JP2010210440A - Method and device for inspecting connection of motor - Google Patents

Method and device for inspecting connection of motor Download PDF

Info

Publication number
JP2010210440A
JP2010210440A JP2009057113A JP2009057113A JP2010210440A JP 2010210440 A JP2010210440 A JP 2010210440A JP 2009057113 A JP2009057113 A JP 2009057113A JP 2009057113 A JP2009057113 A JP 2009057113A JP 2010210440 A JP2010210440 A JP 2010210440A
Authority
JP
Japan
Prior art keywords
core
temperature distribution
current
split core
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009057113A
Other languages
Japanese (ja)
Inventor
Keiichi Tashiro
啓一 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009057113A priority Critical patent/JP2010210440A/en
Publication of JP2010210440A publication Critical patent/JP2010210440A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the quality of a stator coil by efficiently finding out a stator whose connection state is imperfect by a non-destructive inspection method. <P>SOLUTION: This inspection method includes: a stage for preparing a stator 1 wherein core coils 3 provided respectively for a plurality of split cores 4 are connected with bus bars 2 (step S10); a stage for causing a current to flow into the core coil 3 of at least one split core 4 (step S20); a stage for measuring the temperature distribution of the split core 4 having the core coil 3 into which the current has been made to flow (step S30); a stage for recognizing whether or not the measured temperature distribution of the split core 4 is a temperature distribution within a predetermined temperature range (step S40); and a stage for determining that the connection states between the split core 4 and bus bars 2 are good when the temperature distribution of the split core 4 is within the temperature range, and that the connection states between the split core 4 and the bus bars 2 are not good when it is not within the temperature range (step S50). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、モータの結線不良を検査する結線検査方法および結線検査装置に関する。   The present invention relates to a connection inspection method and a connection inspection apparatus for inspecting a connection failure of a motor.

集中巻モータは、ステータ巻き線をステータティースにインシュレータ(絶縁材)を介して直接コアコイルを巻きつける直巻方式のモータである。コアコイルは複数の分割コアのティースにインシュレータを介して巻かれ予め作成してある。そして、分割コアを複数アッセンブリしてステータを作成してなる。なお、モータはステータとロータを組み合わせて完成する。   The concentrated winding motor is a direct-winding motor in which a core coil is directly wound around stator windings via stators (insulating material). The core coil is formed in advance by winding a plurality of divided core teeth through an insulator. A plurality of divided cores are assembled to form a stator. The motor is completed by combining a stator and a rotor.

ここで、分割コアを複数アッセンブリするにあたり、ステータは複数の工程を経て作成される。たとえば、その複数の工程として、複数の分割コアを圧入して連結し、ステータを形成する。それにバスバーを装着し、複数の分割コアの各コアコイルをヒュージング(結線)し、ワニスを含浸する工程がある。   Here, when assembling a plurality of divided cores, the stator is formed through a plurality of steps. For example, as a plurality of processes, a plurality of divided cores are press-fitted and connected to form a stator. There is a step of attaching a bus bar to the core, fusing (connecting) each core coil of a plurality of divided cores, and impregnating the varnish.

そして、作成したステータはロータと組み合わせてモータを完成させる前に電気特性検査などが行われる。たとえば、三相ステータコイルの電気特性検査方法は、ステータコイルのU−V間、V−W間、W−U間に検査用電圧をそれぞれ印加し、出力電圧と検査用電圧の対応関係を調べることでステータコイルの結線ミスを検査している(特許文献1参照)。   The prepared stator is subjected to an electrical property inspection and the like before the motor is completed by combining with the rotor. For example, in a method for inspecting the electrical characteristics of a three-phase stator coil, a test voltage is applied between U-V, V-W, and W-U of the stator coil, and the correspondence between the output voltage and the test voltage is examined. Thus, the connection mistake of the stator coil is inspected (see Patent Document 1).

特開2001−289922号公報JP 2001-289922 A

しかしながら、電圧をステータコイルのU−V間、V−W間、W−U間に印加するだけでは、結線が正しくされているのか、もしくは結線がされていないかの2種類しか検査できない。つまり、結線状態が不完全な場合は、結線されていると判定されてしまうことがあり、検査が不十分なままロータと組み合わされ不完全なモータが完成してしまうという問題があった。また、モータは出荷段階でテストが行われ、不完全なモータは誘起電圧やコギングトルクの測定でテストに合格せずに破棄または修理されてしまっていた。   However, only by applying a voltage between U-V, V-W, and W-U of the stator coil, only two types of inspections can be inspected: whether the connection is correct or not. That is, when the connection state is incomplete, it may be determined that the connection is made, and there is a problem that the incomplete motor is completed by combining with the rotor with insufficient inspection. Also, motors were tested at the shipping stage, and incomplete motors were discarded or repaired without passing the test by measuring the induced voltage and cogging torque.

本発明は上記従来技術の問題点に鑑みてなされたものであり、本発明の目的は、分割コアをバスバーに装着し結線した結線後の段階において、結線状態が不完全なステータを破壊検査方法ではない方法で効率よく見つけ出し、ステータコイルの品質を向上させることができる結線検査装置および結線検査方法を提供することである。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a method for destructive inspection of a stator in which the connection state is incomplete at a stage after the connection where the divided core is mounted on the bus bar and connected. It is an object to provide a connection inspection device and a connection inspection method capable of efficiently finding out by a method that is not, and improving the quality of the stator coil.

上記目的を達成するための本発明の結線検査方法は、コアコイルをバスバーによって結線したステータを準備する段階と、コアコイルに電流を流す段階と、コアコイルの温度分布を計測する段階と、計測結果に基づいて結線状態を判定する段階と、からなる。   The connection inspection method of the present invention for achieving the above object is based on a step of preparing a stator in which a core coil is connected by a bus bar, a step of passing a current through the core coil, a step of measuring a temperature distribution of the core coil, and a measurement result. And determining the connection state.

本発明によれば、コアコイルを構成する分割コアに電流を流してコイルから発せられる放熱による温度分布を計測することで、容易に結線状態の合否を確認できる。   According to the present invention, it is possible to easily confirm the pass / fail of the connection state by passing a current through the divided cores constituting the core coil and measuring the temperature distribution due to heat radiation generated from the coils.

本実施形態に関する集中巻ステータの結線部の結線状態を検査するフローチャート図である。It is a flowchart figure which test | inspects the connection state of the connection part of the concentrated winding stator regarding this embodiment. 本実施形態に関する集中巻ステータの構造を示す正面図と分割コアの概略図である。It is the front view which shows the structure of the concentrated winding stator regarding this embodiment, and the schematic of a split core. バスバーと分割コアとの結線を示す概要図である。It is a schematic diagram which shows the connection with a bus-bar and a split core. バスバーの端子部の概要図である。It is a schematic diagram of the terminal part of a bus bar. 3相と複数の分割コアとの結線を示す概略回路図である。It is a schematic circuit diagram which shows the connection of 3 phases and a some division | segmentation core. 分割コアに電流を流す様子を示した概要図である。It is the schematic which showed a mode that an electric current was sent through a division | segmentation core. 集中巻ステータに電流を流す様子を示した概要図である。It is the schematic which showed a mode that an electric current was sent through a concentrated winding stator. 分割コアU1の温度分布の計測を示した概要図である。It is the schematic which showed the measurement of the temperature distribution of the division | segmentation core U1. 分割コアのU1〜U8の温度分布の計測を示した概要図である。It is the schematic which showed the measurement of the temperature distribution of U1-U8 of a split core. 集中巻ステータに備えられたコアコイルの温度分布の計測を示した概要図である。It is the schematic which showed the measurement of the temperature distribution of the core coil with which the concentrated winding stator was equipped. 正常に結線された分割コアと結線不良の分割コアの温度分布を計測した参考実験データの図である。It is the figure of the reference experiment data which measured the temperature distribution of the division | segmentation core connected normally, and the division | segmentation core of poor connection. 識別結果に基づいて結線部の結線状態を判定するフローチャート図である。It is a flowchart figure which determines the connection state of a connection part based on an identification result.

以下、添付した図面を参照して本発明を適用した最良の実施形態を説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments to which the invention is applied will be described with reference to the accompanying drawings.

図1は、本実施形態に関する集中巻ステータの結線部の結線状態を検査するフローチャート図である。   FIG. 1 is a flowchart for inspecting a connection state of a connection portion of a concentrated winding stator according to the present embodiment.

まず、本実施形態における結線検査方法は集中巻ステータを準備する(ステップS1)。   First, the connection inspection method in this embodiment prepares a concentrated winding stator (step S1).

図2は、本実施形態に関する集中巻ステータ1の構造を示す正面図(a)と分割コア4の概略図(b)である。   FIG. 2 is a front view (a) showing the structure of the concentrated winding stator 1 according to the present embodiment and a schematic view (b) of the split core 4.

本実施形態に関する集中巻ステータは、永久磁石を備えたロータ(図示せず)と組み合わされ完成するモータの一部品であり、本実施形態の結線検査はロータと組み合わされる前に行われる検査である。一般的にモータは、ロータをステータの内周側に配置するが、この限りではない。   The concentrated winding stator according to this embodiment is a part of a motor that is combined with a rotor (not shown) having a permanent magnet and is completed, and the connection inspection according to this embodiment is an inspection performed before being combined with the rotor. . Generally, a motor has a rotor disposed on the inner peripheral side of the stator, but this is not a limitation.

集中巻ステータ1は、図2(a)に示すように、円環状のステータであって、ステータ1にはコイルに電流を流すための複数の電線を備えるバスバー2とコアコイル3とが備えられる。   As shown in FIG. 2A, the concentrated winding stator 1 is an annular stator, and the stator 1 is provided with a bus bar 2 including a plurality of electric wires for causing current to flow through the coil, and a core coil 3.

モータは、360/n度ずつ位相のずれた複数のn相の交流電流によって駆動する。ここでは、120度ずつ位相のずれた3相の交流電流(U相電流、V相電流、W相電流)によって駆動するモータを説明するが、この限りではない。   The motor is driven by a plurality of n-phase alternating currents whose phases are shifted by 360 / n degrees. Here, a motor driven by a three-phase alternating current (U-phase current, V-phase current, and W-phase current) whose phases are shifted by 120 degrees will be described, but this is not restrictive.

図2(b)に示すように、分割コア4はティース23の延在方向を包囲するようにインシュレータ(絶縁材)24を介してコイル25を集中巻により巻装してなる。   As shown in FIG. 2B, the split core 4 is formed by winding a coil 25 by concentrated winding via an insulator (insulating material) 24 so as to surround the extending direction of the teeth 23.

ここで、バスバー2の内周側にコアコイル3が配置されるが、この限りではなく、バスバー2の外周側にコアコイル3を配置しても構わない。また、コアコイル3は分割して作成することもできる。ここでは、24個の分割コア4が円周方向に等間隔に配置されるコアコイル3について説明するが、この限りではない。   Here, although the core coil 3 is arrange | positioned at the inner peripheral side of the bus-bar 2, it is not restricted to this, The core coil 3 may be arrange | positioned at the outer peripheral side of the bus-bar 2. Moreover, the core coil 3 can also be divided and created. Here, although the core coil 3 in which the 24 divided cores 4 are arranged at equal intervals in the circumferential direction will be described, this is not restrictive.

図3は、バスバーと分割コアとの結線を示す概要図である。図3に示すように、バスバー2には、3相の交流電流を流すために、中性線LN、U相の電線LU、V相の電線LV、W相の電線LWがそなえられている。24個の分割コア4は、3相(U相、V相、W相)の電線にそれぞれ8個ずつ(U1〜U8、V1〜V8、W1〜W8)割り当てられる。   FIG. 3 is a schematic diagram showing the connection between the bus bar and the split core. As shown in FIG. 3, the bus bar 2 is provided with a neutral wire LN, a U-phase wire LU, a V-phase wire LV, and a W-phase wire LW in order to flow a three-phase alternating current. Twenty-four divided cores 4 are respectively assigned to three-phase (U-phase, V-phase, W-phase) electric wires (U1-U8, V1-V8, W1-W8).

各分割コアは、バスバーの中性線とそれぞれの相に属する3相の電線のいずれか1つと結線部で結線され接続される。たとえば、図3に示すように、分割コア4のU1はバスバー2の結線部の端子C1においてU相の電線LUと結線部の端子C2において中性線LNと結線される。同様に、分割コア4のV1はバスバー2の結線部の端子C3においてV相の電線LVと結線部の端子C4において中性線LNと結線され、分割コア4のW1はバスバー2の結線部の端子C5においてW相の電線LWと結線部の端子C6において中性線LNと結線される。   Each divided core is connected and connected to a neutral wire of the bus bar and any one of three-phase electric wires belonging to each phase at a connection portion. For example, as shown in FIG. 3, U1 of the split core 4 is connected to the U-phase electric wire LU at the terminal C1 of the connection portion of the bus bar 2 and the neutral wire LN at the terminal C2 of the connection portion. Similarly, V1 of the split core 4 is connected to the V-phase electric wire LV at the terminal C3 of the connection portion of the bus bar 2 and the neutral line LN at the terminal C4 of the connection portion, and W1 of the split core 4 is connected to the connection portion of the bus bar 2. The terminal C5 is connected to the W-phase electric wire LW and the terminal C6 of the connection portion to the neutral wire LN.

図4は、バスバー2の端子部の概要図である。図4内の(a)は正面からの概要図であり、(b)は側面からの概要図である。図4に示すように、バスバーから端子が突出して設けられており、U字型の穴の部分に分割コアからの電線を設置し結線される。電線と端子の結線方法は、たとえば、電線の絶縁被膜を除去し、端子を加圧してカシメ、ロウ付けが行われる。ロウ付けではなく半田付けをすることも可能である。他にも、電流を流して圧着するヒュージングなど多々結線する方法は挙げることができるが、この限りではない。   FIG. 4 is a schematic diagram of the terminal portion of the bus bar 2. (A) in FIG. 4 is a schematic diagram from the front, and (b) is a schematic diagram from the side. As shown in FIG. 4, a terminal protrudes from the bus bar, and an electric wire from the split core is installed and connected to a U-shaped hole. As a method for connecting the electric wire and the terminal, for example, the insulating coating of the electric wire is removed, and the terminal is pressurized to be caulked and brazed. It is also possible to solder instead of brazing. In addition, there can be mentioned many methods such as fusing in which a current is passed and crimped, but this is not restrictive.

図5は、3相と複数の分割コアとの結線を示す概略回路図である。ここでは、分割コアが8個並列にそれぞれ接続されるが、この限りではない。図5に示すように、U相と中性点に8個の分割コアU1〜U8が並列に接続されている。同様にV相と中性点に8個の分割コアV1〜V8、W相と中性点に8個の分割コアW1〜W8がそれぞれ並列に接続されている。分割コア4とバンパーの電線との接続はバンパーに備えられている端子で結線が行われる。分割コアU1は結線部の端子C1でU相の電線と結線され、結線部の端子C2で中性線と結線される。同様に、分割コアV1は結線部の端子C3でV相の電線と結線部の端子C4で中性線と結線され、分割コアW1は結線部の端子C5でV相の電線と結線部の端子C6で中性線と結線される。その他の分割コアU2〜U8、V2〜V8、W2〜W8もそれぞれ同様に結線される。中性線は最終的に中性点で一つにまとめられる。   FIG. 5 is a schematic circuit diagram showing the connection between the three phases and the plurality of divided cores. Here, eight divided cores are connected in parallel, but this is not restrictive. As shown in FIG. 5, eight divided cores U1 to U8 are connected in parallel to the U phase and the neutral point. Similarly, eight divided cores V1 to V8 are connected in parallel to the V phase and the neutral point, and eight divided cores W1 to W8 are connected in parallel to the W phase and the neutral point. Connection between the split core 4 and the electric wire of the bumper is performed by a terminal provided in the bumper. The split core U1 is connected to a U-phase electric wire at a terminal C1 of the connection portion, and is connected to a neutral wire at a terminal C2 of the connection portion. Similarly, the split core V1 is connected to the V-phase electric wire at the terminal C3 of the connection portion and the neutral wire at the terminal C4 of the connection portion, and the split core W1 is connected to the V-phase electric wire and the terminal of the connection portion at the terminal C5 of the connection portion. Connected to neutral wire at C6. The other divided cores U2 to U8, V2 to V8, and W2 to W8 are similarly connected. Neutral lines are finally combined into one at the neutral point.

ここで、結線状態に関して一般的に結線部においてバスバーに備えられた端子とコイルからの電線とを結線する場合、正常に結線が行われれば接触抵抗のようなものは作られずにコイルそのものが有する抵抗だけ、つまり端子間には一つの抵抗が存在する形(端子−抵抗(コイル)−端子)となる。しかしながら、結線状態が接触不良な場合、その場所には接触抵抗によってあたかもコイルのほかに抵抗がある形(端子−接触抵抗−抵抗(コイル)−接触抵抗−端子)となる。また、電流を一定にして端子間(たとえば、U相−中性点間)に通電すると、結線が正常に行われたコイルからの発熱量と比較すると、結線が不良状態だと接触抵抗が増えた分発熱量が高くなる。このように、ステータ1が複数の相を有していても、ステータ1に装着されるバスパー2においていずれかの相の電流線と分割コア4のコアコイル3とが結線されている限り、電流が流れているコアコイル3の温度分布を計測することによって結線状態を判定することができる。   Here, in general, when connecting the terminal provided on the bus bar and the electric wire from the coil in the connection portion with respect to the connection state, if the connection is normally performed, a contact resistance is not formed and the coil itself has. Only the resistor, that is, one resistor exists between the terminals (terminal-resistance (coil) -terminal). However, when the connection state is poor contact, the place has a resistance other than the coil (terminal-contact resistance-resistance (coil) -contact resistance-terminal) due to the contact resistance. Also, if the current is constant and current is applied between the terminals (for example, between the U phase and the neutral point), the contact resistance increases if the connection is inferior compared to the amount of heat generated from the coil that has been connected normally. The calorific value increases accordingly. Thus, even if the stator 1 has a plurality of phases, as long as the current wire of any phase and the core coil 3 of the split core 4 are connected in the bus bar 2 attached to the stator 1, the current is The connection state can be determined by measuring the temperature distribution of the flowing core coil 3.

通常、接触抵抗が0.01mΩ以下であれば結線部分の品質は良好であるとして設計が行われている。たとえば、1つの分割コアコイルが100mΩだとした場合、2個の分割コアコイルに接触不良(0.1mΩ程度)があるならば、その相の抵抗値としては、12.5mΩの者が12.516mΩ程度となる。   Usually, when the contact resistance is 0.01 mΩ or less, it is designed that the quality of the connected portion is good. For example, assuming that one split core coil is 100 mΩ, if there is a contact failure (about 0.1 mΩ) in two split core coils, the resistance value of the phase is about 12.516 mΩ. It becomes.

結線状態において、不良状態として接触不良の他にも結線がされていない、つまり未結線の場合も考えられる。この未結線の場合は、電流がコイルに流れないため、コイルからの発熱はもちろんない。   In the connected state, as a defective state, there is a case where no connection is made in addition to the contact failure, that is, the connection is not performed. In the case of this unconnected, since no current flows through the coil, no heat is generated from the coil.

この様な原理に基づいて、コイルに電流を流すことによってコイルとバスバー端子の結線状態を発熱に基づいて検査ができる。   Based on such a principle, the connection state between the coil and the bus bar terminal can be inspected based on heat generation by passing a current through the coil.

次に、本実施形態における結線検査方法は少なくとも一つの分割コアに電流を流す(ステップS20)。   Next, in the connection inspection method in the present embodiment, a current is passed through at least one divided core (step S20).

図6は、分割コアに電流を流す様子を示した概要図である。図6に示すように、通電装置(図示せず)を使用してA−B間に通電することによって、U相−中性点に電流を流すことを通して、分割コアU1に電流を流すことができる。同様に、他の分割コア(U2〜U8)についても、電流を流すことができる。また、通電装置とスイッチ機能を備えた装置とを設置することによって、同時にもしくは順番に複数の分割コアに通電することも可能である。   FIG. 6 is a schematic diagram illustrating a state in which a current is passed through the split core. As shown in FIG. 6, current is passed through the split core U <b> 1 through current flowing between the U phase and the neutral point by energizing between A and B using an energization device (not shown). it can. Similarly, current can be passed through the other divided cores (U2 to U8). Moreover, it is also possible to energize a plurality of divided cores simultaneously or sequentially by installing an energizing device and a device having a switch function.

図7は、集中巻ステータに電流を流す様子を示した概要図である。図7に示すように、通電装置(図示せず)を使用してA−B巻に通電することによって、U相−中性点、V相−中性点、およびW相−中性点に電流をそれぞれに流し、全ての分割コアつまりコアコイル3に電流を流すことができる。また、通電装置とスイッチ機能を備えた装置とを設置することによって、3つの相に対して同時にもしくは順番に通電することで、その相に接続された分割コアに電流を流すことも可能である。   FIG. 7 is a schematic diagram showing a state in which a current is passed through the concentrated winding stator. As shown in FIG. 7, by energizing the winding AB using an energizing device (not shown), the U phase-neutral point, the V phase-neutral point, and the W phase-neutral point are obtained. A current is allowed to flow through each of the divided cores, that is, the core coils 3. In addition, by installing a current-carrying device and a device having a switch function, it is possible to flow current to the split cores connected to the three phases by energizing the three phases simultaneously or sequentially. .

次に、本実施形態における結線検査方法は分割コアの温度分布を計測する(ステップS30)。   Next, the connection inspection method in this embodiment measures the temperature distribution of the divided cores (step S30).

図8は、分割コアU1の温度分布の計測を示した概要図である。図8に示すように、分割コアU1に電流を流すことによって分割コアU1から発せられる熱の温度分布を計測する。たとえば、計測するために非接触温度計またはサーモグラフィーが使用される。つまり、サーモグラフィーでは電流が流れている分割コアが位置する領域R10を見ることで温度分布を計測することができる。非接触温度計ではコアコイルの複数の点または面を検査して電流が流れている分割コアが位置する領域R10の温度分布を計測することができる。   FIG. 8 is a schematic diagram showing measurement of the temperature distribution of the split core U1. As shown in FIG. 8, the temperature distribution of the heat generated from the split core U1 is measured by passing a current through the split core U1. For example, a non-contact thermometer or thermography is used to measure. That is, in thermography, the temperature distribution can be measured by looking at the region R10 where the split core where current flows is located. In the non-contact thermometer, a plurality of points or surfaces of the core coil can be inspected to measure the temperature distribution in the region R10 where the split core where current flows is located.

図9は、分割コアのU1〜U8の温度分布の計測を示した概要図である。図8ではサーモグラフィーを用いて電流が流れている分割コアが位置する領域R10をみることで温度分布を測定したが、図9に示すようにサーモグラフィーを用いて電流が流れている分割コアが位置する領域R11をみることで温度分布を測定することもできる。通電装置を使用してA−B間に通電することによって、分割コアU1以外にも分割コアU2〜U8まで電流は流れているため、それら全ての分割コアU1〜U8からそれぞれ熱が発生する。よって、ステータの1つの相に通電することで、サーモグラフィーを用いて電流が流れている複数の分割コアが位置する領域R11を見ることで、同時に複数の分割コアの温度分布を計測することができる。ここで、サーモグラフィーが見る領域R11は1つの画面ではなくいくつかの画面からなっても構わない。   FIG. 9 is a schematic diagram showing measurement of the temperature distribution of U1 to U8 of the split core. In FIG. 8, the temperature distribution is measured by looking at the region R10 where the split core where the current flows is located using thermography, but the split core where the current flows is located using thermography as shown in FIG. The temperature distribution can also be measured by looking at the region R11. By energizing between A and B using the energization device, current flows from the divided cores U2 to U8 in addition to the divided core U1, and thus heat is generated from all the divided cores U1 to U8. Therefore, by energizing one phase of the stator, the temperature distribution of the plurality of divided cores can be measured at the same time by using the thermography to see the region R11 where the plurality of divided cores where current flows are located. . Here, the region R11 viewed by the thermography may consist of several screens instead of one screen.

また、あらかじめワークの位置決めとサーモグラフィー上の位置を認識しておくことで、どの分割コアの温度分布を計測しているのかが容易に識別することができ、検査作業の効率が上がる。   In addition, by recognizing the position of the workpiece and the position on the thermography in advance, it is possible to easily identify which divided core temperature distribution is being measured, thereby increasing the efficiency of the inspection work.

図10は、集中巻ステータ1に備えられたコアコイル3の温度分布の計測を示した概要図である。図10に示すように、U相−中性点、V相−中性点、W相−中性点に電流を流した状態で、サーモグラフィーが見る領域R12を集中巻ステータ1のコアコイル3に設定することによって、全ての分割コアの温度分布を計測することができる。また、通電装置とスイッチ機能を備えた装置とを設置することによって、同時にもしくは順番に複数の分割コアに通電し、目的の分割コアの温度分布を計測することができる。   FIG. 10 is a schematic diagram showing the measurement of the temperature distribution of the core coil 3 provided in the concentrated winding stator 1. As shown in FIG. 10, the region R12 viewed by thermography is set in the core coil 3 of the concentrated winding stator 1 in a state where current flows through the U phase-neutral point, the V phase-neutral point, and the W phase-neutral point. By doing so, the temperature distribution of all the divided cores can be measured. Further, by installing an energization device and a device having a switch function, it is possible to energize a plurality of divided cores simultaneously or sequentially and measure the temperature distribution of the target divided core.

次に、本実施形態における結線検査方法は温度分布が所定の温度範囲内か否かを識別する〈ステップS40)。   Next, the connection inspection method in the present embodiment identifies whether or not the temperature distribution is within a predetermined temperature range (step S40).

図11は、正常に結線された分割コアと結線不良の分割コアの温度分布を計測した参考実験データの図である。ここで、正常品として端子と電線とを溶接にて完全接着した分割コアを用い、結線不良品として電線の被膜を除去し端子に挟み込んで加圧した状態の分割コアを用い、それぞれ電流値を一定に流して温度分布を計測した。つまり、正常品より結線不良品の電気抵抗を高めてそれぞれ計測をした。   FIG. 11 is a diagram of reference experiment data obtained by measuring the temperature distribution of the divided cores that are normally connected and the divided cores that are poorly connected. Here, a split core in which the terminal and the electric wire are completely bonded by welding is used as a normal product, and a split core in which the coating of the electric wire is removed and sandwiched between the terminals and pressed as a defective connection product, The temperature distribution was measured with constant flow. In other words, the electrical resistance of the defective connection product was increased from that of the normal product, and measurement was performed.

図11に示すように、結線が正常に行われた分割コアの温度分布を計測すると約70度であるのに対し、結線不良品の分割コアを計測すると約95度であった。たとえば、分割コア単体U1の温度分布が75度であり、所定の温度範囲が60度から90度であった場合は、分割コア単体U1の温度分布は所定の温度範囲内にあると識別され、別の分割コア単体U2の温度分布が95度であった場合は所定の温度範囲内にないと識別される。ここで、接触抵抗が0.01mΩの差がある場合、発熱温度差は0.8度の差が本システムでは発生したことを示した。   As shown in FIG. 11, when the temperature distribution of the divided cores in which the connection was normally performed was measured, it was about 70 degrees, whereas when the divided cores with poor connection were measured, it was about 95 degrees. For example, when the temperature distribution of the split core single unit U1 is 75 degrees and the predetermined temperature range is 60 degrees to 90 degrees, the temperature distribution of the split core single unit U1 is identified as being within the predetermined temperature range, When the temperature distribution of another split core unit U2 is 95 degrees, it is identified that it is not within the predetermined temperature range. Here, when there was a difference of 0.01 mΩ in contact resistance, it was shown that a difference of exothermic temperature of 0.8 degree occurred in this system.

一般的にモータとして必要な出力を準備するために、分割コアの構成はコアコイルの大きさ、電線の種類や巻き回数などさまざまな様式がとられる。よって、所定の温度範囲の設定は予め正常であると判定されている分割コアの温度分布を計測し所定の温度範囲を決定しておけばよい。   In general, in order to prepare an output necessary for a motor, the configuration of the split core can take various forms such as the size of the core coil, the type of electric wire, and the number of windings. Therefore, the predetermined temperature range may be determined by measuring the temperature distribution of the divided cores that are determined to be normal in advance and determining the predetermined temperature range.

他にも、分割コアの構成をシミュレーションソフトに入力することで発熱量を計算して正常な分割コアの温度分布を作成することによって、予め所定の温度範囲を決定することもできる。   In addition, a predetermined temperature range can be determined in advance by calculating the heat generation amount by inputting the configuration of the divided core into simulation software and creating a normal temperature distribution of the divided core.

さらに、分割コアの温度分布を計測する前に予め所定の温度分布を用意しておかずに、同時に複数の分割コアの温度分布を計測したデータを解析することによって所定の温度分布を作成することもできる。たとえば、図9のようにサーモグラフィーで領域R11を見ることで分割コアU1〜U8の温度分布を計測し、8個の温度分布のデータに基づいて分布図を作成し、所定の温度範囲を決定しても良い。また、図10のようにサーモグラフィーで領域R12を見ることで全ての分割コアの温度分布を計測し、24個の温度分布のデータに基づいて分布図を作成し、所定の温度範囲を決定しても良い。   Furthermore, a predetermined temperature distribution may be created by analyzing data obtained by measuring the temperature distribution of a plurality of divided cores at the same time without preparing the predetermined temperature distribution in advance before measuring the temperature distribution of the divided cores. it can. For example, as shown in FIG. 9, the temperature distribution of the divided cores U1 to U8 is measured by looking at the region R11 by thermography, a distribution map is created based on the data of the eight temperature distributions, and a predetermined temperature range is determined. May be. Further, as shown in FIG. 10, the temperature distribution of all the divided cores is measured by looking at the region R12 by thermography, a distribution diagram is created based on the data of 24 temperature distributions, and a predetermined temperature range is determined. Also good.

最後に、本実施形態における結線検査方法は識別結果に基づいて結線部の結線状態を判定する(ステップS50)。   Finally, the connection inspection method in the present embodiment determines the connection state of the connection part based on the identification result (step S50).

図12は、識別結果に基づいて結線部の結線状態を判定するフローチャート図である。図12に示すように、ステップ40における識別段階で分割コアの温度分布が所定の温度範囲にあったか否かを判定する(ステップS51)。計測した温度分布が所定の温度範囲であった場合(ステップS52)は、その分割コアの結線は良好状態であると判定される。反対に所定の温度範囲に無かった場合(ステップS53)は、その分割コアの結線は不良状態であると判定される。   FIG. 12 is a flowchart for determining the connection state of the connection unit based on the identification result. As shown in FIG. 12, it is determined whether or not the temperature distribution of the divided cores is within a predetermined temperature range at the identification stage in step 40 (step S51). When the measured temperature distribution is within the predetermined temperature range (step S52), it is determined that the connection of the divided core is in a good state. On the other hand, when the temperature is not within the predetermined temperature range (step S53), it is determined that the connection of the divided core is in a defective state.

以上説明した実施形態によれば、以下の効果を奏する。   According to the embodiment described above, the following effects are obtained.

本発明によれば、コアコイルを構成する分割コアに電流を流してコイルから発せられる放熱による温度分布を計測することで、容易に結線状態の合否を確認できる。   According to the present invention, it is possible to easily confirm the pass / fail of the connection state by passing a current through the divided cores constituting the core coil and measuring the temperature distribution due to heat radiation generated from the coils.

また、非接触温度計やサーモグラフィーを用いることで、容易に分割コアのコイルの温度分布を計測することができる。さらに、あらかじめワークの位置決めとサーモグラフィー上の位置を認識しておくことで、どの分割コアの温度分布を計測しているのかが容易に識別することができ、検査作業の効率が上がる。   Further, the temperature distribution of the coil of the split core can be easily measured by using a non-contact thermometer or thermography. Furthermore, by recognizing the position of the workpiece and the position on the thermography in advance, it is possible to easily identify which divided core temperature distribution is being measured, thereby increasing the efficiency of the inspection work.

また、ステータが複数の相を有していても、ステータに装着されるバスパーにおいてそれぞれの相の電流線と分割コアのコアコイルとが結線されている限り、電流が流れているコアコイルの温度分布を計測することによって結線状態を判定することができる。   In addition, even if the stator has a plurality of phases, the temperature distribution of the core coil through which the current flows is maintained as long as the current lines of the respective phases and the core coil of the split core are connected in the bus par attached to the stator. The connection state can be determined by measuring.

また、ステータの1つの相に通電することで、サーモグラフィーを用いて電流が流れている複数の分割コアが位置する領域R11を見ることで、同時に複数の分割コアの温度分布を計測することができる。   In addition, by energizing one phase of the stator, the temperature distribution of the plurality of divided cores can be measured simultaneously by looking at the region R11 where the plurality of divided cores where current flows is located using thermography. .

また、通電装置とスイッチ機能を備えた装置とを設置することによって、同時にもしくは順番に複数の分割コアに通電し、目的の分割コアの温度分布を計測することができる。   Further, by installing an energization device and a device having a switch function, it is possible to energize a plurality of divided cores simultaneously or sequentially and measure the temperature distribution of the target divided core.

1 集中巻ステータ、
2 バスバー、
3 コアコイル、
4 分割コア。
1 Concentrated winding stator,
2 Busbar,
3 core coil,
4 Split core.

Claims (6)

複数の分割コアにそれぞれ備わっているコアコイルをバスバーによって結線したステータを準備する段階と、
少なくとも一つの前記分割コアのコアコイルに電流を流す段階と、
前記電流が流されたコアコイルをもつ分割コアの温度分布を計測する段階と、
前記計測した分割コアの温度分布が所定の温度範囲内の温度分布であるか否かを識別する段階と、
前記分割コアの温度分布が前記温度範囲内であると識別された場合は前記分割コアと前記バスバーとが良好状態で結線されており、前記温度範囲内でない場合は前記分割コアと前記バスバーとが不良状態で結線されていると判定する段階と、
からなる結線検査方法。
Preparing a stator in which a core coil provided in each of a plurality of divided cores is connected by a bus bar;
Passing a current through a core coil of at least one of the split cores;
Measuring a temperature distribution of a split core having a core coil through which the current flows;
Identifying whether the measured temperature distribution of the split core is a temperature distribution within a predetermined temperature range; and
When the temperature distribution of the split core is identified as being within the temperature range, the split core and the bus bar are connected in good condition, and when not within the temperature range, the split core and the bus bar are connected. Determining that it is wired in a defective state;
A connection inspection method comprising:
前記温度分布は非接触温度計またはサーモグラフィーで計測されることを特徴とする請求項1に記載の結線検査方法。   The connection inspection method according to claim 1, wherein the temperature distribution is measured by a non-contact thermometer or thermography. 前記バスバーは中性線と複数の相の各相に電流を流すためのそれぞれの相に対応した電流線を備え、前記複数の分割コアは前記複数の相のいずれかの相に対応するように分けられ、前記分割コアのコアコイルは前記中性線と前記対応するように分けられた相の前記電流線と結線されていることを特徴とする請求項1または2に記載の結線検査方法。   The bus bar includes a neutral line and a current line corresponding to each phase for flowing current to each phase of the plurality of phases, and the plurality of divided cores correspond to any one of the plurality of phases. 3. The connection inspection method according to claim 1, wherein the core coil of the divided core is connected to the current wire of the phase divided so as to correspond to the neutral wire. 4. 前記電流を流す段階は、前記複数の相の少なくとも一つの相に電流を流すことを特徴とする請求項1から3のいずれか1項に記載の結線検査方法。   4. The connection inspection method according to claim 1, wherein in the step of passing the current, a current is passed through at least one of the plurality of phases. 5. 前記電流を流す段階は、前記複数の相の2つ以上の相に電流を流す場合、前記複数の相に対して順番に電流を流すことを特徴とする請求項1から4のいずれか1項に記載の結線検査方法。   5. The method according to claim 1, wherein in the step of passing the current, when a current is supplied to two or more phases of the plurality of phases, a current is supplied to the plurality of phases in order. The connection inspection method described in 1. 複数の分割コアにそれぞれ備わっているコアコイルをバスバーによって結線したステータの少なくとも一つの前記分割コアのコアコイルに電流を流す通電手段と、
前記電流が流されたコアコイルをもつ分割コアの温度分布を計測する計測手段と、
前記計測した分割コアの温度分布が所定の温度範囲内の温度分布であるか否かを識別する識別手段と、
前記分割コアの温度分布が前記温度範囲内であると識別された場合は前記分割コアと前記バスバーとが良好状態で結線されており、前記温度範囲内でない場合は前記分割コアと前記バスバーとが不良状態で結線されていると判定する判定手段と、
からなる結線検査装置。
Energizing means for passing current to the core coil of at least one of the divided cores of the stator in which a core coil provided in each of the divided cores is connected by a bus bar;
Measuring means for measuring a temperature distribution of a split core having a core coil through which the current flows;
Identifying means for identifying whether the measured temperature distribution of the divided core is a temperature distribution within a predetermined temperature range;
When the temperature distribution of the split core is identified as being within the temperature range, the split core and the bus bar are connected in good condition, and when not within the temperature range, the split core and the bus bar are connected. Determination means for determining that the connection is made in a defective state;
Connection inspection equipment consisting of
JP2009057113A 2009-03-10 2009-03-10 Method and device for inspecting connection of motor Pending JP2010210440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009057113A JP2010210440A (en) 2009-03-10 2009-03-10 Method and device for inspecting connection of motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009057113A JP2010210440A (en) 2009-03-10 2009-03-10 Method and device for inspecting connection of motor

Publications (1)

Publication Number Publication Date
JP2010210440A true JP2010210440A (en) 2010-09-24

Family

ID=42970770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009057113A Pending JP2010210440A (en) 2009-03-10 2009-03-10 Method and device for inspecting connection of motor

Country Status (1)

Country Link
JP (1) JP2010210440A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229945A (en) * 2012-04-24 2013-11-07 Honda Motor Co Ltd Electrification fixing method
CN110426634A (en) * 2019-09-10 2019-11-08 上海大制科技有限公司 A kind of method and apparatus of the predicting abnormality for drive system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829477A (en) * 1994-07-12 1996-02-02 Isuzu Motors Ltd Device for inspecting revolving electric machine for turbocharger
JPH1194918A (en) * 1997-09-17 1999-04-09 Dainippon Printing Co Ltd Electrode inspection apparatus
JP2007192624A (en) * 2006-01-18 2007-08-02 Toyota Motor Corp System and method for inspecting coil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829477A (en) * 1994-07-12 1996-02-02 Isuzu Motors Ltd Device for inspecting revolving electric machine for turbocharger
JPH1194918A (en) * 1997-09-17 1999-04-09 Dainippon Printing Co Ltd Electrode inspection apparatus
JP2007192624A (en) * 2006-01-18 2007-08-02 Toyota Motor Corp System and method for inspecting coil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229945A (en) * 2012-04-24 2013-11-07 Honda Motor Co Ltd Electrification fixing method
CN110426634A (en) * 2019-09-10 2019-11-08 上海大制科技有限公司 A kind of method and apparatus of the predicting abnormality for drive system
CN110426634B (en) * 2019-09-10 2020-08-18 大制(苏州)科技有限公司 Method and equipment for predicting abnormity of driving system

Similar Documents

Publication Publication Date Title
Tallam et al. A survey of methods for detection of stator-related faults in induction machines
Riera-Guasp et al. Influence of nonconsecutive bar breakages in motor current signature analysis for the diagnosis of rotor faults in induction motors
JP5738511B2 (en) Insulation test method in manufacturing process of rotating electrical machine winding and manufacturing method of rotating electrical machine winding
Diaz et al. Inter-turn short-circuit analysis in an induction machine by finite elements method and field tests
US5457402A (en) Armature resistance measuring apparatus and method
JP2010210440A (en) Method and device for inspecting connection of motor
JP7255322B2 (en) Insulation inspection device and insulation inspection method
KR20170116585A (en) Dynamoelectric machine fault monitoring system, computer program product and related methods
JP4539530B2 (en) Motor insulation inspection device
Stojčić et al. Increasing sensitivity of stator winding short circuit fault indicator in inverter fed induction machines
JP2008267929A (en) Motor short circuit inspection method
JP2007189144A (en) System and method for coil inspection
JP6314875B2 (en) Inverter drive motor inspection method
Brandt et al. Diagnostic of induction motor using SFRA method
JP2007121002A (en) Motor insulation inspection apparatus
Bogh et al. A user's guide to factory testing of large motors: What should your witness expect?
JP5525768B2 (en) Rotating electrical machine test method and manufacturing method
JP2005214717A (en) Defect test method for stator of polyphase motor
JP2010261914A (en) Method and apparatus for inspection of armature
JP2007192624A (en) System and method for inspecting coil
JP2009092527A (en) Method of inspecting insulation of stator winding in rotary electric machine
JP2005214715A (en) Inspection device and test method for rotary electric machine
JP5045571B2 (en) Inspection master, apparatus inspection method, and insulation inspection apparatus
JP2009174872A (en) Inspecting method of insulation of rotary electrical machine, and device therefor
JP7107755B2 (en) Interphase Insulation Inspection Method for Coil Conductors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008