合した。次いで、脱イオン水100gを滴下漏斗より30分かけて滴下した後、還流下で混合しつつ、80℃で6時間反応を行った。反応終了後、有機層を取り出し、0.2重量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで洗浄したのち、減圧下で溶媒および水を留去することにより、エポキシ基を有するポリオルガノシロキサンEPS−1を粘調な透明液体として得た。
このエポキシ基を有するポリオルガノシロキサンEPS−1について、H−NMR分析を行なったところ、化学シフト(δ)=3.2ppm付近にエポキシ基に基づくピークが理論強度どおりに得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。
このエポキシ基を有するポリオルガノシロキサンEPS−1のMwは2,200、エポキシ当量は186であった。
<Synthesis of polyorganosiloxane (a) having an epoxy group>
Synthesis example 1
A reaction vessel equipped with a stirrer, thermometer, dropping funnel and reflux condenser was charged with 100.0 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 500 g of methyl isobutyl ketone and 10.0 g of triethylamine at room temperature. Mixed with. Next, 100 g of deionized water was dropped from the dropping funnel over 30 minutes, and then the reaction was performed at 80 ° C. for 6 hours while mixing under reflux. After completion of the reaction, the organic layer is taken out and washed with a 0.2 wt% ammonium nitrate aqueous solution until the water after washing becomes neutral, and then the solvent and water are distilled off under reduced pressure to give a polyorgano having an epoxy group. Siloxane EPS-1 was obtained as a viscous transparent liquid.
When 1 H-NMR analysis was performed on the polyorganosiloxane EPS-1 having an epoxy group, a peak based on the epoxy group was obtained in the vicinity of the chemical shift (δ) = 3.2 ppm according to the theoretical intensity. It was confirmed that no side reaction of the epoxy group occurred.
Mw of this polyorganosiloxane EPS-1 having an epoxy group was 2,200, and the epoxy equivalent was 186.

<感放射線性ポリオルガノシロキサンの合成>
実施例2
200mLの三口フラスコに、上記合成例1で得たエポキシ基を有するポリオルガノシロキサンEPS−1を6.3g、メチルイソブチルケトン60g、上記実施例1で得た化合物(3−2−1)18gおよびテトラブチルアンモニウムブロミド0.6gを仕込み、80℃で12時間撹拌下に反応を行った。反応終了後、ヘキサンで再沈殿を行い、沈殿物を酢酸エチルに溶解して溶液を得、該溶液を3回水洗した後、溶剤を留去することにより、感放射線性ポリオルガノシロキサンS−1を褐色粉末として11g得た。感放射線性ポリオルガノシロキサンS−1の重量平均分子量Mwは9,900であった。
実施例3
200mLの三口フラスコに、上記合成例1で得たエポキシ基を有するポリオルガノシロキサンEPS−1を6.3g、メチルイソブチルケトン60g、上記実施例1で得た化合物(3−2−1)18g、ステアリン酸2.0gおよびテトラブチルアンモニウムブロミド0.6gを仕込み、80℃で12時間撹拌下に反応を行った。反応終了後、ヘキサンで再沈殿を行い、沈殿物を酢酸エチルに溶解して溶液を得、該溶液を3回水洗した後、溶剤を留去することにより、感放射線性ポリオルガノシロキサンS−2を褐色粉末として12g得た。感放射線性ポリオルガノシロキサンS−2の重量平均分子量Mwは10,200であった。
<Synthesis of radiation-sensitive polyorganosiloxane>
Example 2
In a 200 mL three-necked flask, 6.3 g of polyorganosiloxane EPS-1 having an epoxy group obtained in Synthesis Example 1 above, 60 g of methyl isobutyl ketone, 18 g of Compound (3-2-1) obtained in Example 1 above, and Tetrabutylammonium bromide (0.6 g) was charged and reacted at 80 ° C. with stirring for 12 hours. After completion of the reaction, reprecipitation is performed with hexane, and the precipitate is dissolved in ethyl acetate to obtain a solution. The solution is washed with water three times, and then the solvent is distilled off to remove the radiation-sensitive polyorganosiloxane S-1. Was obtained as a brown powder. The weight average molecular weight Mw of the radiation sensitive polyorganosiloxane S-1 was 9,900.
Example 3
In a 200 mL three-necked flask, 6.3 g of polyorganosiloxane EPS-1 having an epoxy group obtained in Synthesis Example 1 above, 60 g of methyl isobutyl ketone, 18 g of Compound (3-2-1) obtained in Example 1 above, 2.0 g of stearic acid and 0.6 g of tetrabutylammonium bromide were charged, and the reaction was performed at 80 ° C. with stirring for 12 hours. After completion of the reaction, reprecipitation is performed with hexane, and the precipitate is dissolved in ethyl acetate to obtain a solution. The solution is washed with water three times, and then the solvent is distilled off to remove the radiation-sensitive polyorganosiloxane S-2. Was obtained as a brown powder. The weight average molecular weight Mw of the radiation sensitive polyorganosiloxane S-2 was 10,200.

<他の重合体の合成>
[ポリアミック酸の合成]
合成例PA−1
テトラカルボン酸二無水物としてピロメリット酸二無水物109g(0.50モル)および1,2,3,4−シクロブタンテトラカルボン酸二無水物98g(0.50モル)ならびにジアミンとして4,4−ジアミノジフェニルエーテル200g(1.0モル)をN−メチル−2−ピロリドン2,290gに溶解し、40℃で3時間反応を行った後、N−メチル−2−ピロリドン1,350gを追加することにより、ポリアミック酸(PA−1)を10重量%含有する溶液約4,000gを得た。このポリアミック酸溶液の溶液粘度は210mPa・sであった。
合成例PA−2
テトラカルボン酸二無水物として1,2,3,4−シクロブタンテトラカルボン酸二無水物98g(0.50モル)およびピロメリット酸二無水物109g(0.50モル)ならびにジアミンとして4,4’−ジアミノジフェニルメタン198g(1.0モル)をN−メチル−2−ピロリドン2,290gに溶解し、40℃で3時間反応を行った後、N−メチル−2−ピロリドン1,350gを追加することにより、ポリアミック酸(PA−2)を10重量%含有する溶液約4,000gを得た。このポリアミック酸溶液の溶液粘度は135mPa・sであった。
<Synthesis of other polymers>
[Synthesis of polyamic acid]
Synthesis example PA-1
Pyromellitic dianhydride 109 g (0.50 mol) and 1,2,3,4-cyclobutanetetracarboxylic dianhydride 98 g (0.50 mol) as tetracarboxylic dianhydride and 4,4- as diamine By dissolving 200 g (1.0 mol) of diaminodiphenyl ether in 2,290 g of N-methyl-2-pyrrolidone and reacting at 40 ° C. for 3 hours, 1,350 g of N-methyl-2-pyrrolidone was added. About 4,000 g of a solution containing 10% by weight of polyamic acid (PA-1) was obtained. The solution viscosity of this polyamic acid solution was 210 mPa · s.
Synthesis example PA-2
1,2,3,4-cyclobutanetetracarboxylic dianhydride 98 g (0.50 mol) and pyromellitic dianhydride 109 g (0.50 mol) as tetracarboxylic dianhydride and 4,4 ′ as diamine -Dissolve 198 g (1.0 mol) of diaminodiphenylmethane in 2,290 g of N-methyl-2-pyrrolidone, react at 40 ° C. for 3 hours, and then add 1,350 g of N-methyl-2-pyrrolidone. As a result, about 4,000 g of a solution containing 10% by weight of polyamic acid (PA-2) was obtained. The solution viscosity of this polyamic acid solution was 135 mPa · s.

合成例PA−3
テトラカルボン酸二無水物として1,2,3,4−シクロブタンテトラカルボン酸二無水物196g(1.0モル)およびジアミンとして4,4’−ジアミノジフェニルエーテル200g(1.0モル)をN−メチル−2−ピロリドン2,246gに溶解し、40℃で4時間反応を行った後、N−メチル−2−ピロリドン1,321gを追加することにより、ポリアミック酸(PA−3)を10重量%含有する溶液約3,950gを得た。このポリアミック酸溶液の溶液粘度は220mPa・sであった。
合成例PA−4
テトラカルボン酸二無水物として1,2,3,4−シクロブタンテトラカルボン酸二無水物196g(1.0モル)およびジアミンとして2,2’−ジメチル−4,4’−ジアミノビフェニル212g(1.0モル)をN−メチル−2−ピロリドン4,050gに溶解し、40℃で3時間反応を行うことにより、ポリアミック酸(PA−4)を10重量%含有する溶液3,700gを得た。このポリアミック酸溶液の溶液粘度は170mPa・sであった。
Synthesis example PA-3
196 g (1.0 mol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride as tetracarboxylic dianhydride and 200 g (1.0 mol) of 4,4′-diaminodiphenyl ether as diamine were added to N-methyl. After dissolving in 2,246 g of 2-pyrrolidone and reacting at 40 ° C. for 4 hours, by adding 1,321 g of N-methyl-2-pyrrolidone, 10% by weight of polyamic acid (PA-3) is contained. About 3,950 g of a solution was obtained. The solution viscosity of this polyamic acid solution was 220 mPa · s.
Synthesis example PA-4
196 g (1.0 mol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride as tetracarboxylic dianhydride and 212 g (1, .2) of 2,2′-dimethyl-4,4′-diaminobiphenyl as diamine. 0 mol) was dissolved in 4,050 g of N-methyl-2-pyrrolidone and reacted at 40 ° C. for 3 hours to obtain 3,700 g of a solution containing 10% by weight of polyamic acid (PA-4). The solution viscosity of this polyamic acid solution was 170 mPa · s.

合成例PA−5
テトラカルボン酸二無水物として2,3,5−トリカルボキシシクロペンチル酢酸二無水物224g(1.0モル)およびジアミンとして4,4’−ジアミノジフェニルエーテル200g(1.0モル)をN−メチル−2−ピロリドン2,404gに溶解し、40℃で4時間反応を行うことにより、ポリアミック酸(PA−5)を15重量%含有する溶液約2,800gを得た。
このポリアミック酸溶液を少量分取し、N−メチル−2−ピロリドンを加えて重合体濃度10重量%の溶液として測定した溶液粘度は190mPa・sであった。
合成例PA−6
2,3,5−トリカルボキシシクロペンチル酢酸二無水物22.4g(0.1モル)およびシクロヘキサンビス(メチルアミン)14.23g(0.1モル)を、N−メチル−2−ピロリドン329.3gに溶解し、60℃で6時間反応を行った。次いで、反応混合物を大過剰のメタノールに注ぎ、反応生成物を沈澱させた。沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥することにより、ポリアミック酸PA−6を32g得た。
合成例PA−7
シクロブタンテトラカルボン酸二無水物19.61g(0.1モル)と4,4’−ジアミノ−2,2’−ジメチルビフェニル21.23g(0.1モル)とをN−メチル−2−ピロリドン367.6gに溶解し、室温で6時間反応を行った。次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥することにより、ポリアミック酸PA−7を35g得た。
Synthesis example PA-5
224 g (1.0 mol) of 2,3,5-tricarboxycyclopentyl acetic acid dianhydride as tetracarboxylic dianhydride and 200 g (1.0 mol) of 4,4′-diaminodiphenyl ether as diamine were added to N-methyl-2 -Dissolved in 2,404 g of pyrrolidone and reacted at 40 ° C. for 4 hours to obtain about 2,800 g of a solution containing 15% by weight of polyamic acid (PA-5).
A small amount of this polyamic acid solution was taken, N-methyl-2-pyrrolidone was added, and the solution viscosity measured as a solution having a polymer concentration of 10% by weight was 190 mPa · s.
Synthesis example PA-6
22.4 g (0.1 mol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride and 14.23 g (0.1 mol) of cyclohexanebis (methylamine) were added to 299.3 g of N-methyl-2-pyrrolidone. And reacted at 60 ° C. for 6 hours. The reaction mixture was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain 32 g of polyamic acid PA-6.
Synthesis example PA-7
Cyclobutanetetracarboxylic dianhydride 19.61 g (0.1 mol) and 4,4′-diamino-2,2′-dimethylbiphenyl 21.23 g (0.1 mol) were combined with N-methyl-2-pyrrolidone 367. Then, the reaction was carried out at room temperature for 6 hours. The reaction mixture was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried at 40 ° C. under reduced pressure for 15 hours to obtain 35 g of polyamic acid PA-7.

[ポリイミドの合成]
合成例PI−1
テトラカルボン酸二無水物として2,3,5−トリカルボキシシクロペンチル酢酸二無水物112g(0.50モル)および1,3,3a,4,5,9b−ヘキサヒドロ−8−メチル−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]−フラン−1,3−ジオン157g(0.50モル)ならびにジアミンとしてp−フェニレンジアミン95g(0.88モル)、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル32g(0.10モル)、3,6−ビス(4−アミノベンゾイルオキシ)コレスタン6.4g(0.010モル)およびオクタデカノキシ−2,5−ジアミノベンゼン4.0g(0.015モル)をN−メチル−2−ピロリドン960gに溶解し、60℃で9時間反応を行った。得られたポリアミック酸溶液を少量分取し、N−メチル−2−ピロリドンを加えて重合体濃度10重量%の溶液として測定した溶液粘度は58mPa・sであった。
得られたポリアミック酸溶液に、N−メチル−2−ピロリドン2,740g、ピリジン396gおよび無水酢酸409gを添加し、110℃で4時間脱水閉環反応を行った。脱水閉環反応後、系内の溶媒を新たなN−メチル−2−ピロリドンで溶媒置換(本操作により、脱水閉環反応に使用したピリジンおよび無水酢酸を系外に除去した。以下同じ。)することにより、イミド化率約95%のポリイミド(PI−1)を15重量%含有する溶液約2,500gを得た。
このポリイミド溶液を少量分取し、減圧にて溶媒を除去した後N−メチル−2−ピロリドンに溶解して重合体濃度8.0重量%の溶液として測定した溶液粘度は33mPa・sであった。
[Synthesis of polyimide]
Synthesis example PI-1
2,3,5-tricarboxycyclopentyl acetic acid dianhydride 112 g (0.50 mol) and 1,3,3a, 4,5,9b-hexahydro-8-methyl-5- (tetrahydro) as tetracarboxylic dianhydride -2,5-dioxo-3-furanyl) -naphtho [1,2-c] -furan-1,3-dione 157 g (0.50 mol) and 95 g (0.88 mol) of p-phenylenediamine as diamine, 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl 32 g (0.10 mol), 3,6-bis (4-aminobenzoyloxy) cholestane 6.4 g (0.010 mol) and 4.0 g (0.015 mol) of octadecanoxy-2,5-diaminobenzene was dissolved in 960 g of N-methyl-2-pyrrolidone and reacted at 60 ° C. for 9 hours. . A small amount of the obtained polyamic acid solution was taken, N-methyl-2-pyrrolidone was added, and the solution viscosity measured as a solution having a polymer concentration of 10% by weight was 58 mPa · s.
To the obtained polyamic acid solution, 2,740 g of N-methyl-2-pyrrolidone, 396 g of pyridine and 409 g of acetic anhydride were added, and dehydration ring closure reaction was performed at 110 ° C. for 4 hours. After the dehydration cyclization reaction, the solvent in the system is replaced with new N-methyl-2-pyrrolidone (by this operation, pyridine and acetic anhydride used in the dehydration cyclization reaction are removed from the system. The same shall apply hereinafter). As a result, about 2,500 g of a solution containing 15% by weight of polyimide (PI-1) having an imidation ratio of about 95% was obtained.
A small amount of this polyimide solution was collected, and after removing the solvent under reduced pressure, the solution viscosity measured as a solution having a polymer concentration of 8.0% by weight dissolved in N-methyl-2-pyrrolidone was 33 mPa · s. .

合成例PI−2
テトラカルボン酸二無水物として2,3,5−トリカルボキシシクロペンチル酢酸二無水物112g(0.50モル)および1,3,3a,4,5,9b−ヘキサヒドロ−8−メチル−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)ナフト[1,2−c]フラン−1,3−ジオン157g(0.50モル)、ジアミンとしてp−フェニレンジアミン96g(0.89モル)、ビスアミノプロピルテトラメチルジシロキサン25g(0.10モル)および3,6−ビス(4−アミノベンゾイルオキシ)コレスタン13g(0.020モル)ならびにモノアミンとしてN−オクタデシルアミン8.1g(0.030モル)をN−メチル−2−ピロリドン960gに溶解し、60℃で6時間反応を行った。得られたポリアミック酸溶液を少量分取し、N−メチル−2−ピロリドンを加えて重合体濃度10重量%の溶液として測定した溶液粘度は60mPa・sであった。
次いで、得られたポリアミック酸溶液にN−メチル−2−ピロリドン2,700gを追加し、ピリジン396gおよび無水酢酸409gを添加して110℃で4時間脱水閉環反応を行なった。脱水閉環反応後、系内の溶媒を新たなN−メチル−2−ピロリドンで溶媒置換することにより、イミド化率約95%のポリイミド(PI−2)を15重量%含有する溶液約2,400gを得た。
このポリイミド溶液を少量分取し、N−メチル−2−ピロリドンを加えて重合体濃度6.0重量%の溶液として測定した溶液粘度は18mPa・sであった。
Synthesis example PI-2
112 g (0.50 mol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride as tetracarboxylic dianhydride and 1,3,3a, 4,5,9b-hexahydro-8-methyl-5- (tetrahydro -2,5-dioxo-3-furanyl) naphtho [1,2-c] furan-1,3-dione 157 g (0.50 mol), p-phenylenediamine 96 g (0.89 mol) as diamine, bisamino 25 g (0.10 mol) of propyltetramethyldisiloxane and 13 g (0.020 mol) of 3,6-bis (4-aminobenzoyloxy) cholestane and 8.1 g (0.030 mol) of N-octadecylamine as monoamine The product was dissolved in 960 g of N-methyl-2-pyrrolidone and reacted at 60 ° C. for 6 hours. A small amount of the obtained polyamic acid solution was taken, N-methyl-2-pyrrolidone was added, and the solution viscosity measured as a solution having a polymer concentration of 10% by weight was 60 mPa · s.
Next, 2,700 g of N-methyl-2-pyrrolidone was added to the obtained polyamic acid solution, 396 g of pyridine and 409 g of acetic anhydride were added, and dehydration ring closure reaction was performed at 110 ° C. for 4 hours. After the dehydration ring-closing reaction, the solvent in the system was replaced with new N-methyl-2-pyrrolidone to obtain about 2,400 g of a solution containing 15% by weight of polyimide (PI-2) having an imidation ratio of about 95%. Got.
A small amount of this polyimide solution was taken, N-methyl-2-pyrrolidone was added, and the solution viscosity measured as a solution having a polymer concentration of 6.0% by weight was 18 mPa · s.

合成例PI−3
テトラカルボン酸二無水物として2,3,5−トリカルボキシシクロペンチル酢酸二無水物224g(1.0モル)ならびにジアミンとしてp−フェニレンジアミン107g(0.99モル)および3,6−ビス(4−アミノベンゾイルオキシ)コレスタン6.43g(0.010モル)をN−メチル−2−ピロリドン3,039gに溶解し、60℃で6時間反応を行うことにより、ポリアミック酸を10重量%含有する溶液を得た。このポリアミック酸の溶液粘度は260mPa・sであった。
次いで、得られたポリアミック酸溶液にN−メチル−2−ピロリドン2,700gを追加し、ピリジン396gおよび無水酢酸306gを添加して110℃で4時間脱水閉環反応を行なった。脱水閉環反応後、系内の溶媒を新たなN−メチル−2−ピロリドンで溶媒置換することにより、イミド化率約89%のポリイミド(PI−3)を9.0重量%含有する溶液約3,500gを得た。
このポリイミド溶液を少量分取し、N−メチル−2−ピロリドンを加えて重合体濃度5.0重量%の溶液として測定した溶液粘度は74mPa・sであった。
Synthesis example PI-3
224 g (1.0 mol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride as tetracarboxylic dianhydride and 107 g (0.99 mol) of p-phenylenediamine and 3,6-bis (4- Aminobenzoyloxy) cholestane (6.43 g, 0.010 mol) was dissolved in 3,039 g of N-methyl-2-pyrrolidone and reacted at 60 ° C. for 6 hours to obtain a solution containing 10% by weight of polyamic acid. Obtained. The solution viscosity of this polyamic acid was 260 mPa · s.
Next, 2,700 g of N-methyl-2-pyrrolidone was added to the obtained polyamic acid solution, 396 g of pyridine and 306 g of acetic anhydride were added, and dehydration ring closure reaction was performed at 110 ° C. for 4 hours. After the dehydration ring-closing reaction, the solvent in the system was replaced with new N-methyl-2-pyrrolidone, whereby about 3% of a solution containing 9.0% by weight of polyimide (PI-3) having an imidization ratio of about 89% , 500 g was obtained.
A small amount of this polyimide solution was taken, N-methyl-2-pyrrolidone was added, and the solution viscosity measured as a solution having a polymer concentration of 5.0% by weight was 74 mPa · s.

合成例PI−4
テトラカルボン酸二無水物として2,3,5−トリカルボキシシクロペンチル酢酸二無水物112g(0.50モル)および1,3,3a,4,5,9b−ヘキサヒドロ−8−メチル−5(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]−フラン−1,3−ジオン157g(0.50モル)ならびにジアミンとしてp−フェニレンジアミン89g(0.82モル)、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル32g(0.10モル)、1−(3,5−ジアミノベンゾイルオキシ)−4−(4−トリフルオロメチルベンゾイルオキシ)−シクロヘキサン25g(0.059モル)およびオクタデカノキシ−2,5−ジアミノベンゼン4.0g(0.011モル)をN−メチル−2−ピロリドン2,175gに溶解し、60℃で6時間反応を行うことにより、ポリアミック酸を含有する溶液を得た。得られたポリアミック酸溶液を少量分取し、N−メチル−2−ピロリドンを加えて重合体濃度10重量%の溶液として測定した溶液粘度は110mPa・sであった。
得られたポリアミック酸溶液の1,500gに、N−メチル−2−ピロリドン3,000gを追加し、ピリジン221gおよび無水酢酸228gを添加して110℃で4時間脱水閉環反応を行なった。脱水閉環反応後、系内の溶媒を新たなN−メチル−2−ピロリドンで溶媒置換することにより、イミド化率約92%のポリイミド(PI−4)を10重量%含有する溶液約4,000gを得た。
このポリイミド溶液を少量分取し、N−メチル−2−ピロリドンを加えて重合体濃度4.5重量%の溶液として測定した溶液粘度は28mPa・sであった。
Synthesis example PI-4
2,3,5-Tricarboxycyclopentylacetic acid dianhydride 112 g (0.50 mol) and 1,3,3a, 4,5,9b-hexahydro-8-methyl-5 (tetrahydro-) as tetracarboxylic dianhydride 2,5-dioxo-3-furanyl) -naphtho [1,2-c] -furan-1,3-dione 157 g (0.50 mol) and p-phenylenediamine 89 g (0.82 mol) as diamine, 4 , 4′-Diamino-2,2′-bis (trifluoromethyl) biphenyl 32 g (0.10 mol), 1- (3,5-diaminobenzoyloxy) -4- (4-trifluoromethylbenzoyloxy)- 25 g (0.059 mol) of cyclohexane and 4.0 g (0.011 mol) of octadecanoxy-2,5-diaminobenzene were added to N-methyl-2-pyrrole. It was dissolved in Don 2,175G, by carrying out the reaction for 6 hours at 60 ° C., to obtain a solution containing a polyamic acid. A small amount of the resulting polyamic acid solution was collected, and N-methyl-2-pyrrolidone was added to measure the solution viscosity as a solution having a polymer concentration of 10% by weight. The solution viscosity was 110 mPa · s.
To 1,500 g of the obtained polyamic acid solution, 3,000 g of N-methyl-2-pyrrolidone was added, 221 g of pyridine and 228 g of acetic anhydride were added, and dehydration ring closure reaction was performed at 110 ° C. for 4 hours. After the dehydration ring-closing reaction, the solvent in the system was replaced with new N-methyl-2-pyrrolidone, whereby about 4,000 g of a solution containing 10% by weight of polyimide (PI-4) having an imidization ratio of about 92%. Got.
A small amount of this polyimide solution was taken, N-methyl-2-pyrrolidone was added, and the solution viscosity measured as a solution having a polymer concentration of 4.5% by weight was 28 mPa · s.

合成例PI−5
テトラカルボン酸二無水物として2,3,5−トリカルボキシシクロペンチル酢酸二無水物19.9g(0.089モル)ならびにジアミンとしてp−フェニレンジアミン6.8g(0.063モル)、4,4’−ジアミノジフェニルメタン3.6g(0.018モル)および下記式(D−6)
Synthesis example PI-5
1,9.9 g (0.089 mol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride as tetracarboxylic dianhydride and 6.8 g (0.063 mol) of p-phenylenediamine as diamine, 4,4 ′ -3.6 g (0.018 mol) of diaminodiphenylmethane and the following formula (D-6)

で表される化合物4.7g(0.009モル)を、N−メチル−2−ピロリドン140gに溶解し、60℃で4時間反応を行った。得られたポリアミック酸溶液を少量分取し、N−メチル−2−ピロリドンを加えて重合体濃度10重量%の溶液として測定した溶液粘度は115mPa・sであった。
次いで、得られたポリアミック酸溶液にN−メチル−2−ピロリドン325gを追加し、ピリジン14gおよび無水酢酸18gを添加して110℃で4時間脱水閉環反応を行なった。脱水閉環反応後、系内の溶媒を新たなN−メチル−2−ピロリドンで溶媒置換することにより、イミド化率約77%のポリイミド(PI−5)を15.4重量%含有する溶液約220gを得た。
このポリイミド溶液を少量分取し、N−メチル−2−ピロリドンを加えて重合体濃度10重量%の溶液として測定した溶液粘度は84mPa・sであった。
4.7 g (0.009 mol) of the compound represented by the formula was dissolved in 140 g of N-methyl-2-pyrrolidone and reacted at 60 ° C. for 4 hours. A small amount of the resulting polyamic acid solution was taken, N-methyl-2-pyrrolidone was added, and the solution viscosity measured as a solution having a polymer concentration of 10% by weight was 115 mPa · s.
Next, 325 g of N-methyl-2-pyrrolidone was added to the obtained polyamic acid solution, 14 g of pyridine and 18 g of acetic anhydride were added, and dehydration ring closure reaction was performed at 110 ° C. for 4 hours. After the dehydration ring-closing reaction, the solvent in the system was replaced with new N-methyl-2-pyrrolidone, whereby about 220 g of a solution containing 15.4% by weight of polyimide (PI-5) having an imidation ratio of about 77% Got.
A small amount of this polyimide solution was taken, N-methyl-2-pyrrolidone was added, and the solution viscosity measured as a solution having a polymer concentration of 10% by weight was 84 mPa · s.

合成例PI−6
テトラカルボン酸二無水物として、2,3,5−トリカルボキシシクロペンチル酢酸二無水物20.9g(0.093モル)ならびにジアミンとしてp−フェニレンジアミン9.2g(0.085モル)および上記式(D−6)で表される化合物4.9g(0.009モル)を、N−メチル−2−ピロリドン140gに溶解し、60℃で4時間反応を行うことによりポリアミック酸を含有する溶液を得た。得られたポリアミック酸溶液を少量分取し、N−メチル−2−ピロリドンを加えて重合体濃度10重量%の溶液として溶液粘度を測定したところ、126mPa・sであった。
次いで、得られたポリアミック酸溶液にN−メチル−2−ピロリドン325gを追加し、ピリジン7.4gおよび無水酢酸9.5gを添加し110℃で4時間脱水閉環を行なった。脱水閉環反応後、系内の溶媒を新たなN−メチル−2−ピロリドンで溶媒置換することにより、イミド化率約54%のポリイミド(PI−6)を16.1重量%含有する溶液約220gを得た。
このポリイミド溶液を少量分取し、N−メチル−2−ピロリドンを加えて重合体濃度10重量%の溶液として測定した溶液粘度は75mPa・sであった。
Synthesis example PI-6
As tetracarboxylic dianhydride, 20.9 g (0.093 mol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride and 9.2 g (0.085 mol) of p-phenylenediamine as diamine and the above formula ( A solution containing polyamic acid is obtained by dissolving 4.9 g (0.009 mol) of the compound represented by D-6) in 140 g of N-methyl-2-pyrrolidone and reacting at 60 ° C. for 4 hours. It was. A small amount of the obtained polyamic acid solution was collected, and N-methyl-2-pyrrolidone was added to measure the solution viscosity as a solution having a polymer concentration of 10% by weight. As a result, it was 126 mPa · s.
Next, 325 g of N-methyl-2-pyrrolidone was added to the obtained polyamic acid solution, 7.4 g of pyridine and 9.5 g of acetic anhydride were added, and dehydration ring closure was performed at 110 ° C. for 4 hours. After the dehydration cyclization reaction, the solvent in the system was replaced with new N-methyl-2-pyrrolidone, whereby about 220 g of a solution containing 16.1% by weight of polyimide (PI-6) having an imidation ratio of about 54% Got.
A small amount of this polyimide solution was taken, N-methyl-2-pyrrolidone was added, and the solution viscosity measured as a solution having a polymer concentration of 10% by weight was 75 mPa · s.

合成例PI−7
テトラカルボン酸二無水物として2,3,5−トリカルボキシシクロペンチル酢酸二無水物18.8g(0.084モル)ならびにジアミンとしてp−フェニレンジアミン7.4g(0.068モル)および上記式(D−6)で表される化合物8.9g(0.017モル)を、N−メチル−2−ピロリドン140gに溶解し、60℃で4時間反応を行うことにより、ポリアック酸を含有する溶液を得た。得られたポリアミック酸溶液を少量分取し、N−メチル−2−ピロリドンを加えて重合体濃度10重量%の溶液として溶液粘度を測定したところ、126mPa・sであった。
次いで、得られたポリアミック酸溶液にN−メチル−2−ピロリドン325gを追加し、ピリジン6.6gおよび無水酢酸8.5gを添加して110℃で4時間脱水閉環を行なった。脱水閉環反応後、系内の溶媒を新たなN−メチル−2−ピロリドンで溶媒置換することにより、イミド化率約55%のポリイミド(PI−7)を15.9重量%含有する溶液約210gを得た。
このポリイミド溶液を少量分取し、N−メチル−2−ピロリドンを加えて重合体濃度10重量%の溶液として測定した溶液粘度は75mPa・sであった。
Synthesis example PI-7
1,8.8 g (0.084 mol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride as tetracarboxylic dianhydride and 7.4 g (0.068 mol) of p-phenylenediamine as diamine and the above formula (D The compound represented by -6) is dissolved in 140 g of N-methyl-2-pyrrolidone in 8.9 g (0.017 mol) and reacted at 60 ° C. for 4 hours to obtain a solution containing polyacic acid. It was. A small amount of the obtained polyamic acid solution was collected, and N-methyl-2-pyrrolidone was added to measure the solution viscosity as a solution having a polymer concentration of 10% by weight. As a result, it was 126 mPa · s.
Next, 325 g of N-methyl-2-pyrrolidone was added to the obtained polyamic acid solution, 6.6 g of pyridine and 8.5 g of acetic anhydride were added, and dehydration ring closure was performed at 110 ° C. for 4 hours. After the dehydration ring-closing reaction, the solvent in the system was replaced with new N-methyl-2-pyrrolidone, whereby about 210 g of a solution containing about 15.9% by weight of polyimide (PI-7) having an imidation ratio of about 55% Got.
A small amount of this polyimide solution was taken, N-methyl-2-pyrrolidone was added, and the solution viscosity measured as a solution having a polymer concentration of 10% by weight was 75 mPa · s.

合成例PI−8
テトラカルボン酸二無水物として2,3,5−トリカルボキシシクロペンチル酢酸二無水物19.1g(0.085モル)ならびにジアミンとしてp−フェニレンジアミン7.4g(0.069モル)および下記式(D−7)
Synthesis example PI-8
2,3,5-tricarboxycyclopentylacetic acid dianhydride 19.1 g (0.085 mol) as tetracarboxylic dianhydride and 7.4 g (0.069 mol) p-phenylenediamine as diamine and the following formula (D -7)

で表される化合物8.5g(0.017モル)を、N−メチル−2−ピロリドン140gに溶解し、60℃で4時間反応を行うことによりポリアミック酸を含有する溶液を得た。得られたポリアミック酸溶液を少量分取し、N−メチル−2−ピロリドンを加えて重合体濃度10重量%の溶液として溶液粘度を測定したところ、206mPa・sであった。
次いで、得られたポリアミック酸溶液にN−メチル−2−ピロリドン325gを追加し、ピリジン6.7gおよび無水酢酸8.7gを添加して110℃で4時間脱水閉環反応を行なった。脱水閉環反応後、系内の溶媒を新たなN−メチル−2−ピロリドンで溶媒置換することにより、イミド化率約52%のポリイミド(PI−8)を15.8重量%含有する溶液約200gを得た。
このポリイミド溶液を少量分取し、N−メチル−2−ピロリドンを加えて重合体濃度10重量%の溶液として測定した溶液粘度は105mPa・sであった。
A compound containing polyamic acid was obtained by dissolving 8.5 g (0.017 mol) of the compound represented by formula (I) in 140 g of N-methyl-2-pyrrolidone and reacting at 60 ° C. for 4 hours. A small amount of the obtained polyamic acid solution was taken, N-methyl-2-pyrrolidone was added, and the solution viscosity was measured as a solution having a polymer concentration of 10% by weight. As a result, it was 206 mPa · s.
Next, 325 g of N-methyl-2-pyrrolidone was added to the obtained polyamic acid solution, 6.7 g of pyridine and 8.7 g of acetic anhydride were added, and dehydration ring closure reaction was performed at 110 ° C. for 4 hours. About 200 g of a solution containing about 15.8% by weight of polyimide (PI-8) having an imidation ratio of about 52% is obtained by replacing the solvent in the system with new N-methyl-2-pyrrolidone after the dehydration ring-closing reaction. Got.
A small amount of this polyimide solution was taken, N-methyl-2-pyrrolidone was added, and the solution viscosity measured as a solution having a polymer concentration of 10% by weight was 105 mPa · s.

合成例PI−9
テトラカルボン酸二無水物として、2,3,5−トリカルボキシシクロペンチル酢酸二無水物17.3g(0.077モル)ならびにジアミンとしてp−フェニレンジアミン5.9g(0.054モル)、上記式(D−6)で表される化合物4.1g(0.008モル)および上記式(D−7)で表される化合物7.7g(0.016モル)を、N−メチル−2−ピロリドン140gに溶解し、60℃で4時間反応を行った。得られたポリアミック酸溶液を少量分取し、N−メチル−2−ピロリドンを加えて重合体濃度10重量%の溶液として溶液粘度を測定したところ、117mPa・sであった。
次いで、得られたポリアミック酸溶液にN−メチル−2−ピロリドン325gを追加し、ピリジン6.1gおよび無水酢酸7.9gを添加して110℃で4時間脱水閉環を行なった。脱水閉環反応後、系内の溶媒を新たなN−メチル−2−ピロリドンで溶媒置換することにより、イミド化率約55%のポリイミド(PI−9)を15.4重量%含有する溶液約210gを得た。
このポリイミド溶液を少量分取し、N−メチル−2−ピロリドンを加えて重合体濃度10重量%の溶液として測定した溶液粘度は109mPa・sであった。
Synthesis example PI-9
As tetracarboxylic dianhydride, 17.3 g (0.077 mol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride and 5.9 g (0.054 mol) of p-phenylenediamine as diamine, the above formula ( 4.1 g (0.008 mol) of the compound represented by D-6) and 7.7 g (0.016 mol) of the compound represented by the above formula (D-7) were converted to 140 g of N-methyl-2-pyrrolidone. And reacted at 60 ° C. for 4 hours. A small amount of the obtained polyamic acid solution was taken, N-methyl-2-pyrrolidone was added, and the solution viscosity was measured as a solution having a polymer concentration of 10% by weight. As a result, it was 117 mPa · s.
Next, 325 g of N-methyl-2-pyrrolidone was added to the obtained polyamic acid solution, 6.1 g of pyridine and 7.9 g of acetic anhydride were added, and dehydration ring closure was performed at 110 ° C. for 4 hours. After the dehydration ring-closing reaction, the solvent in the system was replaced with new N-methyl-2-pyrrolidone, whereby about 210 g of a solution containing 15.4% by weight of polyimide (PI-9) having an imidation ratio of about 55% Got.
A small amount of this polyimide solution was taken, and N-methyl-2-pyrrolidone was added to measure the viscosity of the solution as a solution having a polymer concentration of 10% by weight of 109 mPa · s.

[他のポリシロキサンの合成]
合成例PS−1
冷却管を備えた200mLの三口フラスコにテトラエトキシシラン20.8gおよび1−エトキシ−2−プロパノール28.2gを仕込み、60℃に加熱し攪拌した。ここに、容量20mLの別のフラスコに調製した、無水マレイン酸0.26gを水10.8gに溶解した無水マレイン酸水溶液を加え、60℃でさらに4時間加熱、攪拌して反応を行った。得られた反応混合物から溶剤を留去し、1−エトキシ−2−プロパノールを加えて、再度濃縮することにより、ポリオルガノシロキサンPS−1を10重量%含有する重合体溶液を得た。PS−1の重量平均分子量Mwは5,100であった。
[Synthesis of other polysiloxanes]
Synthesis example PS-1
A 200 mL three-necked flask equipped with a condenser was charged with 20.8 g of tetraethoxysilane and 28.2 g of 1-ethoxy-2-propanol, heated to 60 ° C. and stirred. A maleic anhydride aqueous solution prepared by dissolving 0.26 g of maleic anhydride in 10.8 g of water prepared in another flask having a capacity of 20 mL was added thereto, and the reaction was performed by heating and stirring at 60 ° C. for further 4 hours. The solvent was distilled off from the resulting reaction mixture, 1-ethoxy-2-propanol was added, and the mixture was concentrated again to obtain a polymer solution containing 10% by weight of polyorganosiloxane PS-1. The weight average molecular weight Mw of PS-1 was 5,100.

<液晶配向剤の調製>
実施例4
他の重合体として上記合成例PA−1で得たポリアミック酸PA−1を含有する溶液のポリアミック酸PA−1に換算して1,000重量部に相当する量をとり、これに上記実施例2で得た感放射線性ポリオルガノシロキサンS−1の100重量部を加え、さらにN−メチル−2−ピロリドンおよびブチルセロソルブを加えて、溶媒組成がN−メチル−2−ピロリドン:ブチルセロソルブ=50:50(重量比)、固形分濃度が3.0重量%の溶液とした。
この溶液を孔径1μmのフィルターで濾過することにより、液晶配向剤A−1を調製した。
この液晶配向剤A−1を−15℃で6か月間保管した。保管の前および後に25℃においてE型粘度計により粘度を測定した。溶液粘度の保管前後の変化率が10%未満であったものを保存安定性「良」、10%以上であったものを保存安定性「不良」として評価したところ、液晶配向剤A−1の保存安定性は「良」であった。
実施例5〜8、10〜14および17〜21
感放射線性ポリオルガノシロキサンの種類ならびに他の重合体の種類および量を表1に記載の通りとしたほかは上記実施例4と同様にして、液晶配向剤A−2〜A−5、A−7〜A−11およびA−14〜A−18を、それぞれ調製した。
これら液晶配向剤につき、実施例4と同様にしてそれぞれ保存安定性を評価した。評価結果を表1に示した。
<Preparation of liquid crystal aligning agent>
Example 4
As another polymer, an amount corresponding to 1,000 parts by weight in terms of polyamic acid PA-1 in a solution containing polyamic acid PA-1 obtained in Synthesis Example PA-1 was taken. 100 parts by weight of the radiation-sensitive polyorganosiloxane S-1 obtained in Step 2 was added, and N-methyl-2-pyrrolidone and butyl cellosolve were further added. The solvent composition was N-methyl-2-pyrrolidone: butyl cellosolve = 50: 50. (Weight ratio) and a solid content concentration of 3.0% by weight.
Liquid crystal aligning agent A-1 was prepared by filtering this solution with a filter having a pore diameter of 1 μm.
This liquid crystal aligning agent A-1 was stored at -15 degreeC for 6 months. The viscosity was measured with an E-type viscometer at 25 ° C. before and after storage. When the change rate of the viscosity of the solution before and after storage was less than 10%, the storage stability was “good” and when it was 10% or more was evaluated as the storage stability “bad”. The storage stability was “good”.
Examples 5-8, 10-14 and 17-21
Liquid crystal aligning agents A-2 to A-5, A- are the same as in Example 4 except that the type of radiation-sensitive polyorganosiloxane and the type and amount of other polymers are as shown in Table 1. 7-A-11 and A-14-A-18 were prepared respectively.
With respect to these liquid crystal aligning agents, the storage stability was evaluated in the same manner as in Example 4. The evaluation results are shown in Table 1.

実施例9
N−メチル−2−ピロリドンおよびブチルセロソルブからなる混合溶媒中に、上記実施例2で得た感放射線性ポリオルガノシロキサンS−1の100重量部と、他の重合体として上記合成例PA−6で得たポリアミック酸PA−6の1,000重量部とを溶解し、溶媒組成がN−メチル−2−ピロリドン:ブチルセロソルブ=50:50(重量比)、固形分濃度が3.0重量%の溶液とした。
この溶液を孔径1μmのフィルターで濾過することにより、液晶配向剤A−6を調製した。
この液晶配向剤につき、実施例4と同様にして保存安定性を評価した。評価結果を表1に示した。
実施例15および16
他の重合体の種類および量を表1に記載の通りとしたほかは上記実施例9と同様にして、液晶配向剤A−12およびA−13を、それぞれ調製した。
これら液晶配向剤につき、実施例4と同様にしてそれぞれ保存安定性を評価した。評価結果を表1に示した。
実施例22
他の重合体として、上記合成例PS−1で得た他のポリオルガノシロキサンPS−1を含有する溶液のPS−1に換算して2,000重量部に相当する量をとり、これに上記実施例2で得た感放射線性ポリオルガノシロキサンS−1の100重量部を加え、さらに1−エトキシ−2−プロパノールを加えて固形分濃度4.0重量%の溶液とした。
この溶液を孔径1μmのフィルターで濾過することにより、液晶配向剤A−19を調製した。
この液晶配向剤につき、実施例4と同様にして保存安定性を評価した。評価結果を表1に示した。
Example 9
In a mixed solvent consisting of N-methyl-2-pyrrolidone and butyl cellosolve, 100 parts by weight of the radiation-sensitive polyorganosiloxane S-1 obtained in Example 2 above, and the above Synthesis Example PA-6 as another polymer A solution having 1,000 parts by weight of the obtained polyamic acid PA-6 dissolved therein, a solvent composition of N-methyl-2-pyrrolidone: butyl cellosolve = 50: 50 (weight ratio), and a solid content concentration of 3.0% by weight It was.
This solution was filtered with a filter having a pore diameter of 1 μm to prepare a liquid crystal aligning agent A-6.
The storage stability of this liquid crystal aligning agent was evaluated in the same manner as in Example 4. The evaluation results are shown in Table 1.
Examples 15 and 16
Liquid crystal aligning agents A-12 and A-13 were respectively prepared in the same manner as in Example 9 except that the types and amounts of other polymers were as shown in Table 1.
With respect to these liquid crystal aligning agents, the storage stability was evaluated in the same manner as in Example 4. The evaluation results are shown in Table 1.
Example 22
As another polymer, an amount corresponding to 2,000 parts by weight in terms of PS-1 of a solution containing the other polyorganosiloxane PS-1 obtained in Synthesis Example PS-1 was taken. 100 parts by weight of the radiation-sensitive polyorganosiloxane S-1 obtained in Example 2 was added, and 1-ethoxy-2-propanol was further added to obtain a solution having a solid content concentration of 4.0% by weight.
Liquid crystal aligning agent A-19 was prepared by filtering this solution with a filter with a pore diameter of 1 μm.
The storage stability of this liquid crystal aligning agent was evaluated in the same manner as in Example 4. The evaluation results are shown in Table 1.

<液晶配向膜の形成および液晶表示素子の製造ならびに評価>
実施例23
ITO膜からなる透明電極付きガラス基板の透明電極面上に、上記実施例4で調製した液晶配向剤A−1をスピンナーを用いて塗布し、80℃のホットプレート上で1分間プレベークを行った後、庫内を窒素置換したオーブン中で200℃で1時間加熱して膜厚0.1μmの塗膜を形成した。次いでこの塗膜表面に、Hg−Xeランプおよびグランテーラープリズムを用いて313nmの輝線を含む偏光紫外線200J/mを、基板法線から40°傾いた方向から照射して液晶配向膜とした。同じ操作を繰り返して、液晶配向膜を有する基板を1対(2枚)作成した。
上記基板のうちの1枚の液晶配向膜を有する面の外周に直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷により塗布した後、1対の基板の液晶配向膜面を対向させ、各基板の紫外線の光軸の基板面への投影方向が逆平行となるように圧着し、150℃で1時間かけて接着剤を熱硬化した。次いで、液晶注入口より基板間の間隙に、ネガ型液晶(メルク社製、MLC−6608)を充填した後、エポキシ系接着剤で液晶注入口を封止した。さらに、液晶注入時の流動配向を除くために、これを150℃で加熱してから室温まで徐冷した。次に基板の外側両面に、偏光板を、その偏光方向が互いに直交し、かつ、液晶配向膜の紫外線の光軸の基板面への射影方向と45°の角度をなすように貼り合わせることにより液晶表示素子を製造した。
<Formation of liquid crystal alignment film and production and evaluation of liquid crystal display element>
Example 23
On the transparent electrode surface of the glass substrate with a transparent electrode made of an ITO film, the liquid crystal aligning agent A-1 prepared in Example 4 was applied using a spinner, and prebaked on an 80 ° C. hot plate for 1 minute. Then, it heated at 200 degreeC for 1 hour in the oven which substituted the inside with nitrogen, and formed the coating film with a film thickness of 0.1 micrometer. Next, the surface of the coating film was irradiated with polarized ultraviolet rays 200 J / m 2 containing a 313 nm emission line from a direction inclined by 40 ° from the normal to the liquid crystal alignment film using a Hg—Xe lamp and a Grand Taylor prism. The same operation was repeated to produce a pair (two) of substrates having a liquid crystal alignment film.
An epoxy resin adhesive containing aluminum oxide spheres having a diameter of 5.5 μm is applied to the outer periphery of the surface of the substrate having the liquid crystal alignment film by screen printing, and the liquid crystal alignment film surfaces of the pair of substrates are made to face each other. The adhesive was pressure-bonded so that the projection direction of the ultraviolet optical axis of each substrate onto the substrate surface was antiparallel, and the adhesive was thermally cured at 150 ° C. for 1 hour. Next, after filling the gap between the substrates from the liquid crystal injection port with negative type liquid crystal (MLC-6608, manufactured by Merck), the liquid crystal injection port was sealed with an epoxy adhesive. Furthermore, in order to remove the flow alignment at the time of liquid crystal injection, this was heated at 150 ° C. and then gradually cooled to room temperature. Next, the polarizing plates are bonded to both outer surfaces of the substrate so that the polarization directions thereof are orthogonal to each other and form an angle of 45 ° with the projection direction of the optical axis of the liquid crystal alignment film onto the substrate surface. A liquid crystal display device was manufactured.

この液晶表示素子につき、以下の方法により評価した。評価結果は表2に示した。
(1)液晶配向性の評価
上記で製造した液晶表示素子につき、5Vの電圧をON・OFF(印加・解除)したときの明暗の変化における異常ドメインの有無を光学顕微鏡により観察し、異常ドメインのない場合を「良」とした。
(2)プレチルト角の評価
上記で製造した液晶表示素子につき、非特許文献2(T. J. Scheffer et. al. J. Appl. Phys. vol. 19, p2013(1980))に記載の方法に準拠して、He−Neレーザー光を用いる結晶回転法によりプレチルト角を測定した。
(3)電圧保持率の評価
上記で製造した液晶表示素子に、5Vの電圧を60マイクロ秒の印加時間、167ミリ秒のスパンで印加した後、印加解除から167ミリ秒後の電圧保持率を測定した。測定装置は(株)東陽テクニカ製、「VHR−1」を使用した。
(4)焼き付きの評価
上記で製造した液晶表示素子に、直流5Vを重畳した30Hz、3Vの矩形波を70℃の環境温度で2時間印加し、直流電圧を切った直後の液晶セル内に残留した電圧をフリッカー消去法により残留DC電圧を求めた。
(5)プレチルト角安定性の評価
上記で製造した液晶表示素子を23℃にて30日間保管した後、再度プレチルト角を測定した。初期からの変化量が1℃未満であった場合、プレチルト角安定性が「良」であるとした。
実施例24〜41
液晶配向剤として、それぞれ表2に示した種類の液晶配向剤を用いたほかは上記実施例23と同様にして、液晶配向膜を形成し、液晶表示素子を製造して評価した。結果は表2に示した。
This liquid crystal display element was evaluated by the following method. The evaluation results are shown in Table 2.
(1) Evaluation of liquid crystal orientation For the liquid crystal display device manufactured above, the presence or absence of an abnormal domain in the change in brightness when a voltage of 5 V is turned ON / OFF (applied / released) is observed with an optical microscope. The case where there was no “good”.
(2) Evaluation of pretilt angle The liquid crystal display device manufactured above is subjected to the method described in Non-Patent Document 2 (T. J. Scheffer et. Al. J. Appl. Phys. Vol. 19, p2013 (1980)). In conformity, the pretilt angle was measured by a crystal rotation method using He—Ne laser light.
(3) Evaluation of voltage holding ratio After applying a voltage of 5 V to the liquid crystal display element manufactured above with an application time of 60 microseconds and a span of 167 milliseconds, the voltage holding ratio after 167 milliseconds from the release of application is obtained. It was measured. As a measuring device, “VHR-1” manufactured by Toyo Corporation was used.
(4) Evaluation of burn-in The liquid crystal display element manufactured above was applied with a 30 Hz, 3 V rectangular wave superimposed with a direct current of 5 V at an ambient temperature of 70 ° C. for 2 hours, and remained in the liquid crystal cell immediately after the DC voltage was turned off. The residual DC voltage was determined by the flicker elimination method.
(5) Evaluation of pretilt angle stability The liquid crystal display device produced above was stored at 23 ° C for 30 days, and then the pretilt angle was measured again. When the amount of change from the initial stage was less than 1 ° C., the pretilt angle stability was determined to be “good”.
Examples 24-41
As the liquid crystal aligning agent, a liquid crystal aligning film was formed in the same manner as in Example 23 except that liquid crystal aligning agents of the type shown in Table 2 were used. The results are shown in Table 2.

実施例42
<液晶セルの製造>
上記実施例4で調製した液晶配向剤A−1を用いて、下記のように透明電極のパターン(2種類)および紫外線照射量(3水準)を変更して、計6個の液晶表示素子を製造し、評価した。
[パターンなし透明電極を有する液晶セルの製造]
上記で調製した液晶配向剤A−1を、液晶配向膜印刷機(日本写真印刷(株)製)を用いてITO膜からなる透明電極を有するガラス基板の透明電極面上に塗布し、80℃のホットプレート上で1分間加熱(プレベーク)して溶媒を除去した後、150℃のホットプレート上で10分間加熱(ポストベーク)して、平均膜厚600Åの塗膜を形成した。
この塗膜に対し、レーヨン布を巻き付けたロールを有するラビングマシーンにより、ロール回転数400rpm、ステージ移動速度3cm/秒、毛足押しこみ長さ0.1mmでラビング処理を行った。その後、超純水中で1分間超音波洗浄を行ない、次いで100℃クリーンオーブン中で10分間乾燥することにより、ラビング処理された塗膜を有する基板を得た。この操作を繰り返し、ラビング処理された塗膜を有する基板を一対(2枚)得た。
次に、上記一対の基板のラビング処理された塗膜を有するそれぞれの外縁に、直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤を塗布した後、塗膜面が相対するように重ね合わせて圧着し、接着剤を硬化した。次いで、液晶注入口より一対の基板間に、ネマチック型液晶(メルク社製、MLC−6608)を充填した後、アクリル系光硬化接着剤で液晶注入口を封止することにより、液晶セルを製造した。
Example 42
<Manufacture of liquid crystal cells>
Using the liquid crystal aligning agent A-1 prepared in Example 4 above, the pattern of the transparent electrode (2 types) and the amount of ultraviolet irradiation (3 levels) were changed as follows to obtain a total of 6 liquid crystal display elements. Manufactured and evaluated.
[Manufacture of liquid crystal cell having transparent electrode without pattern]
The liquid crystal aligning agent A-1 prepared above was applied onto a transparent electrode surface of a glass substrate having a transparent electrode made of an ITO film using a liquid crystal alignment film printer (Nissha Printing Co., Ltd.), and 80 ° C. After heating (pre-baking) on the hot plate for 1 minute to remove the solvent, it was heated (post-baking) on a hot plate at 150 ° C. for 10 minutes to form a coating film having an average film thickness of 600 mm.
The coating film was rubbed with a rubbing machine having a roll wrapped with a rayon cloth at a roll rotation speed of 400 rpm, a stage moving speed of 3 cm / sec, and a hair foot indentation length of 0.1 mm. Thereafter, ultrasonic cleaning was performed in ultrapure water for 1 minute, followed by drying in a 100 ° C. clean oven for 10 minutes to obtain a substrate having a rubbed coating film. This operation was repeated to obtain a pair (two) of substrates having a rubbed coating film.
Next, an epoxy resin adhesive containing aluminum oxide spheres having a diameter of 5.5 μm is applied to each outer edge of the pair of substrates having a rubbing-treated film, and then superimposed so that the coating film faces each other. Crimped and cured the adhesive. Next, a liquid crystal cell is manufactured by filling a nematic liquid crystal (MLC-6608, manufactured by Merck & Co., Inc.) between a pair of substrates from the liquid crystal injection port and then sealing the liquid crystal injection port with an acrylic photo-curing adhesive. did.

上記の操作を繰り返し行い、パターンなし透明電極を有する液晶セルを3個製造した。そのうちの1個はそのまま後述のプレチルト角の評価に供した。残りの2個の液晶セルについては、それぞれ下記の方法により導電膜間に電圧を印加した状態で光照射した後にプレチルト角および電圧保持率の評価に供した。
上記で得た液晶セルのうちの2個について、それぞれ電極間に周波数60Hzの交流10Vを印加し、液晶が駆動している状態で、光源にメタルハライドランプを使用した紫外腺照射装置を用いて、紫外線を10,000J/mまたは100,000J/mの照射量にて照射した。なおこの照射量は、波長365nm基準で計測される光量計を用いて計測した値である。
The above operation was repeated to produce three liquid crystal cells having unpatterned transparent electrodes. One of them was used for the evaluation of the pretilt angle described later. The remaining two liquid crystal cells were irradiated with light in a state where a voltage was applied between the conductive films by the following method, and then subjected to evaluation of a pretilt angle and a voltage holding ratio.
For two of the liquid crystal cells obtained above, an alternating current of 10 Hz is applied between the electrodes, and the liquid crystal is driven, using an ultraviolet gland irradiation device using a metal halide lamp as the light source, UV was irradiated at dose of 10,000 J / m 2 or 100,000J / m 2. This irradiation amount is a value measured using a light meter that is measured on the basis of a wavelength of 365 nm.

[プレチルト角の評価]
上記で製造した各液晶セルについて、それぞれ上記実施例23におけるのと同様にしてプレチルト角を測定した結果、光未照射の液晶セルのプレチルト角は89°であり、照射量10,000J/mの液晶セルのプレチルト角は88°であり、そして照射量100,000J/mの液晶セルのプレチルト角は84°であった。
[電圧保持率の評価]
上記で製造した各液晶セルについて、それぞれ上記実施例23におけるのと同様にして電圧保持率を測定した結果、照射量10,000J/mの液晶セルの電圧保持率は99%であり、そして照射量100,000J/mの液晶セルの電圧保持率は84°であった。
[Evaluation of pretilt angle]
As a result of measuring the pretilt angle of each of the liquid crystal cells manufactured as described above in the same manner as in Example 23, the pretilt angle of the liquid crystal cell not irradiated with light was 89 °, and the irradiation amount was 10,000 J / m 2. The pretilt angle of the liquid crystal cell was 88 °, and the pretilt angle of the liquid crystal cell with an irradiation amount of 100,000 J / m 2 was 84 °.
[Evaluation of voltage holding ratio]
About each liquid crystal cell manufactured above, the voltage holding ratio was measured in the same manner as in Example 23. As a result, the voltage holding ratio of the liquid crystal cell with an irradiation amount of 10,000 J / m 2 was 99%, and The voltage holding ratio of the liquid crystal cell with the irradiation amount of 100,000 J / m 2 was 84 °.

[パターニングされた透明電極を有する液晶セルの製造]
上記で調製した液晶配向剤A−1を、図1に示したようなスリット状にパターニングされ、複数の領域に区画されたITO電極をそれぞれ有するガラス基板AおよびBの各電極面上に液晶配向膜印刷機(日本写真印刷(株)製)を用いて塗布し、80℃のホットプレート上で1分間加熱(プレベーク)して溶媒を除去した後、150℃のホットプレート上で10分間加熱(ポストベーク)して、平均膜厚600Åの塗膜を形成した。この塗膜につき、超純水中で1分間超音波洗浄を行なった後、100℃クリーンオーブン中で10分間乾燥することにより、塗膜を有する基板を得た。この操作を繰り返し、塗膜を有する基板を一対(2枚)得た。
次いで、上記一対の基板の塗膜を有するそれぞれの外縁に、直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤を塗布した後、塗膜面が相対するように重ね合わせて圧着し、接着剤を硬化した。次いで、液晶注入口より一対の基板間に、ネマチック型液晶(メルク社製、MLC−6608)を充填した後、アクリル系光硬化接着剤で液晶注入口を封止することにより、液晶セルを製造した。
上記の操作を繰り返し行い、パターニングされた透明電極を有する液晶セルを3個製造した。そのうちの1個はそのまま後述の応答速度の評価に供した。残りの2個の液晶セルについては、上記パターンなし透明電極を有する液晶セルの製造におけるのと同様の方法により、導電膜間に電圧を印加した状態で10,000J/mまたは100,000J/mの照射量にて光照射した後に応答速度の評価に供した。
なお、ここで用いた電極のパターンは、PSAモードにおける電極パターンと同種のパターンである。
[Manufacture of Liquid Crystal Cell Having Patterned Transparent Electrode]
The liquid crystal aligning agent A-1 prepared as described above is patterned into a slit shape as shown in FIG. It is applied using a film printer (Nissha Printing Co., Ltd.), heated on a hot plate at 80 ° C. for 1 minute (prebaked) to remove the solvent, and then heated on a hot plate at 150 ° C. for 10 minutes ( The film was post-baked to form a coating film having an average film thickness of 600 mm. The coating film was subjected to ultrasonic cleaning for 1 minute in ultrapure water and then dried in a clean oven at 100 ° C. for 10 minutes to obtain a substrate having a coating film. This operation was repeated to obtain a pair (two) of substrates having a coating film.
Next, an epoxy resin adhesive containing aluminum oxide spheres having a diameter of 5.5 μm is applied to each outer edge having the coating film on the pair of substrates. Cured. Next, a liquid crystal cell is manufactured by filling a nematic liquid crystal (MLC-6608, manufactured by Merck & Co., Inc.) between a pair of substrates from the liquid crystal injection port and then sealing the liquid crystal injection port with an acrylic photo-curing adhesive. did.
The above operation was repeated to produce three liquid crystal cells having patterned transparent electrodes. One of them was used for evaluation of response speed as described later. For the remaining two liquid crystal cells, 10,000 J / m 2 or 100,000 J / m with a voltage applied between the conductive films in the same manner as in the production of the liquid crystal cell having the transparent electrode without pattern. After irradiating with light at an irradiation amount of m 2 , the response speed was evaluated.
The electrode pattern used here is the same type as the electrode pattern in the PSA mode.

[応答速度の評価]
上記で製造した各液晶セルにつき、先ず電圧を印加せずに可視光ランプを照射して液晶セルを透過した光の輝度をフォトマルチメーターにて測定し、この値を相対透過率0%とした。次に液晶セルの電極間に交流60Vを5秒間印加したときの透過率を上記と同様にして測定し、この値を相対透過率100%とした。
このとき各液晶セルに対して交流60Vを印加したときに、相対透過率が10%から90%に移行するまでの時間を測定し、この時間を応答速度と定義して評価した。
その結果、光未照射の液晶セルの応答速度は52msecであり、照射量10,000J/mの液晶セルの応答速度は48msecであり、そして照射量100,000J/mの液晶セルの応答速度は29msecであった。
実施例42の結果から、本発明の方法においては、紫外線照射量を100,000J/m(PSAモードにおいて通常採用される値である。)とすると、得られるプレチルト角の程度が過剰となり、10,000J/mまたはそれ以下の照射量において適正なプレチルト角となることが分かる。また、照射量が少ない場合であっても十分に速い応答速度が得られており、さらに電圧保持率にも優れている。従って本発明の方法によれば、PSAモードのメリットを少ない光照射量で実現することができるから、高い光照射量に起因する表示ムラの発生、電圧保持特性の低下および長期信頼性の不足の懸念なしに、視野角が広く、液晶分子の応答速度が速く、透過率が高く、そしてコントラストが高い液晶表示素子を製造することができる。
[Evaluation of response speed]
For each liquid crystal cell produced above, first, the luminance of the light transmitted through the liquid crystal cell by irradiating a visible light lamp without applying a voltage was measured with a photomultimeter, and this value was defined as a relative transmittance of 0%. . Next, the transmittance when 60 V AC was applied between the electrodes of the liquid crystal cell for 5 seconds was measured in the same manner as described above, and this value was defined as a relative transmittance of 100%.
At this time, when 60 V AC was applied to each liquid crystal cell, the time until the relative transmittance shifted from 10% to 90% was measured, and this time was defined as the response speed and evaluated.
As a result, the response speed of the liquid crystal cell not irradiated with light is 52 msec, the response speed of the liquid crystal cell with the irradiation amount of 10,000 J / m 2 is 48 msec, and the response speed of the liquid crystal cell with the irradiation amount of 100,000 J / m 2. The speed was 29 msec.
From the results of Example 42, in the method of the present invention, when the ultraviolet irradiation amount is 100,000 J / m 2 (which is a value usually employed in the PSA mode), the degree of the pretilt angle obtained becomes excessive, It can be seen that an appropriate pretilt angle is obtained at an irradiation dose of 10,000 J / m 2 or less. Moreover, even when the irradiation amount is small, a sufficiently fast response speed is obtained, and the voltage holding ratio is also excellent. Therefore, according to the method of the present invention, the merits of the PSA mode can be realized with a small amount of light irradiation. Therefore, the occurrence of display unevenness due to the high amount of light irradiation, the decrease in voltage holding characteristics, and the lack of long-term reliability. Without concern, a liquid crystal display element having a wide viewing angle, a high response speed of liquid crystal molecules, a high transmittance, and a high contrast can be manufactured.

Claims (11)

下記式(1)
で表される構造を有する感放射線性ポリオルガノシロキサンを含有することを特徴とする、液晶配向剤。
Following formula (1)
The liquid crystal aligning agent characterized by including the radiation sensitive polyorganosiloxane which has a structure represented by these.
上記感放射線性ポリオルガノシロキサンが、
(a)エポキシ基を有するポリオルガノシロキサンと、
(b)上記式(1)で表される構造およびカルボキシル基を有する化合物または下記式(2)
で表される基を有する化合物と
の反応生成物である、請求項1に記載の液晶配向剤。
The radiation sensitive polyorganosiloxane is
(A) a polyorganosiloxane having an epoxy group;
(B) A compound having a structure and a carboxyl group represented by the above formula (1) or the following formula (2)
The liquid crystal aligning agent of Claim 1 which is a reaction product with the compound which has group represented by these.
上記(b)化合物が、下記式(3)または(4)
(式(3)中のRは水素原子、炭素数1〜40のアルキル基、炭素数1〜40のフルオロアルキル基であるか、または脂環式基を含む炭素数3〜40の1価の有機基であり、Rは単結合、酸素原子、硫黄原子、−COO−、−COS−、−SCO−または−OCO−(ただし以上において、「*」を付した結合手がRと結合する。)であり、Rは2価の芳香族基、2価の脂環式基、2価の複素環式基もしく2価の縮合環式基であるか、または複素環と芳香環とが縮合した構造を有する2価の基もしくは複素環と脂環とが縮合した構造を有する2価の基であり、Rは単結合、酸素原子、硫黄原子、−COO−、−COS−、−SCO−または−OCO−(ただし以上において、「*」を付した結合手がRと結合する。)であり、Rはフッ素原子またはシアノ基であり、aは0〜3の整数であり、bは0〜4の整数であり、
式(4)中のRは水素原子、炭素数1〜40のアルキル基、炭素数1〜40のフルオロアルキル基であるか、または脂環式基を含む炭素数3〜40の1価の有機基であり、Rは酸素原子または2価の芳香族基であり、Rは酸素原子、−COO−または−OCO−(ただし以上において、「*」を付した結合手がRと結合する。)であり、Rは2価の芳香族基、2価の脂環式基、2価の複素環式基もしく2価の縮合環式基であるか、または複素環と芳香環とが縮合した構造を有する2価の基もしくは複素環と脂環とが縮合した構造を有する2価の基であり、R10は単結合、−OCO−(CHまたは−O−(CH(ただし以上において、「*」を付した結合手がカルボキシル基と結合する。)であり、ただしeおよびfはそれぞれ1〜10の整数であり、R11はフッ素原子またはシアノ基であり、cは0〜3の整数であり、dは0〜4の整数である。)
で表される化合物である、請求項2に記載の液晶配向剤。
The compound (b) is represented by the following formula (3) or (4)
(R 1 in Formula (3) is a hydrogen atom, an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, or a monovalent group having 3 to 40 carbon atoms including an alicyclic group. R 2 is a single bond, an oxygen atom, a sulfur atom, * —COO—, * —COS—, * —SCO— or * —OCO— (in the above, a bond marked with “*”) There binds to R 1.) a and, if R 3 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group properly divalent condensed cyclic group, or A divalent group having a structure in which a heterocycle and an aromatic ring are condensed or a divalent group having a structure in which a heterocycle and an alicyclic ring are condensed, and R 4 is a single bond, an oxygen atom, a sulfur atom, * − COO-, * -COS-, * -SCO- or * -OCO- (in the above, the bonding hand marked with "*" A bind R 3.), R 5 is a fluorine atom or a cyano group, a is an integer of 0 to 3, b is an integer from 0 to 4,
R 6 in Formula (4) is a hydrogen atom, an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, or a monovalent monovalent having 3 to 40 carbon atoms including an alicyclic group. An organic group, R 7 is an oxygen atom or a divalent aromatic group, and R 8 is an oxygen atom, —COO— * or —OCO— * (in the above, the bond marked with “*” is R binds 9.), and, R 9 is a divalent aromatic group, a divalent alicyclic group, a divalent or heterocyclic group is properly divalent condensed cyclic group, or a heterocyclic Is a divalent group having a structure in which an aromatic ring is condensed or a divalent group having a structure in which a heterocyclic ring and an alicyclic ring are condensed, and R 10 is a single bond, —OCO— (CH 2 ) e*. or -O- (CH 2) f - * ( except at least a bond marked with "*" is bonded to the carboxyl group. And with the proviso e and f represents an integer of 1 to 10, respectively, R 11 is a fluorine atom or a cyano group, c is an integer of 0 to 3, d is an integer of 0-4. )
The liquid crystal aligning agent of Claim 2 which is a compound represented by these.
さらに、ポリアミック酸およびポリイミドよりなる群から選択される少なくとも1種の重合体を含有する、請求項1〜3のいずれか一項に記載の液晶配向剤。   Furthermore, the liquid crystal aligning agent as described in any one of Claims 1-3 containing the at least 1 sort (s) of polymer selected from the group which consists of a polyamic acid and a polyimide. さらに、上記感放射線性ポリオルガノシロキサン以外のポリオルガノシロキサンを含有する、請求項1〜3のいずれか一項に記載の液晶配向剤。   Furthermore, the liquid crystal aligning agent as described in any one of Claims 1-3 containing polyorganosiloxane other than the said radiation sensitive polyorganosiloxane. 基板上に、請求項1〜5のいずれか一項に記載の液晶配向剤を塗布して塗膜を形成し、該塗膜に放射線を照射する工程を経ることを特徴とする、液晶配向膜の形成方法。   A liquid crystal alignment film comprising a step of applying a liquid crystal aligning agent according to any one of claims 1 to 5 on a substrate to form a coating film and irradiating the coating film with radiation. Forming method. 請求項6に記載の液晶配向膜の形成方法によって形成された液晶配向膜を具備することを特徴とする、液晶表示素子。   A liquid crystal display device comprising a liquid crystal alignment film formed by the method for forming a liquid crystal alignment film according to claim 6. 導電膜を有する一対の基板の該導電膜上に、それぞれ、請求項1〜5のいずれか一項に記載の液晶配向剤を塗布して塗膜を形成し、
前記塗膜を形成した一対の基板の前記塗膜が、液晶分子の層を介して相対して対向配置した構成の液晶セルを形成し、
前記一対の基板の有する導電膜間に電圧を印加した状態で前記液晶セルに光照射する工程を経ることを特徴とする、液晶表示素子の製造方法。
A coating film is formed by applying the liquid crystal aligning agent according to any one of claims 1 to 5 on the conductive film of a pair of substrates having a conductive film,
The coating film of the pair of substrates on which the coating film is formed forms a liquid crystal cell having a configuration in which the coating film is opposed to each other through a layer of liquid crystal molecules,
A method for producing a liquid crystal display element, comprising a step of irradiating the liquid crystal cell with light while applying a voltage between conductive films of the pair of substrates.
前記導電膜のそれぞれが、複数の領域に区画されたパターン状導電膜である、請求項8に記載の液晶表示素子の製造方法。   The method for manufacturing a liquid crystal display element according to claim 8, wherein each of the conductive films is a patterned conductive film partitioned into a plurality of regions. 請求項8または9に記載の液晶表示素子の製造方法によって製造されたことを特徴とする、液晶表示素子。   A liquid crystal display element manufactured by the method for manufacturing a liquid crystal display element according to claim 8. 上記式(1)で表される構造を有することを特徴とする、感放射線性ポリオルガノシロキサン。   A radiation-sensitive polyorganosiloxane having a structure represented by the above formula (1).
JP2009280139A 2009-02-18 2009-12-10 Liquid crystal aligning agent, liquid crystal alignment film forming method, and liquid crystal display element manufacturing method Active JP5626510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009280139A JP5626510B2 (en) 2009-02-18 2009-12-10 Liquid crystal aligning agent, liquid crystal alignment film forming method, and liquid crystal display element manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009035135 2009-02-18
JP2009035135 2009-02-18
JP2009280139A JP5626510B2 (en) 2009-02-18 2009-12-10 Liquid crystal aligning agent, liquid crystal alignment film forming method, and liquid crystal display element manufacturing method

Publications (2)

Publication Number Publication Date
JP2010217867A true JP2010217867A (en) 2010-09-30
JP5626510B2 JP5626510B2 (en) 2014-11-19

Family

ID=42607574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009280139A Active JP5626510B2 (en) 2009-02-18 2009-12-10 Liquid crystal aligning agent, liquid crystal alignment film forming method, and liquid crystal display element manufacturing method

Country Status (4)

Country Link
JP (1) JP5626510B2 (en)
KR (1) KR101604143B1 (en)
CN (1) CN101805618B (en)
TW (1) TWI468386B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057815A (en) * 2011-09-08 2013-03-28 Jsr Corp Liquid crystal aligning agent, liquid crystal alignment layer, liquid crystal display element, method for manufacturing liquid crystal display element, and polyorganosiloxane
US8619228B2 (en) 2011-04-12 2013-12-31 Toppan Printing Co., Ltd. Liquid crystal display device and manufacturing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104603683B (en) * 2012-07-11 2017-05-10 日产化学工业株式会社 Liquid crystal alignment agent containing polyamic acid ester, liquid crystal alignment film, and liquid crystal display element
CN105408450B (en) * 2013-05-13 2019-11-08 日产化学工业株式会社 The manufacturing method of the substrate of element liquid crystal orientation film is indicated with the driving liquid crystal of transverse electric field
CN103353690B (en) 2013-06-28 2015-09-23 京东方科技集团股份有限公司 A kind of display panels and preparation method thereof, liquid crystal indicator
CN112055832B (en) * 2018-05-29 2023-12-05 Jsr株式会社 Liquid crystal aligning agent and manufacturing method thereof, liquid crystal alignment film and manufacturing method thereof, and liquid crystal element
CN109030478B (en) * 2018-07-25 2021-01-05 华南师范大学 Liquid crystal composite gel, preparation method and application thereof, and hydrogen sulfide gas detection method
CN110109293A (en) * 2019-04-04 2019-08-09 深圳市华星光电技术有限公司 The manufacturing method of the inorganic orientation film of liquid crystal
CN111367004A (en) * 2020-04-29 2020-07-03 刘奡 Ink-jet printing preparation method of polarizer holographic grating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122069A (en) * 1998-10-16 2000-04-28 Lg Cable & Mach Co Ltd Photo-orienting high molecular composition, liquid crystal aligning layer using same and liquid crystal display device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107427A (en) * 1995-09-15 2000-08-22 Rolic Ag Cross-linkable, photoactive polymer materials
KR0179115B1 (en) * 1995-11-20 1999-05-01 구자홍 The photoresist material for lcd orientation layer and its application lcd
DE59814236D1 (en) * 1997-02-24 2008-07-17 Rolic Ag Photocrosslinkable polymers
KR20000029598A (en) * 1997-05-26 2000-05-25 모리시타 요이찌 Liquid crystal alignment film, method of producing the same, liquid crystal display made by using the film, and method of producing the same
TW482932B (en) * 1999-07-05 2002-04-11 Matsushita Electric Ind Co Ltd Chemical adsorbate compound, organic film, liquid crystal alignment film, and liquid crystal display device utilizing the chemical adsorbate compound
US6903787B2 (en) * 2002-02-20 2005-06-07 Fujitsu Display Technologies Corporation Liquid crystal display device's substrate, liquid crystal display device including the same, and manufacturing method of the same
TWI337679B (en) * 2003-02-04 2011-02-21 Sipix Imaging Inc Novel compositions and assembly process for liquid crystal display
JP4513950B2 (en) * 2004-03-05 2010-07-28 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5041134B2 (en) * 2006-01-30 2012-10-03 Jsr株式会社 Liquid crystal aligning agent, alignment film, and liquid crystal display element
JP5071644B2 (en) * 2007-08-01 2012-11-14 Jsr株式会社 Polyorganosiloxane, liquid crystal alignment film, and liquid crystal display element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122069A (en) * 1998-10-16 2000-04-28 Lg Cable & Mach Co Ltd Photo-orienting high molecular composition, liquid crystal aligning layer using same and liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8619228B2 (en) 2011-04-12 2013-12-31 Toppan Printing Co., Ltd. Liquid crystal display device and manufacturing method
JP2013057815A (en) * 2011-09-08 2013-03-28 Jsr Corp Liquid crystal aligning agent, liquid crystal alignment layer, liquid crystal display element, method for manufacturing liquid crystal display element, and polyorganosiloxane

Also Published As

Publication number Publication date
JP5626510B2 (en) 2014-11-19
KR101604143B1 (en) 2016-03-16
CN101805618A (en) 2010-08-18
TWI468386B (en) 2015-01-11
CN101805618B (en) 2014-03-19
TW201035037A (en) 2010-10-01
KR20100094398A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
JP4416054B2 (en) Liquid crystal aligning agent, method for forming liquid crystal aligning film, and liquid crystal display element
KR101730297B1 (en) Liquid crystal aligning agent, process for forming liquid crystal aligning film, liquid crystal display device, and polyorganosiloxane
JP4458306B2 (en) Liquid crystal aligning agent, method for producing liquid crystal aligning film, and liquid crystal display element
JP4458305B2 (en) Liquid crystal aligning agent, method for producing liquid crystal aligning film, and liquid crystal display element
JP5454772B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, method for forming the same, and liquid crystal display element
JP5626510B2 (en) Liquid crystal aligning agent, liquid crystal alignment film forming method, and liquid crystal display element manufacturing method
JP5966329B2 (en) Manufacturing method of liquid crystal display element
JP4507024B2 (en) Liquid crystal aligning agent, method for forming liquid crystal aligning film, and liquid crystal display element
JP5088585B2 (en) Liquid crystal aligning agent, method for forming liquid crystal aligning film, and liquid crystal display element
JP6302011B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP4544439B2 (en) Liquid crystal aligning agent and method for forming liquid crystal aligning film
KR20110123207A (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device and polyorganosiloxane compounds
KR20110040681A (en) Liquid crystal aligning agent, liquid crystal display device and polyorganosiloxane compounds
KR101787441B1 (en) Liquid crystal aligning agent, method for forming liquid crystal alignment film, and liquid crystal display device
JP5642435B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP5590715B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP5041599B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, formation method thereof, liquid crystal display element and optical member
JP2009258578A (en) Liquid crystal aligning agent, liquid crystal alignment film, forming method thereof, liquid crystal display element, and optical member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140916

R150 Certificate of patent or registration of utility model

Ref document number: 5626510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250