JP2007192615A - Abnormality detection method of voltage sensor, abnormality detection device, and the voltage sensor - Google Patents

Abnormality detection method of voltage sensor, abnormality detection device, and the voltage sensor Download PDF

Info

Publication number
JP2007192615A
JP2007192615A JP2006009804A JP2006009804A JP2007192615A JP 2007192615 A JP2007192615 A JP 2007192615A JP 2006009804 A JP2006009804 A JP 2006009804A JP 2006009804 A JP2006009804 A JP 2006009804A JP 2007192615 A JP2007192615 A JP 2007192615A
Authority
JP
Japan
Prior art keywords
voltage
abnormality
output unit
differential output
abnormality detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006009804A
Other languages
Japanese (ja)
Other versions
JP4811026B2 (en
Inventor
Sojin Nagakura
隻人 長倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006009804A priority Critical patent/JP4811026B2/en
Publication of JP2007192615A publication Critical patent/JP2007192615A/en
Application granted granted Critical
Publication of JP4811026B2 publication Critical patent/JP4811026B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abnormality detection method of a monitoring measuring system in supply current monitoring that will not reduce measurement accuracy using a simple constitution, by solving the problems, wherein even though conventional methods for measuring both current and voltage are known for detecting an operation abnormalities of a monitoring device of the current supplied to a load from a direct-current power source, the number of components in a measuring system will increase and processing steps will also increase in the method by two-system measurement. <P>SOLUTION: This method has a constitution wherein a voltage applied to the load is detected, and a voltage sensor output is outputted by a differential voltage. An operation abnormality of the current monitoring device is detected, by detecting asymmetry of a differential output voltage generated by a defect of a circuit component or other wiring or the like in the voltage sensor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気負荷への電力供給を行うためのバッテリ等の電源の電圧を検出する電圧センサの異常を検出する装置およびその検出方法とこれに使用する電圧センサに関する。   The present invention relates to an apparatus for detecting an abnormality of a voltage sensor that detects the voltage of a power source such as a battery for supplying power to an electric load, a detection method thereof, and a voltage sensor used for the apparatus.

従来、電気負荷への電力供給を行うためのバッテリ等の電源の充放電電流や電圧を検出するセンサの動作異常すなわち故障を判定する装置としては、下記特許文献1に記載されている故障判定装置がある。この故障判定装置においては、組電池から負荷への電源供給線に電圧センサと電流センサ、さらにバッテリに温度センサを設置した構成となっている。ここで、電圧センサは測定電圧から供給電流値を算出して電流センサ出力と比較し、これにより電流センサの異常検出を行っている。すなわち、2つのセンサの出力を比較することによってセンサの故障検出を行う構成となっている。
特開平10−253682号公報
Conventionally, as a device for determining an abnormal operation of a sensor that detects a charge / discharge current or voltage of a power source such as a battery for supplying power to an electric load, that is, a failure, a failure determination device described in Patent Document 1 below There is. This failure determination device has a configuration in which a voltage sensor and a current sensor are installed on the power supply line from the assembled battery to the load, and a temperature sensor is installed on the battery. Here, the voltage sensor calculates the supply current value from the measured voltage and compares it with the current sensor output, thereby detecting the abnormality of the current sensor. That is, a sensor failure detection is performed by comparing the outputs of two sensors.
JP-A-10-253682

このように、従来公知の電流センサの故障判定装置においては複数個のセンサそれぞれにデータ処理回路を設け、かつ、これら各データ処理回路出力を統括的に処理した上で故障判定を行う構成となっており、このため、監視装置の構成部品点数が増加することによる故障判定装置信頼性の低下の原因となっていた。また、処理ステップの数が多くなる分だけ処理時間も長くなる問題もあった。   As described above, in the conventionally known current sensor failure determination device, a data processing circuit is provided for each of the plurality of sensors, and the failure determination is performed after the output of each data processing circuit is comprehensively processed. For this reason, the failure determination device reliability is lowered due to an increase in the number of components of the monitoring device. There is also a problem that the processing time becomes longer as the number of processing steps increases.

このようなことから、本発明においては、電圧センサにおける故障判定装置を他のセンサ等の部品増加を伴うことなく実現し、これにより故障判定の信頼性を向上し、かつ処理ステップ数を低減して故障判定処理に要する時間も短縮することを可能とした故障判定装置の提供を目的とした。   For this reason, in the present invention, a failure determination device for a voltage sensor is realized without increasing the number of components of other sensors, thereby improving the reliability of failure determination and reducing the number of processing steps. The purpose of the present invention is to provide a failure determination device that can shorten the time required for failure determination processing.

上記目的を達成するために、本発明においては以下の構成を基本構成とした。すなわち、入力電圧に応じた互いに逆相の電圧差として第1および第2の電圧を差動出力部において生成し、無入力電圧時におけるこれ等二つの電圧の中間値、すなわち差動出力部の初期オフセット電圧に対して差動出力部からの互いに逆相の二つの出力電圧が互いに対称であるか否かを検出することにより差動出力部の異常の有無を検出する方法としている。   In order to achieve the above object, the present invention has the following configuration as a basic configuration. That is, the first and second voltages are generated in the differential output unit as a voltage difference of opposite phases according to the input voltage, and the intermediate value of these two voltages at the time of no input voltage, that is, the differential output unit This is a method for detecting the presence or absence of an abnormality in the differential output unit by detecting whether or not two output voltages having opposite phases from the differential output unit are symmetric with respect to the initial offset voltage.

本発明により、電圧センサの異常検出を、他のセンサを設けることなく行うことが可能となり、装置の部品点数の低減を実現し、故障検出の信頼性を向上すると共に、故障検出に要する処理ステップ数の低減を可能とした。   According to the present invention, the abnormality detection of the voltage sensor can be performed without providing other sensors, the number of parts of the device can be reduced, the reliability of failure detection is improved, and the processing steps required for failure detection The number can be reduced.

以下、図により本発明の実施の形態を説明する。
図1にこの基本構成を示す。組電池1(電池)はイグニッションスイッチを含む電気系の主スイッチを構成するメインリレー2を介して負荷3に接続されている。一方、組電池1の出力電圧はスイッチ4を経由して分圧器5によりデータ処理部であるCPU10に入力可能な低電圧に分圧された電圧(入力電圧)が差動出力部6に入力される。ここで、スイッチ4はCPU10起動時にオフとしておき、CPU10が動作状態に入る直前に増幅器9の差動電圧出力V1およびV2の初期オフセットをチェックするためのもので、CPU10の立ち上げが完了し、動作状態に入るときにスイッチ4をオンにする。なお、初期オフセットはチョッパ7が開放状態のときにおいてもチェックすることが出来る。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows this basic configuration. The assembled battery 1 (battery) is connected to a load 3 via a main relay 2 constituting an electric main switch including an ignition switch. On the other hand, the output voltage of the assembled battery 1 is input to the differential output unit 6 via the switch 4 by dividing the voltage (input voltage) into a low voltage that can be input to the CPU 10 as the data processing unit by the voltage divider 5. The Here, the switch 4 is turned off when the CPU 10 is activated, and is used to check the initial offset of the differential voltage outputs V1 and V2 of the amplifier 9 immediately before the CPU 10 enters the operation state. Switch 4 is turned on when entering the operating state. The initial offset can be checked even when the chopper 7 is open.

差動出力部6に入力された信号(電圧)はチョッパ7のチョッピング(スイッチング)動作により交流信号に変換される。ここで、交流信号に変換するのは組電池1側と差動出力部6以降の信号処理回路側とは使用電圧が著しく異なっており、これら両部分を電気的に絶縁し、交流結合としておく必要があるためである。図1の回路例においては、差動トランス8によるトランス結合としている。このトランス結合とするために、チョッパ7によりパルス信号で交流信号に変換している。このチョッピング周波数(パルス信号)の発振回路は増幅器9を形成している集積回路の中に組み込まれているものとしている。   A signal (voltage) input to the differential output unit 6 is converted into an AC signal by the chopping (switching) operation of the chopper 7. Here, the voltage to be converted into the AC signal is remarkably different from that of the assembled battery 1 side and the signal processing circuit side after the differential output unit 6, and these two parts are electrically insulated to form AC coupling. This is necessary. In the circuit example of FIG. 1, transformer coupling is performed by a differential transformer 8. In order to achieve this transformer coupling, the chopper 7 converts the pulse signal into an AC signal. The oscillation circuit of this chopping frequency (pulse signal) is incorporated in the integrated circuit forming the amplifier 9.

差動トランス8の2次側は接地されたセンタタップを有しており、2次巻線の両端から得られる互いに逆相の出力は差動入力/差動出力を構成している増幅器9の入力側に入力される。増幅器9は、入力した互いに逆相の出力を増幅し、互いに逆相の差動出力V1(第1の電圧)およびV2(第2の電圧)をCPU10に出力する。つまり、差動出力部6は分圧器5から入力した電圧に応じた電圧差で互いに逆相の差動電圧V1およびV2をCPU10のA/Dポート11へ出力する。CPU10はA/Dポート11から入力した差動出力V1およびV2の電圧差に基づいて組電池1の電圧を検出すると共に、増幅器9の差動出力V1およびV2の中間値である初期オフセットに対する非対称性、あるいは差動出力電圧V1およびV2の中間値のずれ等の演算を行って差動出力部6の異常診断を行う電圧検出部を形成している。すなわち、本発明による電圧センサ12は、図1に示すように差動出力部6と、A/Dポート11を含むCPU10とで構成されている。以上の構成によるバッテリの動作監視装置における差動出力部6の動作異常を自己診断で検出する方法について以下説明する。   The secondary side of the differential transformer 8 has a grounded center tap, and outputs of opposite phases obtained from both ends of the secondary winding of the amplifier 9 constituting the differential input / differential output. Input to the input side. The amplifier 9 amplifies the inputted outputs having opposite phases, and outputs differential outputs V1 (first voltage) and V2 (second voltage) having opposite phases to the CPU 10. That is, the differential output unit 6 outputs differential voltages V1 and V2 having opposite phases to the A / D port 11 of the CPU 10 with a voltage difference corresponding to the voltage input from the voltage divider 5. The CPU 10 detects the voltage of the assembled battery 1 based on the voltage difference between the differential outputs V1 and V2 input from the A / D port 11, and is asymmetric with respect to the initial offset which is an intermediate value between the differential outputs V1 and V2 of the amplifier 9. Or a voltage detector for diagnosing an abnormality of the differential output unit 6 by performing an operation such as a shift in the intermediate value between the differential output voltages V1 and V2. That is, the voltage sensor 12 according to the present invention includes a differential output unit 6 and a CPU 10 including an A / D port 11 as shown in FIG. A method for detecting an operation abnormality of the differential output unit 6 in the battery operation monitoring apparatus having the above configuration by self-diagnosis will be described below.

(実施の形態1)
図2は図1に示した組電池1等電源の出力電圧を検出する電圧センサ12における異常検出の処理過程を説明するものである。図1の装置が正常に動作している場合は増幅器9の差動出力V1およびV2の中間値は、増幅器9における後述の初期オフセット値Vmoと同じ値を有し、差動出力V1およびV2はこの値に対して上下対称の値をとる。しかし、例えば、差動トランス8の巻線部における半田付け部の腐食による半断線状態になった場合、あるいは増幅器9の回路構成部品の定数変化あるいは集積回路の内部配線が接触不良を生じた場合等は、増幅器9の差動出力の一方または両方が変化して非対称となる。以下、図3のフロー図により図1の回路例における処理手順を説明する。
(Embodiment 1)
FIG. 2 illustrates an abnormality detection process in the voltage sensor 12 that detects the output voltage of the power source such as the assembled battery 1 shown in FIG. When the apparatus of FIG. 1 is operating normally, the intermediate value of the differential outputs V1 and V2 of the amplifier 9 has the same value as an initial offset value Vmo described later in the amplifier 9, and the differential outputs V1 and V2 are The value is symmetrical with respect to this value. However, when, for example, the soldered portion of the winding portion of the differential transformer 8 is in a partially broken state due to corrosion or when the constants of the circuit components of the amplifier 9 change or the internal wiring of the integrated circuit causes a contact failure Etc., one or both of the differential outputs of the amplifier 9 change and become asymmetric. The processing procedure in the circuit example of FIG. 1 will be described below with reference to the flowchart of FIG.

差動出力部6が正常に動作している場合で、かつチョッパ7がオフ状態における差動出力部6の差動出力をそれぞれV1o、V2oとすれば、その中間値は初期オフセット値Vmoとなり、
Vmo=(V1o+V2o)/2 (数1)
で与えられる(ステップS1)。チョッパ7がオン状態における差動出力部6の差動出力V1とV2の中間値Vmは
Vm=(V1+V2)/2 (数2)
で得られる(ステップS2)。ここで、初期オフセット値Vmoと差動出力V1とV2の中間値Vmとの差電圧の絶対値|ΔVm|は、
|ΔVm|=|Vmo−Vm(正常)| (数3)
で得られる(ステップS3)。差動トランス8および増幅器9が正常に動作しておれば、絶対値|ΔVm|は0となる筈である。ここで、差動出力部6に異常が生じ、正常時の差動出力の一方V1がV1’になった場合、上記の中間値Vmは中間値Vm’にシフトして絶対値ΔVmは0ではない値をとるようになる。
If the differential output unit 6 is operating normally and the differential output of the differential output unit 6 when the chopper 7 is in the OFF state is V1o and V2o, respectively, the intermediate value becomes the initial offset value Vmo,
Vmo = (V1o + V2o) / 2 (Equation 1)
(Step S1). The intermediate value Vm between the differential outputs V1 and V2 of the differential output unit 6 when the chopper 7 is on is Vm = (V1 + V2) / 2 (Equation 2)
(Step S2). Here, the absolute value | ΔVm | of the difference voltage between the initial offset value Vmo and the intermediate value Vm of the differential outputs V1 and V2 is
| ΔVm | = | Vmo−Vm (normal) |
(Step S3). If the differential transformer 8 and the amplifier 9 are operating normally, the absolute value | ΔVm | should be zero. Here, when an abnormality occurs in the differential output unit 6 and one of the normal differential outputs V1 becomes V1 ′, the intermediate value Vm is shifted to the intermediate value Vm ′, and the absolute value ΔVm is 0. It takes no value.

|Vmo−Vm’(異常)|>異常判定値α (数4)
この値が予め定められた第1の異常判定値αよりも大きくなった場合(ステップS4)、異常が発生したものと判断する(ステップS5)。
| Vmo−Vm ′ (abnormality) |> abnormality determination value α (Equation 4)
When this value is larger than a predetermined first abnormality determination value α (step S4), it is determined that an abnormality has occurred (step S5).

以上述べたように、本発明においては差動出力部6の出力電圧の中間値の変動から異常判定を行うことが可能なため、従来の故障判定装置で複数個のセンサそれぞれにデータ処理回路を設ける必要がなく、複数個のセンサからのデータを統合して故障判定を行う過程が不要となるため、故障判定装置の信頼性を向上することが出来、同時に処理ステップの増加も抑えることが出来、処理時間の増加も抑制することが出来た。   As described above, in the present invention, since it is possible to make an abnormality determination from a change in the intermediate value of the output voltage of the differential output unit 6, a conventional failure determination apparatus has a data processing circuit for each of a plurality of sensors. There is no need to provide a failure determination process by integrating data from multiple sensors, improving the reliability of the failure determination device, and at the same time suppressing an increase in processing steps. The increase in processing time could be suppressed.

この方法によれば、絶対値|ΔVm|は0から連続的に変化するものであるから、断線、ショートあるいは張り付きのように完全に故障となった場合のみならず、例えば回路部品の定数が変化した場合、あるいは差動トランスの半田付け不良のように将来の大故障に至る前兆となり得る言わば軽微な故障の検出も可能となる。   According to this method, since the absolute value | ΔVm | changes continuously from 0, not only when a complete failure occurs such as disconnection, short-circuiting, or sticking, but also the constants of circuit components change, for example. In this case, it is possible to detect a minor failure that can be a precursor to a future major failure such as a soldering failure of a differential transformer.

(実施の形態2)
図4に実施の形態2についての異常検出の手順を示す。上記実施の形態1における初期オフセット値を与える中間出力Vmoに対する各差動出力V1’(異常時)、V2(正常時)の差の絶対値|ΔV1m’|および|ΔV2m|を求める。
(Embodiment 2)
FIG. 4 shows an abnormality detection procedure for the second embodiment. The absolute values | ΔV1m ′ | and | ΔV2m | of the differences between the differential outputs V1 ′ (when abnormal) and V2 (when normal) with respect to the intermediate output Vmo giving the initial offset value in the first embodiment are obtained.

|ΔV1m’|=|V1’−Vmo| (数5)
|ΔV2m|=|Vmo−V2| (数6)
次に第一の電圧を与える(数5)式と第二の差電圧を与える(数6)式との差を求め、V1とV2の非対称性の量である絶対値ΔVuを下記(数7)式から求める。
| ΔV1m ′ | = | V1′−Vmo | (Equation 5)
| ΔV2m | = | Vmo−V2 | (Equation 6)
Next, the difference between the equation (Equation 5) that gives the first voltage and the equation (Equation 6) that gives the second differential voltage is obtained, and the absolute value ΔVu that is the amount of asymmetry between V1 and V2 is given by ) Calculate from the formula.

|ΔVu|=|ΔV1m|−|ΔV2m| (数7)
この絶対値ΔVuを予め設定されている第2の異常判定値βと比較し、下記(数8)式の条件を満たすようになった場合
|ΔVu|>異常判定値β (数8)
は差動出力部6に異常が発生したと判定する。
| ΔVu | = | ΔV1m | − | ΔV2m | (Equation 7)
When this absolute value ΔVu is compared with a second abnormality determination value β set in advance and the condition of the following equation (8) is satisfied: | ΔVu |> abnormality determination value β (8)
Determines that an abnormality has occurred in the differential output unit 6.

本実施の形態2による電圧センサにおける異常検出方法においても、初期オフセット値に対する差動出力電圧を検出するのみで異常判定が可能なため、異常判定装置の信頼性を高め得ると同時に少ないステップ数で判定し得るため処理時間の短縮を可能としている。   Even in the abnormality detection method in the voltage sensor according to the second embodiment, the abnormality determination can be performed only by detecting the differential output voltage with respect to the initial offset value, so that the reliability of the abnormality determination device can be improved and the number of steps can be reduced. Since the determination can be made, the processing time can be shortened.

(実施の形態3)
図5は本発明における実施の形態3における異常検出の手順を示すものである。本実施の形態3においては、組電池1の電池側電圧における入力電圧を所定の電圧だけ変化させた範囲(変化量ΔVb)に対する差動出力部6の差動出力電圧V1およびV2の変動量ΔV1及びΔV2は正常時においては等しくなる。すなわち、正常時においては
|ΔV1|=|ΔV2| (数9)
であるが、例えば、V1側に異常が発生し、図5に示すV1’のようになったとするとこの等号が成立せず、この場合の変動量ΔV1’は
|ΔV1’|≠|ΔV2| (数10)
となり、これら両変動量の差である絶対値|ΔVd|
|ΔVd|=||ΔV1’|−|ΔV2|| (数11)
が予め設定されている第3の異常判定値γを超えれば差動出力部6に異常が発生したと判断する。以上述べた処理に対する演算は全てCPU10において実行される。
(Embodiment 3)
FIG. 5 shows an abnormality detection procedure in the third embodiment of the present invention. In the third embodiment, the variation ΔV1 of the differential output voltages V1 and V2 of the differential output unit 6 with respect to a range (variation ΔVb) in which the input voltage in the battery side voltage of the assembled battery 1 is changed by a predetermined voltage. And ΔV2 are equal in the normal state. That is, in the normal state, | ΔV1 | = | ΔV2 |
However, for example, if an abnormality occurs on the V1 side and becomes V1 ′ shown in FIG. 5, this equality is not established, and the variation ΔV1 ′ in this case is | ΔV1 ′ | ≠ | ΔV2 | (Equation 10)
The absolute value | ΔVd | which is the difference between these two variations
| ΔVd | = || ΔV1 ′ | − | ΔV2 || (Equation 11)
Exceeds a preset third abnormality determination value γ, it is determined that an abnormality has occurred in the differential output unit 6. All operations for the processes described above are executed by the CPU 10.

なお、以上述べた各異常検出処理において、第1〜第3の異常判定値(α、βあるいはγの何れか)を、組電池1側電圧(V)あるいは差動出力部6の電源電圧の変動とに対応して変化するような構成とすることも可能である。図6はこの状況の例を示すもので、異常判定値(縦軸)と電池側の入力電圧(横軸)とが一次関数の関係にある場合について示したものである。図6において異常判定値を与える係数kは差動出力部6に入力する電池側電圧範囲に応じた係数(k1)および差動出力部6の電源電圧に応じた係数(k2)の積で与えられ(k=k1・k2)、異常判定値(前記α、β、γの何れか)はこのk値と、電池側電圧Vとの積(異常判定値=k・V)で与えられることを示している。この関係を予めCPU10における演算系に登録しておくことにより、組電池1側電圧(V)、差動出力部6の電源電圧、測定電圧範囲の変化等に対応して異常検出値を制御し得るようにしておくことが出来る。これにより、本発明の特徴である異常判定を高信頼性で且つ処理時間の短縮すると同時に、差動出力部6における監視の測定範囲を広くすることが可能となる。   In each of the abnormality detection processes described above, the first to third abnormality determination values (either α, β, or γ) are set to the assembled battery 1 side voltage (V) or the power supply voltage of the differential output unit 6. It is also possible to adopt a configuration that changes in response to fluctuations. FIG. 6 shows an example of this situation, and shows a case where the abnormality determination value (vertical axis) and the battery side input voltage (horizontal axis) have a linear function relationship. In FIG. 6, the coefficient k giving the abnormality determination value is given by the product of the coefficient (k1) corresponding to the battery side voltage range input to the differential output unit 6 and the coefficient (k2) corresponding to the power supply voltage of the differential output unit 6. (K = k1 · k2), and the abnormality determination value (any one of α, β, and γ) is given by the product of the k value and the battery side voltage V (abnormality determination value = k · V). Show. By registering this relationship in the arithmetic system in the CPU 10 in advance, the abnormality detection value is controlled in accordance with the change of the assembled battery 1 side voltage (V), the power supply voltage of the differential output unit 6, the measurement voltage range, and the like. You can keep getting. As a result, the abnormality determination that is the feature of the present invention can be performed with high reliability and the processing time can be shortened.

さらに、組電池1に装着されている温度計出力により前記閾値を変化させ、電池温度の変化による異常動作の誤検出を防止することも可能である。   Furthermore, the threshold value can be changed by the output of a thermometer mounted on the assembled battery 1 to prevent erroneous detection of abnormal operation due to a change in battery temperature.

(実施の形態4)
図7に本発明における実施の形態4を説明する図である。本実施の形態4においては差動出力電圧V1、V2の出力範囲内で、差動出力電圧V1側にVa(第1の電圧閾値)を、V2側にVb(第2の電圧閾値)の閾値電圧を予め設定しておき、差動出力電圧V1、V2の値がこれら閾値レベルを超えた時に、CPU10によるデータ処理系における当該データにフラグを立てる。尚、図7に示すようにVaとVbは初期オフセット値に対して対称であり、すなわち、|Va−Vmo|=|Vb−Vmo|に設定されている。入力電圧となる組電池1側電圧(V)がこの閾値を超えた場合、差動出力部6が正常に動作しておれば、差動出力電圧V1、V2に対応するデータに立てられるフラグは同時に変化する筈である。したがって、フラグが同時に変化するか否かを検出することにより装置動作の異常を検知することができる。表1は図7の各状態における論理処理の状態を表にまとめたものである。
(Embodiment 4)
FIG. 7 is a diagram for explaining a fourth embodiment of the present invention. In the fourth embodiment, within the output range of the differential output voltages V1 and V2, Va (first voltage threshold) is set on the differential output voltage V1 side, and Vb (second voltage threshold) is set on the V2 side. A voltage is set in advance, and when the values of the differential output voltages V1 and V2 exceed these threshold levels, a flag is set for the data in the data processing system by the CPU 10. As shown in FIG. 7, Va and Vb are symmetrical with respect to the initial offset value, that is, | Va−Vmo | = | Vb−Vmo |. When the assembled battery 1 side voltage (V) as an input voltage exceeds this threshold, if the differential output unit 6 is operating normally, the flag set in the data corresponding to the differential output voltages V1 and V2 is It should change at the same time. Therefore, it is possible to detect an abnormality in apparatus operation by detecting whether or not the flags change simultaneously. Table 1 summarizes the state of logic processing in each state of FIG.

Figure 2007192615
以下、表1及び図7により本実施の形態4の動作を説明する。
Figure 2007192615
The operation of the fourth embodiment will be described below with reference to Table 1 and FIG.

ここで差動出力部6が正常に動作している場合の差動出力電圧V1、V2の差電圧をΔVとし、両閾値に挟まれた領域をVlowとし、すなわち
ΔV=V1−V2 (数12)
Vlow=Va−Vb (数13)
として、(数12)におけるΔVが(数13)におけるVlowよりも大または小であっても、差動出力電圧V1、V2それぞれに対応する処理データにフラグがある場合、装置は正常に動作していることを示している。これは図7における時刻領域(1)〜(3)の領域の動作に対応している。また、例えば時刻領域(4)に示すように、差動出力電圧V1側が動作は正常で閾値Vaを超えておらず、電圧V2側に動作異常が生じて電圧V2が閾値Vbを超えている場合、(数12)式のΔVがVlowよりも小さい場合であっても、V2側は図7に示す閾値比較信号がHigh領域にあり、したがってフラグはV2領域のみに存在することになり、これにより装置の異常動作を検知することができる。
なお、上記閾値を複数設定することも可能であり、これにより動作異常の検出を段階的に進めることが可能となり、例えば複数の閾値を超えた所で異常検出とし、1つの閾値を超えたのみでは異常とは検出しないことにすれば、より確実に異常検出を行うことが出来、誤検出の可能性を低減し得るように動作異常検出論理を組むことも可能となる。
Here, when the differential output unit 6 is operating normally, the difference voltage between the differential output voltages V1 and V2 is ΔV, and the region sandwiched between both thresholds is Vlow, that is, ΔV = V1−V2 (Equation 12 )
Vlow = Va−Vb (Equation 13)
Even if ΔV in (Equation 12) is larger or smaller than Vlow in (Equation 13), if there is a flag in the processing data corresponding to each of the differential output voltages V1 and V2, the device operates normally. It shows that. This corresponds to the operation of the time areas (1) to (3) in FIG. For example, as shown in the time domain (4), when the differential output voltage V1 side is operating normally and does not exceed the threshold value Va, an abnormal operation occurs on the voltage V2 side and the voltage V2 exceeds the threshold value Vb. , (Equation 12) even when ΔV is smaller than Vlow, the threshold comparison signal shown in FIG. 7 is in the High region on the V2 side, and therefore the flag exists only in the V2 region. Abnormal operation of the apparatus can be detected.
It is also possible to set a plurality of the above threshold values, and this makes it possible to detect the operation abnormality step by step. For example, an abnormality is detected when a plurality of threshold values are exceeded, and only one threshold value is exceeded. Then, if the abnormality is not detected, the abnormality can be detected more reliably, and the operation abnormality detection logic can be set up so as to reduce the possibility of erroneous detection.

(実施の形態5)
図8は本発明による実施の形態5の処理過程を説明するものである。前記の方法により差動出力部6の異常が検知された場合でも、通常は完全故障状態となって測定不能になっているものではない。したがって、この場合は前記の閾値比較においてフラグの有無を検出し、例えば図7に示すようにフラグが発生し、かつ閾値を超えている方に異常が発生しているとし、フラグの有無に変化を生じていない方を正常と判定した場合、異常を生じている側の出力電圧(図8のB)を正常な側の出力電圧(図8のA=Vmo−V2)で置き換えて差動出力部6の出力と電圧することも可能である。この方法によれば、差動出力電圧の片方のデータを他方の異常を生じた出力電圧に置き換えて処理するため精度の低下は避けられないが、正常な側の出力電圧のみを用いて組電池1の総電圧を求めることができるため、検出装置の動作異常に対するフェールセーフ処理を可能とすることができる。
(Embodiment 5)
FIG. 8 explains the processing steps of the fifth embodiment according to the present invention. Even when an abnormality of the differential output unit 6 is detected by the above-described method, it is usually not a complete failure state and measurement is impossible. Therefore, in this case, the presence / absence of a flag is detected in the above-described threshold comparison. For example, as shown in FIG. 7, it is assumed that a flag is generated and an abnormality occurs when the threshold is exceeded. If it is determined that the one that does not cause the error is normal, the output voltage (B in FIG. 8) on the abnormal side is replaced with the output voltage on the normal side (A = Vmo−V2 in FIG. 8), and the differential output It is also possible to make a voltage with the output of the unit 6. According to this method, one of the differential output voltages is processed by replacing the other abnormal output voltage with the other abnormal output voltage, and thus a decrease in accuracy is inevitable. However, the battery pack uses only the normal output voltage. Since the total voltage of 1 can be obtained, it is possible to perform fail-safe processing for abnormal operation of the detection device.

なお、以上説明した各実施の形態においては、差動出力部6の出力V1およびV2はすべて電圧出力としているが、これは電流出力であっても同様の処理を行うことが出来る。   In each of the embodiments described above, the outputs V1 and V2 of the differential output unit 6 are all voltage outputs, but the same processing can be performed even for current outputs.

本発明によるによる電圧センサ異常検出装置の基本構成を示す回路図。The circuit diagram which shows the basic composition of the voltage sensor abnormality detection apparatus by this invention. 実施の形態1による異常動作検出方法の原理を示す電圧関係図。FIG. 3 is a voltage relationship diagram illustrating the principle of the abnormal operation detection method according to the first embodiment. 実施の形態1による異常動作検出方法の手順を示すフロー図。FIG. 3 is a flowchart showing a procedure of an abnormal operation detection method according to the first embodiment. 実施の形態2による異常動作検出方法の原理を示す電圧関係図。FIG. 6 is a voltage relationship diagram illustrating the principle of the abnormal operation detection method according to the second embodiment. 実施の形態3による異常動作検出方法の原理を示す電圧関係図。FIG. 10 is a voltage relationship diagram illustrating the principle of the abnormal operation detection method according to the third embodiment. 異常判定値を電圧条件で変更する場合の異常判定値・組電池側電圧関係図。FIG. 5 is a diagram showing the relationship between an abnormality determination value and an assembled battery side voltage when the abnormality determination value is changed under voltage conditions. 実施の形態4による異常動作検出方法の原理を示す電圧変化波形図。FIG. 10 is a voltage change waveform diagram showing the principle of the abnormal operation detection method according to the fourth embodiment. 実施の形態5による異常動作検出方法の原理を示す電圧関係図。FIG. 10 is a voltage relationship diagram illustrating the principle of the abnormal operation detection method according to the fifth embodiment.

符号の説明Explanation of symbols

1:組電池 2:メインリレー
3:負荷 4:スイッチ
5:分圧器 6:差動出力部
7:チョッパ 8:差動トランス
9:増幅器 10:CPU
11:A/Dポート 12:電圧センサ
1: assembled battery 2: main relay 3: load 4: switch 5: voltage divider 6: differential output unit 7: chopper 8: differential transformer 9: amplifier 10: CPU
11: A / D port 12: Voltage sensor

Claims (9)

入力する入力電圧に応じた電圧差で互いに逆相の第一の電圧および第二の電圧を出力する差動出力部と、前記差動出力部から出力された第一の電圧と第二の電圧との差電圧に基づいて前記入力電圧を検出する電圧検出部とを備えた電圧センサの異常検出方法において、
前記入力電圧が0である場合の前記第一の電圧と第二の電圧との中間値である初期オフセット電圧に対して、前記入力電圧が0より大きい場合の第一の電圧と第二の電圧とが非対称であることを検出することによって、前記差動出力部の異常を検出することを特徴とする電圧センサの異常検出方法。
A differential output unit that outputs a first voltage and a second voltage that are opposite in phase with a voltage difference corresponding to an input voltage that is input, and the first voltage and the second voltage that are output from the differential output unit In a voltage sensor abnormality detection method comprising a voltage detection unit that detects the input voltage based on a difference voltage between
The first voltage and the second voltage when the input voltage is greater than 0 with respect to the initial offset voltage that is an intermediate value between the first voltage and the second voltage when the input voltage is 0 And detecting an abnormality in the differential output unit by detecting that the two are asymmetric.
請求項1に記載の電圧センサの異常検出方法であって、
前記入力電圧が0より大きい場合に前記差動出力部から出力された第一の電圧と第二の電圧との中間値と、前記初期オフセット電圧との差電圧の絶対値が、予め設定された第1の異常判定値以上となった場合に前記差動出力部の異常と判定することを特徴とする電圧センサの異常検出方法。
The voltage sensor abnormality detection method according to claim 1,
When the input voltage is greater than 0, an absolute value of a difference voltage between the intermediate value between the first voltage and the second voltage output from the differential output unit and the initial offset voltage is set in advance. An abnormality detection method for a voltage sensor, wherein an abnormality of the differential output unit is determined when the first abnormality determination value is exceeded.
請求項1に記載の電圧センサの異常検出方法であって、
前記初期オフセット電圧と、前記差動出力部から出力された第一の電圧と第二の電圧のうちの一方の電圧との差である第一の差電圧の絶対値を求めると共に、前記初期オフセット電圧と、前記差動出力部から出力された第一の電圧と第二の電圧とのうちの他方の電圧との差である第二の差電圧の絶対値を求め、
前記求めた第一の差電圧の絶対値と第二の差電圧の絶対値との差の絶対値である第三の差電圧が、予め設定された第2の異常判定値以上となった場合に前記差動出力部の異常と判定することを特徴とする電圧センサの異常検出方法。
The voltage sensor abnormality detection method according to claim 1,
Obtaining an absolute value of a first differential voltage that is a difference between the initial offset voltage and one of the first voltage and the second voltage output from the differential output unit, and the initial offset Find the absolute value of the second differential voltage, which is the difference between the voltage and the other one of the first voltage and the second voltage output from the differential output unit,
When the third difference voltage, which is the absolute value of the difference between the absolute value of the first difference voltage and the absolute value of the second difference voltage, is equal to or greater than a preset second abnormality determination value. A method for detecting an abnormality of a voltage sensor, comprising: determining that the differential output unit is abnormal.
請求項1に記載の電圧センサの異常検出方法であって、
前記入力電圧を所定の電圧だけ変化させた際の、前記差動出力部から出力される第一の電圧および第二の電圧それぞれの電圧の変化量の絶対値である第一の電圧変化量と第二の電圧変化量とを検出し、該第一の電圧変化量と第二の電圧変化量との差が予め設定された第3の異常判定値以上となった場合に前記差動出力部の異常と判定することを特徴とする電圧センサの異常検出方法。
The voltage sensor abnormality detection method according to claim 1,
A first voltage change amount that is an absolute value of a change amount of each of the first voltage and the second voltage output from the differential output unit when the input voltage is changed by a predetermined voltage; A second voltage change amount is detected, and when the difference between the first voltage change amount and the second voltage change amount is equal to or greater than a preset third abnormality determination value, the differential output unit An abnormality detection method for a voltage sensor, characterized in that the abnormality is determined.
請求項1乃至請求項4の何れかに記載の電圧センサの異常検出方法であって、
前記入力電圧の大きさに応じて前記異常判定値を変更することを特徴とする電圧センサの異常検出方法。
An abnormality detection method for a voltage sensor according to any one of claims 1 to 4,
An abnormality detection method for a voltage sensor, wherein the abnormality determination value is changed according to the magnitude of the input voltage.
請求項1に記載の電圧センサの異常検出方法であって、
前記差動出力部から出力される第一の電圧および第二の電圧のそれぞれに対応する、前記初期オフセット電圧に対して対称な第一の電圧閾値および第二の電圧電圧閾値の二つの閾値を設定し、
前記第一の電圧が第一の電圧閾値となった時に第二の電圧が第二の電圧閾値となっていない場合に前記差動出力部の異常と判定することを特徴とする電圧センサの異常検出方法。
The voltage sensor abnormality detection method according to claim 1,
Two threshold values, a first voltage threshold value and a second voltage voltage threshold value, which are symmetrical with respect to the initial offset voltage, corresponding to the first voltage and the second voltage output from the differential output unit, respectively. Set,
An abnormality of the voltage sensor, wherein the abnormality of the differential output unit is determined when the second voltage is not the second voltage threshold when the first voltage becomes the first voltage threshold. Detection method.
請求項6に記載の電圧センサ異常検出方法であって
前記入力電圧は電池から出力される電圧であって、該電池の温度を検出する温度検出手段を備え、該温度検出手段によって検出される温度に基づいて前記第一の電圧閾値および第二の電圧閾値を変更することを特徴とする電圧センサの異常検出方法。
It is a voltage sensor abnormality detection method of Claim 6, Comprising: The said input voltage is a voltage output from a battery, Comprising: The temperature detection means which detects the temperature of this battery is provided, The temperature detected by this temperature detection means An abnormality detection method for a voltage sensor, characterized in that the first voltage threshold and the second voltage threshold are changed based on
電源と、この電源に接続されて該電源から入力する入力電圧に応じた電圧差で互いに逆相の第一の電圧と第二の電圧を出力する差動出力部と、前記差動出力部から出力された第一の電圧と第二の電圧との電圧差に基づいて前記入力電圧を検出する電圧検出部とを備えた電圧センサにおいて、
前記電源と差動出力部との間に設けられ、前記電源と差動出力部との接続を切断状態もしくは接続状態に切替可能なスイッチを備え、
前記スイッチが切断状態である場合の前記第一の電圧と第二の電圧との中間値である初期オフセット電圧に対して、前記スイッチが接続状態である場合の第一電圧と第二の電圧とが非対称であることを検出することによって、前記差動出力部の異常を検出する異常検出手段を備えることを特徴とする電圧センサの異常検出装置。
A differential output unit that outputs a first voltage and a second voltage that are opposite to each other with a voltage difference corresponding to an input voltage input from the power source connected to the power source, and the differential output unit In a voltage sensor including a voltage detector that detects the input voltage based on a voltage difference between the output first voltage and the second voltage,
Provided between the power source and the differential output unit, comprising a switch that can switch the connection between the power source and the differential output unit to a disconnected state or a connected state,
With respect to an initial offset voltage that is an intermediate value between the first voltage and the second voltage when the switch is in a disconnected state, a first voltage and a second voltage when the switch is in a connected state, An abnormality detection device for a voltage sensor, comprising abnormality detection means for detecting an abnormality in the differential output unit by detecting that the signal is asymmetric.
請求項8の電圧センサの異常検出装置を備えた電圧センサであって、
前記異常検出手段によって異常が検出された場合に、第一の電圧および第二の電圧のうちの異常が発生した電圧を特定する特定手段をさらに備え、
前記異常検出手段によって異常が検出された場合には、前記特定手段によって特定された電圧とは異なる他方の電圧と前記初期オフセット電圧との電圧差に基づいて、前記入力電圧を検出することを特徴とする電圧センサ。
A voltage sensor comprising the voltage sensor abnormality detection device according to claim 8,
When an abnormality is detected by the abnormality detection means, the apparatus further comprises a specifying means for specifying a voltage at which an abnormality has occurred between the first voltage and the second voltage,
When an abnormality is detected by the abnormality detecting means, the input voltage is detected based on a voltage difference between the other voltage different from the voltage specified by the specifying means and the initial offset voltage. A voltage sensor.
JP2006009804A 2006-01-18 2006-01-18 Voltage sensor abnormality detection method, abnormality detection device, and voltage sensor Expired - Fee Related JP4811026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006009804A JP4811026B2 (en) 2006-01-18 2006-01-18 Voltage sensor abnormality detection method, abnormality detection device, and voltage sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006009804A JP4811026B2 (en) 2006-01-18 2006-01-18 Voltage sensor abnormality detection method, abnormality detection device, and voltage sensor

Publications (2)

Publication Number Publication Date
JP2007192615A true JP2007192615A (en) 2007-08-02
JP4811026B2 JP4811026B2 (en) 2011-11-09

Family

ID=38448442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006009804A Expired - Fee Related JP4811026B2 (en) 2006-01-18 2006-01-18 Voltage sensor abnormality detection method, abnormality detection device, and voltage sensor

Country Status (1)

Country Link
JP (1) JP4811026B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128285A (en) * 2007-11-27 2009-06-11 Panasonic Electric Works Co Ltd Electrical quantity detection sensor
CN101825688A (en) * 2009-02-27 2010-09-08 株式会社日立制作所 The diagnostic method of battery monitoring apparatus and battery monitoring apparatus
JP2010276572A (en) * 2009-06-01 2010-12-09 Nissan Motor Co Ltd Failure diagnostic device of voltage sensor
JP2012199726A (en) * 2011-03-20 2012-10-18 Fujitsu Ltd Meter-reading data transmission control method and program of communication unit, communication unit, and meter-reading data communication control method
US9395394B2 (en) 2010-07-07 2016-07-19 Nec Energy Devices, Ltd. Voltage measuring circuit and method
CN117522086A (en) * 2024-01-05 2024-02-06 中国建筑科学研究院有限公司 Digital low-carbon community energy consumption management system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128285A (en) * 2007-11-27 2009-06-11 Panasonic Electric Works Co Ltd Electrical quantity detection sensor
CN101825688A (en) * 2009-02-27 2010-09-08 株式会社日立制作所 The diagnostic method of battery monitoring apparatus and battery monitoring apparatus
JP2010276572A (en) * 2009-06-01 2010-12-09 Nissan Motor Co Ltd Failure diagnostic device of voltage sensor
US9395394B2 (en) 2010-07-07 2016-07-19 Nec Energy Devices, Ltd. Voltage measuring circuit and method
JP2012199726A (en) * 2011-03-20 2012-10-18 Fujitsu Ltd Meter-reading data transmission control method and program of communication unit, communication unit, and meter-reading data communication control method
CN117522086A (en) * 2024-01-05 2024-02-06 中国建筑科学研究院有限公司 Digital low-carbon community energy consumption management system
CN117522086B (en) * 2024-01-05 2024-03-22 中国建筑科学研究院有限公司 Digital low-carbon community energy consumption management system

Also Published As

Publication number Publication date
JP4811026B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4811026B2 (en) Voltage sensor abnormality detection method, abnormality detection device, and voltage sensor
JP5926303B2 (en) Motor drive device including DC link voltage detection unit
JP6099852B2 (en) Diagnostic equipment for electric motors
US8749247B2 (en) Apparatus and method for detecting abnormality of high voltage circuit
US9520830B2 (en) Crystal oscillator
US10508942B2 (en) Thermal flow meter
JP4723353B2 (en) Impedance measuring device
JP2012149999A (en) Self-diagnosable electronic circuit and magnetic field detection device
US10821994B2 (en) On-board control device, on-board integrated circuit
JP2008164519A (en) Method of detecting fault of switching transistor, and fault detection circuit
US5734269A (en) Bridge circuit fault monitoring apparatus using an output signal level from a bridge circuit and a power source current level to determine faults
US9574925B2 (en) Fluid measurement device having a circuit for precise flow measurement
JP2005233737A (en) Three-wire or four-wire temperature measurement device
WO2016111128A1 (en) Failure detection device
US7116110B1 (en) Sensorless protection for electronic device
US10416209B2 (en) Method and system for measuring power loss in a power transformer
JP5040719B2 (en) 2-wire field device and fieldbus system
JP2013205345A (en) Temperature detector
JPH0462439A (en) Wire breaking detecting circuit of temperature measuring instrument
JP2010054383A (en) Gas sensor apparatus
JP4344286B2 (en) Voltage abnormality detector
JP4470809B2 (en) Electronic energy meter
KR20050037714A (en) Method for supervising and diagnosing status of electric power converter and apparatus thereof
JP4876026B2 (en) Board inspection equipment
JP6589683B2 (en) Inspection method and inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees