JP2010212598A - Processing liquid supply mechanism, processing liquid supply method, liquid processing apparatus, and storage medium - Google Patents

Processing liquid supply mechanism, processing liquid supply method, liquid processing apparatus, and storage medium Download PDF

Info

Publication number
JP2010212598A
JP2010212598A JP2009059573A JP2009059573A JP2010212598A JP 2010212598 A JP2010212598 A JP 2010212598A JP 2009059573 A JP2009059573 A JP 2009059573A JP 2009059573 A JP2009059573 A JP 2009059573A JP 2010212598 A JP2010212598 A JP 2010212598A
Authority
JP
Japan
Prior art keywords
pressure
processing liquid
liquid
processing
δpt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009059573A
Other languages
Japanese (ja)
Other versions
JP5337541B2 (en
Inventor
Yoshitaka Ishida
省貴 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2009059573A priority Critical patent/JP5337541B2/en
Publication of JP2010212598A publication Critical patent/JP2010212598A/en
Application granted granted Critical
Publication of JP5337541B2 publication Critical patent/JP5337541B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid supply mechanism capable of reliably preventing generation of bubbles in a flow controller without causing any trouble to a liquid to be supplied. <P>SOLUTION: The processing liquid supply mechanism 3 includes: a processing liquid tank 21; a processing liquid feeding pipe 22; the flow controller 27 having a variable orifice for changing a cross-sectional area in the flow of the processing liquid; pressure detectors 26, 28 for obtaining the liquid pressure at the primary side in a prior stage of the variable orifice and the liquid pressure at the secondary side in a post stage of the variable orifice; and a control mechanism 30 for obtaining the pressure difference ΔPs between the liquid pressure of the primary side, at which bubbles from the processing liquid start being generated, and the liquid pressure of the secondary side, based on the pre-stored relation of the pressure of the processing liquid and the quantity of the soluble gas component at a corresponding liquid pressure, setting a threshold ΔPt, which is not more than the ΔPs value, determining whether a pressure difference ΔPe value between the actually obtained liquid pressure of the primary side and the secondary side reaches ΔPt, and controlling the state of the processing liquid so as to prevent the generation of bubbles in the processing liquid when the ΔPe value is determined to reach the ΔPt value. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、所定の液体を流量制御して供給する液供給機構および液供給方法、そのような液供給機構を備えた液処理装置、ならびに記憶媒体に関する。   The present invention relates to a liquid supply mechanism and a liquid supply method for supplying a predetermined liquid by controlling its flow rate, a liquid processing apparatus including such a liquid supply mechanism, and a storage medium.

半導体デバイスの製造プロセスやフラットパネルディスプレー(FPD)の製造プロセスにおいては、洗浄処理、レジスト塗布処理、現像処理等の液処理が施される。このような液処理を行う液処理装置においては、処理液供給機構により処理チャンバ内に処理液を供給して半導体ウエハ等の被処理基板に所定の液処理を施す。   In semiconductor device manufacturing processes and flat panel display (FPD) manufacturing processes, liquid processing such as cleaning processing, resist coating processing, and development processing is performed. In a liquid processing apparatus that performs such liquid processing, a processing liquid is supplied into a processing chamber by a processing liquid supply mechanism to perform a predetermined liquid processing on a substrate to be processed such as a semiconductor wafer.

このような処理液供給機構は、処理液を所定の圧力で配管内に通流させて処理チャンバに供給するものであり、その配管には処理液を所定の流量に制御する流量制御器が設けられている。流量制御器としては、流路の断面積を変化させることにより流量を制御するものが一般的である。   Such a processing liquid supply mechanism supplies the processing liquid to the processing chamber through the piping at a predetermined pressure, and the piping is provided with a flow rate controller for controlling the processing liquid to a predetermined flow rate. It has been. As the flow rate controller, one that controls the flow rate by changing the cross-sectional area of the flow path is generally used.

ところで、流量制御範囲を大きくするために流路の断面積変化量を大きくとると、流量制御器前後の圧力差が大きくなって、処理液中に溶存している成分が気化することがあり、これにより処理液中に気泡が発生する。   By the way, if the change amount of the cross-sectional area of the flow path is increased in order to increase the flow rate control range, the pressure difference before and after the flow rate controller increases, and the components dissolved in the processing liquid may be vaporized. Thereby, bubbles are generated in the processing liquid.

この種の流量制御器においては、処理液を送液中に気泡が発生すると、処理液と気泡とが合わさったものが所定の体積に制御されることとなり、処理液流量は制御したい量よりも少なくなってしまい、正しい流量制御を行うことが困難である。   In this type of flow rate controller, when bubbles are generated during processing liquid delivery, the combined volume of the processing liquid and the bubbles is controlled to a predetermined volume, and the flow rate of the processing liquid is higher than the amount to be controlled. It becomes less and it is difficult to perform correct flow control.

このような不都合を防止する技術としては、特許文献1に開示されているように、処理液供給配管に脱気装置を設け、供給する処理液を脱気して気泡自体の発生を抑制するものを挙げることができる。   As a technique for preventing such inconvenience, as disclosed in Patent Document 1, a degassing device is provided in the processing liquid supply pipe, and the supplied processing liquid is degassed to suppress the generation of bubbles themselves. Can be mentioned.

特開2004−49945号公報JP 2004-49945 A

しかしながら、処理液を常時脱気すると、処理液によっては脱気の際に所定の成分が気化する等の不都合が生じる。また、脱気処理によってある程度気泡成分を除去できたとしても、流量制御器の前後の圧力変動の度合いによっては気泡の発生を完全に防止することができない場合がある。   However, if the processing liquid is constantly deaerated, there is a problem that depending on the processing liquid, a predetermined component is vaporized during the deaeration. Moreover, even if the bubble component can be removed to some extent by the deaeration process, the generation of bubbles may not be completely prevented depending on the degree of pressure fluctuation before and after the flow rate controller.

本発明はかかる事情に鑑みてなされたものであって、供給しようとする液体に対する不都合を生じさせずに、流量制御器における気泡の発生を確実に防止することができる液供給機構および液供給方法、ならびにこのような液供給機構を備えた液処理装置を提供することを目的とする。
また、上記液供給方法を実施するためのプログラムを記憶した記録媒体を提供することを目的とする。
The present invention has been made in view of such circumstances, and a liquid supply mechanism and a liquid supply method that can reliably prevent the generation of bubbles in the flow rate controller without causing inconvenience for the liquid to be supplied. An object of the present invention is to provide a liquid processing apparatus including such a liquid supply mechanism.
It is another object of the present invention to provide a recording medium storing a program for performing the above liquid supply method.

上記課題を解決するために、本発明の第1の観点では、基板に対して液処理を行う際に、基板に処理液を供給する処理液供給機構であって、処理液供給源と、前記処理液供給源から処理液を供給する処理液供給配管と、前記処理液供給配管に設けられ、前記処理液の通流断面積を変化させる可変オリフィス部を有する流量制御器と、前記可変オリフィス部より前段の一次側の液圧および前記可変オリフィス部より後段の二次側の液圧を求める圧力検出機構と、予め記憶された、処理液の液圧とその液圧の処理液に溶存可能な気体成分の量との関係から、前記処理液から気泡が発生し始める前記一次側の液圧と前記二次側の液圧との差圧ΔPsを求め、この差圧ΔPsの値以下の閾値ΔPtを設定し、実際に求められた前記一次側の液圧と前記二次側の液圧との差圧ΔPeの値が前記閾値ΔPtに達したか否かを判断し、実際に求められた差圧ΔPeの値が前記閾値ΔPtに達したと判断した場合に、前記処理液の気泡の発生を抑制するように制御する制御機構とを具備することを特徴とする処理液供給機構を提供する。   In order to solve the above problems, according to a first aspect of the present invention, there is provided a processing liquid supply mechanism for supplying a processing liquid to a substrate when performing a liquid processing on the substrate, the processing liquid supply source, A processing liquid supply pipe for supplying a processing liquid from a processing liquid supply source; a flow rate controller provided in the processing liquid supply pipe and having a variable orifice section for changing a flow cross-sectional area of the processing liquid; and the variable orifice section A pressure detection mechanism for obtaining the primary side hydraulic pressure and the secondary side hydraulic pressure after the variable orifice, and the pre-stored processing liquid pressure and the processing liquid at the liquid pressure can be dissolved. From the relationship with the amount of the gas component, a differential pressure ΔPs between the primary-side fluid pressure and the secondary-side fluid pressure at which bubbles start to be generated from the processing liquid is obtained, and a threshold value ΔPt equal to or less than the value of this differential pressure ΔPs. The primary hydraulic pressure actually obtained and the second When it is determined whether or not the value of the differential pressure ΔPe with respect to the fluid pressure on the side has reached the threshold value ΔPt, and when it is determined that the value of the differential pressure ΔPe actually obtained has reached the threshold value ΔPt, There is provided a processing liquid supply mechanism comprising a control mechanism for controlling the generation of liquid bubbles.

上記第1の観点において、前記一次側の処理液の圧力を調節する調圧機構をさらに具備し、前記制御機構は、前記実際に求められた差圧ΔPeの値が前記閾値ΔPtに達したと判断した場合に、前記差圧の値が前記閾値ΔPtより低くなるように、前記調圧機構の圧力調節を制御することにより処理液の状態を制御する構成とすることができる。   In the first aspect described above, further comprising a pressure adjusting mechanism for adjusting the pressure of the processing liquid on the primary side, wherein the control mechanism has a value of the actually obtained differential pressure ΔPe reaching the threshold value ΔPt. When the determination is made, the state of the processing liquid can be controlled by controlling the pressure adjustment of the pressure adjusting mechanism so that the value of the differential pressure is lower than the threshold value ΔPt.

また、前記一次側の処理液を脱気する脱気機構をさらに具備し、前記制御機構は、前記実際に求められた差圧ΔPeの値が前記閾値ΔPtに達したと判断した場合に、前記差圧の値が前記閾値ΔPtより低くなるように、前記脱気機構による脱気を制御することにより処理液の状態を制御構成とすることができる。   Further, the apparatus further comprises a degassing mechanism for degassing the primary processing solution, and the control mechanism determines that the value of the actually obtained differential pressure ΔPe has reached the threshold value ΔPt. By controlling the deaeration by the deaeration mechanism so that the value of the differential pressure is lower than the threshold value ΔPt, the state of the processing liquid can be controlled.

さらに、前記一次側の処理液の圧力を調節する調圧機構と、前記一次側の処理液を脱気する脱気機構をさらに具備し、前記制御機構は、前記実際に求められた差圧ΔPeの値が前記閾値ΔPtに達したと判断した場合に、前記調圧機構の圧力調節を制御することにより処理液の状態を制御し、前記調圧機構の制御だけでは前記差圧が前記閾値ΔPtより低くならない場合に、前記脱気機構を作動させて前記差圧の値が前記閾値ΔPtより低くなるように制御することにより処理液の状態を制御する構成とすることができる。   The pressure control mechanism further adjusts the pressure of the processing liquid on the primary side and the degassing mechanism for degassing the processing liquid on the primary side, and the control mechanism has the differential pressure ΔPe actually obtained. Is determined to have reached the threshold value ΔPt, the state of the processing liquid is controlled by controlling the pressure adjustment of the pressure regulating mechanism, and the differential pressure is controlled only by the pressure regulating mechanism. When the pressure does not become lower, the state of the processing liquid can be controlled by operating the deaeration mechanism and controlling the differential pressure value to be lower than the threshold value ΔPt.

前記調圧機構は、前記処理液供給配管の一次側に設けられた、処理液の圧力を制御する圧力制御バルブを有する構成とすることができる。また、前記調圧機構は、前記処理液供給配管の一次側に設けられ、前記処理液が一旦貯留され、処理液の送出圧力を変化させることが可能な中間タンクを有する構成とすることもできる。この場合に、前記中間タンクは、その中を脱気する脱気機構を有するものとすることができる。   The pressure adjusting mechanism may include a pressure control valve provided on a primary side of the processing liquid supply pipe for controlling the pressure of the processing liquid. The pressure regulating mechanism may be provided on the primary side of the processing liquid supply pipe, and may have an intermediate tank in which the processing liquid is temporarily stored and the processing liquid delivery pressure can be changed. . In this case, the intermediate tank may have a degassing mechanism for degassing the inside.

本発明の第2の観点では、被処理体に対して液処理を行う際に、被処理体に処理液を供給する処理液供給方法であって、処理液供給源から配管を介して基板に供給される処理液の通流断面積を変化させる可変オリフィス部を有する流量制御器により流量を制御しつつ処理液を供給する工程と、前記可変オリフィス部より前段の一次側の液圧および前記可変オリフィス部より後段の二次側の液圧を求める工程と、処理液の液圧とその液圧の処理液に溶存可能な気体成分の量との関係から、前記処理液から気泡が発生し始める前記一次側の液圧と前記二次側の液圧との差圧ΔPsを求め、この差圧ΔPsの値以下の閾値ΔPtを設定する工程と、実際に求められた前記一次側の液圧と前記二次側の液圧との差圧ΔPeの値が前記閾値ΔPtに達したか否かを判断する工程と、実際に求められた差圧ΔPeの値が前記閾値ΔPtに達したと判断した場合に、前記処理液の気泡の発生を抑制するように制御する工程と
を有することを特徴とする処理液供給方法を提供する。
According to a second aspect of the present invention, there is provided a processing liquid supply method for supplying a processing liquid to a target object when liquid processing is performed on the target object. A step of supplying a processing liquid while controlling a flow rate by a flow rate controller having a variable orifice part that changes a flow cross-sectional area of the supplied processing liquid; a primary side hydraulic pressure preceding the variable orifice part; Bubbles begin to be generated from the processing liquid based on the relationship between the step of obtaining the secondary side hydraulic pressure after the orifice and the amount of the gas component that can be dissolved in the processing liquid at the liquid pressure. Obtaining a differential pressure ΔPs between the primary side hydraulic pressure and the secondary side hydraulic pressure, setting a threshold value ΔPt equal to or less than a value of the differential pressure ΔPs, and the actually obtained primary side hydraulic pressure; Whether the value of the differential pressure ΔPe from the secondary hydraulic pressure has reached the threshold value ΔPt And a step of controlling so as to suppress the generation of bubbles in the processing liquid when it is determined that the value of the actually obtained differential pressure ΔPe has reached the threshold value ΔPt. A process liquid supply method is provided.

上記第2の観点において、前記制御する工程は、前記実際に求められた差圧ΔPeの値が前記閾値ΔPtに達したと判断した場合に、前記差圧の値が前記閾値ΔPtより低くなるように、前記一次側の処理液の圧力を調節するものとすることができる。   In the second aspect, the step of controlling causes the differential pressure value to be lower than the threshold value ΔPt when it is determined that the actually obtained differential pressure value ΔPe has reached the threshold value ΔPt. In addition, the pressure of the treatment liquid on the primary side can be adjusted.

また、前記制御する工程は、前記実際に求められた差圧ΔPeの値が前記閾値ΔPtに達したと判断した場合に、前記差圧の値が前記閾値ΔPtより低くなるように、前記一次側の処理液を脱気するものとすることができる。   Further, in the step of controlling, when it is determined that the value of the actually obtained differential pressure ΔPe has reached the threshold value ΔPt, the primary side is set so that the value of the differential pressure is lower than the threshold value ΔPt. The treatment liquid can be degassed.

さらに、前記制御する工程は、前記実際に求められた差圧ΔPeの値が前記閾値ΔPtに達したと判断した場合に、前記一次側の処理液の圧力を調節し、それだけでは前記差圧が前記閾値ΔPtより低くならない場合に、前記一次側の処理液を脱気して前記差圧が前記閾値ΔPtより低くなるようにするものとすることができる。   Further, the controlling step adjusts the pressure of the processing liquid on the primary side when it is determined that the value of the actually obtained differential pressure ΔPe has reached the threshold value ΔPt. When the pressure does not become lower than the threshold value ΔPt, the primary-side treatment liquid is deaerated so that the differential pressure becomes lower than the threshold value ΔPt.

本発明の第3の観点では、基板に液処理を施す基板処理部と、前記基板処理部に処理液を供給する処理液供給機構とを具備し、前記処理液供給機構は、上記第1の観点のものであることを特徴とする液処理装置を提供する。   In a third aspect of the present invention, the apparatus includes a substrate processing unit that performs liquid processing on a substrate, and a processing liquid supply mechanism that supplies a processing liquid to the substrate processing unit. Provided is a liquid processing apparatus characterized by being in a viewpoint.

本発明の第4の観点では、コンピュータ上で動作し、処理液供給機構を制御するためのプログラムが記憶された記憶媒体であって、前記プログラムは、実行時に、上記第2の観点の処理液供給方法が行われるようにコンピュータに処理装置を制御させることを特徴とする記憶媒体を提供する。   According to a fourth aspect of the present invention, there is provided a storage medium that operates on a computer and stores a program for controlling a processing liquid supply mechanism, and the program is executed when the processing liquid according to the second aspect is executed. There is provided a storage medium characterized by causing a computer to control a processing device so that a supply method is performed.

本発明によれば、予め記憶された、処理液の液圧とその液圧の処理液に溶存可能な気体成分の量との関係から、前記処理液から気泡が発生し始める前記一次側の液圧と前記二次側の液圧との差圧ΔPsを求め、この差圧ΔPsの値以下の閾値ΔPtを設定し、実際に求められた前記一次側の液圧と前記二次側の液圧との差圧ΔPeの値が前記閾値ΔPtに達したか否かを判断し、実際に求められた差圧ΔPeの値が前記閾値ΔPtに達したと判断した場合に、前記処理液の気泡の発生を抑制するように処理液の状態を制御するので、常時処理液を脱気する際のような不都合を生じさせることがなく、常に流量制御器において気泡が発生しない状態として、流量制御器における気泡の発生を確実に防止することができる。   According to the present invention, the primary-side liquid that starts to generate bubbles from the processing liquid based on the relationship between the liquid pressure of the processing liquid stored in advance and the amount of the gas component that can be dissolved in the processing liquid at the liquid pressure. The pressure difference ΔPs between the pressure and the secondary side hydraulic pressure is obtained, a threshold value ΔPt equal to or less than the value of the differential pressure ΔPs is set, and the actually obtained primary side hydraulic pressure and the secondary side hydraulic pressure are set. When the value of the differential pressure ΔPe has reached the threshold value ΔPt, and when it is determined that the actually obtained differential pressure ΔPe has reached the threshold value ΔPt, Since the state of the processing liquid is controlled so as to suppress the generation, there is no inconvenience as in the case of degassing the processing liquid at all times. The generation of bubbles can be reliably prevented.

本発明の一実施形態に係る液処理装置を示す概略構成図である。It is a schematic block diagram which shows the liquid processing apparatus which concerns on one Embodiment of this invention. 図1の液処理装置の処理液供給機構における流量制御器の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the flow controller in the process liquid supply mechanism of the liquid processing apparatus of FIG. 図1の液処理装置に設けられた全体制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the whole control part provided in the liquid processing apparatus of FIG. 処理液の液圧と気体成分の溶存可能量との関係を示すグラフである。It is a graph which shows the relationship between the liquid pressure of a process liquid, and the dissolved amount of a gas component. 処理液供給の制御シーケンスを示すフローチャートである。It is a flowchart which shows the control sequence of a process liquid supply. 本発明の実施形態における種々の差圧値の関係をまとめて示す図である。It is a figure which shows collectively the relationship of the various differential pressure | voltage values in embodiment of this invention. 処理液供給の制御シーケンスの他の例を示すフローチャートである。It is a flowchart which shows the other example of the control sequence of a process liquid supply. 処理液供給の制御シーケンスのさらに他の例を示すフローチャートである。It is a flowchart which shows the further another example of the control sequence of a process liquid supply. 本発明の他の実施形態における処理液供給機構を示す概略構成図である。It is a schematic block diagram which shows the process liquid supply mechanism in other embodiment of this invention.

以下、添付図面を参照して、本発明の実施形態について具体的に説明する。図1は本発明の一実施形態に係る液処理装置を示す概略構成図である。   Embodiments of the present invention will be specifically described below with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram showing a liquid processing apparatus according to an embodiment of the present invention.

この液処理装置1は、被処理基板である半導体ウエハ(以下単にウエハと記す)Wに対して洗浄処理等の枚葉式の液処理を施すものであり、ウエハWに対して液処理が行われる処理部2と、処理部2へ処理液を供給する処理液供給機構3とを備えている。   The liquid processing apparatus 1 performs a single wafer type liquid processing such as a cleaning process on a semiconductor wafer (hereinafter simply referred to as a wafer) W which is a substrate to be processed. And a processing liquid supply mechanism 3 that supplies the processing liquid to the processing unit 2.

処理部2は、処理チャンバ11と、処理チャンバ11内でウエハWを回転可能に保持するスピンチャック12と、スピンチャック12を回転させるモータ13と、スピンチャック12に保持されたウエハWに処理液を吐出する処理液吐出ノズル14と、処理チャンバ11から処理液を排出する処理液排出部15とを有している。処理液吐出ノズル14は駆動機構16により駆動可能となっている。   The processing unit 2 includes a processing liquid on the processing chamber 11, a spin chuck 12 that rotatably holds the wafer W in the processing chamber 11, a motor 13 that rotates the spin chuck 12, and a wafer W held on the spin chuck 12. And a processing liquid discharge section 15 for discharging the processing liquid from the processing chamber 11. The treatment liquid discharge nozzle 14 can be driven by a drive mechanism 16.

処理液供給機構3は、処理液を貯留する処理液タンク21と、処理液タンク21に貯留された処理液を処理部2へ供給する処理液供給配管22とを有している。処理液供給配管22には、処理液タンク21側から順に、調圧機構としての圧力制御バルブ24、脱気機構25、一次側圧力検出器26、流量制御器27、二次側圧力検出器28、開閉バルブ29が設けられている。また、処理液供給機構3は、圧力制御バルブ24、脱気機構25および流量制御器27等の制御を行うコントローラ30を有している。   The processing liquid supply mechanism 3 includes a processing liquid tank 21 that stores the processing liquid, and a processing liquid supply pipe 22 that supplies the processing liquid stored in the processing liquid tank 21 to the processing unit 2. In the treatment liquid supply pipe 22, a pressure control valve 24, a degassing mechanism 25, a primary pressure detector 26, a flow rate controller 27, and a secondary pressure detector 28 are sequentially arranged from the treatment liquid tank 21 side. An open / close valve 29 is provided. Further, the processing liquid supply mechanism 3 includes a controller 30 that controls the pressure control valve 24, the deaeration mechanism 25, the flow rate controller 27, and the like.

処理液タンク21には圧送ガスライン31が接続されており、圧送ガスライン31から圧送ガスを処理液タンク21内に供給することにより、処理液供給配管22に処理液が通流されるようになっている。また、処理液タンク21には排液ライン32が接続されている。圧送ガスライン31および排液ライン32には、それぞれ、開閉バルブ33および34が設けられている。   A pressure gas line 31 is connected to the treatment liquid tank 21, and the treatment liquid is passed through the treatment liquid supply pipe 22 by supplying the pressure gas from the pressure gas line 31 into the treatment liquid tank 21. ing. In addition, a drain line 32 is connected to the processing liquid tank 21. Opening and closing valves 33 and 34 are provided on the pressure gas line 31 and the drain line 32, respectively.

処理液供給配管22は、処理部2の処理チャンバ11内に延び、処理液吐出ノズル14へ処理液を供給するようになっている。圧力制御バルブ24は、処理液タンク21から所定の圧力で処理液供給配管22に送出された処理液の圧力を所定の圧力に制御可能となっている。   The processing liquid supply pipe 22 extends into the processing chamber 11 of the processing unit 2 and supplies the processing liquid to the processing liquid discharge nozzle 14. The pressure control valve 24 can control the pressure of the processing liquid sent from the processing liquid tank 21 to the processing liquid supply pipe 22 at a predetermined pressure.

脱気機構25は、処理液流路と、処理液流路に接続された排気管とを有し(いずれも図示せず)、排気管を介してポンプ35により流路内を排気することにより処理液を真空脱気できるようになっている。   The deaeration mechanism 25 has a processing liquid channel and an exhaust pipe connected to the processing liquid channel (both not shown), and exhausts the inside of the channel by a pump 35 through the exhaust pipe. The treatment liquid can be degassed by vacuum.

流量制御器27は、図2に示すように、本体41と、本体41に設けられた流路42と、流路42に設けられた可変オリフィス45と、可変オリフィス45の断面積を変化させて流量を調節する流量調節部材46と、流量調節部材46を上下動させるアクチュエータ47とを有している。そして、導入口43から流路42に導入された処理液が、流量調節部材46により可変オリフィス45の断面積を調節することにより流量制御され、流出口44から流出されるようになっている。   As shown in FIG. 2, the flow controller 27 changes the cross-sectional area of the main body 41, the flow path 42 provided in the main body 41, the variable orifice 45 provided in the flow path 42, and the variable orifice 45. It has a flow rate adjusting member 46 that adjusts the flow rate, and an actuator 47 that moves the flow rate adjusting member 46 up and down. Then, the flow rate of the processing liquid introduced into the flow path 42 from the inlet port 43 is controlled by adjusting the cross-sectional area of the variable orifice 45 by the flow rate adjusting member 46, and flows out from the outlet port 44.

コントローラ30は、一次側圧力検出器26からの流量制御器27上流側(一次側)の圧力検出値と、二次側圧力検出器28からの流量制御器27下流側(二次側)の圧力検出値とからこれらの差圧を求める。二次側圧力検出器28により二次側の圧力を検出する代わりに、一次側の圧力と流量調節器27の流量の値から二次側の圧力を算出し、差圧を計算するようにしてもよい。この差圧に基づいて流量制御器27のアクチュエータ47に制御信号を送り、流量調節部材46による可変オリフィス45の断面積を制御して処理液の流量を制御する。また、コントローラ30には、予め、処理液の液圧とその液圧の処理液に溶存可能な気体成分の量との関係が、処理液の種類毎に記憶されており、コントローラ30は、その関係から気泡が発生し始める一次側液圧と二次側液圧との差圧値ΔPsを求め、ΔPs以下の値(ΔPsまたはその近傍の値)を閾値ΔPtとして設定しておき、実際の差圧ΔPeが閾値ΔPtに達したか否かを判断する。そして、その実際に求められた差圧の値が閾値に達したと判断した場合に、処理液の気泡の発生を抑制するように処理液の状態を制御するようになっている。具体的には、圧力制御バルブ24に信号を送って一次側の液圧を低下させ、ΔPeを閾値ΔPtよりも小さくすることにより、処理液の気泡の発生を抑制する。この場合に、一次側液圧と二次側液圧との差圧が小さすぎると流量制御ができないことから、ΔPeが流量制御可能な範囲内になるような範囲で一次側の液圧を低下させる。また、脱気機構25を作動させて、処理液を脱気することにより処理液からの気泡の発生を抑制するように制御することもできる。   The controller 30 detects the pressure detection value upstream (primary side) of the flow controller 27 from the primary pressure detector 26 and the pressure downstream (secondary side) of the flow controller 27 from the secondary pressure detector 28. These differential pressures are obtained from the detected values. Instead of detecting the secondary side pressure by the secondary side pressure detector 28, the secondary side pressure is calculated from the primary side pressure and the flow rate value of the flow rate regulator 27, and the differential pressure is calculated. Also good. Based on this differential pressure, a control signal is sent to the actuator 47 of the flow rate controller 27 to control the cross-sectional area of the variable orifice 45 by the flow rate adjusting member 46 to control the flow rate of the processing liquid. In addition, the controller 30 stores in advance the relationship between the liquid pressure of the processing liquid and the amount of the gas component that can be dissolved in the processing liquid at the liquid pressure, for each type of processing liquid. From the relationship, a differential pressure value ΔPs between the primary side fluid pressure and the secondary side fluid pressure at which bubbles start to be generated is obtained, and a value equal to or less than ΔPs (ΔPs or a value in the vicinity thereof) is set as the threshold value ΔPt. It is determined whether or not the pressure ΔPe has reached the threshold value ΔPt. Then, when it is determined that the differential pressure value actually obtained has reached the threshold value, the state of the processing liquid is controlled so as to suppress the generation of bubbles in the processing liquid. Specifically, a signal is sent to the pressure control valve 24 to reduce the primary hydraulic pressure, and ΔPe is made smaller than the threshold value ΔPt, thereby suppressing generation of bubbles in the processing liquid. In this case, if the differential pressure between the primary side fluid pressure and the secondary side fluid pressure is too small, the flow rate cannot be controlled. Therefore, the primary side fluid pressure is reduced within a range where ΔPe is within the flow controllable range. Let It is also possible to control the generation of bubbles from the processing liquid by operating the degassing mechanism 25 to degas the processing liquid.

液処理装置1は全体を制御する全体制御部50を備えている。この全体制御部50は、図3のブロック図に示すように、プロセスコントローラ51と、ユーザーインターフェース52と、記憶部53とを有している。プロセスコントローラ51は、液処理装置1の全体のプロセスを制御するものであり、例えば、コントローラ30やバルブ29、33、34、圧送ガスの供給、モータ13、ノズル駆動機構16等を制御する。ユーザーインターフェース52はプロセスコントローラ51に接続され、オペレータが液処理装置1を管理するためにコマンド等の入力操作を行うキーボードや、液処理装置1の稼働状況を可視化して表示するディスプレイ等からなる。記憶部53もプロセスコントローラ51に接続され、その中に液処理装置1の制御対象を制御するための制御プログラムや、液処理装置1に所定の処理を行わせるためのプログラムすなわち処理レシピが格納されている。処理レシピは記憶部53の中の記憶媒体(図示せず)に記憶されている。記憶媒体は、ハードディスクのような固定的なものであってもよいし、CDROM、DVD、フラッシュメモリ等の可搬性のものであってもよい。また、他の装置から、例えば専用回線を介してレシピを適宜伝送させるようにしてもよい。そして、プロセスコントローラ51は、必要に応じて、ユーザーインターフェース52からの指示等にて任意の処理レシピを記憶部53から呼び出して実行させることで、コントローラ51の制御下で、所定の処理が行われる。   The liquid processing apparatus 1 includes an overall control unit 50 that controls the entire system. The overall control unit 50 includes a process controller 51, a user interface 52, and a storage unit 53, as shown in the block diagram of FIG. The process controller 51 controls the entire process of the liquid processing apparatus 1. For example, the controller 30 controls the controller 30, valves 29, 33, and 34, supply of pressurized gas, the motor 13, the nozzle drive mechanism 16, and the like. The user interface 52 is connected to the process controller 51 and includes a keyboard on which an operator inputs commands and the like to manage the liquid processing apparatus 1, a display that visualizes and displays the operating status of the liquid processing apparatus 1, and the like. The storage unit 53 is also connected to the process controller 51 and stores therein a control program for controlling a control target of the liquid processing apparatus 1 and a program for causing the liquid processing apparatus 1 to perform a predetermined process, that is, a processing recipe. ing. The processing recipe is stored in a storage medium (not shown) in the storage unit 53. The storage medium may be a fixed medium such as a hard disk or a portable medium such as a CDROM, DVD, or flash memory. Moreover, you may make it transmit a recipe suitably from another apparatus via a dedicated line, for example. Then, the process controller 51 calls and executes an arbitrary processing recipe from the storage unit 53 in accordance with an instruction from the user interface 52 as necessary, whereby predetermined processing is performed under the control of the controller 51. .

次に、このような液処理装置1によりウエハWの液処理を行う際の処理動作について説明する。なお、以下の処理動作は、全体制御部50の記憶部53における記憶媒体に記憶された所定の処理レシピに基づいて、プロセスコントローラ51が装置の各構成部を制御することにより行われる。   Next, a processing operation when liquid processing of the wafer W is performed by such a liquid processing apparatus 1 will be described. The following processing operations are performed by the process controller 51 controlling each component of the apparatus based on a predetermined processing recipe stored in the storage medium in the storage unit 53 of the overall control unit 50.

まず、図示しない搬送アームにより処理チャンバ11内にウエハWを搬入し、スピンチャック12に保持させる。次いで、モータ13によりスピンチャック12とともにウエハWを所定の回転数で回転させながら、処理液供給機構3の処理液タンク21から処理液供給配管22を介して、処理部2の処理チャンバ11内に処理液を供給し、処理液吐出ノズル14からウエハW上に処理液を供給する。   First, the wafer W is loaded into the processing chamber 11 by a transfer arm (not shown) and held on the spin chuck 12. Next, the motor 13 rotates the wafer W together with the spin chuck 12 at a predetermined number of revolutions, and enters the processing chamber 11 of the processing unit 2 from the processing liquid tank 21 of the processing liquid supply mechanism 3 through the processing liquid supply pipe 22. The processing liquid is supplied, and the processing liquid is supplied onto the wafer W from the processing liquid discharge nozzle 14.

このとき、コントローラ30は、所定の流量で処理液が供給されるように、一次側液圧と二次側液圧との差圧値に基づいて流量制御器27に流量制御信号を送り、アクチュエータ47により流量調節部材46の位置を調節して可変オリフィス45の断面積を制御し、処理液の流量を制御させる。   At this time, the controller 30 sends a flow rate control signal to the flow rate controller 27 based on the differential pressure value between the primary side hydraulic pressure and the secondary side hydraulic pressure so that the processing liquid is supplied at a predetermined flow rate, and the actuator The position of the flow rate adjusting member 46 is adjusted by 47 to control the cross-sectional area of the variable orifice 45 to control the flow rate of the processing liquid.

この場合に、流量制御器27により処理液の流量を制御するに際し、流量制御範囲を大きくする場合、オリフィス45の断面積の変化量、すなわち流路の断面積の変化量を大きくとる必要がある。しかし、流路の断面積変化量を大きくとると、流量制御器27前後の圧力差が大きくなって、処理液中に溶存している成分が気化することがあり、これにより処理液中に気泡が発生する。   In this case, when the flow rate of the treatment liquid is controlled by the flow rate controller 27, when the flow rate control range is increased, it is necessary to increase the change amount of the cross-sectional area of the orifice 45, that is, the change amount of the cross-sectional area of the flow path. . However, when the amount of change in the cross-sectional area of the flow path is increased, the pressure difference before and after the flow rate controller 27 increases, and the components dissolved in the processing liquid may be vaporized, thereby causing bubbles in the processing liquid. Occurs.

すなわち、流量制御器27のオリフィス45の断面積は処理液供給配管22の断面積よりも小さいから、処理液の圧力は流量制御器27の上流側よりも下流側のほうが低くなり、これらの間には差圧が存在するが、流量制御器27の流路の断面積を減少させて処理液の流量を少なくする場合、下流側の圧力は一層低くなって差圧が増加する。一方、ヘンリーの法則により、液体に溶存し得る気体成分の量は液体の圧力にほぼ比例する。すなわち、図4は、横軸に処理液の液圧をとり、縦軸に気体成分の溶存可能量をとったグラフ(つまり蒸気圧曲線)であるが、この図に示すように、圧力が増加するに従って、気体成分の溶存可能量が直線的に増加する。ここで、流量制御器27の上流側の処理液の液圧(一次側液圧)をP1とし、流量制御器27の下流側の処理液の液圧(二次側液圧)をP2とすると、上述したようにP1>P2となるから、図4に示すように、P2のときの気体成分の溶存可能量はP1のときの溶存可能量よりも減少する。このため、一次側液圧P1のとき溶存気体成分が例えば図中G1であって気泡が発生しない量であっても、二次側液圧P2では気体成分が溶存しきれなくなって気泡が発生することがあり得る。そして、流量制御器27で制御する流量値が小さいほど、P2が低下してP1とP2との差圧ΔPが大きくなり、気泡が発生しやすくなる。   That is, since the cross-sectional area of the orifice 45 of the flow controller 27 is smaller than the cross-sectional area of the processing liquid supply pipe 22, the pressure of the processing liquid is lower on the downstream side than on the upstream side of the flow controller 27. However, when the flow rate of the processing liquid is decreased by reducing the cross-sectional area of the flow path of the flow rate controller 27, the pressure on the downstream side becomes lower and the differential pressure increases. On the other hand, according to Henry's law, the amount of gaseous components that can be dissolved in the liquid is approximately proportional to the pressure of the liquid. That is, FIG. 4 is a graph (that is, a vapor pressure curve) in which the horizontal axis represents the liquid pressure of the treatment liquid and the vertical axis represents the dissolved amount of the gas component. As shown in this figure, the pressure increases. As a result, the amount of gas component that can be dissolved increases linearly. Here, the fluid pressure (primary fluid pressure) of the processing liquid upstream of the flow controller 27 is P1, and the fluid pressure (secondary fluid pressure) of the treatment liquid downstream of the flow controller 27 is P2. Since P1> P2 as described above, as shown in FIG. 4, the dissolvable amount of the gas component at P2 is smaller than the dissolvable amount at P1. For this reason, even if the dissolved gas component is G1 in the figure when the primary side hydraulic pressure P1 is, for example, an amount that does not generate bubbles, the gas component cannot be completely dissolved at the secondary side hydraulic pressure P2 and bubbles are generated. It can happen. Then, as the flow rate value controlled by the flow rate controller 27 is smaller, P2 is reduced, the differential pressure ΔP between P1 and P2 is increased, and bubbles are more likely to be generated.

そこで、本実施形態では、以下の制御フローにより、処理液からの気泡の発生を抑制する。
以下、図5のフローチャートに基づいて説明する。
まず、コントローラ30に、予め、処理液の液圧とその液圧の処理液に溶存可能な気体成分の量との関係を、処理液の種類毎に記憶しておく(ステップ1)、コントローラ30は、その関係から気泡が発生し始めるP1とP2との差圧値ΔPsを求め、ΔPs以下の値(ΔPsまたはその近傍の値)を閾値ΔPtとして設定する(ステップ2)。なお、閾値ΔPtをΔPs以下としたのは、ΔPsで制御した場合には、実際に気泡が発生することが起こり得るので、確実に気泡の発生を防止できる安全率の分ΔPsよりも低く設定することを考慮したものである。そして実際の差圧ΔPeを求め、その値が閾値ΔPtに達したか否かを判断する(ステップ3)。ΔPeがΔPtに達していないと判断した場合には、初期条件のまま流量制御器27により流量を制御しつつ処理液を供給する(ステップ4)。
Therefore, in the present embodiment, the generation of bubbles from the processing liquid is suppressed by the following control flow.
Hereinafter, description will be made based on the flowchart of FIG.
First, the controller 30 stores in advance the relationship between the liquid pressure of the processing liquid and the amount of the gas component that can be dissolved in the processing liquid at the liquid pressure (step 1). Determines a differential pressure value ΔPs between P1 and P2 at which bubbles start to be generated from the relationship, and sets a value equal to or less than ΔPs (ΔPs or a value near it) as a threshold value ΔPt (step 2). Note that the threshold value ΔPt is set to be equal to or smaller than ΔPs. When the control is performed with ΔPs, bubbles may actually be generated. Therefore, the threshold value ΔPt is set lower than the safety factor ΔPs that can surely prevent the generation of bubbles. Is taken into account. Then, the actual differential pressure ΔPe is obtained, and it is determined whether or not the value has reached the threshold value ΔPt (step 3). When it is determined that ΔPe has not reached ΔPt, the processing liquid is supplied while controlling the flow rate with the flow rate controller 27 with the initial condition (step 4).

一方、ΔPeがΔPtに達したと判断した場合には、処理液の気泡の発生を抑制するように制御する。具体的には、ΔPeがΔPtに達したと判断した場合に、圧力制御バルブ24に信号を送って一次側の液圧を低下させ、流量制御可能な範囲でΔPeを減少させる(ステップ5)。そして再びステップ3の判断を行い、ΔPeがΔPtに達しなくなるまでステップ5を繰り返す。ΔPeがΔPtに達しない状態となった場合には、ステップ5によりその変更した条件で流量制御器27により流量を制御しつつ処理液を供給する。   On the other hand, when it is determined that ΔPe has reached ΔPt, control is performed to suppress the generation of bubbles in the processing liquid. Specifically, when it is determined that ΔPe has reached ΔPt, a signal is sent to the pressure control valve 24 to reduce the primary hydraulic pressure, and ΔPe is decreased within a flow controllable range (step 5). Then, the determination in step 3 is performed again, and step 5 is repeated until ΔPe does not reach ΔPt. When ΔPe does not reach ΔPt, the processing liquid is supplied while the flow rate is controlled by the flow rate controller 27 under the changed condition in step 5.

ΔPeを減少させすぎて流量制御可能な範囲を外れると流量制御が行えないので、流量制御可能な最小限の値であるΔPmin以上の所定の値であるΔPn以上の範囲にΔPeが減少するようにする。なお、ΔPnをΔPmin以上としたのは、ΔPminで制御した場合には、実際に流量制御ができないことが起こり得るので、確実に流量制御が行える安全率の分ΔPminよりも高く設定することを考慮したものである。実際には、流量制御できないことが生じ難くなるようにΔPnから十分マージンをもってΔPeの減少量を設定することが好ましい。   Since the flow rate control cannot be performed if ΔPe is decreased too much and the flow rate control is out of the range, ΔPe is reduced to a range equal to or greater than ΔPn which is a predetermined value equal to or greater than ΔPmin which is the minimum value capable of flow rate control. To do. The reason why ΔPn is set to be equal to or greater than ΔPmin is that if the control is performed with ΔPmin, it is possible that the flow rate control cannot actually be performed. It is a thing. In practice, it is preferable to set the amount of decrease of ΔPe with a sufficient margin from ΔPn so that it becomes difficult to cause the flow rate control.

このときの差圧の関係を図6に示す。図6のΔPmaxは流量制御可能な最大の差圧値を示すものであり、ΔPsからΔPmaxの範囲は気泡が発生する範囲である。   The relationship of the differential pressure at this time is shown in FIG. ΔPmax in FIG. 6 indicates the maximum differential pressure value at which the flow rate can be controlled, and the range from ΔPs to ΔPmax is a range in which bubbles are generated.

なお、流量制御の過程で、差圧PeがΔPminより小さくなると流量制御が行えなくなるので、ΔPeが所定の安全率を加えたΔPnに減少した際に、ΔPeをΔPtより小さい所定の値に増加させるように制御することが好ましい。   In the flow rate control process, if the differential pressure Pe becomes smaller than ΔPmin, the flow rate control cannot be performed. Therefore, when ΔPe decreases to ΔPn with a predetermined safety factor added, ΔPe is increased to a predetermined value smaller than ΔPt. It is preferable to control as described above.

上記図5の手順では十分に一次側の液圧を低下させることができず、差圧がΔPtより低くなり難い場合が存在するときには、図7に示すような制御を行う。ここでは、図5のステップ1、2と同様のステップ11、12を行った後、ステップ3と同様に、ΔPeがΔPtに達したか否かを判断する(ステップ13)。ΔPeがΔPtに達していないと判断した場合には、ステップ4と同様、初期条件のまま流量制御器27により流量を制御しつつ処理液を供給する(ステップ14)。ΔPeがΔPtに達したと判断した場合には、圧力制御バルブ24に信号を送って一次側の液圧を低下させ、流量制御可能な範囲でΔPeを減少させる(ステップ15)。これを所定回数繰り返したか否かを判断し(ステップ16)、その繰り返し数が所定回数に達してもΔPeがΔPtよりも低くならない場合には、脱気機構25を作動させ、処理液中の気体成分自体を減少させて気泡の発生を抑制するように制御する(ステップ17)。   When the primary side hydraulic pressure cannot be sufficiently reduced by the procedure of FIG. 5 and there is a case where the differential pressure is unlikely to be lower than ΔPt, the control as shown in FIG. 7 is performed. Here, after performing Steps 11 and 12 similar to Steps 1 and 2 in FIG. 5, it is determined whether or not ΔPe has reached ΔPt as in Step 3 (Step 13). If it is determined that ΔPe has not reached ΔPt, the processing liquid is supplied while controlling the flow rate with the flow rate controller 27 with the initial conditions as in step 4 (step 14). If it is determined that ΔPe has reached ΔPt, a signal is sent to the pressure control valve 24 to decrease the primary hydraulic pressure, and ΔPe is decreased within a flow controllable range (step 15). It is determined whether or not this has been repeated a predetermined number of times (step 16). If ΔPe does not become lower than ΔPt even if the number of repetitions reaches the predetermined number of times, the deaeration mechanism 25 is activated and the gas in the processing liquid is Control is performed so as to suppress the generation of bubbles by reducing the components themselves (step 17).

また、図8に示す制御を行うこともできる。図8の制御においては、図5のステップ1、2と同様のステップ21、22を行った後、ステップ3と同様に、ΔPeがΔPtに達したか否かを判断する(ステップ23)。ΔPeがΔPtに達していないと判断した場合には、ステップ4と同様、初期条件のまま流量制御器27により流量を制御しつつ処理液を供給する(ステップ24)。ステップ23において、ΔPeがΔPtに達したと判断した場合に、脱気機構25を作動させ、処理液中の気体成分自体を減少させて気泡の発生を抑制するように制御する(ステップ25)。   Also, the control shown in FIG. 8 can be performed. In the control of FIG. 8, after performing Steps 21 and 22 similar to Steps 1 and 2 of FIG. 5, it is determined whether or not ΔPe has reached ΔPt as in Step 3 (Step 23). When it is determined that ΔPe has not reached ΔPt, the processing liquid is supplied while controlling the flow rate with the flow rate controller 27 with the initial conditions as in step 4 (step 24). In step 23, when it is determined that ΔPe has reached ΔPt, the deaeration mechanism 25 is operated to control the generation of bubbles by reducing the gas component itself in the processing liquid (step 25).

以上のように、本実施形態では、処理液の液圧と溶存可能な気体成分の量との関係を予め記憶しておき、処理液から気泡が発生し始める一次側液圧P1と二次側液圧P2との差圧ΔPsを求め、この差圧ΔPsの値以下の閾値ΔPtを設定し、実際に求められた差圧ΔPeの値が閾値ΔPtに達したか否かを判断し、実際に求められた差圧ΔPeの値が閾値ΔPtに達したと判断した場合に、処理液の気泡の発生を抑制する処理を行うので、常時処理液を脱気する際のような不都合を生じさせることがなく、常に流量制御器において気泡が発生しない状態として、流量制御器における気泡の発生を確実に防止することができる。このため、流量制御に誤差が発生することを防止することができ、正確な流量制御を行うことができる。   As described above, in the present embodiment, the relationship between the liquid pressure of the processing liquid and the amount of gas components that can be dissolved is stored in advance, and the primary hydraulic pressure P1 and the secondary side where bubbles start to be generated from the processing liquid are stored. A differential pressure ΔPs with respect to the hydraulic pressure P2 is obtained, a threshold value ΔPt equal to or smaller than the value of the differential pressure ΔPs is set, and it is determined whether or not the actually obtained differential pressure ΔPe has reached the threshold value ΔPt. When it is determined that the value of the obtained differential pressure ΔPe has reached the threshold value ΔPt, processing for suppressing the generation of bubbles in the processing liquid is performed, so that inconveniences such as constantly degassing the processing liquid are caused. Therefore, it is possible to reliably prevent the generation of bubbles in the flow rate controller in a state where bubbles are not always generated in the flow rate controller. For this reason, it can prevent that an error generate | occur | produces in flow control, and can perform exact flow control.

なお、図7、図8の場合には、従来と同様、脱気機構25を作動させるが、従来とは異なり常時作動しているわけではないので、処理液への悪影響はほとんど生じない。   7 and 8, the deaeration mechanism 25 is operated as in the conventional case. However, unlike the conventional case, the deaeration mechanism 25 is not always operated, so that there is almost no adverse effect on the processing liquid.

次に、本発明の他の実施形態について説明する。
図9は、本発明の他の実施形態に係る液処理装置の処理液供給機構を示す概略構成図である。ここでは、一次側の調圧機構として、圧力制御バルブ24を設ける代わりに、調圧可能な加圧式中間タンク61を設ける。この中間タンク61は、加圧配管62が挿入されており、圧力調節器63により加圧配管62からの加圧ガスのガス圧を変化させることにより、流量制御器27の上流側の一次側液圧P1を調節することができる。また、中間タンク61には減圧配管64が挿入されており、それに接続された真空ポンプ65を作動させることにより、処理液の真空脱気も可能となっている。したがって、このような加圧式中間タンク61を設けることにより、一次側液圧P1を低下させて差圧を低下させることによる気泡発生の防止、および処理液を脱気することによる気泡発生の防止、およびこれらの併用による気泡発生の防止のいずれかを行うことができる。
Next, another embodiment of the present invention will be described.
FIG. 9 is a schematic configuration diagram showing a processing liquid supply mechanism of a liquid processing apparatus according to another embodiment of the present invention. Here, instead of providing the pressure control valve 24 as the primary side pressure adjusting mechanism, a pressurizing intermediate tank 61 capable of adjusting pressure is provided. The intermediate tank 61 has a pressurization pipe 62 inserted therein, and by changing the gas pressure of the pressurization gas from the pressurization pipe 62 by the pressure regulator 63, the primary side liquid upstream of the flow rate controller 27. The pressure P1 can be adjusted. Further, a decompression pipe 64 is inserted in the intermediate tank 61, and the processing liquid can be evacuated by operating a vacuum pump 65 connected thereto. Therefore, by providing such a pressurized intermediate tank 61, the primary side hydraulic pressure P1 is reduced to reduce the differential pressure, and the generation of bubbles by degassing the treatment liquid is prevented. In addition, it is possible to perform any of the prevention of the generation of bubbles by the combined use thereof.

なお、本発明は、上記実施形態に限定されることなく、種々変形可能である。例えば、上記実施形態では、1つの処理液を供給する処理液供給機構を示したが、処理液の種類は2つ以上であってもよく、その場合には、例えば処理液タンクおよび処理液供給配管を複数設ければよい。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, in the above-described embodiment, the processing liquid supply mechanism that supplies one processing liquid is shown. However, the number of processing liquids may be two or more. In that case, for example, the processing liquid tank and the processing liquid supply A plurality of pipes may be provided.

さらに、上記実施形態では、被処理基板として半導体ウエハを適用した場合について示したが、これに限るものではなく、例えば液晶表示装置用ガラス基板に代表されるフラットパネル表示装置用基板等、他の基板にも適用可能である。   Furthermore, in the said embodiment, although shown about the case where a semiconductor wafer was applied as a to-be-processed substrate, it is not restricted to this, For example, other substrates, such as a flat panel display substrate represented by the glass substrate for liquid crystal display devices, It can also be applied to a substrate.

1;液処理装置
2;処理部
3;処理液供給機構
11;処理チャンバ
12;スピンチャック
13;モータ
14;ノズル
21;処理液タンク
22;処理液供給配管
24;圧力制御バルブ(調圧機構)
25;脱気機構
26;一次側圧力検出器
27;流量制御器
28;二次側圧力検出器
30;コントローラ
35;ポンプ
41;本体
42;流路
45;可変オリフィス
46;流量調節部材
47;アクチュエータ
50;全体制御部
51;プロセスコントローラ
52;ユーザーインターフェース
53;記憶部(記憶媒体)
61;加圧式中間タンク
62;加圧配管
63;圧力調整器
64;減圧配管
65;真空ポンプ
W;半導体ウエハ(被処理基板)
DESCRIPTION OF SYMBOLS 1; Liquid processing apparatus 2; Processing part 3; Processing liquid supply mechanism 11; Processing chamber 12; Spin chuck 13; Motor 14; Nozzle 21; Processing liquid tank 22; Processing liquid supply piping 24;
25; Deaeration mechanism 26; Primary pressure detector 27; Flow controller 28; Secondary pressure detector 30; Controller 35; Pump 41; Main body 42; Flow path 45; Variable orifice 46; 50; Overall control unit 51; Process controller 52; User interface 53; Storage unit (storage medium)
61; pressurization type intermediate tank 62; pressurization pipe 63; pressure regulator 64; decompression pipe 65; vacuum pump W; semiconductor wafer (substrate to be processed)

Claims (13)

被処理体に対して液処理を行う際に、被処理体に処理液を供給する処理液供給機構であって、
処理液供給源と、
前記処理液供給源から処理液を供給する処理液供給配管と、
前記処理液供給配管に設けられ、前記処理液の通流断面積を変化させる可変オリフィス部を有する流量制御器と、
前記可変オリフィス部より前段の一次側の液圧および前記可変オリフィス部より後段の二次側の液圧を求める圧力検出機構と、
予め記憶された、処理液の液圧とその液圧の処理液に溶存可能な気体成分の量との関係から、前記処理液から気泡が発生し始める前記一次側の液圧と前記二次側の液圧との差圧ΔPsを求め、この差圧ΔPsの値以下の閾値ΔPtを設定し、実際に求められた前記一次側の液圧と前記二次側の液圧との差圧ΔPeの値が前記閾値ΔPtに達したか否かを判断し、実際に求められた差圧ΔPeの値が前記閾値ΔPtに達したと判断した場合に、前記処理液の気泡の発生を抑制するように処理液の状態を制御する制御機構と
を具備することを特徴とする処理液供給機構。
A processing liquid supply mechanism for supplying a processing liquid to a target object when performing liquid processing on the target object,
A treatment liquid supply source;
A treatment liquid supply pipe for supplying a treatment liquid from the treatment liquid supply source;
A flow rate controller provided in the processing liquid supply pipe and having a variable orifice section for changing a flow cross-sectional area of the processing liquid;
A pressure detection mechanism for obtaining a hydraulic pressure on the primary side upstream from the variable orifice portion and a hydraulic pressure on the secondary side downstream from the variable orifice portion;
From the relationship between the liquid pressure of the processing liquid stored in advance and the amount of the gas component that can be dissolved in the processing liquid at the liquid pressure, the liquid pressure on the primary side and the secondary side that start to generate bubbles from the processing liquid And a threshold value ΔPt that is equal to or smaller than the value of the differential pressure ΔPs is set, and the actual pressure difference ΔPe between the primary hydraulic pressure and the secondary hydraulic pressure is determined. It is determined whether or not the value has reached the threshold value ΔPt, and when it is determined that the actually obtained differential pressure ΔPe has reached the threshold value ΔPt, the generation of bubbles in the processing liquid is suppressed. And a control mechanism for controlling the state of the processing liquid.
前記一次側の処理液の圧力を調節する調圧機構をさらに具備し、前記制御機構は、前記実際に求められた差圧ΔPeの値が前記閾値ΔPtに達したと判断した場合に、前記差圧の値が前記閾値ΔPtより低くなるように、前記調圧機構の圧力調節を制御することにより処理液の状態を制御することを特徴とする請求項1に記載の処理液供給機構。   The pressure control mechanism further adjusts the pressure of the processing liquid on the primary side, and the control mechanism determines that the difference when the value of the actually obtained differential pressure ΔPe has reached the threshold value ΔPt. The processing liquid supply mechanism according to claim 1, wherein the state of the processing liquid is controlled by controlling pressure adjustment of the pressure adjusting mechanism so that a pressure value becomes lower than the threshold value ΔPt. 前記一次側の処理液を脱気する脱気機構をさらに具備し、前記制御機構は、前記実際に求められた差圧ΔPeの値が前記閾値ΔPtに達したと判断した場合に、前記差圧の値が前記閾値ΔPtより低くなるように、前記脱気機構による脱気を制御することにより処理液の状態を制御することを特徴とする請求項1に記載の処理液供給機構。   A degassing mechanism for degassing the primary processing solution, and the control mechanism determines that the differential pressure ΔPe has reached the threshold value ΔPt when the value of the actually determined differential pressure ΔPe has reached the threshold value ΔPt; 2. The processing liquid supply mechanism according to claim 1, wherein the state of the processing liquid is controlled by controlling the deaeration by the deaeration mechanism so that the value of is lower than the threshold value ΔPt. 前記一次側の処理液の圧力を調節する調圧機構と、前記一次側の処理液を脱気する脱気機構をさらに具備し、前記制御機構は、前記実際に求められた差圧ΔPeの値が前記閾値ΔPtに達したと判断した場合に、前記調圧機構の圧力調節を制御することにより処理液の状態を制御し、前記調圧機構の制御だけでは前記差圧が前記閾値ΔPtより低くならない場合に、前記脱気機構を作動させて前記差圧の値が前記閾値ΔPtより低くなるように制御することにより処理液の状態を制御することを特徴とする請求項1に記載の処理液供給機構。   A pressure adjusting mechanism for adjusting the pressure of the primary-side treatment liquid; and a deaeration mechanism for degassing the primary-side treatment liquid, wherein the control mechanism has a value of the differential pressure ΔPe actually obtained. When the pressure reaches the threshold value ΔPt, the pressure of the pressure adjusting mechanism is controlled to control the state of the processing liquid, and the pressure difference is lower than the threshold value ΔPt only by controlling the pressure adjusting mechanism. 2. The processing liquid according to claim 1, wherein the state of the processing liquid is controlled by operating the deaeration mechanism and controlling the value of the differential pressure to be lower than the threshold value ΔPt when not. Supply mechanism. 前記調圧機構は、前記処理液供給配管の一次側に設けられた、処理液の圧力を制御する圧力制御バルブを有することを特徴とする請求項2または請求項4に記載の処理液供給機構。   5. The processing liquid supply mechanism according to claim 2, wherein the pressure adjusting mechanism includes a pressure control valve provided on a primary side of the processing liquid supply pipe to control the pressure of the processing liquid. . 前記調圧機構は、前記処理液供給配管の一次側に設けられ、前記処理液が一旦貯留され、処理液の送出圧力を変化させることが可能な中間タンクを有することを特徴とする請求項2に記載の処理液供給機構。   3. The pressure adjusting mechanism is provided on a primary side of the processing liquid supply pipe, and has an intermediate tank in which the processing liquid is temporarily stored and a processing liquid delivery pressure can be changed. The processing liquid supply mechanism described in 1. 前記中間タンクは、その中を脱気する脱気機構を有することを特徴とする請求項6に記載の処理液供給機構。   The processing liquid supply mechanism according to claim 6, wherein the intermediate tank has a degassing mechanism for degassing the inside thereof. 被処理体に対して液処理を行う際に、被処理体に処理液を供給する処理液供給方法であって、
処理液供給源から配管を介して基板に供給される処理液の通流断面積を変化させる可変オリフィス部を有する流量制御器により流量を制御しつつ処理液を供給する工程と、
前記可変オリフィス部より前段の一次側の液圧および前記可変オリフィス部より後段の二次側の液圧を求める工程と、
処理液の液圧とその液圧の処理液に溶存可能な気体成分の量との関係から、前記処理液から気泡が発生し始める前記一次側の液圧と前記二次側の液圧との差圧ΔPsを求め、この差圧ΔPsの値以下の閾値ΔPtを設定する工程と、
実際に求められた前記一次側の液圧と前記二次側の液圧との差圧ΔPeの値が前記閾値ΔPtに達したか否かを判断する工程と、
実際に求められた差圧ΔPeの値が前記閾値ΔPtに達したと判断した場合に、前記処理液の気泡の発生を抑制するように処理液の状態を制御する工程と
を有することを特徴とする処理液供給方法。
A processing liquid supply method for supplying a processing liquid to a target object when performing liquid processing on the target object,
Supplying the processing liquid while controlling the flow rate by a flow rate controller having a variable orifice part that changes the flow cross-sectional area of the processing liquid supplied from the processing liquid supply source to the substrate via the pipe;
Obtaining a primary side hydraulic pressure upstream of the variable orifice and a secondary secondary hydraulic pressure downstream of the variable orifice;
From the relationship between the liquid pressure of the treatment liquid and the amount of the gas component that can be dissolved in the treatment liquid at the liquid pressure, the liquid pressure on the primary side and the liquid pressure on the secondary side where bubbles start to be generated from the treatment liquid. Obtaining a differential pressure ΔPs and setting a threshold value ΔPt equal to or less than the value of the differential pressure ΔPs;
Determining whether the value of the differential pressure ΔPe between the primary side hydraulic pressure and the secondary side hydraulic pressure actually obtained has reached the threshold value ΔPt;
And a step of controlling the state of the processing liquid so as to suppress the generation of bubbles of the processing liquid when it is determined that the value of the actually obtained differential pressure ΔPe has reached the threshold value ΔPt. Processing liquid supply method.
前記制御する工程は、前記実際に求められた差圧ΔPeの値が前記閾値ΔPtに達したと判断した場合に、前記差圧の値が前記閾値ΔPtより低くなるように、前記一次側の処理液の圧力を調節することを特徴とする請求項8に記載の処理液供給方法。   In the controlling step, when it is determined that the value of the actually obtained differential pressure ΔPe has reached the threshold value ΔPt, the primary side processing is performed so that the differential pressure value becomes lower than the threshold value ΔPt. The processing liquid supply method according to claim 8, wherein the pressure of the liquid is adjusted. 前記制御する工程は、前記実際に求められた差圧ΔPeの値が前記閾値ΔPtに達したと判断した場合に、前記差圧の値が前記閾値ΔPtより低くなるように、前記一次側の処理液を脱気することを特徴とする請求項8に記載の処理液供給方法。   In the controlling step, when it is determined that the value of the actually obtained differential pressure ΔPe has reached the threshold value ΔPt, the primary side processing is performed so that the differential pressure value becomes lower than the threshold value ΔPt. The process liquid supply method according to claim 8, wherein the liquid is degassed. 前記制御する工程は、前記実際に求められた差圧ΔPeの値が前記閾値ΔPtに達したと判断した場合に、前記一次側の処理液の圧力を調節し、それだけでは前記差圧が前記閾値ΔPtより低くならない場合に、前記一次側の処理液を脱気して前記差圧が前記閾値ΔPtより低くなるようにすることを特徴とする請求項8に記載の処理液供給方法。   The controlling step adjusts the pressure of the processing liquid on the primary side when it is determined that the value of the actually obtained differential pressure ΔPe has reached the threshold value ΔPt. 9. The processing liquid supply method according to claim 8, wherein when the pressure does not become lower than ΔPt, the processing liquid on the primary side is deaerated so that the differential pressure becomes lower than the threshold value ΔPt. 基板に液処理を施す基板処理部と、
前記基板処理部に処理液を供給する処理液供給機構と
を具備し、
前記処理液供給機構は、請求項1から請求項7のいずれかに記載されたものであることを特徴とする液処理装置。
A substrate processing unit for performing liquid processing on the substrate;
A processing liquid supply mechanism for supplying a processing liquid to the substrate processing unit;
The liquid processing apparatus according to claim 1, wherein the processing liquid supply mechanism is the one described in any one of claims 1 to 7.
コンピュータ上で動作し、処理液供給機構を制御するためのプログラムが記憶された記憶媒体であって、前記プログラムは、実行時に、請求項8から請求項11のいずれか1項の処理液供給方法が行われるようにコンピュータに処理装置を制御させることを特徴とする記憶媒体。
12. A storage medium that operates on a computer and stores a program for controlling a processing liquid supply mechanism, wherein the program is executed at the time of execution. A storage medium that causes a computer to control a processing device so that the processing is performed.
JP2009059573A 2009-03-12 2009-03-12 Processing liquid supply mechanism, processing liquid supply method, liquid processing apparatus, and storage medium Expired - Fee Related JP5337541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009059573A JP5337541B2 (en) 2009-03-12 2009-03-12 Processing liquid supply mechanism, processing liquid supply method, liquid processing apparatus, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009059573A JP5337541B2 (en) 2009-03-12 2009-03-12 Processing liquid supply mechanism, processing liquid supply method, liquid processing apparatus, and storage medium

Publications (2)

Publication Number Publication Date
JP2010212598A true JP2010212598A (en) 2010-09-24
JP5337541B2 JP5337541B2 (en) 2013-11-06

Family

ID=42972444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009059573A Expired - Fee Related JP5337541B2 (en) 2009-03-12 2009-03-12 Processing liquid supply mechanism, processing liquid supply method, liquid processing apparatus, and storage medium

Country Status (1)

Country Link
JP (1) JP5337541B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014161927A (en) * 2013-02-21 2014-09-08 Ebara Corp Abrasive liquid supply device, and substrate treatment device
WO2022014329A1 (en) * 2020-07-13 2022-01-20 東京エレクトロン株式会社 Liquid treatment device, liquid supply mechanism, liquid treatment method, and computer storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122403A (en) * 1990-09-11 1992-04-22 Ckd Corp Feeder of liquid and defoaming method
JPH09260332A (en) * 1996-03-18 1997-10-03 Dainippon Screen Mfg Co Ltd Chemical liquid supplier of substrate processor
JP2000077324A (en) * 1998-06-15 2000-03-14 Tokyo Electron Ltd Feeding system and method of treatment solution, treatment apparatus, and intermediate storing mechanism
JP2002246357A (en) * 2001-02-15 2002-08-30 Sony Corp Cleaning equipment
JP2004049945A (en) * 2002-07-16 2004-02-19 Kurita Water Ind Ltd Apparatus and method for supplying liquid
WO2004094105A1 (en) * 2003-04-24 2004-11-04 Nikon Corporation Vacuum suction holding apparatus and method, grinding apparatus using the holding apparatus, and device producing method using the grinding apparatus
JP2005175183A (en) * 2003-12-11 2005-06-30 Kitz Sct:Kk Liquid-pressurizing mechanism, and apparatus and method for controlling liquid using it
JP2005175058A (en) * 2003-12-09 2005-06-30 Dainippon Screen Mfg Co Ltd Substrate processing apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122403A (en) * 1990-09-11 1992-04-22 Ckd Corp Feeder of liquid and defoaming method
JPH09260332A (en) * 1996-03-18 1997-10-03 Dainippon Screen Mfg Co Ltd Chemical liquid supplier of substrate processor
JP2000077324A (en) * 1998-06-15 2000-03-14 Tokyo Electron Ltd Feeding system and method of treatment solution, treatment apparatus, and intermediate storing mechanism
JP2002246357A (en) * 2001-02-15 2002-08-30 Sony Corp Cleaning equipment
JP2004049945A (en) * 2002-07-16 2004-02-19 Kurita Water Ind Ltd Apparatus and method for supplying liquid
WO2004094105A1 (en) * 2003-04-24 2004-11-04 Nikon Corporation Vacuum suction holding apparatus and method, grinding apparatus using the holding apparatus, and device producing method using the grinding apparatus
JP2005175058A (en) * 2003-12-09 2005-06-30 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2005175183A (en) * 2003-12-11 2005-06-30 Kitz Sct:Kk Liquid-pressurizing mechanism, and apparatus and method for controlling liquid using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014161927A (en) * 2013-02-21 2014-09-08 Ebara Corp Abrasive liquid supply device, and substrate treatment device
WO2022014329A1 (en) * 2020-07-13 2022-01-20 東京エレクトロン株式会社 Liquid treatment device, liquid supply mechanism, liquid treatment method, and computer storage medium
KR20230038232A (en) 2020-07-13 2023-03-17 도쿄엘렉트론가부시키가이샤 Liquid processing device, liquid supply mechanism, liquid processing method, and computer storage medium
JP7434564B2 (en) 2020-07-13 2024-02-20 東京エレクトロン株式会社 Liquid processing device, liquid supply mechanism, liquid processing method, and computer storage medium

Also Published As

Publication number Publication date
JP5337541B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
KR100745372B1 (en) Method and appratus for monitoring mass flow amount in semiconductor production device
JP5391190B2 (en) Method and apparatus for controlling exhaust gas flow rate in processing chamber
US20180142808A1 (en) Water piping system with slam mitigation function of check valve, and control method therefor
KR101934237B1 (en) Substrate processing apparatus, substrate processing method and storage medium
TWI644344B (en) Processing liquid supply device, substrate processing system, and processing liquid supply method
EP1837894B1 (en) Process liquid supply system, process liquid supply method, and storage medium
US20110108128A1 (en) Vacuum treatment apparatus and gas supply method
JP5337541B2 (en) Processing liquid supply mechanism, processing liquid supply method, liquid processing apparatus, and storage medium
US20050081605A1 (en) Vacuum leakage detecting device for use in semiconductor manufacturing system
JP2010059483A (en) Gas treatment apparatus, gas treatment method, and storage medium
JP2008277666A (en) Valve switching operation checking method, gas processing apparatus, and storage medium
CN101807005A (en) Treating fluid feed system and treating fluid supply method
JP5215831B2 (en) Pressure control device and flow rate control device
JP2006156320A (en) Stopping method of gas consumption apparatus
JP2006026546A (en) Treating liquid supply system
JP4658248B2 (en) Chemical supply system
JP2017028112A (en) Substrate processing apparatus
KR102087773B1 (en) Mixed liquid supply equipment
JP2009130308A (en) Surface processing apparatus
US20240096650A1 (en) Substrate processing apparatus and substrate processing method
JP2011127519A (en) Control device and control method of compressor
KR20180122389A (en) Substrate processing method and substrate processing apparatus
JP2008159903A (en) Substrate treating equipment
JP2008196728A (en) Hot water storage type water heater
CN115602575A (en) Etching apparatus and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5337541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees