JP2010210459A - Resistance measuring device - Google Patents

Resistance measuring device Download PDF

Info

Publication number
JP2010210459A
JP2010210459A JP2009057442A JP2009057442A JP2010210459A JP 2010210459 A JP2010210459 A JP 2010210459A JP 2009057442 A JP2009057442 A JP 2009057442A JP 2009057442 A JP2009057442 A JP 2009057442A JP 2010210459 A JP2010210459 A JP 2010210459A
Authority
JP
Japan
Prior art keywords
voltage
value
current
measurement
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009057442A
Other languages
Japanese (ja)
Other versions
JP5350025B2 (en
Inventor
Tatsuya Sato
佐藤  達也
Takayuki Terajima
隆幸 寺島
Toshimasa Azuma
俊征 吾妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2009057442A priority Critical patent/JP5350025B2/en
Publication of JP2010210459A publication Critical patent/JP2010210459A/en
Application granted granted Critical
Publication of JP5350025B2 publication Critical patent/JP5350025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To surely detect only a rapid variation with time of voltage caused by a contact failure of a probe. <P>SOLUTION: A resistance measuring device includes: a current supply part 5 for supplying measurement current I1 to a measurement target 2 through current supply probes 3a and 3b; a voltage measurement part 6 for measuring voltage (input voltage) V2 input through voltage detection probes 4a and 4b connected with both ends of the measurement target 2; and a processing part 8 for integrating voltage values of the voltage V2 over a predefined integration section and also calculating an average voltage value of the voltage V2 over the integration section based on an integral value obtained by the integration to calculate resistance R of the measurement target 2, based on the average voltage value and a current value of the measurement current I1. The processing part 8 calculates a differential value B of the voltage value of the voltage V2 in the integration section per unit time, also compares it with a predetermined reference value A, and outputs the comparison result. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、測定対象体に接触させる電流供給プローブおよび電圧検出プローブの接触不良を検出可能に構成された抵抗測定装置に関するものである。   The present invention relates to a resistance measuring apparatus configured to detect a contact failure between a current supply probe and a voltage detection probe that are brought into contact with a measurement object.

この種の抵抗測定装置として、下記特許文献1に開示された抵抗測定装置が知られている。この抵抗測定装置は、直流電流源から供給されている定電流に基づいて抵抗の両端に生じた電圧若しくはこの電圧に比例する電圧を経時的に取り込んで時分割する時分割手段と、時分割された各電圧の最小値を保持する最小値保持手段と、時分割された各電圧の最大値を保持する最大値保持手段と、所定の測定周期後に両保持手段に保持された最小値および最大値の差値を演算する差値演算手段と、この差値が所定の基準値よりも大きければ測定無効を判定する無効判定手段とを備えている。   As this type of resistance measuring device, a resistance measuring device disclosed in Patent Document 1 below is known. This resistance measuring apparatus includes time-division means for taking time-division by taking in time a voltage generated at both ends of the resistor based on a constant current supplied from a DC current source or a voltage proportional to the voltage, and time-division. Minimum value holding means for holding the minimum value of each voltage, maximum value holding means for holding the maximum value of each time-divided voltage, and minimum and maximum values held in both holding means after a predetermined measurement cycle Difference value calculating means for calculating a difference value between the two and an invalidity determining means for determining that the measurement is invalid if the difference value is larger than a predetermined reference value.

この抵抗測定において、抵抗に定電流を供給するために使用されるプローブと抵抗両端との間、および抵抗両端に生じた電圧を測定するために使用されるプローブとこの抵抗両端との間のうちの少なくとも1つに接触不良が生じたときには、測定される抵抗両端に生じる電圧の経時的変動が大きくなることから、この変動する電圧についての最大値と最小値との差値もまた大きくなる。このため、この抵抗測定装置では、この差値が基準値よりも大きくなったときにプローブに接触不良が発生していると判定することにより、かなりの高い確率でプローブに発生した接触不良を検出することが可能となっている。   In this resistance measurement, between the probe used to supply a constant current to the resistor and both ends of the resistor, and between the probe used to measure the voltage generated across the resistor and both ends of the resistor. When a contact failure occurs in at least one of the resistors, the time-dependent fluctuation of the voltage generated across the resistance to be measured increases, so that the difference value between the maximum value and the minimum value of the changing voltage also increases. For this reason, in this resistance measurement device, when this difference value becomes larger than the reference value, it is determined that a contact failure has occurred in the probe, and a contact failure occurring in the probe is detected with a very high probability. It is possible to do.

特開平3−231162号公報(第3−4頁、第1図)JP-A-3-2311162 (page 3-4, FIG. 1)

ところが、上記の抵抗測定装置には、以下の解決すべき課題が存在している。すなわち、この種の抵抗測定装置では、測定している抵抗両端間の電圧に商用電源のハムノイズが漏れ込む場合がある。このハムノイズについては、周期的であるため、時分割された電圧を例えばハムノイズの周期と同じ長さの区間に亘って積分することにより、簡単、かつ確実にキャンセルすることが可能である。しかしながら、上記の抵抗測定装置において測定される抵抗の両端に生じた電圧若しくはこの電圧に比例する電圧についての最大値および最小値、並びにそれらの差値は、ハムノイズの影響を受けて変動する。このため、上記の抵抗測定装置には、プローブの接触不良に起因した電圧の急激な経時的変動だけでなく、このようにして簡単にキャンセルし得るハムノイズの漏れ込みに起因した電圧の周期的な経時的変動よっても誤って測定無効と判定するという解決すべき課題が存在している。   However, the resistance measuring apparatus has the following problems to be solved. That is, in this type of resistance measuring device, hum noise of a commercial power supply may leak into the voltage across the resistance being measured. Since this hum noise is periodic, it can be easily and reliably canceled by integrating the time-division voltage over a section having the same length as the hum noise period, for example. However, the maximum value and the minimum value of the voltage generated at both ends of the resistance measured in the resistance measuring apparatus or the voltage proportional to the voltage, and the difference value thereof vary under the influence of hum noise. For this reason, the resistance measuring device described above not only has a rapid temporal variation in voltage due to poor contact of the probe, but also the periodicity of the voltage due to leakage of hum noise that can be easily canceled in this way. There is a problem to be solved in which it is erroneously determined that the measurement is invalid even if it varies over time.

本発明は、かかる課題を解決すべくなされたものであり、プローブの接触不良に起因した電圧の急激な経時的変動のみを確実に検出し得る抵抗測定装置を提供することを主目的とする。   The present invention has been made to solve such a problem, and a main object of the present invention is to provide a resistance measuring device that can reliably detect only a rapid temporal change in voltage due to poor contact of a probe.

上記目的を達成すべく請求項1記載の抵抗測定装置は、測定対象体に電流供給プローブを介して直流定電流を供給する電流供給部と、当該測定対象体の両端に接続された一対の電圧検出プローブを介して入力した入力電圧を測定する電圧測定部と、前記入力電圧の電圧値を予め規定された積分区間に亘って積分すると共に当該積分によって得られた積分値に基づいて当該積分区間における当該入力電圧の平均電圧値を算出して、当該平均電圧値と前記直流定電流の電流値とに基づいて当該測定対象体の抵抗を算出する処理部とを備え、前記処理部は、前記積分区間において前記入力電圧の電圧値についての微分値を単位時間毎に算出しつつ予め規定された基準値と比較して、その比較の結果を出力する。   In order to achieve the above object, the resistance measuring device according to claim 1 is a current supply unit that supplies a constant DC current to a measurement object via a current supply probe, and a pair of voltages connected to both ends of the measurement object. A voltage measuring unit for measuring an input voltage input via the detection probe; and integrating the voltage value of the input voltage over a predetermined integration interval and based on the integration value obtained by the integration A processing unit that calculates an average voltage value of the input voltage and calculates a resistance of the measurement object based on the average voltage value and a current value of the DC constant current, and the processing unit includes: In the integration interval, the differential value for the voltage value of the input voltage is calculated for each unit time and compared with a reference value defined in advance, and the comparison result is output.

請求項1記載の抵抗測定装置では、処理部が、電圧測定部によって測定された入力電圧の電圧値を予め規定された積分区間に亘って積分すると共にこの積分値に基づいて積分区間における平均電圧値を算出して、この算出した平均電圧値と直流定電流の電流値とに基づいて測定対象体の抵抗を算出する処理を実行する。また、処理部は、測定された入力電圧についての微分値を単位時間毎に算出しつつ予め規定された基準値と比較する処理を積分区間において実行して、その比較の結果を出力する。この場合、測定された入力電圧の急激な経時的変動は、各電流供給プローブおよび各電圧検出プローブのうちの少なくとも1つと、測定対象体との間に接触不良が発生したことに起因したものと考えられる。   In the resistance measurement device according to claim 1, the processing unit integrates the voltage value of the input voltage measured by the voltage measurement unit over a predetermined integration interval, and based on the integration value, the average voltage in the integration interval A value is calculated, and a process of calculating the resistance of the measurement object based on the calculated average voltage value and the current value of the DC constant current is executed. In addition, the processing unit executes a process of calculating a differential value for the measured input voltage for each unit time and comparing it with a predetermined reference value in the integration interval, and outputs a result of the comparison. In this case, the rapid change in the measured input voltage over time is caused by a contact failure between at least one of each current supply probe and each voltage detection probe and the measurement object. Conceivable.

したがって、この抵抗測定装置によれば、処理部から出力される比較の結果に基づいて、電圧測定部によって測定された入力電圧についての各プローブの接触不良に起因した急激な経時的変動のみを、ハムノイズに影響を受けることなく確実に検出することができる結果、接触不良の発生によって許容以上の誤差を含む抵抗値を、正常に測定された測定値であると誤認識するといった不具合を確実に防止することができる。   Therefore, according to this resistance measurement device, based on the comparison result output from the processing unit, only a rapid temporal change due to the contact failure of each probe with respect to the input voltage measured by the voltage measurement unit, As a result of reliable detection without being affected by hum noise, it is possible to reliably prevent problems such as erroneously recognizing resistance values that include errors beyond tolerance due to poor contact as measured values. can do.

抵抗測定装置1の構成図である。1 is a configuration diagram of a resistance measuring device 1. FIG. 電圧検出部6で検出される電圧V2の波形図である。6 is a waveform diagram of a voltage V2 detected by a voltage detection unit 6. FIG. 抵抗測定処理のフローチャートである。It is a flowchart of a resistance measurement process.

以下、添付図面を参照して、本発明に係る抵抗測定装置1の実施の形態について説明する。   Hereinafter, with reference to an accompanying drawing, an embodiment of resistance measuring device 1 concerning the present invention is described.

まず、抵抗測定装置1の構成について、図面を参照して説明する。   First, the configuration of the resistance measuring apparatus 1 will be described with reference to the drawings.

抵抗測定装置1は、図1に示すように、測定対象体2の抵抗(本例では一例として抵抗値R)を測定する装置であって、一対の電流供給プローブ3a,3b、一対の電圧検出プローブ4a,4b、電流供給部5、電圧検出部6、A/D変換部7、処理部8、記憶部9および出力部10を備えている。   As shown in FIG. 1, the resistance measuring device 1 is a device that measures the resistance of a measurement object 2 (in this example, a resistance value R), and includes a pair of current supply probes 3 a and 3 b and a pair of voltage detections. Probes 4a and 4b, a current supply unit 5, a voltage detection unit 6, an A / D conversion unit 7, a processing unit 8, a storage unit 9, and an output unit 10 are provided.

一対の電流供給プローブ3a,3bのうちの一の電流供給プローブ3aは、図1に示すように、電流供給部5に接続されて、測定対象体2の一方の端部2aに接触させられる。一方、他の電流供給プローブ3bは、グランドに接続されて、測定対象体2の他方の端部2bに接触させられる。一対の電圧検出プローブ4a,4bは、電圧検出部6の入力端子にそれぞれ接続されて、このうちの一の電圧検出プローブ4aが測定対象体2の一方の端部2aに接触させられ、他の電圧検出プローブ4bが測定対象体2の他方の端部2bに接触させられる。   One current supply probe 3 a of the pair of current supply probes 3 a and 3 b is connected to the current supply unit 5 and brought into contact with one end 2 a of the measurement object 2 as shown in FIG. 1. On the other hand, the other current supply probe 3 b is connected to the ground and brought into contact with the other end 2 b of the measurement object 2. The pair of voltage detection probes 4a and 4b are respectively connected to the input terminals of the voltage detection unit 6, and one of the voltage detection probes 4a is brought into contact with one end 2a of the measurement object 2, and the other The voltage detection probe 4 b is brought into contact with the other end 2 b of the measurement object 2.

電流供給部5は、一例として定電流源(直流定電流源)で構成されて、予め規定された電流値の測定電流(直流定電流)I1を電流供給プローブ3aを介して測定対象体2の一方の端部2aに供給する。測定対象体2に供給された測定電流I1は、測定対象体2の他方の端部2bに接触させられている電流供給プローブ3bを介してグランドに流出する。本例の電流供給部5は、測定電流I1の電流値を検出しつつ、測定電流I1に対するフィードバック制御を実行することにより、測定電流I1の電流値を予め規定された電流値に維持する。このため、測定対象体2の各端部2a,2bと各電流供給プローブ3a,3bとの間の接触抵抗が変動したとしても、電流供給部5によるフィードバック制御の応答可能な範囲内の速さ(例えばハムノイズの周期(50Hz〜60Hz)程度で変動する速さ)での変動である場合には、接触状態が維持され、かつ電流供給部5の出力電圧が上限値に達しない限りにおいて、測定電流I1は予め規定された電流値(定電流)に維持される。   The current supply unit 5 is configured by a constant current source (DC constant current source) as an example, and a measurement current (DC constant current) I1 having a predetermined current value is supplied to the measurement object 2 via the current supply probe 3a. Supply to one end 2a. The measurement current I1 supplied to the measurement object 2 flows out to the ground via the current supply probe 3b that is in contact with the other end 2b of the measurement object 2. The current supply unit 5 of this example maintains the current value of the measurement current I1 at a predetermined current value by performing feedback control on the measurement current I1 while detecting the current value of the measurement current I1. For this reason, even if the contact resistance between each end 2a, 2b of the measuring object 2 and each current supply probe 3a, 3b fluctuates, the speed within a range in which feedback control by the current supply unit 5 can be responded. In the case of fluctuations (for example, the speed at which the hum noise period (50 Hz to 60 Hz) fluctuates), the measurement is performed as long as the contact state is maintained and the output voltage of the current supply unit 5 does not reach the upper limit value. The current I1 is maintained at a predetermined current value (constant current).

電圧検出部6は、一例として入力段に演算増幅器を配置して構成されて、一対の入力端子間の入力インピーダンスが極めて高い値に規定されている。これにより、ノイズの影響を受けない状況下では、電圧検出プローブ4a,4b、電圧検出部6および測定対象体2で構成される電圧検出ループに電流が殆ど流れない状態で、測定対象体2の両端間に発生する電圧(両端間電圧)V1の検出が電圧検出部6によって実行される。また、電圧検出部6は、一対の入力端子間の電圧(本発明における入力電圧)V2を所定の増幅率で増幅することにより、A/D変換部7の入力電圧範囲に適合する電圧V3として出力する。この場合、上記したように、測定対象体2の各端部2a,2bと各電流供給プローブ3a,3bとの間の接触抵抗が変動したとしても、その変動の速さがハムノイズの周期程度で変動する速さ以下のときには、測定対象体2に流れる測定電流I1は電流供給部5によって一定の電流値に制御されるため、両端間電圧V1は測定対象体2の抵抗値に基づいて決定される一定の電圧値に維持される。これにより、上記したように電圧検出ループにノイズ(一例としてハムノイズ)が漏れ込まない状況下では、一対の入力端子間での電圧V2は両端間電圧V1と一致するが、電圧検出ループのインピーダンスが極めて高いため、通常は、電圧V2には、電圧検出ループにハムノイズ成分が漏れ込んだ状態になる。これにより、通常は、電圧検出部6の一対の入力端子間に印加される電圧V2は、図2に示すように、両端間電圧V1(直流電圧)にこのハムノイズ成分(周期T1の交流成分)が重畳した電圧となる。   As an example, the voltage detector 6 is configured by arranging an operational amplifier in the input stage, and the input impedance between the pair of input terminals is regulated to a very high value. As a result, under the condition that the measurement object 2 is not affected by noise, the current of the measurement object 2 does not flow in the voltage detection loop constituted by the voltage detection probes 4a and 4b, the voltage detection unit 6 and the measurement object 2. The voltage detection unit 6 detects the voltage (voltage between both ends) V1 generated between both ends. The voltage detector 6 amplifies a voltage (input voltage in the present invention) V2 between the pair of input terminals with a predetermined amplification factor, thereby obtaining a voltage V3 suitable for the input voltage range of the A / D converter 7. Output. In this case, as described above, even if the contact resistance between each end 2a, 2b of the measuring object 2 and each current supply probe 3a, 3b varies, the speed of the variation is about the hum noise period. When the speed is less than the fluctuation speed, the measurement current I1 flowing through the measurement object 2 is controlled to a constant current value by the current supply unit 5, and thus the voltage V1 between both ends is determined based on the resistance value of the measurement object 2. Constant voltage value. Thus, under the situation where noise (as an example, hum noise) does not leak into the voltage detection loop as described above, the voltage V2 between the pair of input terminals matches the voltage V1 between both ends, but the impedance of the voltage detection loop is Since it is extremely high, normally, the voltage V2 is in a state where a hum noise component leaks into the voltage detection loop. As a result, normally, the voltage V2 applied between the pair of input terminals of the voltage detector 6 is converted to the hum noise component (AC component of the cycle T1) in the voltage V1 (DC voltage) between both ends as shown in FIG. Is a superimposed voltage.

A/D変換部7は、サンプリングクロックSc(後述する積分区間T2よりも短い周期(好ましくは十分に短い周期)のクロック)に同期して、入力した電圧V3を所定の分解能でデジタルデータD1に変換して出力する。処理部8は、CPUで構成されて、A/D変換部7から出力されるデジタルデータD1に基づいて電圧検出部6に入力されている電圧V2を算出する電圧算出処理、算出した電圧V2の微分値Bを算出する微分処理、ハムノイズ成分を除去するための平均処理、および抵抗値算出処理などを実行する。記憶部9は、ROMおよびRAMで構成されて、処理部8のための動作プログラム、および微分値Bに対する基準値Aが予め記憶されている。また、記憶部9は、処理部8のワークメモリとしても機能する。出力部10は、一例として表示装置で構成されて、処理部8が実行した抵抗測定処理の結果を表示させる。   The A / D converter 7 synchronizes with the sampling clock Sc (clock having a cycle shorter than an integration interval T2, which will be described later (preferably a sufficiently short cycle)), and converts the input voltage V3 into digital data D1 with a predetermined resolution. Convert and output. The processing unit 8 is constituted by a CPU, and calculates a voltage V2 input to the voltage detection unit 6 based on the digital data D1 output from the A / D conversion unit 7, and calculates the calculated voltage V2. A differential process for calculating the differential value B, an average process for removing a hum noise component, a resistance value calculation process, and the like are executed. The storage unit 9 includes a ROM and a RAM, and stores an operation program for the processing unit 8 and a reference value A for the differential value B in advance. The storage unit 9 also functions as a work memory for the processing unit 8. The output unit 10 includes a display device as an example, and displays the result of the resistance measurement process executed by the processing unit 8.

次に、抵抗測定装置1の動作について図1〜図3を参照して説明する。なお、予め、一の電流供給プローブ3aおよび一の電圧検出プローブ4aが測定対象体2の一方の端部2aに接触させられ、かつ他の電流供給プローブ3bおよび他の電圧検出プローブ4bが測定対象体2の他方の端部2bに接触させられているものとする。   Next, operation | movement of the resistance measuring apparatus 1 is demonstrated with reference to FIGS. In addition, one current supply probe 3a and one voltage detection probe 4a are previously brought into contact with one end 2a of the measurement object 2, and the other current supply probe 3b and the other voltage detection probe 4b are measured. It is assumed that the body 2 is in contact with the other end 2b.

抵抗測定装置1では、作動状態において、電流供給部5が、測定対象体2に対する測定電流I1の供給を開始している。また、電圧検出部6が、一対の入力端子間の電圧V2を増幅して電圧V3としてA/D変換部7に出力する動作を開始し、A/D変換部7が、この電圧V3をデジタルデータD1に変換して出力する動作を開始している。この状態において、処理部8が、図3に示す抵抗測定処理50の実行を開始する。   In the resistance measuring apparatus 1, in the operating state, the current supply unit 5 starts supplying the measurement current I <b> 1 to the measurement object 2. In addition, the voltage detection unit 6 starts an operation of amplifying the voltage V2 between the pair of input terminals and outputting the voltage V3 to the A / D conversion unit 7, and the A / D conversion unit 7 converts the voltage V3 to digital. The operation of converting to data D1 and outputting is started. In this state, the processing unit 8 starts executing the resistance measurement process 50 shown in FIG.

この抵抗測定処理50では、処理部8は、まず、積分区間T2の計測(時間計測)を開始する。この積分区間T2は、一例として、電圧V2に漏れ込むことが想定されるハムノイズ成分の1周期T1分に規定されているが、この周期T1のn倍(nは2以上の自然数)に規定することもできる。次いで、処理部8は、電圧算出処理を実行する(ステップ51)。この電圧算出処理では、処理部8は、A/D変換部7からデジタルデータD1を取得し、この取得したデジタルデータD1を電圧検出部6の増幅率とA/D変換部7の分解能(1ビット相当の電圧)とに基づいて電圧V2に変換して、記憶部9に記憶させる。処理部8は、この電圧算出処理を、A/D変換部7からデジタルデータD1を入力する都度実行する。   In the resistance measurement process 50, the processing unit 8 first starts measurement (time measurement) of the integration interval T2. As an example, the integration interval T2 is defined as one cycle T1 of a hum noise component that is assumed to leak into the voltage V2, but is defined as n times the cycle T1 (n is a natural number of 2 or more). You can also. Next, the processing unit 8 executes a voltage calculation process (step 51). In this voltage calculation process, the processing unit 8 acquires the digital data D1 from the A / D conversion unit 7, and uses the acquired digital data D1 as the amplification factor of the voltage detection unit 6 and the resolution (1) of the A / D conversion unit 7. Is converted into a voltage V2 based on the voltage corresponding to the bit) and stored in the storage unit 9. The processing unit 8 executes this voltage calculation process every time digital data D1 is input from the A / D conversion unit 7.

続いて、処理部8は、微分処理を実行する(ステップ52)。この微分処理では、処理部8は、まず、直前に実行した電圧算出処理において記憶部9に記憶させた電圧V2(発明の理解を容易にするため、「電圧V2a」ともいう)と、この電圧V2の1つ前に算出されて記憶部9に記憶された他の電圧V2(発明の理解を容易にするため、「電圧V2b」ともいう)との差分の絶対値ΔV2(=|V2a−V2b|)を算出する。なお、一例として、サンプリングクロックScの1周期分だけ離れた2つの電圧V2間の差分に基づいて絶対値ΔV2を算出する構成を採用しているが、サンプリングクロックScのm周期分(mは2以上の自然数)だけ離れた電圧V2間の差分に基づいて絶対値ΔV2を算出する構成を採用してもよいのは勿論である。次いで、処理部8は、絶対値ΔV2をサンプリングクロックScの周期で除算することにより、電圧V2の微分値(単位時間当たりの変化率)BをサンプリングクロックScの周期毎(本発明における単位時間毎)に算出して、電圧V2aに対応させて記憶部9に記憶させる。   Subsequently, the processing unit 8 performs differentiation processing (step 52). In this differentiation process, the processing unit 8 firstly stores the voltage V2 (also referred to as “voltage V2a” for ease of understanding of the invention) stored in the storage unit 9 in the voltage calculation process executed immediately before, and this voltage. The absolute value ΔV2 (= | V2a−V2b) of the difference from the other voltage V2 calculated immediately before V2 and stored in the storage unit 9 (also referred to as “voltage V2b” for easy understanding of the invention) |) Is calculated. As an example, a configuration is employed in which the absolute value ΔV2 is calculated based on a difference between two voltages V2 that are separated by one cycle of the sampling clock Sc, but m cycles of the sampling clock Sc (m is 2). Of course, a configuration may be adopted in which the absolute value ΔV2 is calculated based on the difference between the voltages V2 separated by the above natural number). Next, the processing unit 8 divides the absolute value ΔV2 by the period of the sampling clock Sc, thereby obtaining the differential value (rate of change per unit time) B of the voltage V2 for each period of the sampling clock Sc (per unit time in the present invention). ) And stored in the storage unit 9 in correspondence with the voltage V2a.

次いで、処理部8は、算出した微分値Bと記憶部9に記憶されている基準値Aとを比較し(ステップ53)、微分値Bが基準値Aよりも大きいとき、つまり、図2に示すように、電圧V2bに対して電圧V2aが大きく変動したとき(同図では、一例として大きく減少した状態を示している)、つまり経時的変動が大きいときには、比較の結果の一例として接触不良(接触エラー)の発生を示す情報を出力部10に表示させる(ステップ54)。なお、例えば、ハムノイズの重畳による誤った検出を回避するときには、基準値Aとして、例えば、A/D変換部7から出力されるデジタルデータD1の最大値の0.01%程度の値に予め規定されている。   Next, the processing unit 8 compares the calculated differential value B with the reference value A stored in the storage unit 9 (step 53). When the differential value B is larger than the reference value A, that is, in FIG. As shown in the figure, when the voltage V2a greatly fluctuates with respect to the voltage V2b (in the figure, a state in which the voltage V2a has greatly decreased is shown as an example), that is, when the fluctuation over time is large, contact failure ( Information indicating the occurrence of a contact error is displayed on the output unit 10 (step 54). For example, when avoiding erroneous detection due to superimposition of hum noise, the reference value A is defined in advance as a value of about 0.01% of the maximum value of the digital data D1 output from the A / D conversion unit 7, for example. Has been.

この場合、一対の電流供給プローブ3a,3bと測定対象体2の各端部2a,2bとの間の接触抵抗がゆっくりと変動したとしても、上記したように電流供給部5がフィードバック制御によって測定電流I1の電流値をこの接触抵抗の変動に追従させて一定に維持するために、微分値Bは基準値Aよりも大きくなることはない、また、一対の電圧検出プローブ4a,4bと測定対象体2の各端部2a,2bとの間の接触抵抗がある程度変動したとしても、接触状態が維持されている限りにおいては、電圧検出部6の入力インピーダンスがそもそも極めて高いため、電圧検出部6に入力される電圧V2の電圧値には殆ど影響を与えない。したがって、この2つの点を考慮した場合、電圧V2bに対する電圧V2aの大きな変動は、一対の電流供給プローブ3a,3bの少なくとも一方と、この一方が接触させられた測定対象体2の各端部2a,2bのうちのいずれかとの間の接触抵抗が急激に変動した状態の発生(接触不良の発生)、および、一対の電圧検出プローブ4a,4bの少なくとも一方と、この一方が接触させられた測定対象体2の各端部2a,2bのうちのいずれかとの間の接触抵抗が急激に変動した状態の発生(接触不良の発生)のうちの少なくとも一方を示していると考えられる。したがって、出力部10に接触不良の発生を示す情報が表示されたときには、一対の電流供給プローブ3a,3bおよび一対の電圧検出プローブ4a,4bの少なくとも一つにおいて接触不良が発生していると判断することが可能となる。また、このように接触不良が発生したときに算出された電圧V2に基づいて測定対象体2の抵抗値Rを算出したとしても、算出した抵抗値Rに含まれる誤差が多くなるため、処理部8は、ステップ54を実行したときには、抵抗測定処理を直ちに終了させる。   In this case, even if the contact resistance between the pair of current supply probes 3a and 3b and the respective end portions 2a and 2b of the measuring object 2 fluctuates slowly, the current supply unit 5 performs measurement by feedback control as described above. In order to keep the current value of the current I1 constant by following the change of the contact resistance, the differential value B does not become larger than the reference value A, and the pair of voltage detection probes 4a and 4b and the measurement object Even if the contact resistance between the end portions 2a and 2b of the body 2 varies to some extent, as long as the contact state is maintained, the input impedance of the voltage detection unit 6 is extremely high in the first place. Is hardly affected by the voltage value of the voltage V2 input to. Therefore, when these two points are taken into consideration, the large fluctuation of the voltage V2a with respect to the voltage V2b is caused by at least one of the pair of current supply probes 3a and 3b and each end 2a of the measurement object 2 in contact with the one. , 2b occurrence of a state in which the contact resistance suddenly fluctuates (occurrence of contact failure), and measurement in which at least one of the pair of voltage detection probes 4a, 4b is in contact with this It is considered that at least one of the occurrences of the state in which the contact resistance between each of the end portions 2a and 2b of the object 2 fluctuates rapidly (occurrence of contact failure) is shown. Therefore, when information indicating the occurrence of contact failure is displayed on the output unit 10, it is determined that contact failure has occurred in at least one of the pair of current supply probes 3a and 3b and the pair of voltage detection probes 4a and 4b. It becomes possible to do. In addition, even if the resistance value R of the measurement object 2 is calculated based on the voltage V2 calculated when the contact failure occurs in this way, the error included in the calculated resistance value R increases, so that the processing unit When the step 54 is executed, the resistance measurement process is immediately terminated.

一方、ステップ53における比較の結果、微分値Bが基準値A以下のとき、つまり、電圧V2bに対して電圧V2aの変動が小さいときには、具体的には、ハムノイズ成分の漏れ込みに起因した変動のみのときには、一対の電流供給プローブ3a,3bおよび一対の電圧検出プローブ4a,4bのいずれにも接触不良が発生していないと考えられるため、処理部8は、計測している積分区間T2(図2参照)が終了したか否かを判別しつつ(ステップ55)、ステップ51〜ステップ53を繰り返し実行する。これにより、積分区間T2において算出された電圧V2が、サンプリングクロックScの周期で記憶部9に順次記憶される。   On the other hand, as a result of the comparison in step 53, when the differential value B is less than or equal to the reference value A, that is, when the fluctuation of the voltage V2a is small with respect to the voltage V2b, specifically, only the fluctuation caused by leakage of the hum noise component. In this case, since it is considered that no contact failure has occurred in any of the pair of current supply probes 3a and 3b and the pair of voltage detection probes 4a and 4b, the processing unit 8 performs the integration interval T2 (see FIG. Step 51 to Step 53 are repeatedly executed while determining whether or not (see 2) has ended (Step 55). As a result, the voltage V2 calculated in the integration interval T2 is sequentially stored in the storage unit 9 at the cycle of the sampling clock Sc.

その後、処理部8は、ステップ55において積分区間T2が終了したと判別したときには、平均処理を実行する(ステップ56)。この平均処理では、処理部8は、積分区間T2において算出されたすべての電圧V2を記憶部9から読み出して合算(積分)し、合算値(本発明における積分値)を積分区間T2において算出された電圧V2の個数で除算することにより、電圧V2の平均電圧値V2avを算出する。この場合、上記したように、積分区間T2がハムノイズ成分の1周期T1と同じ長さに規定されているため、この平均処理によってハムノイズ成分がキャンセルされる。したがって、電圧V2の平均電圧値V2avは、図2に示す両端間電圧V1を示すものとなる。   Thereafter, when it is determined in step 55 that the integration interval T2 has ended, the processing unit 8 performs an averaging process (step 56). In this averaging process, the processing unit 8 reads all the voltages V2 calculated in the integration interval T2 from the storage unit 9 and adds (integrates) them, and calculates a total value (integration value in the present invention) in the integration interval T2. The average voltage value V2av of the voltage V2 is calculated by dividing by the number of the voltages V2. In this case, as described above, since the integration interval T2 is defined to be the same length as one cycle T1 of the hum noise component, the hum noise component is canceled by this averaging process. Therefore, the average voltage value V2av of the voltage V2 indicates the voltage V1 between both ends shown in FIG.

最後に、処理部8は、抵抗値算出処理を実行する(ステップ57)。この抵抗値算出処理では、処理部8は、電圧V2の平均電圧値V2av(つまり、両端間電圧V1の平均電圧値)を、電流供給部5から供給されている測定電流I1の電流値(既知)で除算することにより、測定対象体2の抵抗値Rを算出して記憶部9に記憶させると共に、出力部10に表示させる。これにより、抵抗測定処理が完了する。   Finally, the processing unit 8 executes a resistance value calculation process (step 57). In this resistance value calculation process, the processing unit 8 uses the average voltage value V2av of the voltage V2 (that is, the average voltage value of the voltage V1 between both ends) as the current value (known) of the measurement current I1 supplied from the current supply unit 5. ), The resistance value R of the measuring object 2 is calculated and stored in the storage unit 9 and displayed on the output unit 10. Thereby, the resistance measurement process is completed.

このように、この抵抗測定装置1では、処理部8が、電圧V2の電圧値についての微分値Bを単位時間(サンプリングクロックScの一周期)毎に算出しつつ予め規定された基準値Aと比較する処理を積分区間T2において実行して、その比較の結果を出力部10に出力する。具体的には、処理部8は、微分値Bが基準値Aを超えるとき、つまり電圧V2の急激な経時的変動を検出したときに、出力部10に接触不良の発生を表示させる。この場合、電圧V2の急激な経時的変動は、各電流供給プローブ3a,3bおよび各電圧検出プローブ4a,4bのうちの少なくとも1つと、測定対象体2の各端部2a,2bとの間に接触不良が発生したことに起因したものと考えられる。したがって、この抵抗測定装置1によれば、出力部10に表示される情報に基づいて、各プローブ3a,3b,4a,4bの接触不良に起因した電圧V2の急激な経時的変動のみを、ハムノイズに影響を受けることなく確実に検出することができる結果、接触不良の発生によって許容以上の誤差を含む抵抗値Rを、正常に測定された測定値であると誤認識するといった不具合を確実に防止することができる。   Thus, in the resistance measuring apparatus 1, the processing unit 8 calculates the differential value B for the voltage value of the voltage V2 for each unit time (one cycle of the sampling clock Sc) and the reference value A defined in advance. The comparison process is executed in the integration interval T2, and the comparison result is output to the output unit 10. Specifically, when the differential value B exceeds the reference value A, that is, when a sudden change with time in the voltage V2 is detected, the processing unit 8 causes the output unit 10 to display the occurrence of contact failure. In this case, a rapid temporal change in the voltage V2 is caused between at least one of the current supply probes 3a and 3b and the voltage detection probes 4a and 4b and the end portions 2a and 2b of the measurement object 2. This is thought to be due to the occurrence of poor contact. Therefore, according to the resistance measuring apparatus 1, only a rapid temporal change of the voltage V2 due to the contact failure of each of the probes 3a, 3b, 4a, and 4b is detected based on the information displayed on the output unit 10. As a result, it is possible to reliably detect the resistance value R including an error exceeding an allowable value due to the occurrence of a contact failure, thereby reliably preventing a problem that the resistance value R is erroneously recognized as a measured value. can do.

なお、本発明は、上記の構成に限定されない。例えば、処理部8が、A/D変換部7から出力されるデジタルデータD1に基づいて電圧V2を算出し、この電圧V2に基づいて微分処理を実行する構成を採用した例について上記したが、デジタルデータD1を一旦記憶部9に記憶させた後に、その記憶させたデジタルデータD1に基づいて微分処理を実行し、その後に実行する平均処理において、デジタルデータD1に基づいて電圧V2を算出してその平均電圧値V2avを算出する構成を採用することもできる。また、一対の電流供給プローブ3a,3bと一対の電圧検出プローブ4a,4bとを備えた四線式による抵抗測定を行う例について上記したが、電流供給プローブ3aと電圧検出プローブ4aとを共通とし、電流供給プローブ3bと電圧検出プローブ4bとを共通とした二線式による抵抗測定にも適用できるのは勿論である。   In addition, this invention is not limited to said structure. For example, the processing unit 8 calculates the voltage V2 based on the digital data D1 output from the A / D conversion unit 7, and has been described above for the example in which the differential processing is executed based on the voltage V2. After the digital data D1 is temporarily stored in the storage unit 9, a differentiation process is executed based on the stored digital data D1, and a voltage V2 is calculated based on the digital data D1 in an averaging process executed thereafter. A configuration for calculating the average voltage value V2av can also be employed. Further, the example of performing resistance measurement by a four-wire system provided with a pair of current supply probes 3a and 3b and a pair of voltage detection probes 4a and 4b has been described above. However, the current supply probe 3a and the voltage detection probe 4a are shared. Of course, the current supply probe 3b and the voltage detection probe 4b can be applied to two-wire resistance measurement.

1 抵抗測定装置
2 測定対象体
2a 一方の端部
2b 他方の端部
3a,3b 電流供給プローブ
4a,4b 電圧検出プローブ
5 電流供給部
6 電圧検出部
8 処理部
10 出力部
A 基準値
B 微分値
T2 積分区間
V2av 平均電圧値
I1 測定電流
DESCRIPTION OF SYMBOLS 1 Resistance measuring apparatus 2 Measuring object 2a One edge part 2b The other edge part 3a, 3b Current supply probe 4a, 4b Voltage detection probe 5 Current supply part 6 Voltage detection part 8 Processing part 10 Output part A Reference value B Differential value T2 integration interval V2av Average voltage value I1 Measurement current

Claims (1)

測定対象体に電流供給プローブを介して直流定電流を供給する電流供給部と、当該測定対象体の両端に接続された一対の電圧検出プローブを介して入力した入力電圧を測定する電圧測定部と、前記入力電圧の電圧値を予め規定された積分区間に亘って積分すると共に当該積分によって得られた積分値に基づいて当該積分区間における当該入力電圧の平均電圧値を算出して、当該平均電圧値と前記直流定電流の電流値とに基づいて当該測定対象体の抵抗を算出する処理部とを備え、
前記処理部は、前記積分区間において前記入力電圧の電圧値についての微分値を単位時間毎に算出しつつ予め規定された基準値と比較して、その比較の結果を出力する抵抗測定装置。
A current supply unit that supplies a constant DC current to the measurement object via a current supply probe; a voltage measurement unit that measures an input voltage input via a pair of voltage detection probes connected to both ends of the measurement object; Integrating the voltage value of the input voltage over a predetermined integration interval and calculating the average voltage value of the input voltage in the integration interval based on the integration value obtained by the integration, A processing unit that calculates the resistance of the measurement object based on the value and the current value of the DC constant current,
The said process part is a resistance measuring apparatus which compares with the reference value prescribed | regulated previously, calculating the differential value about the voltage value of the said input voltage for every unit time in the said integration area, and outputs the result of the comparison.
JP2009057442A 2009-03-11 2009-03-11 Resistance measuring device Active JP5350025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009057442A JP5350025B2 (en) 2009-03-11 2009-03-11 Resistance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009057442A JP5350025B2 (en) 2009-03-11 2009-03-11 Resistance measuring device

Publications (2)

Publication Number Publication Date
JP2010210459A true JP2010210459A (en) 2010-09-24
JP5350025B2 JP5350025B2 (en) 2013-11-27

Family

ID=42970787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009057442A Active JP5350025B2 (en) 2009-03-11 2009-03-11 Resistance measuring device

Country Status (1)

Country Link
JP (1) JP5350025B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048813A (en) * 2012-08-30 2014-03-17 Nidec Sankyo Corp Inspection device and inspection method
JP2020012721A (en) * 2018-07-18 2020-01-23 日置電機株式会社 Impedance measuring device and impedance measuring method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137310U (en) * 1979-03-22 1980-09-30
JPH03231162A (en) * 1990-02-06 1991-10-15 Fujitsu Ltd Apparatus for measuring resistance value

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137310U (en) * 1979-03-22 1980-09-30
JPH03231162A (en) * 1990-02-06 1991-10-15 Fujitsu Ltd Apparatus for measuring resistance value

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048813A (en) * 2012-08-30 2014-03-17 Nidec Sankyo Corp Inspection device and inspection method
JP2020012721A (en) * 2018-07-18 2020-01-23 日置電機株式会社 Impedance measuring device and impedance measuring method
JP7080757B2 (en) 2018-07-18 2022-06-06 日置電機株式会社 Impedance measuring device and impedance measuring method

Also Published As

Publication number Publication date
JP5350025B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP6039087B2 (en) Process variable measurement noise diagnosis
JP4723353B2 (en) Impedance measuring device
JP5394446B2 (en) System, method and apparatus for poor connection self-monitoring using DC bias current
CN105242104A (en) Current detection method, current detection device, and current detector
JP6014769B2 (en) Process variable transmitter with EMF detection and correction
JP5350025B2 (en) Resistance measuring device
JP4865516B2 (en) measuring device
JP4545081B2 (en) measuring device
JP2015524108A (en) Process control loop current verification
JP2014529790A (en) 2-wire process control loop current diagnostic apparatus and method
JP2007192615A (en) Abnormality detection method of voltage sensor, abnormality detection device, and the voltage sensor
JP6276677B2 (en) Standard signal generator
US20150377676A1 (en) Fluid Measurement Device
CN104062673B (en) Core analyzer self-diagnosable system
US11022630B2 (en) Measurement of current within a conductor
JP2007198758A (en) Apparatus and method for inspection
JP4817987B2 (en) Impedance measuring device
IT201900010647A1 (en) OPERATING PROCEDURE OF A GAS SENSOR DEVICE, AND CORRESPONDING GAS SENSOR DEVICE
CN109470913A (en) A method of supply voltage is pushed away by reference to voltage is counter
JP5040719B2 (en) 2-wire field device and fieldbus system
WO2016111128A1 (en) Failure detection device
JP2011179849A (en) Abnormal waveform detection circuit
JP2007240286A (en) Measuring method and measuring instrument
JP6352152B2 (en) Failure detection method, failure detection system, and failure detection apparatus for solar cell string
JPH0548153A (en) Burnout detector circuit for thermocouple thermometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R150 Certificate of patent or registration of utility model

Ref document number: 5350025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250