JP2010216995A - Method and device for decision of battery characteristics - Google Patents

Method and device for decision of battery characteristics Download PDF

Info

Publication number
JP2010216995A
JP2010216995A JP2009064172A JP2009064172A JP2010216995A JP 2010216995 A JP2010216995 A JP 2010216995A JP 2009064172 A JP2009064172 A JP 2009064172A JP 2009064172 A JP2009064172 A JP 2009064172A JP 2010216995 A JP2010216995 A JP 2010216995A
Authority
JP
Japan
Prior art keywords
battery
waveform
detection
response
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009064172A
Other languages
Japanese (ja)
Inventor
Aiko Nagano
愛子 長野
Satoru Goto
哲 後藤
Yuji Yamazaki
裕司 山崎
Hisao Yamashige
寿夫 山重
Hidehito Matsuo
秀仁 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009064172A priority Critical patent/JP2010216995A/en
Publication of JP2010216995A publication Critical patent/JP2010216995A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To achieve detection of abnormal characteristics of a battery or a state before it reaches the abnormal characteristics as decision of the characteristics of the battery. <P>SOLUTION: The battery characteristic decision device 50 is constituted by including a switch 52; an AC signal source 54; a current detection unit 56 for detecting a battery current; and a control unit 70. The control unit 70 is constituted by including a detection waveform application module 72 for performing instruction for applying a detection AC waveform to the battery 10 to the AC signal source; a response waveform obtaining module 74 for detecting/obtaining a response current waveform relative to the detection AC waveform by the current detection unit 56; an integration processing module 76 for integrating the obtained response current waveform over a plurality of periods of the waveform; and a battery characteristic decision module 78 for determining that the battery characteristics are abnormal or normal based on the fact that a value integrated by an integration means is not zero and the fact whether an absolute value is increased with elapse of time. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電池特性判断方法及び電池特性判断装置に係り、特に、電池が異常状態にあるか正常状態にあるかを判断する電池特性判断方法及び電池特性判断装置に関する。   The present invention relates to a battery characteristic determination method and a battery characteristic determination apparatus, and more particularly to a battery characteristic determination method and a battery characteristic determination apparatus that determine whether a battery is in an abnormal state or a normal state.

電力源としての電池に特性変化、特性劣化等が生じると電池能力に制限が生じるので、電池特性を検出することが行われる。電池特性の検出には、例えば、電池の内部抵抗の変化、電池の容量成分の変化等を測定することが行われる。   When the battery as the power source undergoes characteristic change, characteristic deterioration, or the like, the battery capacity is limited. Therefore, the battery characteristic is detected. For the detection of the battery characteristics, for example, a change in the internal resistance of the battery, a change in the capacity component of the battery, or the like is measured.

例えば、特許文献1には、電池特性の検出方法として、二相発振回路を用いて所定周波数の正弦波を電池に重畳し、そのときの電池の応答電流の0からπまでの区間でコンダクタンスGを求め、0.5πから1.5πの区間でサセプタンスBを算出することが開示されている。そして、電池の電気二重層静電容量を反映するサセプタンスBが、大電力の短時間入出力を繰り返す車両用電池の実際の電池残存容量と相関があることが述べられている。   For example, in Patent Document 1, as a method for detecting battery characteristics, a two-phase oscillation circuit is used to superimpose a sine wave having a predetermined frequency on a battery, and conductance G is measured in a section from 0 to π of the response current of the battery at that time. And susceptance B is calculated in the interval from 0.5π to 1.5π. And it is stated that the susceptance B reflecting the electric double layer capacitance of the battery has a correlation with the actual battery remaining capacity of the vehicle battery that repeats high-power short-time input / output.

また、特許文献2には、二次電池評価方法として、複数の周波数に対するインピーダンスを求めることが述べられ、特許文献3には、電気自動車の車体と電気的に絶縁された直流電源系統の漏電を検出する高電圧車両漏電検出器として、デューティ比50%の矩形波を印加して交流電圧信号を検出して漏電検出することが述べられ、特許文献4には、電池の寿命判定方法として、パルス充電またはパルス放電を行って電池電圧波形を測定し、単位時間当たりの電圧変化から電池寿命を判定することが述べられ、特許文献5には、直流無停電電源装置に備えられた蓄電池の劣化診断方法として、リプル電流とリプル電圧とから電池の内部抵抗を算出して蓄電池の劣化度合いを判定することが述べられている。   Patent Document 2 states that as a secondary battery evaluation method, impedances for a plurality of frequencies are obtained, and Patent Document 3 describes leakage of a DC power supply system that is electrically insulated from the body of an electric vehicle. As a high-voltage vehicle leakage detector to detect, it is described that an AC voltage signal is detected by applying a rectangular wave with a duty ratio of 50%, and leakage detection is performed. It is described that the battery voltage waveform is measured by performing charging or pulse discharging, and the battery life is determined from the voltage change per unit time. Patent Document 5 describes the deterioration diagnosis of the storage battery provided in the DC uninterruptible power supply. As a method, it is described that the internal resistance of the battery is calculated from the ripple current and the ripple voltage to determine the degree of deterioration of the storage battery.

特開2008−107168号公報JP 2008-107168 A 特開2004−138586号公報JP 2004-138586 A 特開2003−125530号公報JP 2003-125530 A 特開2007−187533号公報JP 2007-187533 A 特開2002−101571号公報JP 2002-101571 A

特許文献1の方法は、電池の電気二重層の特性に着目し、電池残存容量に対応付けを行っている。この方法によれば、電池の正常状態の正確な把握が可能であるが、電池の特性異常の検出、あるいは、特性異常に至る前の状態の検出ができない。   The method of Patent Document 1 focuses on the characteristics of the electric double layer of the battery and associates it with the remaining battery capacity. According to this method, it is possible to accurately grasp the normal state of the battery, but it is impossible to detect abnormality of the battery characteristics or detection of the state before the characteristic abnormality is reached.

本発明の目的は、電池の特性異常あるいは特性異常に至る前の状態の検出を可能とする電池特性判断方法及び電池特性判断装置を提供することである。   An object of the present invention is to provide a battery characteristic determination method and a battery characteristic determination apparatus that enable detection of a battery characteristic abnormality or a state before a characteristic abnormality is reached.

本発明に係る電池特性判断方法は、予め設定された検出用交流波形を電池に印加する工程と、検出用交流波形を電池に印加したときの電池の応答信号波形を検出する工程と、取得された応答信号波形をその波形の複数周期分に渡って積分する積分工程と、積分工程によって積分された値がゼロでなく、かつ時間経過と共に絶対値が増加するか否かに基づいて、電池特性が異常か正常かを判断する工程と、を備えることを特徴とする。   The battery characteristic determination method according to the present invention is acquired by applying a preset AC waveform for detection to a battery, detecting a response signal waveform of the battery when the AC waveform for detection is applied to the battery, and Battery characteristics based on an integration process that integrates the response signal waveform over multiple cycles of the waveform, and whether the value integrated by the integration process is not zero and whether the absolute value increases over time And a step of determining whether or not is abnormal or normal.

また、本発明に係る電池特性判断装置は、予め設定された検出用交流波形を電池に印加する手段と、検出用交流波形を電池に印加したときの電池の応答信号波形を検出する手段と、取得された応答信号波形をその波形の複数周期分に渡って積分する積分手段と、積分手段によって積分された値がゼロでなく、かつ時間経過と共に絶対値が増加するか否かに基づいて、電池特性が異常か正常かを判断する手段と、を備えることを特徴とする。   Further, the battery characteristic determination device according to the present invention includes means for applying a preset AC waveform for detection to the battery, means for detecting a response signal waveform of the battery when the AC waveform for detection is applied to the battery, Integrating means for integrating the acquired response signal waveform over a plurality of cycles of the waveform, based on whether the value integrated by the integrating means is not zero and whether the absolute value increases with time, Means for judging whether the battery characteristics are abnormal or normal.

また、本発明に係る電池特性判断装置において、電池の正極電極と負極電極とを用い、検出用波形印加手段は、正極電極または負極電極のいずれかに検出用の交流電圧波形を印加し、応答波形取得手段は、検出用交流波形を印加した電極と反対側の電極について応答電流波形を検出して取得することが好ましい。   In the battery characteristic determination device according to the present invention, the positive electrode and the negative electrode of the battery are used, and the detection waveform applying means applies an AC voltage waveform for detection to either the positive electrode or the negative electrode, The waveform acquisition means preferably detects and acquires the response current waveform for the electrode opposite to the electrode to which the AC waveform for detection is applied.

また、本発明に係る電池特性判断装置において、電池の電気的に中性である参照電極を用い、検出用波形印加手段は、参照電極と正極電極または負極電極のいずれかとの間に検出用の交流電流波形を印加し、応答波形取得手段は、参照用電極について応答電圧波形を検出して取得することが好ましい。   Further, in the battery characteristic determination device according to the present invention, the reference electrode that is electrically neutral of the battery is used, and the detection waveform applying means is for detection between the reference electrode and either the positive electrode or the negative electrode. Preferably, an alternating current waveform is applied, and the response waveform acquisition means detects and acquires the response voltage waveform for the reference electrode.

上記構成により、電池特性の判断は、予め設定された検出用交流波形を電池に印加し、そのときの電池の応答信号波形を検出してその応答信号波形をその波形の複数周期分に渡って積分し、積分された値がゼロでなく、かつ時間経過と共に絶対値が増加するか否かに基づいて、電池特性が異常か正常かを判断する。   With the above configuration, the battery characteristics are determined by applying a preset AC waveform for detection to the battery, detecting the response signal waveform of the battery at that time, and extending the response signal waveform over a plurality of cycles of the waveform. Based on whether the integrated value is not zero and the absolute value increases with time, it is determined whether the battery characteristics are abnormal or normal.

本発明は、特許文献1に記載されているように所定周波数の正弦波を電池に重畳したところ、電池の応答信号波形が非対称となることがあることに気づいたことに基づく。この理由を検討し、電池の酸化反応と還元反応がバランスしている正常状態のときは、電池の応答信号波形が対称で、酸化反応と還元反応がバランスしていない異常状態あるいは異常に至る前の状態で応答信号波形が非対称であることが分かった。   The present invention is based on the fact that when a sine wave of a predetermined frequency is superimposed on a battery as described in Patent Document 1, the response signal waveform of the battery may become asymmetric. Considering this reason, when the battery's oxidation reaction and reduction reaction are in a normal state, the battery response signal waveform is symmetrical and the oxidation reaction and the reduction reaction are not balanced. It was found that the response signal waveform was asymmetric in the state.

上記構成のように、応答信号波形を複数周期で積分すれば、波形が対称のときは積分値がゼロとなり、波形が非対称であれば積分値がゼロとならず、さらに非対称性が継続あるいは進行すれば、積分値が時間経過と共に増加する。このようにして、応答信号波形の積分値に基づいて、電池特性が異常か正常かを判断することが可能となる。   If the response signal waveform is integrated in multiple cycles as in the above configuration, the integral value becomes zero when the waveform is symmetrical, the integral value does not become zero if the waveform is asymmetric, and the asymmetry continues or progresses. Then, the integral value increases with time. In this way, it is possible to determine whether the battery characteristics are abnormal or normal based on the integrated value of the response signal waveform.

ここで、応答信号の複数周期の取得は、電池の正極電極と負極電極との間の応答を取得してもよく、電気的に中性な参照電極と正極電極との間の応答を取得してもよく、または電気的に中性な参照電極と負極電極との間の応答を取得してもよい。   Here, the acquisition of a plurality of cycles of the response signal may acquire a response between the positive electrode and the negative electrode of the battery, or acquire a response between the electrically neutral reference electrode and the positive electrode. Or a response between an electrically neutral reference electrode and a negative electrode may be obtained.

電池の正極電極と負極電極とを用いる場合には、正極電極または負極電極のいずれかに検出用の交流電圧波形を印加し、検出用交流波形を印加した電極と反対側の電極について応答電流波形を検出して取得する。取得した応答電流波形の積分が発散すれば酸化反応と還元反応とのバランスが崩れている異常状態と判断できる。   When using a positive electrode and a negative electrode of a battery, a detection AC voltage waveform is applied to either the positive electrode or the negative electrode, and a response current waveform is applied to the electrode opposite to the electrode to which the detection AC waveform is applied. Detect and get If the integral of the acquired response current waveform diverges, it can be determined that the abnormal state where the balance between the oxidation reaction and the reduction reaction is broken.

また、電池の電気的に中性である参照電極を用いる場合は、参照電極と正極電極または負極電極のいずれかとの間に検出用の交流電流波形を印加し、参照用電極について応答電圧波形を検出して取得する。このとき、参照電極と正極電極との間で応答電圧波形の積分が発散すれば正極電極側で酸化反応と還元反応とのバランスが崩れていると判断でき、参照電極と負極電極との間で応答電圧波形の積分が発散すれば負極電極側で酸化反応と還元反応とのバランスが崩れていると判断できる。このように参照電極を用いることで、正極電極側の異常と負極電極側の異常を分離して判断することができる。   In addition, when using a battery-neutral reference electrode, apply a detection alternating current waveform between the reference electrode and either the positive electrode or the negative electrode, and generate a response voltage waveform for the reference electrode. Detect and get. At this time, if the integral of the response voltage waveform diverges between the reference electrode and the positive electrode, it can be determined that the balance between the oxidation reaction and the reduction reaction is lost on the positive electrode side, and between the reference electrode and the negative electrode, If the integral of the response voltage waveform diverges, it can be determined that the balance between the oxidation reaction and the reduction reaction is broken on the negative electrode side. By using the reference electrode in this way, it is possible to separately determine the abnormality on the positive electrode side and the abnormality on the negative electrode side.

本発明に係る実施の形態の電池特性判断装置の構成を説明する図である。It is a figure explaining the structure of the battery characteristic judgment apparatus of embodiment which concerns on this invention. 本発明に係る実施の形態において、電池の回路モデルを説明する図である。In embodiment which concerns on this invention, it is a figure explaining the circuit model of a battery. 本発明に係る実施の形態において、電池の回路モデルの対称モデルを説明する図である。In embodiment which concerns on this invention, it is a figure explaining the symmetrical model of the circuit model of a battery. 本発明に係る実施の形態において、電池が対称モデルの回路モデルであるときの印加信号と応答信号の様子を説明する図である。In embodiment which concerns on this invention, it is a figure explaining the mode of an applied signal and a response signal when a battery is a circuit model of a symmetrical model. 本発明に係る実施の形態において、電池の回路モデルの非対称モデルを説明する図である。In embodiment which concerns on this invention, it is a figure explaining the asymmetrical model of the circuit model of a battery. 本発明に係る実施の形態において、電池が非対称モデルの回路モデルであるときの印加信号と応答信号の様子を説明する図である。In embodiment which concerns on this invention, it is a figure explaining the mode of an applied signal and a response signal when a battery is a circuit model of an asymmetric model. 本発明に係る実施の形態において、印加信号の積分波形、応答信号の積分波形の様子を説明する図である。In embodiment which concerns on this invention, it is a figure explaining the mode of the integrated waveform of an applied signal, and the integrated waveform of a response signal.

以下に図面を用いて、本発明に係る実施の形態につき、詳細に説明する。以下では、電池特性判断装置が適用される電池を、車両に搭載され、回転電機を駆動する電源回路に含まれる2次電池として説明したが、実際に充放電を行う電池であれば、車両に搭載されない電池であっても構わない。また、電池として、ニッケル水素型の高電圧電池を説明するが、これ以外の形式であっても、酸化還元反応を行う電池であればよく、リチウムイオン電池、鉛蓄電池等であってもよい。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the battery to which the battery characteristic determination device is applied is described as a secondary battery that is mounted on a vehicle and included in a power supply circuit that drives a rotating electric machine. A battery that is not mounted may be used. Moreover, although the nickel hydride type high voltage battery is demonstrated as a battery, even if it is a format other than this, what is necessary is just a battery which performs an oxidation reduction reaction, and a lithium ion battery, a lead acid battery, etc. may be sufficient.

以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。   Below, the same code | symbol is attached | subjected to the same element in all the drawings, and the overlapping description is abbreviate | omitted. In the description in the text, the symbols described before are used as necessary.

図1は、電池特性判断装置50の構成を説明する図である。電池特性判断装置50は、車両に搭載される回転電機6と接続されるインバータ8等を含む電源回路に備えられる電池10が異常状態であるか否か、または異常となる前の状態であるか否かを判断する機能を有する装置である。判断対象の電池10は、充放電を行う2次電池である。具体的には、ニッケル水素単電池を複数組み合わせた高電圧組電池であり、その端子電圧は例えば300V程度である。   FIG. 1 is a diagram illustrating the configuration of the battery characteristic determination device 50. Whether the battery characteristic determination device 50 is in an abnormal state or whether the battery 10 included in the power supply circuit including the inverter 8 and the like connected to the rotating electrical machine 6 mounted on the vehicle is in an abnormal state. This device has a function of determining whether or not. The battery 10 to be determined is a secondary battery that performs charging and discharging. Specifically, it is a high voltage assembled battery in which a plurality of nickel metal hydride cells are combined, and the terminal voltage thereof is, for example, about 300V.

電池特性判断装置50は、特性判断のときにインバータ8を含む電源回路を切り離すことができるスイッチ52と、所定の周波数の交流信号を電池10に重畳して印加する交流信号源54と、電池10の正極電極14と負極電極16とを用いて交流電圧信号に対する電池電流の応答信号を検出する電流検出部56と、電池10の参照電極12を用いて交流電流信号に対する電池電圧の応答信号を検出する電圧検出部57と、参照電極12を用いるときに正極電極側の特性を検出するか負極電極側の特性を検出するかの切替を行うスイッチ58,59と、制御部70を含んで構成される。   The battery characteristic determination device 50 includes a switch 52 that can disconnect the power supply circuit including the inverter 8 at the time of characteristic determination, an AC signal source 54 that superimposes an AC signal having a predetermined frequency on the battery 10, and the battery 10. The positive electrode 14 and the negative electrode 16 are used to detect a battery current response signal to the AC voltage signal, and the battery 10 reference electrode 12 is used to detect the battery voltage response signal to the AC current signal. Voltage detector 57, switches 58 and 59 for switching whether to detect the positive electrode side characteristic or the negative electrode side characteristic when the reference electrode 12 is used, and a control unit 70. The

電池10の特性判断の方法として、電池10の正極電極14と負極電極16とを用い、その間の応答信号の様子に基いて電池10の全体としての特性判断を行うことができる。また、電池10の缶ケース等の電気的に中性な参照電極12を用いて、参照電極12と正極電極との間の応答信号の様子に基いて正極電極側の特性判断を行い、または参照電極12と正極電極との間の応答信号の様子に基いて正極電極側の特性判断を行うことができる。いずれの方法も、電池に検出用交流波形を印加し、それに対する応答信号波形を評価することでは共通するので、ここでは、最初に電池10の正極電極14と負極電極16とを用い、その間の応答信号の様子に基いて電池10の特性判断を行うことについて説明する。その後に、参照電極12を用いて特性判断することについて、相違する点を中心に説明を行うこととする。   As a method for determining the characteristics of the battery 10, the positive electrode 14 and the negative electrode 16 of the battery 10 can be used, and the characteristics of the battery 10 as a whole can be determined based on the state of the response signal therebetween. Further, using the electrically neutral reference electrode 12 such as the can case of the battery 10, the characteristic determination on the positive electrode side is performed based on the state of the response signal between the reference electrode 12 and the positive electrode, or the reference Based on the state of the response signal between the electrode 12 and the positive electrode, the characteristic determination on the positive electrode side can be performed. Both methods are common in applying a detection AC waveform to the battery and evaluating the response signal waveform to the battery. Here, first, the positive electrode 14 and the negative electrode 16 of the battery 10 are used first, A description will be given of determining the characteristics of the battery 10 based on the state of the response signal. Thereafter, the characteristic determination using the reference electrode 12 will be described focusing on the differences.

最初に電池10の正極電極14と負極電極16との間の応答信号に基いて電池特性判断を行うことについて説明する。   First, the battery characteristic determination based on the response signal between the positive electrode 14 and the negative electrode 16 of the battery 10 will be described.

交流信号源54は、予め設定された検出用交流波形の信号を電池10の端子電圧に重畳させて印加する機能を有する信号発生装置である。検出用交流波形の信号としては、例えば、±1V,200Hzの正弦波信号を用いることができる。勿論これ以外の電圧振幅、周波数であってもよい。また、正弦波信号と同等の対称形信号を用いてもよい。例えば、余弦波信号は正弦波信号と位相が異なるだけであるので、勿論用いることができる。検出用交流波形の信号の印加のタイミング等は、制御部70の制御の下で設定される。   The AC signal source 54 is a signal generator having a function of applying a signal having a preset AC waveform for detection superimposed on the terminal voltage of the battery 10. As the AC waveform signal for detection, for example, a sine wave signal of ± 1 V, 200 Hz can be used. Of course, other voltage amplitudes and frequencies may be used. A symmetrical signal equivalent to a sine wave signal may be used. For example, the cosine wave signal can be used because it only differs in phase from the sine wave signal. The application timing of the detection AC waveform signal is set under the control of the control unit 70.

電流検出部56は、電池10とインバータ8とを接続する経路を流れる電流波形の信号を、検出用交流波形の信号に対する応答信号として検出する機能を有するセンサ回路である。例えば、適当な電流検出用抵抗素子を用いて、電流検出を行うことができる。検出されたデータは、適当な信号線で制御部に伝送される。   The current detection unit 56 is a sensor circuit having a function of detecting a current waveform signal flowing through a path connecting the battery 10 and the inverter 8 as a response signal to the detection AC waveform signal. For example, current detection can be performed using an appropriate current detection resistance element. The detected data is transmitted to the control unit through an appropriate signal line.

制御部70は、交流信号源54に検出用交流波形を電池10に印加する指令を行う検出用波形印加モジュール72と、電流検出部56から電池10の応答電流波形を検出して取得する応答波形取得モジュール74と、取得された応答電流波形をその波形の複数周期分に渡って積分する積分処理モジュール76と、積分手段によって積分された値がゼロでなく、かつ時間経過と共に絶対値が増加するか否かに基づいて、電池特性が異常か正常かを判断する電池特性判断モジュール78とを含んで構成される。   The control unit 70 detects the response current waveform of the battery 10 from the current detection unit 56 and obtains the response waveform from the detection waveform application module 72 that instructs the AC signal source 54 to apply the detection AC waveform to the battery 10. An acquisition module 74, an integration processing module 76 for integrating the acquired response current waveform over a plurality of cycles of the waveform, and the value integrated by the integration means is not zero, and the absolute value increases with time. A battery characteristic determination module 78 that determines whether the battery characteristic is abnormal or normal based on whether or not the battery characteristic is normal.

制御部70は、適当な信号処理装置で構成でき、例えばコンピュータを用いることができる。制御部70の各機能は、ソフトウェアを実行することで実現でき、具体的には、電池特性判断プログラムを実行することで実現できる。これらの機能の一部をハードウェアで実現するものとしてもよい。   The control unit 70 can be configured by an appropriate signal processing device, and for example, a computer can be used. Each function of the control unit 70 can be realized by executing software, and specifically, can be realized by executing a battery characteristic determination program. Some of these functions may be realized by hardware.

図2は、図1における構成のうち、特に電池10の回路モデルについて説明する図である。電池10は、外装の缶ケースを中性電位の参照電極12として、その缶ケースの内部に電解液が収納され、正極電極14と負極電極16が電解液の中に挿入されて構成される。そして、正極電極14と負極電極16の近傍には、それぞれ電気二重層18,20が形成される。   FIG. 2 is a diagram for explaining a circuit model of the battery 10 in the configuration shown in FIG. The battery 10 is configured such that an outer can case serves as a reference electrode 12 having a neutral potential, an electrolytic solution is housed in the can case, and a positive electrode 14 and a negative electrode 16 are inserted into the electrolytic solution. Electric double layers 18 and 20 are formed in the vicinity of the positive electrode 14 and the negative electrode 16, respectively.

電池10の回路モデルとしては、正極電極14と負極電極16との間に、直列に正極側電気二重層容量22、電解液・電子移動抵抗26、負極側電気二重層容量24が接続され、さらに、正極側電気二重層容量22に並列に正極側反応抵抗28が接続され、負極側電気二重層容量24に並列に負極側反応抵抗30が接続されるものを考えることができる。   As a circuit model of the battery 10, a positive electrode side electric double layer capacitor 22, an electrolyte / electron transfer resistor 26, and a negative electrode side electric double layer capacitor 24 are connected in series between the positive electrode 14 and the negative electrode 16. It can be considered that the positive electrode side reaction resistor 28 is connected in parallel to the positive electrode side electric double layer capacitor 22 and the negative electrode side reaction resistor 30 is connected in parallel to the negative electrode side electric double layer capacitor 24.

さらにこれよりも現実の電池10に近づけようとする場合は、正極側反応抵抗28、負極側反応抵抗30に直列に物質移動を反映するワールブルグインピーダンス項を挿入するものとできる。一般的に、電池に入力する信号がごく短時間の直流信号、あるいはある程度高い交流信号であれば、図2のような単純なCR合成回路モデルで十分であると考えられる。上記のように交流信号源の周波数は上記のように200Hzとするので、以後では図2の回路モデルを用いるものとする。   Further, when trying to approach the actual battery 10 more than this, it is possible to insert a Warburg impedance term reflecting mass transfer in series with the positive reaction resistance 28 and the negative reaction resistance 30. In general, if the signal input to the battery is a very short time DC signal or a somewhat high AC signal, a simple CR synthesis circuit model as shown in FIG. 2 is considered sufficient. As described above, the frequency of the AC signal source is 200 Hz as described above. Therefore, the circuit model shown in FIG. 2 is used hereinafter.

このような回路モデルを有する電池に対する特性判断を行うには、次のようにする。まず、特性判断を行うとするときは、スイッチ52を開放する。スイッチ52を設けることで、実際に車両に搭載され回転電機6の電源として稼動している電池10について、その車両搭載のままで、必要なときに特性判断を行うことが可能となる。   In order to determine the characteristics of a battery having such a circuit model, the following is performed. First, when the characteristic judgment is performed, the switch 52 is opened. By providing the switch 52, the battery 10 that is actually mounted on the vehicle and is operating as a power source for the rotating electrical machine 6 can be subjected to characteristic determination when necessary while being mounted on the vehicle.

そして、交流信号源54を電池10の一方側電極に接続し、電流検出部56を電池10の他方側電極に接続する。次に、交流信号源54から検出用交流波形の信号を電池10の一方側電極に印加する。電池10には、端子電圧が出ているので、端子電圧に検出用交流波形の信号を重畳させることになる。この工程は、制御部70の検出用波形印加モジュール72の機能によって実行される。   Then, the AC signal source 54 is connected to one side electrode of the battery 10, and the current detection unit 56 is connected to the other side electrode of the battery 10. Next, a detection AC waveform signal is applied from the AC signal source 54 to one electrode of the battery 10. Since the battery 10 has a terminal voltage, a signal having a detection AC waveform is superimposed on the terminal voltage. This step is executed by the function of the detection waveform applying module 72 of the control unit 70.

なお、図2では交流信号源54が電池10の負極電極16に、電流検出部56を電池10の正極電極14に接続しているが、勿論、これを逆にして、交流信号源54を正極電極14に、電流検出部56を負極電極56に接続するものとしてもよい。   In FIG. 2, the AC signal source 54 is connected to the negative electrode 16 of the battery 10, and the current detection unit 56 is connected to the positive electrode 14 of the battery 10. The current detection unit 56 may be connected to the electrode 14 and the negative electrode 56.

これと平行して、電流検出部56の検出波形を、検出用交流波形の信号に対する応答波形の信号として取得される。この工程は、制御部70の応答波形取得モジュール74の機能によって実行される。取得された応答波形は、電池10の特性を反映したものであるので、電池10の回路モデルとあわせて以下に詳細に説明する。   In parallel with this, the detection waveform of the current detection unit 56 is acquired as a response waveform signal to the detection AC waveform signal. This process is executed by the function of the response waveform acquisition module 74 of the control unit 70. Since the acquired response waveform reflects the characteristics of the battery 10, it will be described in detail below together with the circuit model of the battery 10.

図3は、図2の電池10の回路モデルをまとめたものである。正極電極14と負極電極16との間の電池10は、このように、電気二重層容量32、電解液・電子移動抵抗34、反応抵抗36でモデル化することができる。ここでは、反応抵抗36を1つの抵抗素子で表しているが、このことは、電池10における酸化反応と還元反応とがバランスしているものとしている。   FIG. 3 summarizes the circuit model of the battery 10 of FIG. The battery 10 between the positive electrode 14 and the negative electrode 16 can thus be modeled by the electric double layer capacity 32, the electrolyte / electron transfer resistance 34, and the reaction resistance 36. Here, the reaction resistance 36 is represented by a single resistance element, which means that the oxidation reaction and the reduction reaction in the battery 10 are balanced.

一般的に、電池10は、酸化反応の反応抵抗と還元反応の反応抵抗とはほぼ等しくなるように設計されているはずであるので、正常な電池10は、図3のモデルで表されると考えられる。このモデルを、酸化・還元についてバランスしている対称モデルと呼ぶことができる。   In general, since the battery 10 should be designed so that the reaction resistance of the oxidation reaction and the reaction resistance of the reduction reaction are substantially equal, the normal battery 10 is represented by the model of FIG. Conceivable. This model can be called a symmetrical model that balances oxidation and reduction.

図4は、電池10への検出用交流波形の信号80を正弦波信号とし、電池10が正常反応状態で、図3の対称モデルであるときの電池10の応答波形の信号82の様子を示す図である。電池10が図3のような単純CR合成回路モデルで表されるときは、正弦波入力に対する応答は、抵抗成分による振幅の減衰、容量成分による位相遅れがあるが、波形としては、正弦波と同様に時間軸に対し、上下対称形の波形を維持している。   FIG. 4 shows a state of the response waveform signal 82 of the battery 10 when the AC signal 80 for detection to the battery 10 is a sine wave signal and the battery 10 is in a normal reaction state and is the symmetrical model of FIG. FIG. When the battery 10 is represented by a simple CR synthesis circuit model as shown in FIG. 3, the response to the sine wave input has an amplitude attenuation due to the resistance component and a phase delay due to the capacitance component, but the waveform is a sine wave. Similarly, a vertically symmetrical waveform is maintained with respect to the time axis.

図5は、反応抵抗が酸化反応と還元反応とで異なり、等価回路では反応抵抗が、ダイオード成分と抵抗成分で表される。すなわち、酸化反応については、酸化側ダイオード成分doxと酸化側反応抵抗Roxが直列に接続されるものとして、その反応抵抗が表される。また、還元反応については、doxとは極性が逆の還元側ダイオード成分dredと、Roxとは異なる値の還元側反応抵抗Rredが直列に接続されるものとして、その反応抵抗が表される。そして、この酸化側の反応抵抗と還元側の反応抵抗とが並列に接続されて、全体の反応抵抗が表される。   In FIG. 5, the reaction resistance is different between the oxidation reaction and the reduction reaction, and in the equivalent circuit, the reaction resistance is represented by a diode component and a resistance component. That is, regarding the oxidation reaction, the reaction resistance is expressed on the assumption that the oxidation-side diode component dox and the oxidation-side reaction resistance Rox are connected in series. As for the reduction reaction, the reaction resistance is expressed on the assumption that the reduction side diode component dred having a polarity opposite to that of dox and the reduction side reaction resistance Rred having a value different from that of Rox are connected in series. The oxidation-side reaction resistance and the reduction-side reaction resistance are connected in parallel to represent the overall reaction resistance.

この状態は、電池10の酸化反応と還元反応がバランスしていない状態で、電池10が異常状態、あるいは異常の前の状態にあることを示している。このモデルを図3の対称モデルに対して、非対称モデルと呼ぶことができる。   This state indicates that the battery 10 is in an abnormal state or a state before the abnormality in a state where the oxidation reaction and the reduction reaction of the battery 10 are not balanced. This model can be called an asymmetric model with respect to the symmetric model of FIG.

図6は、電池10への検出用交流波形の信号80を正弦波信号とし、電池10の酸化反応と還元反応との間でバランスが取れていない異常状態で、図5の非対称モデルであるときの電池10の応答波形の信号84の様子を示す図である。電池10の端子電圧に正弦波が重畳されると、例えば、正弦波のプラス側で酸化反応が起こるとすれば、マイナス側で還元反応が生じる。したがって、正弦波のプラス側では、酸化反応が対応して応答し、マイナス側では、還元反応が対応して応答して、応答波形の信号84となる。   FIG. 6 shows a case where the detection AC waveform signal 80 to the battery 10 is a sine wave signal and the battery 10 has an asymmetric model in FIG. It is a figure which shows the mode of the signal 84 of the response waveform of the battery 10. When a sine wave is superimposed on the terminal voltage of the battery 10, for example, if an oxidation reaction occurs on the plus side of the sine wave, a reduction reaction occurs on the minus side. Therefore, on the plus side of the sine wave, the oxidation reaction responds correspondingly, and on the minus side, the reduction reaction responds correspondingly to become a response waveform signal 84.

そこで還元側反応抵抗Rredが酸化側反応抵抗Roxよりも大きいと、応答波形の信号84のマイナス側がプラス側よりも減衰して、マイナス側のピーク値がプラス側のピーク値よりも小さくなる。図6はそのような状態を示しており、応答波形の信号84は、時間軸に対し、非対称の波形となっている。   Therefore, when the reduction reaction resistance Rred is larger than the oxidation reaction resistance Rox, the minus side of the response waveform signal 84 is attenuated more than the plus side, and the minus peak value becomes smaller than the plus peak value. FIG. 6 shows such a state, and the response waveform signal 84 has an asymmetric waveform with respect to the time axis.

上記のように、一般的に、電池10は、酸化反応の反応抵抗と還元反応の反応抵抗とはほぼ等しくなるように設計されているはずであるので、酸化側反応抵抗Roxと還元側反応抵抗Rredとが明らかに異なる状態は、電池10が異常状態にあるか、異常の前の状態にあることになる。このことが、図6で示されるように、正弦波に対する応答波形の信号84の非対称性で検出できることになる。   As described above, in general, the battery 10 should be designed such that the reaction resistance of the oxidation reaction and the reaction resistance of the reduction reaction are substantially equal. Therefore, the oxidation reaction resistance Rox and the reduction reaction resistance The state clearly different from Rred is that the battery 10 is in an abnormal state or a state before the abnormality. This can be detected by the asymmetry of the signal 84 of the response waveform with respect to the sine wave, as shown in FIG.

応答波形の信号は、積分処理を行うことで、電池10が致命的な異常状態か、それに至らない異常状態か、異常の前の状態か、正常状態かを明確に判断できる。そこで、取得された応答電流波形をその波形の複数周期分に渡って積分する処理が行われる。この工程は、制御部70の積分処理モジュール76によって実行される。   By performing an integration process on the response waveform signal, it is possible to clearly determine whether the battery 10 is in a fatal abnormal state, an abnormal state in which the battery 10 does not reach it, a state before the abnormality, or a normal state. Therefore, processing for integrating the acquired response current waveform over a plurality of periods of the waveform is performed. This step is executed by the integration processing module 76 of the control unit 70.

図7は、応答波形の信号82,84を積分処理することで、その相違が明確になることを説明する図である。ここでは、正弦波の信号80の積分処理後の波形である基準積分値波形90と、対称モデルのときの応答波形の信号82の積分処理後の波形である対称時積分値波形92と、非対称モデルのときの応答波形の信号84の積分処理後の波形である非対称時積分値波形94がそれぞれ示されている。   FIG. 7 is a diagram for explaining that the difference is clarified by integrating the response waveform signals 82 and 84. Here, a reference integrated value waveform 90 that is a waveform after integration processing of a sine wave signal 80, a symmetric time integration value waveform 92 that is a waveform after integration processing of a response waveform signal 82 in the case of a symmetric model, and asymmetrical. An asymmetric integration value waveform 94, which is a waveform after the integration processing of the response waveform signal 84 in the model, is shown.

図7に示されるように、基準積分値波形90、対称時積分値波形92は、その周期ごとに一旦積分値=0を通る。これに対し、非対称時積分値波形94は、正方向に発散し、積分値=0から離れてゆく。図7の例は、還元側反応抵抗Rredが酸化側反応抵抗Roxよりも大きいとしているので、これが逆に酸化側反応抵抗Roxが還元側反応抵抗Rredよりも大きいと負側に発散することになる。   As shown in FIG. 7, the reference integral value waveform 90 and the symmetrical integral value waveform 92 once pass through the integral value = 0 every cycle. On the other hand, the asymmetric integral value waveform 94 diverges in the positive direction and moves away from the integral value = 0. In the example of FIG. 7, the reduction side reaction resistance Rred is larger than the oxidation side reaction resistance Rox. On the contrary, if the oxidation side reaction resistance Rox is larger than the reduction side reaction resistance Rred, the negative side reaction resistance Rred diverges to the negative side. .

したがって、この発散程度を基準にして、電池10の正常状態か異常状態か、その程度も含めて判断することが可能になる。例えば、積分範囲の周期を設定し、その設定周期に渡る発散程度について致命異常閾値と、異常前閾値とを定める、そして、積分値波形がゼロを通るように収束するときは正常状態とし、積分値波形がゼロを通るようには収束しないが発散程度としては異常前閾値以下のときは、正常ではないが異常に至る前の注意状態であるとし、発散程度が異常前閾値を超え、致命異常閾値以下のときは異常状態あるいは劣化状態であるとし、発散程度が致命異常閾値を超えるときは、電池10が致命的な異常状態あるいは致命的な劣化状態であるとすることができる。この判断工程は、制御部70の電池特性判断モジュール78の機能によって実行される。   Therefore, based on the degree of divergence, it is possible to determine whether the battery 10 is in a normal state or an abnormal state including the degree. For example, set the cycle of the integration range, determine the fatal abnormality threshold and the pre-abnormal threshold for the degree of divergence over the set cycle, and set the normal state when the integral waveform converges so that it passes through zero. If the value waveform does not converge so that it passes through zero but the divergence degree is below the pre-abnormal threshold, it is not normal but it is a state of caution before the abnormality occurs, the divergence exceeds the pre-abnormal threshold, and the fatal abnormality When the threshold is less than or equal to the threshold value, it can be assumed that the battery is in an abnormal state or a deteriorated state. This determination step is executed by the function of the battery characteristic determination module 78 of the control unit 70.

積分周期は、上記のように、正弦波信号または、応答波形信号の周期の整数倍の周期分行うことがよい。積分周期を長くするほど、判断時間が長くなるが、判断精度は向上する。   As described above, the integration cycle is preferably performed for a cycle that is an integral multiple of the cycle of the sine wave signal or response waveform signal. The longer the integration period, the longer the determination time, but the determination accuracy improves.

上記では、交流信号源54の周波数を200Hzとしたが、数百Hzから数十Hzの間の任意の周波数であればよい。また、より正確な測定を行うには、異なる周波数で複数の周波数で、応答波形の信号を取得し、この複数の周波数についての応答波形の信号についてそれぞれ積分処理して、総合的に電池10の正常か異常かの判断を行うことが望ましい。また、温度条件や、想定する異常現象あるいは劣化現象に応じて、交流信号源54の周波数を変更することが好ましい。   In the above, the frequency of the AC signal source 54 is 200 Hz, but any frequency between several hundred Hz and several tens Hz may be used. In order to perform more accurate measurement, signals of response waveforms are acquired at a plurality of frequencies at different frequencies, and integration processing is performed on the signals of the response waveforms at the plurality of frequencies, so that the battery 10 It is desirable to judge whether it is normal or abnormal. Further, it is preferable to change the frequency of the AC signal source 54 in accordance with the temperature condition and an assumed abnormal phenomenon or deterioration phenomenon.

次に参照電極12を用いて電池10の特性判断を行うことについて説明する。上記の正極電極14と負極電極16との間の応答信号に基いて電池10の特性判断を行うときには、交流信号源54は交流電圧信号を電池10の端子電圧に重畳させ、これに対する応答信号としては交流電流信号を取得した。これに対し、参照電極12を用いるときには、交流信号源54は交流電流信号を電池10の一方側電極に印加し、応答信号としては、電池10の端子電圧に現れる交流電圧信号を取得する。   Next, the determination of the characteristics of the battery 10 using the reference electrode 12 will be described. When determining the characteristics of the battery 10 based on the response signal between the positive electrode 14 and the negative electrode 16 described above, the AC signal source 54 superimposes the AC voltage signal on the terminal voltage of the battery 10 and provides a response signal thereto. Acquired an alternating current signal. On the other hand, when the reference electrode 12 is used, the AC signal source 54 applies an AC current signal to one electrode of the battery 10 and acquires an AC voltage signal that appears in the terminal voltage of the battery 10 as a response signal.

そのために電圧検出部57とスイッチ58,59が設けられる。電圧検出部57は電圧波形の信号を検出用交流電流波形の信号に対する応答として検出する機能を有するセンサ回路である。電圧検出部57の測定端子の一方側は参照電極12に接続され、測定端子の他方側は、スイッチ58,59のそれぞれの一方端と接続される。スイッチ58の他方端は正極電極14に接続され、スイッチ59の他方端は負極電極16に接続される。スイッチ58,59の作動の制御は制御部70によって行われ、電圧検出部57の検出値は、適当な信号線で制御部70に伝送される。   For this purpose, a voltage detector 57 and switches 58 and 59 are provided. The voltage detector 57 is a sensor circuit having a function of detecting a voltage waveform signal as a response to the detection alternating current waveform signal. One side of the measurement terminal of the voltage detection unit 57 is connected to the reference electrode 12, and the other side of the measurement terminal is connected to one end of each of the switches 58 and 59. The other end of the switch 58 is connected to the positive electrode 14, and the other end of the switch 59 is connected to the negative electrode 16. Control of the operation of the switches 58 and 59 is performed by the control unit 70, and the detection value of the voltage detection unit 57 is transmitted to the control unit 70 through an appropriate signal line.

そして、図1、図2に示されるように、スイッチ58,59によって、電圧検出部57の検出する電圧の対象が切り替えられる。すなわち、スイッチ58をオンとし、スイッチ59をオフとするときは、電圧検出部57は参照電極12と正極電極14との間の応答電圧信号を検出する。これに対し、スイッチ58をオフとし、スイッチ59をオンとするときは、電圧検出部57は参照電極12と負極電極16との間の応答電圧信号を検出する。   Then, as shown in FIGS. 1 and 2, the target of the voltage detected by the voltage detector 57 is switched by the switches 58 and 59. That is, when the switch 58 is turned on and the switch 59 is turned off, the voltage detector 57 detects a response voltage signal between the reference electrode 12 and the positive electrode 14. On the other hand, when the switch 58 is turned off and the switch 59 is turned on, the voltage detector 57 detects a response voltage signal between the reference electrode 12 and the negative electrode 16.

いずれの場合でも、検出用交流信号は交流電流信号であり、例えば正弦波のような電流ゼロに対し上下対称の信号波形が用いられる。このような上下対称の電流波形が印加されると、電池10の端子電圧は、電池起電力を中心にして応答することになるので、酸化反応と還元反応とのバランスが取れているときは電池起電力を中心に上下対称の応答電圧波形を示す。これに対し、酸化反応と還元反応とのバランスが崩れていると、電池起電力を中心に非対称な応答電圧波形となり、これを複数周期分積分すると発散する傾向を示すことは、図7に関連して説明したことと同様である。   In any case, the AC signal for detection is an AC current signal, and for example, a signal waveform that is vertically symmetrical with respect to zero current such as a sine wave is used. When such a vertically symmetrical current waveform is applied, the terminal voltage of the battery 10 responds with the battery electromotive force as the center. Therefore, when the oxidation reaction and the reduction reaction are balanced, the battery The response voltage waveform that is vertically symmetrical around the electromotive force is shown. On the other hand, when the balance between the oxidation reaction and the reduction reaction is lost, an asymmetric response voltage waveform centering on the battery electromotive force is generated, and when this is integrated for a plurality of cycles, it tends to diverge. This is the same as described above.

したがって、スイッチ58をオンとし、スイッチ59をオフとして、電圧検出部57によって参照電極12と正極電極14との間の応答電圧信号を検出し、これを積分処理モジュール76の機能で積分し、電池特性判断モジュール78の機能を用いることができる。そして、積分の結果が発散する傾向であるときは、正極電極14の側で、酸化反応と還元反応のバランスが崩れていて異常であると判断できる。   Accordingly, the switch 58 is turned on, the switch 59 is turned off, and the response voltage signal between the reference electrode 12 and the positive electrode 14 is detected by the voltage detection unit 57, which is integrated by the function of the integration processing module 76, and the battery The function of the characteristic determination module 78 can be used. When the result of integration tends to diverge, it can be determined that the balance between the oxidation reaction and the reduction reaction is broken on the positive electrode 14 side and is abnormal.

同様に、スイッチ58をオフとし、スイッチ59をオンとして、電圧検出部57によって参照電極12と負極電極16との間の応答電圧信号を検出し、これを積分してその結果が発散する傾向であるときは、負極電極16の側で、酸化反応と還元反応のバランスが崩れていて異常であると判断できる。   Similarly, the switch 58 is turned off, the switch 59 is turned on, the response voltage signal between the reference electrode 12 and the negative electrode 16 is detected by the voltage detection unit 57, integrated, and the result tends to diverge. In some cases, it can be determined that the negative electrode 16 side is abnormal because the balance between the oxidation reaction and the reduction reaction is lost.

このように参照電極12を用いることで、電池10の異常について、正極電極14の部分の異常か、負極電極16の部分の異常かを、その程度も含めて、分離して独立に判断することができる。   By using the reference electrode 12 in this way, regarding the abnormality of the battery 10, whether the abnormality of the portion of the positive electrode 14 or the abnormality of the negative electrode 16 is determined separately including the degree thereof. Can do.

本発明に係る電池特性判断方法及び電池特性判断方法は、車両搭載の電池のように、大電力の短時間入出力が行われる電池の他に、緩やかに充放電が行われる電池についても利用できる。電池としては、酸化反応と還元反応とを有する電池一般について利用可能である。   The battery characteristic determination method and the battery characteristic determination method according to the present invention can be used not only for a battery that performs input / output of a large amount of power for a short time, such as a battery mounted on a vehicle, but also for a battery that is gradually charged and discharged. . As a battery, it can utilize about the battery in general which has an oxidation reaction and a reduction reaction.

6 回転電機、8 インバータ、10 電池、12 参照電極、14 正極電極、16 負極電極、18,20 電気二重層、22 正極側電気二重層容量、24 負極側電気二重層容量、26 電解液・電子移動抵抗、28 正極側反応抵抗、30 負極側反応抵抗、32 電気二重層容量、34 電解液・電子移動抵抗、36 反応抵抗、50 電池特性判断装置、52,58,59 スイッチ、54 交流信号源、56 電流検出部、57 電圧検出部、70 制御部、72 検出用波形印加モジュール、74 応答波形取得モジュール、76 積分処理モジュール、78 電池特性判断モジュール、80,82,84 信号、90 基準積分値波形、92 対称時積分値波形、94 非対称時積分値波形。   6 rotating electrical machines, 8 inverters, 10 batteries, 12 reference electrodes, 14 positive electrodes, 16 negative electrodes, 18, 20 electric double layers, 22 positive electric double layer capacities, 24 negative electric double layer capacities, 26 electrolytes / electrons Movement resistance, 28 Positive reaction resistance, 30 Negative reaction resistance, 32 Electric double layer capacity, 34 Electrolytic solution / electron movement resistance, 36 Reaction resistance, 50 Battery characteristic determination device, 52, 58, 59 Switch, 54 AC signal source 56, current detection unit, 57 voltage detection unit, 70 control unit, 72 detection waveform application module, 74 response waveform acquisition module, 76 integration processing module, 78 battery characteristic determination module, 80, 82, 84 signal, 90 reference integral value Waveform, 92 Symmetric time integral value waveform, 94 Asymmetric time integral value waveform.

Claims (4)

予め設定された検出用交流波形を電池に印加する工程と、
検出用交流波形を電池に印加したときの電池の応答信号波形を検出して取得する工程と、
取得された応答信号波形をその波形の複数周期分に渡って積分する積分処理工程と、
積分工程によって積分された値がゼロでなく、かつ時間経過と共に絶対値が増加するか否かに基づいて、電池特性が異常か正常かを判断する電池特性判断工程と、
を備えることを特徴とする電池特性判断方法。
Applying a preset AC waveform for detection to the battery;
Detecting and acquiring a response signal waveform of the battery when the AC waveform for detection is applied to the battery; and
An integration process step of integrating the acquired response signal waveform over a plurality of periods of the waveform;
A battery characteristic determination step for determining whether the battery characteristic is abnormal or normal based on whether the value integrated by the integration step is not zero and the absolute value increases with time;
A battery characteristic determination method comprising:
予め設定された検出用交流波形を電池に印加する検出用波形印加手段と、
検出用交流波形を電池に印加したときの電池の応答信号波形を検出して取得する応答波形取得手段と、
取得された応答信号波形をその波形の複数周期分に渡って積分する積分処理手段と、
積分手段によって積分された値がゼロでなく、かつ時間経過と共に絶対値が増加するか否かに基づいて、電池特性が異常か正常かを判断する電池特性判断手段と、
を備えることを特徴とする電池特性判断装置。
A detection waveform applying means for applying a preset detection AC waveform to the battery;
A response waveform acquisition means for detecting and acquiring a response signal waveform of the battery when the AC waveform for detection is applied to the battery;
Integration processing means for integrating the acquired response signal waveform over a plurality of periods of the waveform;
Battery characteristic determining means for determining whether the battery characteristic is abnormal or normal based on whether the value integrated by the integrating means is not zero and the absolute value increases with time;
A battery characteristic judging device comprising:
請求項2に記載の電池特性判断装置において、
電池の正極電極と負極電極とを用い、
検出用波形印加手段は、正極電極または負極電極のいずれかに検出用の交流電圧波形を印加し、
応答波形取得手段は、検出用交流波形を印加した電極と反対側の電極について応答電流波形を検出して取得することを特徴とする電池特性判断装置。
In the battery characteristic judging device according to claim 2,
Using the positive electrode and negative electrode of the battery,
The detection waveform applying means applies an AC voltage waveform for detection to either the positive electrode or the negative electrode,
The response waveform acquisition means detects and acquires a response current waveform for an electrode opposite to the electrode to which the AC waveform for detection is applied.
請求項2に記載の電池特性判断装置において、
電池の電気的に中性である参照電極を用い、
検出用波形印加手段は、参照電極と正極電極または負極電極のいずれかとの間に検出用の交流電流波形を印加し、
応答波形取得手段は、参照用電極について応答電圧波形を検出して取得することを特徴とする電池特性判断装置。
In the battery characteristic judging device according to claim 2,
Using a reference electrode that is electrically neutral in the battery,
The detection waveform applying means applies a detection alternating current waveform between the reference electrode and either the positive electrode or the negative electrode,
The response waveform acquisition means detects and acquires a response voltage waveform for the reference electrode.
JP2009064172A 2009-03-17 2009-03-17 Method and device for decision of battery characteristics Pending JP2010216995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009064172A JP2010216995A (en) 2009-03-17 2009-03-17 Method and device for decision of battery characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009064172A JP2010216995A (en) 2009-03-17 2009-03-17 Method and device for decision of battery characteristics

Publications (1)

Publication Number Publication Date
JP2010216995A true JP2010216995A (en) 2010-09-30

Family

ID=42976001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009064172A Pending JP2010216995A (en) 2009-03-17 2009-03-17 Method and device for decision of battery characteristics

Country Status (1)

Country Link
JP (1) JP2010216995A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019537004A (en) * 2016-11-04 2019-12-19 アー・ファウ・エル・リスト・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for diagnosing technical systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019537004A (en) * 2016-11-04 2019-12-19 アー・ファウ・エル・リスト・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for diagnosing technical systems

Similar Documents

Publication Publication Date Title
KR101511655B1 (en) Charger with Embedded Battery Diagnosis And Control Method thereof
CN106104285B (en) Abnormal method in battery cell and short-circuit sensing device for identification
US9255957B2 (en) Earth fault detection circuit and power source device
JP2019056626A (en) Ground fault detector
KR20170125707A (en) Method and apparatus for evaluating a weld junction between a terminal and an electrode element of a battery cell
JP2013207961A (en) Relay welding diagnostic device
JP2020091127A (en) Insulation resistance detector
JP7226147B2 (en) battery monitor
US11502340B2 (en) Battery analysis via electrochemical impedance spectroscopy apparatus (EISA) measurements
US20220357408A1 (en) Leakage detection device and power system for vehicle
EP3992012B1 (en) Earth leakage detecting device, and vehicular power supply system
JP2010231948A (en) Method for inspecting internal short circuit of battery
EP3260871B1 (en) Battery system monitoring apparatus
JP5888193B2 (en) Impedance detection system, monitoring system, and lithium secondary battery with monitoring function including the monitoring system
CA3007597A1 (en) Connectivity check between cells and wiring control electronics with only one switch
JP4894776B2 (en) Battery monitoring device
CN113659245A (en) Electrochemical device heating method, electrochemical device and electric equipment
US20160336792A1 (en) Power conversion system, power converter, and method for diagnosing state of power storage device
KR20130112495A (en) Apparatus for measuring isolation resistance having malfunction self-diagnosing and method thereof
JP6136820B2 (en) Battery monitoring device, power storage device, and battery monitoring method
JP2010216995A (en) Method and device for decision of battery characteristics
JP2018127085A (en) Ground fault detector and power source system
JP2009115634A (en) Power supply system and current measurement method of power supply system
JP2017078587A (en) Voltage detection circuit and voltage detection method
JP6836411B2 (en) Ground fault detector, power supply system