JP2010212614A - Compound thin film solar cell and method of producing the same - Google Patents

Compound thin film solar cell and method of producing the same Download PDF

Info

Publication number
JP2010212614A
JP2010212614A JP2009059809A JP2009059809A JP2010212614A JP 2010212614 A JP2010212614 A JP 2010212614A JP 2009059809 A JP2009059809 A JP 2009059809A JP 2009059809 A JP2009059809 A JP 2009059809A JP 2010212614 A JP2010212614 A JP 2010212614A
Authority
JP
Japan
Prior art keywords
solar cell
electrode layer
metal back
back electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009059809A
Other languages
Japanese (ja)
Other versions
JP4782855B2 (en
Inventor
Katsumi Kushiya
勝巳 櫛屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP2009059809A priority Critical patent/JP4782855B2/en
Priority to PCT/JP2010/053438 priority patent/WO2010103975A1/en
Publication of JP2010212614A publication Critical patent/JP2010212614A/en
Application granted granted Critical
Publication of JP4782855B2 publication Critical patent/JP4782855B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell formed by lamination of a back surface electrode layer effective for improving FF characteristics of the solar cell and avoiding decrease in yield, and a method of producing the solar cell. <P>SOLUTION: A compound thin film solar cell is formed by laminating a metal back surface electrode layer of molybdenum on a glass substrate. The metal back surface electrode layer is formed on the glass substrate by a sputtering method to have a surface reflection coefficient in a range of 10% or more and 35% or less. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガラス基板上に金属裏面電極層を積層してなる化合物系薄膜太陽電池、及びその製造方法に関する。   The present invention relates to a compound-based thin film solar cell obtained by laminating a metal back electrode layer on a glass substrate, and a method for producing the same.

近年、環境に対する関心や政策等から、各種の太陽電池の研究や製造が盛んである。
各種の太陽電池の中でも、特に化合物系太陽電池は、変換効率の潜在能力の高さや経年変化に対する高い信頼性等から、量産実用化に目覚しいものがある。
In recent years, research and production of various types of solar cells have been actively conducted due to environmental concerns and policies.
Among various types of solar cells, particularly compound solar cells are remarkable for mass production due to their high conversion efficiency potential and high reliability against aging.

この点、特許文献1では、直列接続された2以上のユニットセルを絶縁性基板上に備える集積型薄膜太陽電池であって、前記絶縁性基板上に順次積層された、第1の電極膜、pn接合を含む半導体膜、および第2の電極膜を含み、前記第1の電極膜、前記半導体膜、および前記第2の電極膜は、それぞれ、互いに略平行な第1、第2および第3の分割溝で分割された2以上のユニットセルを構成しており、隣接する2つの前記ユニットセルは、一方のユニットセルの第2の電極膜が前記第2の分割溝を介して他方のユニットセルの前記第1の電極膜と接続されることによって、直列接続されており、前記半導体膜は、Ib族元素とIIIb族元素とVIb族元素とを含み前記第1の電極膜に隣接する化合物半導体膜を有し、前記第1の電極膜は、モリブデンを含み、前記第1の電極膜の平坦部の厚さが0.3μm以下である集積型薄膜太陽電池が提案されている。   In this regard, in Patent Document 1, an integrated thin-film solar cell including two or more unit cells connected in series on an insulating substrate, the first electrode film sequentially stacked on the insulating substrate, a semiconductor film including a pn junction; and a second electrode film, wherein the first electrode film, the semiconductor film, and the second electrode film are first, second, and third substantially parallel to each other, respectively. Two or more unit cells divided by the dividing groove, and the two adjacent unit cells are arranged such that the second electrode film of one unit cell is connected to the other unit via the second dividing groove. The semiconductor film is connected in series by being connected to the first electrode film of the cell, and the semiconductor film includes a group Ib element, a group IIIb element, and a group VIb element and is adjacent to the first electrode film A first electrode film having a semiconductor film; Include molybdenum, it is 0.3μm or less the thickness of the flat portion integrated thin-film solar cell of the first electrode film has been proposed.

特開2008−21713号公報JP 2008-21713 A

特許文献1記載の技術によれば、第1の電極であるMo膜をレーザによりパターニングした際に、Mo膜の分割溝のエッジ部において、盛り上がりが発生して短絡を引き起こすことを防ぐことに一定の効果を奏することができる。
一方、上記特許文献1記載の技術におけるMo膜である金属裏面電極層に関して、高い信頼性とFF特性を有する太陽電池を得るためには、短絡を引き起こすバリやデブリ等を考慮するのみでは十分でない。
即ち、金属裏面電極層上に積層される光吸収層との密着性や、太陽電池全体としての抵抗率をさらに考慮することで、太陽電池のFF特性の向上や、歩留まりの低減を図ることが出来る。
According to the technique described in Patent Document 1, when the Mo film as the first electrode is patterned by a laser, it is constant to prevent a bulge from occurring at the edge of the division groove of the Mo film and causing a short circuit. The effect of can be produced.
On the other hand, regarding the metal back electrode layer, which is a Mo film in the technique described in Patent Document 1, it is not sufficient to consider only burrs and debris that cause a short circuit in order to obtain a solar cell having high reliability and FF characteristics. .
That is, it is possible to improve the FF characteristics of the solar cell and reduce the yield by further considering the adhesion with the light absorption layer laminated on the metal back electrode layer and the resistivity of the entire solar cell. I can do it.

そこで本発明は、太陽電池のFF特性の向上、歩留まりの低減に有効な金属裏面電極層を積層してなる化合物系薄膜太陽電池、及びその製造方法を提供することを目的とする。   Then, an object of this invention is to provide the compound type thin film solar cell which laminates | stacks the metal back electrode layer effective in the improvement of the FF characteristic of a solar cell, and the reduction of a yield, and its manufacturing method.

上記目的を達成するため、本発明の一の観点に係る化合物系薄膜太陽電池は、ガラス基板上に、モリブデンからなる金属裏面電極層を積層した化合物系薄膜太陽電池であって、上記金属裏面電極層は、スパッタ法により、その表面の反射率が10%以上35%以下の範囲で上記ガラス基板上に製膜されていることを特徴とする。   In order to achieve the above object, a compound thin film solar cell according to one aspect of the present invention is a compound thin film solar cell in which a metal back electrode layer made of molybdenum is laminated on a glass substrate, and the metal back electrode The layer is formed on the glass substrate by sputtering so that the reflectance of the surface thereof is in the range of 10% to 35%.

また、上記ガラス基板上に製膜されるモリブデンの膜厚が800nm以下であるものとしてもよい。   Moreover, the film thickness of molybdenum formed on the glass substrate may be 800 nm or less.

また、本発明の別の観点に係る化合物系太陽電池を構成する金属裏面電極層の製造方法は、所定の真空チャンバ内に、上記ガラス基板を試料として配置すると共に、上記モリブデンをスパッタターゲットとして配置した上、当該真空チャンバ内を真空排気する工程と、上記真空排気されたチャンバ内にガス流量60〜70sccmで不活性ガスを注入して製膜圧力20mTorr以下に保持した上、上記真空チャンバ内に配置された一対のスパッタ電極を駆動させて、上記ガラス基板と上記モリブデンの間に電圧をかけ、上記ガラス基板上に上記モリブデンを製膜する工程とを有することを特徴とする。   In addition, in the method for manufacturing a metal back electrode layer constituting a compound solar cell according to another aspect of the present invention, the glass substrate is disposed as a sample in a predetermined vacuum chamber, and the molybdenum is disposed as a sputter target. In addition, the vacuum chamber is evacuated, and an inert gas is injected into the evacuated chamber at a gas flow rate of 60 to 70 sccm to maintain a film forming pressure of 20 mTorr or less. A step of driving a pair of sputter electrodes arranged to apply a voltage between the glass substrate and the molybdenum to form the molybdenum on the glass substrate.

本発明によれば、光吸収層との密着性、レーザによるパターニングの容易さ、太陽電池として低抵抗率を兼ね備えた太陽電池を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the solar cell which has low resistivity as an adhesiveness with a light absorption layer, the ease of patterning by a laser, and a solar cell can be obtained.

本発明の実施形態に係る化合物系薄膜太陽電池の積層構造を示す図である。It is a figure which shows the laminated structure of the compound type thin film solar cell which concerns on embodiment of this invention. 本実施形態に係る化合物系薄膜太陽電池に関し、金属裏面電極層に関する実験において使用したパターニング装置を示す図である。It is a figure which shows the patterning apparatus used in the experiment regarding a metal back surface electrode layer regarding the compound type thin film solar cell which concerns on this embodiment. 本実施形態に係る化合物系薄膜太陽電池に関する実験において、金属裏面電極層の反射率と製膜圧力の相関関係を示すグラフである。It is a graph which shows the correlation of the reflectance of a metal back surface electrode layer, and film forming pressure in the experiment regarding the compound type thin film solar cell concerning this embodiment. 本実施形態に係る化合物系薄膜太陽電池に関する実験において、反射率と抵抗率の相関関係を示すグラフである。It is a graph which shows the correlation of a reflectance and a resistivity in the experiment regarding the compound type thin film solar cell which concerns on this embodiment.

以下、本発明の実施形態に係る化合物系薄膜太陽電池、及びその製造方法について、図を参照して説明する。
図1に、本実施形態に係る化合物系薄膜太陽電池の積層構造を示す。
化合物系薄膜太陽電池1は、図1に示されるように、ガラス基板11上に、金属裏面電極層12、光吸収層13、高抵抗バッファ層14、窓層15を順次積層してなる。
Hereinafter, a compound-based thin film solar cell according to an embodiment of the present invention and a manufacturing method thereof will be described with reference to the drawings.
In FIG. 1, the laminated structure of the compound type thin film solar cell which concerns on this embodiment is shown.
As shown in FIG. 1, the compound thin film solar cell 1 is formed by sequentially laminating a metal back electrode layer 12, a light absorption layer 13, a high resistance buffer layer 14, and a window layer 15 on a glass substrate 11.

ガラス基板11は例えば、青板ガラスにより構成される。
なお、ガラス基板11は、青板ガラスに含まれるナトリウム(Na)やカリウム(K)等のアルカリ金属成分が、光吸収層中に拡散するのを防止するため、例えば、膜厚50nm程度のシリカ(SiO2)等からなるアルカリバリア層をコーティングした青板ガラスにより構成してもよい。
The glass substrate 11 is made of, for example, blue plate glass.
The glass substrate 11 is made of, for example, silica having a thickness of about 50 nm in order to prevent alkali metal components such as sodium (Na) and potassium (K) contained in the soda glass from diffusing into the light absorption layer. SiO 2) an alkali-barrier layer may be composed of a coated soda lime glass made of, or the like.

金属裏面電極層12は、モリブデン(Mo)からなる薄膜であって、ガラス基板11上にDCスパッタ法で製膜される。
ここで、金属裏面電極層12としてモリブデン(Mo)膜が使用されるのは、光吸収層13の形成過程で使用されるセレン(Se)に対して耐食性が高いこと、汎用技術であるスパッタ法で大面積まで容易に製膜可能であること、セレン(Se)との反応によってモリブデン(Mo)膜上に生成するモリブデンセレナイド(MoSe2)層が、金属針を使用したメカニカルスクライバーによる光吸収層13と高抵抗バッファ層14のパターニング時に個体潤滑剤として作用し、金属裏面電極層12を貫通してガラス基板11まで傷つけることがないこと等の理由による。
また、本実施形態に係る金属裏面電極層12は、3基のモリブデン(Mo)ターゲットを使用して、DCスパッタ法で、三層構造に製膜する。このように三層構造としているのは、インライン型のスパッタ装置の場合、モリブデン(Mo)製膜部分への入熱と発生する圧縮応力により、長尺のガラス基板では割れが発生しやすいためである。
なお、本実施形態に係る金属裏面電極層12の詳細については後述する。
The metal back electrode layer 12 is a thin film made of molybdenum (Mo), and is formed on the glass substrate 11 by a DC sputtering method.
Here, the molybdenum (Mo) film is used as the metal back electrode layer 12 because it has high corrosion resistance with respect to selenium (Se) used in the process of forming the light absorption layer 13, and is a sputtering technique that is a general-purpose technique. Can be easily formed into a large area, and the molybdenum selenide (MoSe 2 ) layer formed on the molybdenum (Mo) film by reaction with selenium (Se) absorbs light by a mechanical scriber using a metal needle. This is because it acts as a solid lubricant when patterning the layer 13 and the high-resistance buffer layer 14 and does not penetrate the metal back electrode layer 12 and damage the glass substrate 11.
The metal back electrode layer 12 according to the present embodiment is formed into a three-layer structure by DC sputtering using three molybdenum (Mo) targets. The reason why the three-layer structure is used in this way is that in the case of an in-line type sputtering apparatus, cracks are likely to occur in a long glass substrate due to heat input to the molybdenum (Mo) film and the compressive stress generated. is there.
Details of the metal back electrode layer 12 according to this embodiment will be described later.

光吸収層13は例えば、p型の導電性を有するI−III−VI族カルコパイライト構造の厚さ1〜3μmの薄膜であり、CuInSe、Cu(InGa)Se、Cu(InGa)(SSe)等の多元化合物半導体薄膜により構成される。また、p型CIS系光吸収層としては、その他、セレン化合物系CIS系光吸収層、硫化物系CIS系光吸収層及びセレン化・硫化物系CIS系光吸収層があり、前記セレン化合物系CIS系光吸収層は、CuInSe、Cu(InGa)Se又はCuGaSeからなり、前記硫化物系CIS系光吸収層は、CuInS、Cu(InGa)S、CuGaSからなり、前記セレン化・硫化物系CIS系光吸収層は、CuIn(SSe)、Cu(InGa)(SSe)、CuGa(SSe)からなり、また、表面層を有するものとしては、CuIn(SSe)を表面層として持つCuInSe、CuIn(SSe)を表面層として持つCu(InGa)Se、CuIn(SSe)を表面層として持つCu(InGa)(SSe)、CuIn(SSe)を表面層として持つCuGaSe、Cu(InGa)(SSe)を表面層として持つCu(InGa)Se、Cu(InGa)(SSe)を表面層として持つCuGaSe、CuGa(SSe)を表面層として持つCu(InGa)Se又はCuGa(SSe)を表面層として持つCuGaSeがある。
この光吸収層13は、セレン化/硫化法や多元同時蒸着法により、金属裏面電極層12上に製膜される。
The light absorption layer 13 is, for example, a thin film having a thickness of 1 to 3 μm and having a p-type conductivity I-III-VI 2 group chalcopyrite structure, CuInSe 2 , Cu (InGa) Se 2 , Cu (InGa) ( SSe) composed of a multi-component compound semiconductor thin film such as 2 . Other examples of the p-type CIS light absorption layer include a selenium compound-based CIS light absorption layer, a sulfide-based CIS light absorption layer, and a selenide / sulfide-based CIS light absorption layer. The CIS light absorption layer is made of CuInSe 2 , Cu (InGa) Se 2 or CuGaSe 2 , and the sulfide-based CIS light absorption layer is made of CuInS 2 , Cu (InGa) S 2 , CuGaS 2 , and the selenium. reduction and sulfide-based CIS light absorption layer, CuIn (SSe) 2, Cu (InGa) (SSe) 2, consists CuGa (SSe) 2, also, as having a surface layer, CuIn (SSe) 2 with a Cu (InGa) Se 2, CuIn (SSe) 2 having a CuInSe 2, CuIn (SSe) 2 as a surface layer having a surface layer as a surface layer u (InGa) (SSe) 2 , with a CuIn (SSe) 2 as a surface layer CuGaSe 2, Cu (InGa) ( SSe) Cu with 2 as a surface layer (InGa) Se 2, Cu ( InGa) (SSe) 2 There are CuGaSe 2 having Cu as a surface layer, CuGaIn 2 having Cu (InGa) Se 2 as a surface layer and CuGaSe 2 having CuGa (SSe) 2 as a surface layer.
The light absorption layer 13 is formed on the metal back electrode layer 12 by a selenization / sulfurization method or a multi-source co-evaporation method.

高抵抗バッファ層14は、光吸収層との電気的接合を形成するための層である。バッファ層は、有機金属化学的気相成長(MOCVD)法や真空蒸着法等によって、硫化亜鉛(ZnS)等の亜鉛混晶化合物等の薄膜により形成することができる。   The high resistance buffer layer 14 is a layer for forming an electrical junction with the light absorption layer. The buffer layer can be formed of a thin film of a zinc mixed crystal compound such as zinc sulfide (ZnS) by a metal organic chemical vapor deposition (MOCVD) method, a vacuum deposition method, or the like.

窓層15は、n型透明導電膜により構成される。この窓層15は、MOCVD法により、高抵抗バッファ層14上に製膜される。   The window layer 15 is composed of an n-type transparent conductive film. The window layer 15 is formed on the high resistance buffer layer 14 by MOCVD.

上記の通りガラス基板11上に積層される金属裏面電極層12、光吸収層13、高抵抗バッファ層14、窓層15には、その作製過程においてパターニングP1、P2、P3が施される。   As described above, the metal back electrode layer 12, the light absorption layer 13, the high resistance buffer layer 14, and the window layer 15 laminated on the glass substrate 11 are subjected to patterning P1, P2, and P3 in the manufacturing process.

パターニングP1は、高融点、高耐食性金属であるモリブデン(Mo)を金属裏面電極層12としてDCスパッタ法により製膜した後に行われるパターニングであり、高い直線性と再現性、かつ、高速度でのパターン形成が必要とされる。   The patterning P1 is a patterning performed after the high-melting-point, high-corrosion-resistant metal molybdenum (Mo) is formed as a metal back electrode layer 12 by the DC sputtering method, and has high linearity, reproducibility, and high speed. Pattern formation is required.

このパターニングP1におけるパターン溝の形成においては、ガラス基板11ないしはガラス基板11上にコーティングされたアルカリバリア層に、基板の割れの原因となるスクラッチ傷がつくのを防ぐ必要がある。そのため、金属針を使用するメカニカルスクライバーによらず、エキシマレーザ、特に本実施形態においてはKr-Fエキシマレーザを用いる。
Kr-Fエキシマレーザは、赤外域の光で金属を溶かして切断する第1高調波のNd-YAGレーザ(波長:1064nm)とは異なり、紫外域の光で金属を昇華させて切断してパターンを形成する。その結果、ガラス基板への損傷を防ぐことが出来る。
なお、本実施形態においては、エキシマレーザを用いて金属裏面電極層12のパターニングを行うが、本発明はこれに限るものではなく、エキシマレーザの代わりに、第2高調波以上のNd-YAGレーザ、言い換えれば、波長が532nm以下のNd-YAGレーザであってもよく、より望ましくは、第4高調波のNd-YAGレーザ(波長:266nm)であってもよい。
In the formation of the pattern groove in the patterning P1, it is necessary to prevent the glass substrate 11 or the alkali barrier layer coated on the glass substrate 11 from being scratched which causes the substrate to crack. Therefore, an excimer laser, particularly a Kr-F excimer laser is used in the present embodiment, regardless of a mechanical scriber using a metal needle.
Unlike the first harmonic Nd-YAG laser (wavelength: 1064nm), which melts and cuts metal with infrared light, the Kr-F excimer laser sublimates the metal with ultraviolet light and cuts the pattern. Form. As a result, damage to the glass substrate can be prevented.
In the present embodiment, the metal back electrode layer 12 is patterned using an excimer laser. However, the present invention is not limited to this, and an Nd-YAG laser of the second harmonic or higher is used instead of the excimer laser. In other words, it may be an Nd-YAG laser having a wavelength of 532 nm or less, and more preferably a fourth harmonic Nd-YAG laser (wavelength: 266 nm).

パターニングP2は、高抵抗バッファ層14の製膜後に行なわれるパターニングである。パターニングP2におけるパターン溝の形成においては、光吸収層13が光を吸収することと、熱影響による膜の変質を避ける必要があることから、レーザ法を避けて、金属針によるメカニカルスクライビング法が適用される。   The patterning P2 is a patterning performed after the high resistance buffer layer 14 is formed. In the formation of the pattern groove in the patterning P2, it is necessary to avoid the laser method and the mechanical scribing method using a metal needle because the light absorption layer 13 needs to absorb light and to prevent the film from being affected by heat. Is done.

パターニングP3は、窓層15製膜後に行なわれるパターニングである。パターニングP3におけるパターン溝の形成においては、窓層15として構成される透明導電膜が硬質で透明であることから、レーザ法は適用しにくい。そのため、金属針によるメカニカルスクライビング法が適用される。   Patterning P3 is patterning performed after the window layer 15 is formed. In the formation of the pattern groove in the patterning P3, the laser method is difficult to apply because the transparent conductive film configured as the window layer 15 is hard and transparent. Therefore, a mechanical scribing method using a metal needle is applied.

上記の通り作製される太陽電池モジュール1において、金属裏面電極層12には、光吸収層13との密着性、レーザによるパターニングP1の容易さ、低抵抗率が要求される。   In the solar cell module 1 manufactured as described above, the metal back electrode layer 12 is required to have adhesiveness with the light absorption layer 13, ease of patterning P1 by laser, and low resistivity.

ここで、光吸収層13との密着性とは、金属裏面電極層12から光吸収層13が剥離しないことが要求されることを指し示す。   Here, the adhesiveness with the light absorption layer 13 indicates that the light absorption layer 13 is required not to peel from the metal back electrode layer 12.

また、レーザによるパターニングP1の容易さとは、パターニングP1の形成時に、断線することのない連続した1本の直線状のパターン溝の形成が要求されることを指し示す。この点に関しては更に、パターン溝付近に、デブリやバリといった突起部が発生したり、熱影響部の形成を最小にすることが要求される。   In addition, the ease of patterning P1 by laser indicates that it is required to form a single continuous linear pattern groove without disconnection when the patterning P1 is formed. In this regard, it is further required that protrusions such as debris and burrs are generated in the vicinity of the pattern grooves and that the formation of the heat affected zone is minimized.

また、低抵抗率は、化合物系薄膜太陽電池1の発電効率の低下を招く抵抗成分が出来る限り小さいものであることが要求されることを指し示す。この点、金属裏面電極層12が低抵抗率に関わる点は特に、金属裏面電極層12と光吸収層13の剥離、及び、光吸収層13の製膜過程における気相セレン化時に、モリブデン(Mo)とセレン(Se)とが反応して形成されるモリブデンセレナイド(MoSe2)層が直列抵抗成分の増加を招く点にある。 The low resistivity indicates that a resistance component that causes a decrease in power generation efficiency of the compound thin film solar cell 1 is required to be as small as possible. In this respect, the point that the metal back electrode layer 12 is related to the low resistivity is that molybdenum (at the time of vapor phase selenization in the process of peeling the metal back electrode layer 12 and the light absorption layer 13 and forming the light absorption layer 13). Molybdenum selenide (MoSe 2 ) layer formed by the reaction of Mo) and selenium (Se) causes an increase in series resistance component.

ここで、本願発明者は、上記の通り金属裏面電極層12に要求される光吸収層13との密着性、レーザによるパターニングP1の容易さ、低抵抗率を決定する要因として、金属裏面電極層12の表面形状とその膜厚に着目し、その相関関係を検証した。   Here, the inventor of the present application described the metal back electrode layer as factors determining the adhesion to the light absorption layer 13 required for the metal back electrode layer 12, the ease of patterning P1 by laser, and the low resistivity as described above. Focusing on the surface shape of 12 and its film thickness, the correlation was verified.

まず、金属裏面電極層12の表面形状に関して行った実験について説明する。
本実施形態において、金属裏面電極層12はDCスパッタ法により作製されるところ、本願発明者は、金属裏面電極層12の表面形状がスパッタの製膜圧力によって変化することを見出している。
即ち、製膜圧力が低い場合、膜密度ないしはモリブデン(Mo)粒子の密集度が高くなるために、表面の平滑度が増す。逆に製膜圧力が高い場合、膜の表面における膜密度ないしはモリブデン(Mo)粒子の密集度が小さくなるために、隙間の多い形状となる。
そして、当該金属裏面電極層12の表面の膜密度ないしはモリブデン(Mo)粒子の密集度を定量的に評価すべく、製膜圧力のみを変えて作製した金属裏面電極層12に対し、金属裏面電極層12の表面での反射率を測定する実験を行った。
First, an experiment performed on the surface shape of the metal back electrode layer 12 will be described.
In the present embodiment, the metal back electrode layer 12 is produced by a DC sputtering method, and the inventors of the present application have found that the surface shape of the metal back electrode layer 12 changes depending on the film forming pressure of sputtering.
That is, when the film forming pressure is low, the film density or the density of molybdenum (Mo) particles becomes high, so that the surface smoothness increases. On the other hand, when the film forming pressure is high, the film density on the surface of the film or the density of molybdenum (Mo) particles becomes small, so that the shape has many gaps.
Then, in order to quantitatively evaluate the film density on the surface of the metal back electrode layer 12 or the density of molybdenum (Mo) particles, the metal back electrode layer 12 is produced by changing only the film forming pressure. An experiment for measuring the reflectance on the surface of the layer 12 was performed.

図2に、パターニングP1に使用するパターニング装置を示す。
反射率の測定においては、図2に示されるパターニング装置を用いた。
また、当該パターニング装置の照射条件は表1に示される通りであり、波長248nmのKr-Fエキシマレーザにより、当該波長248nmに略一致する波長250nmの位置における金属裏面電極層12の全反射を測定した。
FIG. 2 shows a patterning apparatus used for patterning P1.
In the measurement of the reflectance, the patterning apparatus shown in FIG. 2 was used.
The irradiation conditions of the patterning apparatus are as shown in Table 1, and the total reflection of the metal back electrode layer 12 at a position of a wavelength of 250 nm, which substantially coincides with the wavelength of 248 nm, is measured with a Kr-F excimer laser having a wavelength of 248 nm. did.

Figure 2010212614
Figure 2010212614

また、本実験において反射率を測定した金属裏面電極層12の製膜条件を表2に示す。   In addition, Table 2 shows the film forming conditions of the metal back electrode layer 12 for which the reflectance was measured in this experiment.

Figure 2010212614
Figure 2010212614

表2中のパワーに関し、本実施形態における金属裏面電極層12は三層構造で製膜を行っており、ガラス基板11上に製膜される順に、0.66kW、2.88kW、2.88kWで製膜される。なお、この三層からなる金属裏面電極層12の各層の膜厚は、ガラス基板11側から順に90nm、360nm、360nm程度であり、トータルの膜厚は800〜820nmである。   Regarding the power in Table 2, the metal back electrode layer 12 in the present embodiment is formed in a three-layer structure, and is formed in order of 0.66 kW, 2.88 kW, 2.88 kW on the glass substrate 11. Is formed into a film. The thickness of each of the three layers of the metal back electrode layer 12 is about 90 nm, 360 nm, and 360 nm in order from the glass substrate 11 side, and the total thickness is 800 to 820 nm.

上記製膜条件の下、製膜圧力のみを変化させて作製した金属裏面電極層12の反射率の測定結果を図3に示す。
図3に示されるように、製膜圧力が低いほど反射率は上昇する。このことは即ち、製膜圧力が低い場合には、膜密度ないしはモリブデン(Mo)粒子の密集度が高くなって、表面の平滑度が増していることを示している。
この点、反射率が高すぎると、照射面へのエネルギー密度が減少することとなってパターニングが困難となることが想定される。
また、表面が平滑となるために、光吸収層13と金属裏面電極層12との密着性が低下し、光吸収層13が金属裏面電極層12から剥離するおそれがある。
さらに、金属裏面電極層12と光吸収層13の密着性が悪い場合には、剥離を生じて両層の接合面に隙間ができ、直列抵抗成分が増加する。
FIG. 3 shows the measurement results of the reflectance of the metal back electrode layer 12 produced by changing only the film forming pressure under the above film forming conditions.
As shown in FIG. 3, the reflectance increases as the film forming pressure decreases. This indicates that when the film forming pressure is low, the film density or the density of molybdenum (Mo) particles is increased, and the smoothness of the surface is increased.
In this regard, if the reflectance is too high, it is assumed that the energy density on the irradiated surface is reduced and patterning becomes difficult.
Further, since the surface is smooth, the adhesion between the light absorption layer 13 and the metal back electrode layer 12 is lowered, and the light absorption layer 13 may be peeled off from the metal back electrode layer 12.
Further, when the adhesion between the metal back electrode layer 12 and the light absorption layer 13 is poor, peeling occurs, a gap is formed between the joint surfaces of both layers, and the series resistance component increases.

逆に製膜圧力が高いほど反射率は低下する。このことは即ち、製膜圧力が高い場合には、膜密度ないしはモリブデン(Mo)粒子の密集度が小さくなって、表面は隙間の多い形状となっていることを示している。
この点、隙間の多い形状は、光吸収層13との密着性に有効である。しかしながら、あまり隙間が多い場合、言い換えれば反射率が低すぎる場合には、光吸収層13の製膜工程の気相セレン化時にセレン(Se)との反応性が高くなり、モリブデンセレナイド(MoSe2)層が過剰に形成される。そして、このモリブデンセレナイド(MoSe2)層形成による体積膨張により、光吸収層13と金属裏面電極層12との密着性が低下し、光吸収層13が金属裏面電極層12から剥離するおそれがある。
また、モリブデンセレナイド(MoSe2)層は、直列抵抗成分の増加を招いて、太陽電池特性を低下させる。このことは、金属裏面電極層12の抵抗率と反射率の相関関係を表す図4から明らかなように、反射率10%未満では抵抗率が非常に高く、太陽電池特性が悪い。
Conversely, the reflectivity decreases as the film forming pressure increases. This means that when the film forming pressure is high, the film density or the density of molybdenum (Mo) particles is reduced, and the surface has a shape with many gaps.
In this respect, the shape having many gaps is effective for adhesion to the light absorption layer 13. However, when there are too many gaps, in other words, when the reflectance is too low, the reactivity with selenium (Se) increases during vapor phase selenization in the film forming process of the light absorption layer 13, and molybdenum selenide (MoSe 2 ) The layer is formed excessively. Then, due to the volume expansion due to the formation of the molybdenum selenide (MoSe 2 ) layer, the adhesion between the light absorption layer 13 and the metal back electrode layer 12 is lowered, and the light absorption layer 13 may be peeled off from the metal back electrode layer 12. is there.
Further, the molybdenum selenide (MoSe2) layer causes an increase in the series resistance component and deteriorates the solar cell characteristics. As is apparent from FIG. 4 showing the correlation between the resistivity of the metal back electrode layer 12 and the reflectance, when the reflectance is less than 10%, the resistivity is very high and the solar cell characteristics are poor.

以上の実験結果に基づき、反射率10%以上35%以下の範囲の金属裏面電極層12を製膜させることで、抵抗率が低く、金属裏面電極層12と光吸収層13との密着性が高く、パターニングP1が容易な化合物系薄膜太陽電池1を得ることができることが明らかとなった。
また、以上の実験結果から、製膜圧力20mTorr以下において、上記反射率10%以上35%以下の範囲の金属裏面電極層12が製膜可能であることが明らかである。
Based on the above experimental results, by forming the metal back electrode layer 12 having a reflectance in the range of 10% to 35%, the resistivity is low, and the adhesion between the metal back electrode layer 12 and the light absorption layer 13 is low. It was revealed that a compound-based thin film solar cell 1 that is high and easy to pattern P1 can be obtained.
From the above experimental results, it is clear that the metal back electrode layer 12 having a reflectance in the range of 10% to 35% can be formed at a film forming pressure of 20 mTorr or less.

次に、金属裏面電極層12の膜厚に着目した実験を行った。
膜厚は、スパッタ・ターゲットに印加されるパワーと、基板の搬送速度の組み合わせによって決まることころ、本実験では搬送速度を変えて実験を行った。
Next, an experiment focusing on the film thickness of the metal back electrode layer 12 was performed.
The film thickness is determined by the combination of the power applied to the sputtering target and the transport speed of the substrate. In this experiment, the experiment was performed by changing the transport speed.

膜厚の評価実験における金属裏面電極層12の製膜条件を表3に示す。   Table 3 shows the film forming conditions of the metal back electrode layer 12 in the film thickness evaluation experiment.

Figure 2010212614
Figure 2010212614

本実験においても、金属裏面電極層12は三層構造で製膜を行っており、ガラス基板11上に製膜される順に、0.66kW、2.88kW、2.88kWで製膜される。   Also in this experiment, the metal back electrode layer 12 is formed in a three-layer structure, and is formed at 0.66 kW, 2.88 kW, and 2.88 kW in the order of film formation on the glass substrate 11.

各製膜条件下において得られた金属裏面電極層12の内容を表4に示す。   Table 4 shows the contents of the metal back electrode layer 12 obtained under each film forming condition.

Figure 2010212614
Figure 2010212614

表4に示されるように、膜厚が厚いほど、シート抵抗は小さくなった。
また、膜厚340〜820nmの範囲であれば、金属裏面電極層12の反射率は、上述した反射率10%以上35%以下の範囲に属し、有効な太陽電池特性を得られる化合物系薄膜太陽電池1が作製可能であることが明らかである。
As shown in Table 4, the sheet resistance decreased as the film thickness increased.
If the film thickness is in the range of 340 to 820 nm, the reflectance of the metal back electrode layer 12 belongs to the above-described reflectance of 10% or more and 35% or less, and a compound-based thin film solar capable of obtaining effective solar cell characteristics. It is clear that the battery 1 can be produced.

また、各製膜条件下で製膜した金属裏面電極層12を用いて作製した化合物系薄膜太陽電池1の特性を表5に示す。   Table 5 shows the characteristics of the compound-based thin film solar cell 1 produced using the metal back electrode layer 12 formed under each film forming condition.

Figure 2010212614
Figure 2010212614

この結果、膜厚を820nm、560nm、340nmと変えても太陽電池の特性に変化は見受けられなかった。
以上のことから、金属裏面電極層12の膜厚に因らず、直列抵抗の抵抗値は殆ど変化しないことが分かった。
また、膜厚が820nm、560nm、340nmのどの場合も、金属裏面電極層12のガラス基板11からの剥離や、光吸収層13の金属裏面電極層12からの剥離は発生せず、金属裏面電極層12の膜厚の差による密着性について、差はほとんど観察されなかった。
また、上述した図2に示すパターニング装置によってパターニングを行った結果、膜厚が820nm、560nm、340nmのどの場合も、連続した1本の直線からなるパターン溝が形成されると共に、両隣のセルとの絶縁が確保されており、膜厚の差によるパターニング性について、差はほとんど観察されなかった。
As a result, even if the film thickness was changed to 820 nm, 560 nm, and 340 nm, no change was observed in the characteristics of the solar cell.
From the above, it was found that the resistance value of the series resistance hardly changed regardless of the film thickness of the metal back electrode layer 12.
Further, in any case where the film thickness is 820 nm, 560 nm, or 340 nm, the metal back electrode layer 12 does not peel from the glass substrate 11 and the light absorption layer 13 does not peel from the metal back electrode layer 12, and the metal back electrode Little difference was observed in the adhesion due to the difference in the film thickness of the layer 12.
In addition, as a result of patterning by the patterning apparatus shown in FIG. 2 described above, in any case of film thicknesses of 820 nm, 560 nm, and 340 nm, a pattern groove consisting of one continuous straight line is formed, and The insulation was ensured, and almost no difference was observed in the patterning property due to the difference in film thickness.

もっとも、膜厚が厚い場合には、パターニングP1によって、パターン溝付近にデブリやバリといった突起部が生じ易くなったり、パターン溝内部に短絡の原因となるブリッジが生じやすくなる。この問題は、膜厚を薄くすることで解決される。また、膜厚を薄くする場合には、搬送速度を上げることになり、製造工程において製造効率が高くなる。   However, when the film thickness is thick, the patterning P1 tends to cause protrusions such as debris and burrs in the vicinity of the pattern groove, or a bridge that causes a short circuit inside the pattern groove. This problem can be solved by reducing the film thickness. Moreover, when making a film thickness thin, a conveyance speed will be raised and manufacturing efficiency will become high in a manufacturing process.

さらに、パターニングP1の容易さに関し、上述した図2に示すパターニング装置によりパターニングを行った結果、膜厚800nm以下、反射率35%以下の金属裏面電極層12を切断可能であることが分かった。   Further, regarding the ease of patterning P1, as a result of patterning with the patterning apparatus shown in FIG. 2 described above, it was found that the metal back electrode layer 12 having a film thickness of 800 nm or less and a reflectance of 35% or less can be cut.

上述の膜厚800nm以下、反射率35%以下の金属裏面電極層12を作製する場合には、まず、所定の真空チャンバ内に、ガラス基板11を試料として配置すると共に、モリブデン(Mo)をスパッタターゲットとして配置した上、当該真空チャンバ以内を真空排気する。
それから、当該真空チャンバ内にガス流量60〜70sccmでアルゴン(Ar)ガスを注入して真空チャンバ内を製膜圧力20mTorr以下の雰囲気に保持した上、上記真空チャンバ内に配置された一対のスパッタ電極を駆動させて、試料であるガラス基板11とスパッタターゲットであるモリブデン(Mo)の間に電圧をかけ、ガラス基板11上にモリブデン(Mo)を製膜する。
これにより、レーザによる反射率が35%以下の金属裏面電極層12が作製される
When the metal back electrode layer 12 having a film thickness of 800 nm or less and a reflectance of 35% or less is manufactured, first, the glass substrate 11 is placed as a sample in a predetermined vacuum chamber, and molybdenum (Mo) is sputtered. After being arranged as a target, the inside of the vacuum chamber is evacuated.
Then, argon (Ar) gas is injected into the vacuum chamber at a gas flow rate of 60 to 70 sccm to keep the inside of the vacuum chamber in an atmosphere having a film forming pressure of 20 mTorr or less, and a pair of sputter electrodes disposed in the vacuum chamber. Is driven to apply a voltage between the glass substrate 11 as a sample and molybdenum (Mo) as a sputtering target to form molybdenum (Mo) on the glass substrate 11.
As a result, the metal back electrode layer 12 having a reflectance by laser of 35% or less is produced.

1 化合物系薄膜太陽電池
11 ガラス基板
12 裏面電極層
13 光吸収層
14 高抵抗バッファ層
15 窓層
P1 パターニング1
P2 パターニング2
P3 パターニング3
DESCRIPTION OF SYMBOLS 1 Compound type thin film solar cell 11 Glass substrate 12 Back surface electrode layer 13 Light absorption layer 14 High resistance buffer layer 15 Window layer P1 Patterning 1
P2 patterning 2
P3 Patterning 3

Claims (3)

ガラス基板上に、モリブデンからなる金属裏面電極層を積層した化合物系薄膜太陽電池であって、
上記金属裏面電極層は、スパッタ法により、その表面の反射率が10%以上35%以下の範囲で上記ガラス基板上に製膜されている、
ことを特徴とする化合物系薄膜太陽電池。
A compound-based thin film solar cell in which a metal back electrode layer made of molybdenum is laminated on a glass substrate,
The metal back electrode layer is formed on the glass substrate by a sputtering method so that the reflectance of the surface is in the range of 10% to 35%.
A compound-based thin film solar cell.
上記ガラス基板上に製膜されるモリブデンの膜厚が800nm以下である、
請求項1記載の化合物系薄膜太陽電池。
The film thickness of molybdenum formed on the glass substrate is 800 nm or less;
The compound-based thin film solar cell according to claim 1.
上記請求項1又は2に係る化合物系太陽電池を構成する金属裏面電極層の製造方法であって、
所定の真空チャンバ内に、上記ガラス基板を試料として配置すると共に、上記モリブデンをスパッタターゲットとして配置した上、当該真空チャンバ内を真空排気する工程と、
上記真空排気されたチャンバ内にガス流量60〜70sccmで不活性ガスを注入して製膜圧力20mTorr以下に保持した上、上記真空チャンバ内に配置された一対のスパッタ電極を駆動させて、上記ガラス基板と上記モリブデンの間に電圧をかけ、上記ガラス基板上に上記モリブデンを製膜する工程と、を有する、
ことを特徴とする化合物系薄膜太陽電池の製造方法。
A method for producing a metal back electrode layer constituting the compound solar cell according to claim 1 or 2,
Placing the glass substrate as a sample in a predetermined vacuum chamber, placing the molybdenum as a sputter target, and evacuating the vacuum chamber;
An inert gas is injected into the evacuated chamber at a gas flow rate of 60 to 70 sccm to maintain a film forming pressure of 20 mTorr or less, and a pair of sputter electrodes disposed in the vacuum chamber is driven to drive the glass. Applying a voltage between the substrate and the molybdenum, and forming the molybdenum on the glass substrate.
A method for producing a compound-based thin-film solar cell.
JP2009059809A 2009-03-12 2009-03-12 Compound-based thin-film solar cell and method for producing the same Expired - Fee Related JP4782855B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009059809A JP4782855B2 (en) 2009-03-12 2009-03-12 Compound-based thin-film solar cell and method for producing the same
PCT/JP2010/053438 WO2010103975A1 (en) 2009-03-12 2010-03-03 Thin film compound solar cell and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009059809A JP4782855B2 (en) 2009-03-12 2009-03-12 Compound-based thin-film solar cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010212614A true JP2010212614A (en) 2010-09-24
JP4782855B2 JP4782855B2 (en) 2011-09-28

Family

ID=42728265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009059809A Expired - Fee Related JP4782855B2 (en) 2009-03-12 2009-03-12 Compound-based thin-film solar cell and method for producing the same

Country Status (2)

Country Link
JP (1) JP4782855B2 (en)
WO (1) WO2010103975A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074147A (en) * 2011-09-28 2013-04-22 Kyocera Corp Photoelectric conversion device
WO2013129296A1 (en) * 2012-02-27 2013-09-06 日東電工株式会社 Cigs-compound solar cell
JP2014503127A (en) * 2011-01-24 2014-02-06 エルジー イノテック カンパニー リミテッド SOLAR CELL AND METHOD FOR MANUFACTURING THE SAME {SOLARCELLANDMANUFACTURERINGMETHODFOFTHESAME}

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140307A (en) * 2002-10-16 2004-05-13 Honda Motor Co Ltd Manufacturing method for thin-film solar cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4925724B2 (en) * 2006-05-25 2012-05-09 本田技研工業株式会社 Solar cell and method for manufacturing the same
JP5132963B2 (en) * 2007-03-26 2013-01-30 時夫 中田 Method for manufacturing thin film solar cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140307A (en) * 2002-10-16 2004-05-13 Honda Motor Co Ltd Manufacturing method for thin-film solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503127A (en) * 2011-01-24 2014-02-06 エルジー イノテック カンパニー リミテッド SOLAR CELL AND METHOD FOR MANUFACTURING THE SAME {SOLARCELLANDMANUFACTURERINGMETHODFOFTHESAME}
JP2013074147A (en) * 2011-09-28 2013-04-22 Kyocera Corp Photoelectric conversion device
WO2013129296A1 (en) * 2012-02-27 2013-09-06 日東電工株式会社 Cigs-compound solar cell
CN104137272A (en) * 2012-02-27 2014-11-05 日东电工株式会社 Cigs-compound solar cell
US9947808B2 (en) 2012-02-27 2018-04-17 Nitto Denko Corporation CIGS compound solar cell

Also Published As

Publication number Publication date
WO2010103975A1 (en) 2010-09-16
JP4782855B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4439492B2 (en) Chalcopyrite solar cell and method for manufacturing the same
JP4925724B2 (en) Solar cell and method for manufacturing the same
KR101173344B1 (en) Solar cell and mehtod of fabricating the same
US20090194150A1 (en) Solar cell and method for fabricating the same
US20090032094A1 (en) Solar cell and method of fabricating the same
US8809674B2 (en) Back electrode configuration for electroplated CIGS photovoltaic devices and methods of making same
WO2007049384A1 (en) Solar battery
WO2007043219A1 (en) Solar battery and its fabrication method
KR20110091683A (en) Photovoltaic element and method for manufacturing same
JP2007317868A (en) Chalcopyrite solar cell, and manufacturing method thereof
KR20190000339A (en) Thin-Film Solar Cell Module Structure and Method for Producing the Same
KR101034150B1 (en) Solar cell and method of fabircating the same
KR101081075B1 (en) Solar cell and method of fabricating the same
JP4782855B2 (en) Compound-based thin-film solar cell and method for producing the same
CN105097980B (en) Thin-film solar cells and its manufacturing method
WO2013108623A1 (en) Method for manufacturing integrated solar cell
US8890270B2 (en) Photoelectric conversion device and method for manufacturing the photoelectric conversion device
WO2013121839A1 (en) Thin film solar cell and method for manufacturing same
KR20110043358A (en) Solar cell and method of fabircating the same
KR101091359B1 (en) Solar cell and mehtod of fabricating the same
KR101034146B1 (en) Solar cell and method of fabricating the same
JP2010098265A (en) Photovoltaic element and method of manufacturing the same
KR101091319B1 (en) Solar cell and method of fabricating the same
WO2014103669A1 (en) Compound thin-film solar cell and production method for same
JP2006165338A (en) Integrated thin-film solar cell and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4782855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees