JP2010210428A - Acceleration sensor - Google Patents

Acceleration sensor Download PDF

Info

Publication number
JP2010210428A
JP2010210428A JP2009056953A JP2009056953A JP2010210428A JP 2010210428 A JP2010210428 A JP 2010210428A JP 2009056953 A JP2009056953 A JP 2009056953A JP 2009056953 A JP2009056953 A JP 2009056953A JP 2010210428 A JP2010210428 A JP 2010210428A
Authority
JP
Japan
Prior art keywords
electrode
frame
movable
electrodes
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009056953A
Other languages
Japanese (ja)
Inventor
Hitoshi Yoshida
仁 吉田
Nobuyuki Ibara
伸行 茨
Hideki Ueda
英喜 上田
Masafumi Okada
全史 岡田
Takashi Mori
岳志 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009056953A priority Critical patent/JP2010210428A/en
Publication of JP2010210428A publication Critical patent/JP2010210428A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acceleration sensor capable of enhancing a strength against an impact without lowering detection sensitivity. <P>SOLUTION: The acceleration sensor includes a first electrode 400 and a second electrode 401 which are formed by dividing a first movable electrode 40 in two, a first frame 30 which surrounds the first electrode 400 and the second electrode 401 with a prescribed space left in between, and a pair of first beam parts 5a and 5b which connects each of the electrodes 400 and 401 with the first frame 30 respectively and also supports each of the electrodes 400 and 401 so that it can rock in relation to the first frame 30. The first beam parts 5a and 5b are provided respectively in the vicinity of the opposite corners of the first frame 30 and their shafts agree substantially with the direction intersecting a diagonal line of the first frame 30 perpendicularly, while the opposite ends in the axial direction are formed integrally with the first frame 30. In the substantially central portion in the axial direction of each of the beam parts 5a and 5b, each of the electrodes 400 and 401 is formed integrally the same. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、可動電極の揺動に伴う可動電極と固定電極との間の静電容量の変化に基づいて加速度を検出する静電容量型の加速度センサに関する。   The present invention relates to a capacitance-type acceleration sensor that detects acceleration based on a change in capacitance between a movable electrode and a fixed electrode accompanying the swing of the movable electrode.

従来から、平面視矩形状の可動電極と、可動電極の対向する2辺の略中央において可動電極を揺動自在に支持する1対のビーム部と、可動電極の表面において1対のビーム部を結ぶ直線を境界線とした一方側と他方側のそれぞれに対して所定の距離を空けて対向配置された固定電極とを備え、可動電極の揺動に伴う可動電極と固定電極との間の静電容量の変化を検出することで加速度を検出する静電容量型の加速度センサが知られている(例えば、特許文献1参照)。   Conventionally, a movable electrode having a rectangular shape in plan view, a pair of beam portions that swingably support the movable electrode at substantially the center of two opposite sides of the movable electrode, and a pair of beam portions on the surface of the movable electrode. A fixed electrode disposed opposite to each other with a predetermined distance from one side and the other side with a connecting straight line as a boundary line, and a static electrode between the movable electrode and the fixed electrode that accompanies the swinging of the movable electrode. A capacitance-type acceleration sensor that detects acceleration by detecting a change in capacitance is known (see, for example, Patent Document 1).

以下、このような加速度センサの従来例について図面を用いて説明する。尚、以下の説明では、図3における上下を上下方向と定めるものとする。また、センサチップ1の短手方向と平行な方向をx方向、センサチップ1の長手方向と平行な方向をy方向、x方向及びy方向に互いに直交する方向をz方向と定めるものとする。この従来例は、図3に示すように、SOI(Silicon on Insulator)基板で形成されたセンサチップ1が上部固定板2aと下部固定板2bとで挟持された構成となっている。センサチップ1は、2つの平面視略矩形状の第1の枠部30及び第2の枠部31を有するフレーム部3と、枠部30,31の側壁部に対して隙間を空けて各枠部30,31に囲まれた空間に配設される平面視略矩形状の2つの第1の可動電極40及び第2の可動電極41と、各可動電極40,41上面の対向する2辺の略中央部と各枠部30,31の側壁部とを連結することにより各可動電極40,41をフレーム部3に対して揺動自在に支持する2対のビーム部5a〜5dとを備える。   Hereinafter, a conventional example of such an acceleration sensor will be described with reference to the drawings. In the following description, the vertical direction in FIG. 3 is defined as the vertical direction. In addition, a direction parallel to the short direction of the sensor chip 1 is defined as an x direction, a direction parallel to the longitudinal direction of the sensor chip 1 is defined as a y direction, and a direction orthogonal to the x direction and the y direction is defined as a z direction. In this conventional example, as shown in FIG. 3, a sensor chip 1 formed of an SOI (Silicon on Insulator) substrate is sandwiched between an upper fixing plate 2a and a lower fixing plate 2b. The sensor chip 1 includes a frame portion 3 having a first frame portion 30 and a second frame portion 31 that are substantially rectangular in plan view, and each frame with a gap between the side walls of the frame portions 30 and 31. The two first movable electrodes 40 and the second movable electrode 41 having a substantially rectangular shape in plan view disposed in a space surrounded by the portions 30 and 31, and two opposing sides of the upper surfaces of the movable electrodes 40 and 41. Two pairs of beam portions 5a to 5d that support the movable electrodes 40 and 41 so as to be swingable with respect to the frame portion 3 by connecting the substantially central portion and the side walls of the frame portions 30 and 31 are provided.

上部固定板2aはガラス基板により形成され、図3に示すように、第1の可動電極40と対向する下面には1対の第1のビーム部5a,5bを結ぶ直線を境界線として第1の固定電極20a及び第2の固定電極20bが設けられている。また、第2の可動電極41と対向する下面には、1対の第2のビーム部5c,5dを結ぶ直線を境界線として第3の固定電極20c及び第4の固定電極20dが設けられている。各固定電極20a〜20dはアルミニウム系合金から形成されている。   The upper fixed plate 2a is formed of a glass substrate. As shown in FIG. 3, the lower surface facing the first movable electrode 40 has a straight line connecting a pair of first beam portions 5a and 5b as a boundary line. The fixed electrode 20a and the second fixed electrode 20b are provided. Further, on the lower surface facing the second movable electrode 41, a third fixed electrode 20c and a fourth fixed electrode 20d are provided with a straight line connecting the pair of second beam portions 5c and 5d as a boundary line. Yes. Each fixed electrode 20a-20d is formed from an aluminum-based alloy.

下部固定板2bは、上部固定板2aと同様にガラス基板により形成され、図3,4に示すように、各可動電極40,41と間隔を空けて付着防止膜23a,23bが配設されている。付着防止膜23a,23bは各固定電極20a〜20dと同じ材料から成り、各可動電極40,41が動作時に下部固定板2bに付着するのを防止する。また、測定レンジを超える過大な加速度が加えられた場合には、付着防止膜23a,23bによって各可動電極40,41と下部固定板2bとが直接接触するのを防ぐことから衝撃緩和の効果を奏する。   The lower fixed plate 2b is formed of a glass substrate in the same manner as the upper fixed plate 2a. As shown in FIGS. 3 and 4, adhesion preventing films 23a and 23b are arranged at intervals from the movable electrodes 40 and 41. Yes. The adhesion preventing films 23a and 23b are made of the same material as the fixed electrodes 20a to 20d, and prevent the movable electrodes 40 and 41 from adhering to the lower fixed plate 2b during operation. In addition, when excessive acceleration exceeding the measurement range is applied, the adhesion preventing films 23a and 23b prevent the movable electrodes 40 and 41 and the lower fixed plate 2b from coming into direct contact with each other. Play.

センサチップ1には、図3に示すように、第1の可動電極40と各固定電極20a,20bとの間の静電容量C1,C2を各々検出する検出電極6a,6bと、第2の可動電極41と各固定電極20c,20dとの間の静電容量C3,C4を各々検出する検出電極6c,6dと、接地電極7とが設けられている。上部固定板2aの各検出電極6a〜6d及び接地電極7と対向する部位にはスルーホール21a〜21d,22が貫設されており、当該スルーホール21a〜21d,22を介して各固定電極20a〜20dに各々接続された検出電極6a〜6d、及び接地電極7の出力が取り出されるようになっている。また、検出電極6aと検出電極6bとの間、検出電極6cと検出電極6dとの間、各検出電極6a〜6dとフレーム部3との間、各検出電極6a〜6dと各可動電極40,41との間には各々隙間が形成されている。このように構成することで、各検出電極6a〜6dが互いに電気的に絶縁されるので、各検出電極6a〜6dの寄生容量や電極間のクロストークを低減し、高精度な静電容量の検出を行うことができる。   As shown in FIG. 3, the sensor chip 1 includes detection electrodes 6a and 6b for detecting capacitances C1 and C2 between the first movable electrode 40 and the fixed electrodes 20a and 20b, respectively, and a second Detection electrodes 6c and 6d for detecting capacitances C3 and C4 between the movable electrode 41 and the fixed electrodes 20c and 20d, respectively, and a ground electrode 7 are provided. Through holes 21a to 21d and 22 are formed through portions of the upper fixed plate 2a facing the detection electrodes 6a to 6d and the ground electrode 7, and the fixed electrodes 20a are inserted through the through holes 21a to 21d and 22, respectively. The outputs of the detection electrodes 6a to 6d and the ground electrode 7 respectively connected to ˜20d are taken out. Moreover, between the detection electrode 6a and the detection electrode 6b, between the detection electrode 6c and the detection electrode 6d, between each detection electrode 6a-6d and the flame | frame part 3, each detection electrode 6a-6d and each movable electrode 40, A gap is formed between each of the terminals 41 and 41. With this configuration, the detection electrodes 6a to 6d are electrically insulated from each other, so that parasitic capacitance of the detection electrodes 6a to 6d and crosstalk between the electrodes are reduced, and high-accuracy capacitance can be obtained. Detection can be performed.

第1の可動電極40の下面における1対の第1のビーム部5a,5bを結ぶ直線を境界線とした一方側には、図4に示すように、厚み寸法が前記他方側の厚み寸法よりも小さくなるように凹部40aが設けられている。同様に、第2の可動電極41の下面における1対の第2のビーム5c,5dを結ぶ直線を境界線とした一方側にも、図示しないが、厚み寸法が前記他方側の寸法よりも小さくなるように凹部が設けられている。何れの凹部も、図4に示すように(図4では凹部40aのみ図示)、各可動電極40,41の重心位置Oとビーム部5a〜5dとが成す角度θが45度となるように設けられている。このように構成することで、加速度が加えられた際にビーム部5a〜5dを軸とした回転モーメントが各可動電極40,41に発生し、x方向及びz方向の検出感度が等価になる。尚、この従来例では、図3に示すように2つの加速度センサがxy平面に配置され、一方の加速度センサが他方の加速度センサに対してxy平面内で180度回転して配置されている。   On one side of the lower surface of the first movable electrode 40 with a straight line connecting the pair of first beam portions 5a and 5b as a boundary line, the thickness dimension is larger than the thickness dimension on the other side as shown in FIG. A recess 40a is provided so as to be smaller. Similarly, on one side of the lower surface of the second movable electrode 41 with a straight line connecting the pair of second beams 5c and 5d as a boundary line, although not shown, the thickness dimension is smaller than the dimension on the other side. A recess is provided so as to be. As shown in FIG. 4 (only the recess 40a is shown in FIG. 4), each of the recesses is provided so that the angle θ formed by the center of gravity O of each of the movable electrodes 40 and 41 and the beam portions 5a to 5d is 45 degrees. It has been. With this configuration, when acceleration is applied, a rotational moment about the beam portions 5a to 5d is generated in each of the movable electrodes 40 and 41, and the detection sensitivity in the x direction and the z direction becomes equivalent. In this conventional example, as shown in FIG. 3, two acceleration sensors are arranged on the xy plane, and one acceleration sensor is arranged to rotate 180 degrees in the xy plane with respect to the other acceleration sensor.

各可動電極40,41の上部固定板2a及び下部固定板2bと対向する面には、図4に示すように(図4では第1の可動電極40のみ図示)、シリコン又はシリコン酸化膜により形成された複数の突起部40bが設けられている。このような突起部40bを設けることにより、各可動電極40,41に測定レンジを超える過大な加速度が加えられた場合であっても、各可動電極40,41が対向する上部固定板2a及び下部固定板2bと直接衝突することがなく、センサチップ1の破損を防止することができる。尚、この従来例では各可動電極40,41の上部固定板2a及び下部固定板2bと対向する面に突起部40bを設けているが、上部固定板2a及び下部固定板2bの各可動電極40,41と対向する面に突起部40bを設けても構わない。   As shown in FIG. 4 (only the first movable electrode 40 is shown in FIG. 4), the surface of each movable electrode 40, 41 facing the upper fixed plate 2a and the lower fixed plate 2b is formed of silicon or a silicon oxide film. A plurality of protruding portions 40b are provided. By providing such a protrusion 40b, even if excessive acceleration exceeding the measurement range is applied to each movable electrode 40, 41, the upper fixed plate 2a and the lower portion facing each movable electrode 40, 41 are arranged. The sensor chip 1 can be prevented from being damaged without directly colliding with the fixing plate 2b. In this conventional example, the protrusions 40b are provided on the surfaces of the movable electrodes 40, 41 facing the upper fixed plate 2a and the lower fixed plate 2b. However, the movable electrodes 40 of the upper fixed plate 2a and the lower fixed plate 2b are provided. , 41 may be provided on the surface facing the projection 41b.

以下、上記従来例における加速度検出について説明する。先ず、x方向における加速度の検出について説明する。第1の可動電極40にx方向の加速度が加えられた場合、第1の可動電極40と各固定電極20a,20bとの間の静電容量C1,C2は、それぞれ以下に示す数式で表される。尚、数式(1),(2)中のパラメータC0は、第1の可動電極40にx方向の加速度が加えられていない状態における第1の可動電極40と各固定電極20a,20bとの間の静電容量を示す。   Hereinafter, acceleration detection in the conventional example will be described. First, detection of acceleration in the x direction will be described. When acceleration in the x direction is applied to the first movable electrode 40, the capacitances C1 and C2 between the first movable electrode 40 and the fixed electrodes 20a and 20b are expressed by the following mathematical formulas, respectively. The The parameter C0 in the equations (1) and (2) is the distance between the first movable electrode 40 and each fixed electrode 20a, 20b in the state where no acceleration in the x direction is applied to the first movable electrode 40. The electrostatic capacity is shown.

C1=C0−ΔC …(1)
C2=C0+ΔC …(2)
同様に、第2の可動電極41にx方向の加速度が加えられた場合、第2の可動電極41と各固定電極20c,20dとの間の静電容量C3,C4は、それぞれ以下に示す数式で表される。尚、数式(3),(4)中のパラメータC0は、上記と同様に第2の可動電極41にx方向の加速度が加えられていない状態における第2の可動電極41と各固定電極20c,20dとの間の静電容量を示す。
C1 = C0−ΔC (1)
C2 = C0 + ΔC (2)
Similarly, when an acceleration in the x direction is applied to the second movable electrode 41, the capacitances C3 and C4 between the second movable electrode 41 and the fixed electrodes 20c and 20d are expressed by the following equations, respectively. It is represented by Note that the parameter C0 in the equations (3) and (4) is the same as the above, and the second movable electrode 41 and each fixed electrode 20c, when the acceleration in the x direction is not applied to the second movable electrode 41. The capacitance between 20d is shown.

C3=C0−ΔC …(3)
C4=C0+ΔC …(4)
而して、各検出電極6a〜6dを介して上記静電容量C1〜C4を検出し、ASIC(Application Specific Integrated Circuit)等を利用して静電容量C1,C2の差分値CA(=C1−C2)、及び静電容量C3,C4の差分値CB(=C3−C4)を算出し、算出された差分値CA,CBの和(±4ΔC)をX出力として出力することにより、静電容量の変化から第1の可動電極40及び第2の可動電極41に加えられたx方向の加速度を検出することができる。
C3 = C0−ΔC (3)
C4 = C0 + ΔC (4)
Thus, the capacitances C1 to C4 are detected via the detection electrodes 6a to 6d, and the difference value CA (= C1−) of the capacitances C1 and C2 is detected using an ASIC (Application Specific Integrated Circuit) or the like. C2) and the difference value CB (= C3−C4) between the capacitances C3 and C4, and the sum of the calculated difference values CA and CB (± 4ΔC) is output as the X output, whereby the capacitance From this change, the acceleration in the x direction applied to the first movable electrode 40 and the second movable electrode 41 can be detected.

次に、z方向における加速度の検出について説明する。第1の可動電極40にz方向の加速度が加えられた場合、第1の可動電極40と各固定電極20a,20bとの間の静電容量C1,C2は、それぞれ以下に示す数式で表される。尚、数式(5),(6)中のパラメータC0は、第1の可動電極40にz方向の加速度が加えられていない状態における第1の可動電極40と各固定電極20a,20bとの間の静電容量を示す。   Next, detection of acceleration in the z direction will be described. When acceleration in the z direction is applied to the first movable electrode 40, the capacitances C1 and C2 between the first movable electrode 40 and the fixed electrodes 20a and 20b are expressed by the following equations, respectively. The The parameter C0 in the equations (5) and (6) is the distance between the first movable electrode 40 and each fixed electrode 20a, 20b in the state where no acceleration in the z direction is applied to the first movable electrode 40. The electrostatic capacity is shown.

C1=C0+ΔC …(5)
C2=C0−ΔC …(6)
同様に、第2の可動電極41にz方向の加速度が加えられた場合、第2の可動電極41と各固定電極20c,20dとの間の静電容量C3,C4は、それぞれ以下に示す数式で表される。尚、数式(7),(8)中のパラメータC0は、上記と同様に第2の可動電極41にz方向の加速度が加えられていない状態における第2の可動電極41と各固定電極20c,20dとの間の静電容量を示す。
C1 = C0 + ΔC (5)
C2 = C0−ΔC (6)
Similarly, when an acceleration in the z direction is applied to the second movable electrode 41, the capacitances C3 and C4 between the second movable electrode 41 and the fixed electrodes 20c and 20d are expressed by the following equations, respectively. It is represented by It should be noted that the parameter C0 in the equations (7) and (8) is the same as described above, and the second movable electrode 41 and each fixed electrode 20c, in the state where no acceleration in the z direction is applied to the second movable electrode 41. The capacitance between 20d is shown.

C3=C0−ΔC …(7)
C4=C0+ΔC …(8)
而して、各検出電極6a〜6dを介して上記静電容量C1〜C4を検出し、ASIC等を利用して静電容量C1,C2の差分値CA(=C1−C2)、及び静電容量C3,C4の差分値CB(=C3−C4)を算出し、算出された差分値CA,CBの和(±4ΔC)をZ出力として出力することにより、静電容量の変化から第1の可動電極40及び第2の可動電極41に加えられたz方向の加速度を検出することができる。
C3 = C0−ΔC (7)
C4 = C0 + ΔC (8)
Thus, the capacitances C1 to C4 are detected via the detection electrodes 6a to 6d, and the difference value CA (= C1−C2) between the capacitances C1 and C2 using the ASIC or the like, and the electrostatic capacitance. A difference value CB (= C3−C4) between the capacitors C3 and C4 is calculated, and the sum (± 4ΔC) of the calculated difference values CA and CB is output as a Z output. The acceleration in the z direction applied to the movable electrode 40 and the second movable electrode 41 can be detected.

米国特許公開2007−0000323号公報US Patent Publication No. 2007-0000223

ところで、上記のような加速度センサでは、測定レンジを越えた過大な加速度が加えられる等の衝撃に対する強度は、可動電極40,41の質量とビーム部5a〜5dの剛性によって決定される。しかしながら、上記従来例では、衝撃に対する強度を高めるためにビーム部5a〜5dの剛性を高めると、可動電極40,41が揺動し難くなり、検出感度が落ちるという問題があった。   By the way, in the acceleration sensor as described above, the strength against an impact such as excessive acceleration exceeding the measurement range is determined by the mass of the movable electrodes 40 and 41 and the rigidity of the beam portions 5a to 5d. However, in the above conventional example, when the rigidity of the beam portions 5a to 5d is increased in order to increase the strength against impact, there is a problem that the movable electrodes 40 and 41 are difficult to swing and the detection sensitivity is lowered.

本発明は、上記の点に鑑みて為されたもので、検出感度を落とすことなく衝撃に対する強度を高めることのできる加速度センサを提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide an acceleration sensor that can increase the strength against impact without degrading the detection sensitivity.

請求項1の発明は、上記目的を達成するために、可動電極を2分割して成る第1の電極部及び第2の電極部と、第1の電極部及び第2の電極部を所定の間隔を空けて囲む平面視略矩形状の枠部と、第1の電極部及び第2の電極部と枠部とをそれぞれ連結するとともに第1の電極部及び第2の電極部をそれぞれ枠部に対して揺動自在に支持する1対のビーム部と、第1の電極部及び第2の電極部に対してそれぞれ所定の間隔を空けて対向配置される1対の固定電極とを備え、可動電極の揺動に伴う可動電極と固定電極との間の静電容量の変化から加速度を検出する加速度センサであって、ビーム部は、その軸部が枠部の角部近傍において対角線と直交する方向に略一致し且つ軸方向における両端部が枠部と一体に形成され、各ビーム部の軸方向の略中央部において第1の電極部及び第2の電極部がそれぞれ一体に形成されたことを特徴とする。   In order to achieve the above object, the first aspect of the present invention provides a first electrode portion and a second electrode portion formed by dividing the movable electrode into two parts, and the first electrode portion and the second electrode portion are arranged in a predetermined manner. A frame portion having a substantially rectangular shape in plan view and surrounding the first electrode portion, the second electrode portion, and the frame portion, and the first electrode portion and the second electrode portion are respectively frame portions. A pair of beam portions that are swingably supported, and a pair of fixed electrodes that are disposed to face the first electrode portion and the second electrode portion with a predetermined distance therebetween, An acceleration sensor that detects acceleration from a change in capacitance between a movable electrode and a fixed electrode that accompanies the swing of the movable electrode, and the beam portion of the beam portion is orthogonal to the diagonal line in the vicinity of the corner portion of the frame portion. The both ends in the axial direction are formed so as to be integrated with the frame portion in the axial direction. Wherein the portion first electrode and the second electrode portion in a substantially central portion are integrally formed, respectively.

本発明によれば、可動電極を2分割した電極部を両端部が枠部と一体に形成された1つのビーム部が揺動自在に支持するため、従来のように1つの可動電極を1対のビーム部で揺動自在に支持する場合と比較して1つのビーム部にかかる負荷が小さくなり、したがって検出感度を落とすことなく衝撃に対する強度を高めることができる。   According to the present invention, the electrode portion obtained by dividing the movable electrode into two is supported by one beam portion whose both ends are formed integrally with the frame portion so as to be swingable. Compared with the case where the beam portion is swingably supported, the load applied to one beam portion is reduced, so that the strength against impact can be increased without degrading the detection sensitivity.

本発明に係る加速度センサの実施形態1を示す図で、(a)は平面図で、(b)はA−A’線断面矢視図で、(c)は固定電極との位置関係を示す平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Embodiment 1 of the acceleration sensor which concerns on this invention, (a) is a top view, (b) is an AA 'sectional view taken on the line, (c) shows the positional relationship with a fixed electrode. It is a top view. 本発明に係る加速度センサの実施形態2を示す図で、(a)は可動電極及びフレーム部の平面図で、(b)は上部固定板の下面図である。FIG. 7 is a diagram illustrating an acceleration sensor according to a second embodiment of the present invention, where (a) is a plan view of the movable electrode and the frame portion, and (b) is a bottom view of the upper fixed plate. 従来の加速度センサを示す分解斜視図である。It is a disassembled perspective view which shows the conventional acceleration sensor. 同上のyz平面における断面図である。It is sectional drawing in yz plane same as the above.

(実施形態1)
以下、本発明に係る加速度センサの実施形態1について図面を用いて説明する。但し、本実施形態の基本的な構成は従来例と共通であるので、共通する部位には同一の番号を付して説明を省略する。また、以下の説明では、従来例での説明と同様に、図3における上下を上下方向、センサチップ1の短手方向と平行な方向をx方向、センサチップ1の長手方向と平行な方向をy方向、x方向及びy方向に互いに直交する方向をz方向と定めるものとする。
(Embodiment 1)
Hereinafter, a first embodiment of an acceleration sensor according to the present invention will be described with reference to the drawings. However, since the basic configuration of this embodiment is the same as that of the conventional example, common portions are denoted by the same reference numerals and description thereof is omitted. Further, in the following description, similarly to the description in the conventional example, the vertical direction in FIG. 3 is the vertical direction, the direction parallel to the short direction of the sensor chip 1 is the x direction, and the direction parallel to the long direction of the sensor chip 1 is. The directions perpendicular to the y direction, the x direction, and the y direction are defined as the z direction.

本実施形態は、図1(a)〜(c)に示すように、平面視略正方形状の第1の可動電極40を2分割して成る平面視略三角形状の第1の電極部400及び第2の電極部401と、第1の電極部400及び第2の電極部401を所定の間隔を空けて囲む平面視略正方形状の第1の枠部30と、第1の電極部400及び第2の電極部401と第1の枠部30とをそれぞれ連結するとともに第1の電極部400及び第2の電極部401をそれぞれ第1の枠部30に対して揺動自在に支持する1対の第1のビーム部5a,5bと、第1の電極部400及び第2の電極部401に対してそれぞれ所定の間隔を空けて対向配置される第1の固定電極20a及び第2の固定電極20bとを備える。   In the present embodiment, as shown in FIGS. 1A to 1C, the first movable electrode 40 having a substantially square shape in plan view, which is divided into two parts, has a first electrode portion 400 having a substantially triangular shape in plan view and The first electrode unit 400, the first electrode unit 400, the first electrode unit 400, the first electrode unit 400, the first electrode unit 400, and the first electrode unit 400 having a substantially square shape in plan view surrounding the first electrode unit 400 and the second electrode unit 401 with a predetermined space therebetween. The second electrode part 401 and the first frame part 30 are connected to each other, and the first electrode part 400 and the second electrode part 401 are swingably supported with respect to the first frame part 30, respectively. The first fixed electrode 20a and the second fixed electrode, which are arranged to face the pair of first beam portions 5a and 5b, and the first electrode portion 400 and the second electrode portion 401 with a predetermined distance, respectively. And an electrode 20b.

第1のビーム部5a,5bは、それぞれ第1の枠部30の対向する角部近傍に配設され、その軸部が第1の枠部30の対角線と直交する方向に略一致し且つ軸方向における両端部が第1の枠部30と一体に形成されている。そして、一方の第1のビーム部5aの軸方向の略中央部と第1の電極部400の頂点部とが一体に形成され、また、他方の第1のビーム部5bの軸方向の略中央部と第2の電極部401の頂点部とが一体に形成されている。このため、各電極部400,401は、第1のビーム部5a,5bの軸方向における略中央部をそれぞれ支点として揺動自在となっている。   The first beam portions 5a and 5b are disposed in the vicinity of opposing corner portions of the first frame portion 30, respectively, and the shaft portions thereof substantially coincide with the direction perpendicular to the diagonal line of the first frame portion 30, and the shaft Both end portions in the direction are formed integrally with the first frame portion 30. The substantially central portion in the axial direction of one first beam portion 5a and the apex portion of the first electrode portion 400 are integrally formed, and the substantially central portion in the axial direction of the other first beam portion 5b. And the apex portion of the second electrode portion 401 are integrally formed. For this reason, each electrode part 400,401 is freely swingable about a substantially central part in the axial direction of the first beam parts 5a, 5b.

而して、第1の可動電極40を2分割した第1の電極部400及び第2の電極部401を軸方向における両端部が第1の枠部20と一体に形成された第1のビーム部5a,5bがそれぞれ揺動自在に支持するため、従来例のように1つの第1の可動電極40を1対の第1のビーム部5a,5bで揺動自在に支持する場合と比較して第1のビーム部5a,5b各々にかかる負荷が小さくなる。したがって、第1のビーム部5a,5bの剛性を高める必要が無く、検出感度を落とすことなく衝撃に対する強度を高めることができる。   Thus, the first electrode 400 and the second electrode 401 obtained by dividing the first movable electrode 40 into two parts of the first beam in which both end portions in the axial direction are formed integrally with the first frame portion 20. Since each of the portions 5a and 5b is swingably supported, the first movable electrode 40 is swingably supported by the pair of first beam portions 5a and 5b as in the conventional example. Thus, the load on each of the first beam portions 5a and 5b is reduced. Therefore, it is not necessary to increase the rigidity of the first beam portions 5a and 5b, and the strength against impact can be increased without degrading the detection sensitivity.

また、本実施形態の構成では、各電極部400,401のxy平面における重心が第1のビーム部5a,5bと重ならないため、従来例のように各可動電極40,41の重心をずらすために凹部を設ける必要が無い(図1(b)参照)。したがって、凹部を設ける場合に行っていたエッチングの深さの管理をする必要が無く、従来例と比較してセンサを容易に製造することができる。   In the configuration of the present embodiment, the center of gravity of the electrode portions 400 and 401 in the xy plane does not overlap with the first beam portions 5a and 5b, so that the center of gravity of the movable electrodes 40 and 41 is shifted as in the conventional example. There is no need to provide a recess on the surface (see FIG. 1B). Therefore, it is not necessary to manage the depth of etching that has been performed when the concave portion is provided, and the sensor can be easily manufactured as compared with the conventional example.

(実施形態2)
以下、本発明に係る加速度センサの実施形態2について図面を用いて説明する。但し、本実施形態の基本的な構成は実施形態1と共通であるので、共通する部位には同一の番号を付して説明を省略する。また、以下の説明では、従来例での説明と同様に、図3における上下を上下方向、センサチップ1の短手方向と平行な方向をx方向、センサチップ1の長手方向と平行な方向をy方向、x方向及びy方向に互いに直交する方向をz方向と定めるものとする。
(Embodiment 2)
Hereinafter, an acceleration sensor according to a second embodiment of the present invention will be described with reference to the drawings. However, since the basic configuration of the present embodiment is common to that of the first embodiment, common portions are denoted by the same reference numerals and description thereof is omitted. Further, in the following description, similarly to the description in the conventional example, the vertical direction in FIG. 3 is the vertical direction, the direction parallel to the short direction of the sensor chip 1 is the x direction, and the direction parallel to the long direction of the sensor chip 1 is. The directions perpendicular to the y direction, the x direction, and the y direction are defined as the z direction.

本実施形態は、図2(a)に示すように、平面視略正方形状の第1の可動電極40を2分割して成る略三角形状の第1の電極部400及び第2の電極部401と、平面視略正方形状の第2の可動電極41を2分割して成る略三角形状の第3の電極部410及び第4の電極部411と、各電極部400,401を所定の間隔を空けて囲む平面視略正方形状の第1の枠部30、並びに各電極部410,411を所定の間隔を空けて囲む平面視略正方形状の第2の枠部31を有するフレーム部3とからセンサチップ1が構成されている(センサチップ1については図3参照)。   In the present embodiment, as shown in FIG. 2A, a first electrode portion 400 and a second electrode portion 401 each having a substantially triangular shape formed by dividing a first movable electrode 40 having a substantially square shape in plan view into two parts. And the third electrode part 410 and the fourth electrode part 411 having a substantially triangular shape formed by dividing the second movable electrode 41 having a substantially square shape in a plan view, and the electrode parts 400 and 401 at a predetermined interval. The first frame portion 30 having a substantially square shape in plan view and surrounding the electrode portions 410 and 411 with a predetermined interval and the frame portion 3 having the second frame portion 31 having a substantially square shape in plan view. A sensor chip 1 is configured (see FIG. 3 for the sensor chip 1).

第1のビーム部5a,5b、第1の枠部30、第1の電極部400及び第2の電極部401は、実施形態1と同様に構成されている。第2のビーム部5c,5dは、それぞれ第2の枠部31の対向する角部近傍に配設され、その軸部が第2の枠部31の対角線と直交する方向に略一致し且つ軸方向における両端部が第2の枠部31と一体に形成されている。そして、一方の第2のビーム部5cの軸方向の略中央部と第3の電極部410の頂点部とが一体に形成され、また、他方の第2のビーム部5dの軸方向の略中央部と第4の電極部411の頂点部とが一体に形成されている。このため、各電極部410,411は、第2のビーム部5c,5dの軸方向における略中央部をそれぞれ支点として揺動自在となっている。   The first beam portions 5a and 5b, the first frame portion 30, the first electrode portion 400, and the second electrode portion 401 are configured in the same manner as in the first embodiment. The second beam portions 5c and 5d are respectively disposed in the vicinity of opposing corners of the second frame portion 31, and the shaft portions thereof substantially coincide with the direction perpendicular to the diagonal line of the second frame portion 31 and are Both end portions in the direction are formed integrally with the second frame portion 31. The substantially central portion in the axial direction of one second beam portion 5c and the apex portion of the third electrode portion 410 are integrally formed, and the substantially central portion in the axial direction of the other second beam portion 5d. And the apex portion of the fourth electrode portion 411 are integrally formed. For this reason, the electrode portions 410 and 411 are swingable about the substantially central portion in the axial direction of the second beam portions 5c and 5d, respectively.

上部固定板2aの第1の電極部400及び第2の電極部401と対向する下面には、図2(b)に示すように、略三角形状の第1の固定電極20a及び第2の固定電極20bがそれぞれ設けられている。また、第3の電極部410及び第4の電極部411と対向する下面には、第3の固定電極20c及び第4の固定電極20dがそれぞれ設けられている。   As shown in FIG. 2B, on the lower surface of the upper fixing plate 2a facing the first electrode portion 400 and the second electrode portion 401, the substantially fixed first fixed electrode 20a and the second fixed electrode 20a. Electrodes 20b are provided respectively. In addition, a third fixed electrode 20c and a fourth fixed electrode 20d are provided on the lower surface facing the third electrode portion 410 and the fourth electrode portion 411, respectively.

以下、本実施形態における加速度検出について説明する。各電極部400,401,410,411にx方向、y方向の加速度が加えられた場合、各電極部400,401,410,411と各固定電極20a〜20dとの間の静電容量C1〜C4は、それぞれ以下に示す表のようになる。尚、表中のパラメータC0は、各電極部400,401,410,411に加速度が加えられていない状態における各電極部400,401,410,411と各固定電極20a〜20dとの間の静電容量を示す。   Hereinafter, acceleration detection in the present embodiment will be described. When acceleration in the x-direction and y-direction is applied to the electrode portions 400, 401, 410, and 411, the capacitances C1 to C1 between the electrode portions 400, 401, 410, and 411 and the fixed electrodes 20a to 20d. C4 is as shown in the table below. The parameter C0 in the table is a static value between each electrode unit 400, 401, 410, 411 and each fixed electrode 20a to 20d in a state where no acceleration is applied to each electrode unit 400, 401, 410, 411. Indicates the electric capacity.

Figure 2010210428
Figure 2010210428

而して、各検出電極6a〜6dを介して上記静電容量C1〜C4を検出し、ASIC等を利用して差分値CA(=C1−C2),CB(=C3−C4)を算出し、算出された差分値CA,CBからX出力、Y出力を求めることで、x方向,y方向の2軸の加速度を検出することができる。   Thus, the capacitances C1 to C4 are detected via the detection electrodes 6a to 6d, and difference values CA (= C1 to C2) and CB (= C3 to C4) are calculated using an ASIC or the like. By obtaining the X output and the Y output from the calculated difference values CA and CB, the biaxial acceleration in the x direction and the y direction can be detected.

尚、各電極部400,401,410,411にz方向の加速度が加えられた場合の静電容量C1〜C4はそれぞれ以下に示す表のようになり、差分値CA,CBが0となるために本実施形態ではz方向の加速度は検出することができない。したがって、本実施形態は、従来例のようなx方向,z方向の2軸の加速度を検出する加速度センサではなく、x方向,y方向の2軸の加速度を検出する加速度センサである。   The capacitances C1 to C4 when the acceleration in the z direction is applied to the electrode portions 400, 401, 410, and 411 are as shown in the table below, and the difference values CA and CB are 0. In this embodiment, acceleration in the z direction cannot be detected. Therefore, the present embodiment is not an acceleration sensor that detects biaxial acceleration in the x direction and z direction as in the conventional example, but an acceleration sensor that detects biaxial acceleration in the x direction and y direction.

Figure 2010210428
Figure 2010210428

ここで、従来例の加速度センサは、2つの可動電極40,41を用いることでx方向,z方向の2軸の加速度を検出する構成となっている。しかしながら、y方向の加速度を検出するためには、2つの可動電極40,41の揺動する軸と直交する方向の軸を有する可動電極を更に設ける必要があり、センサが大型化するという問題があった。これに対して、本実施形態では従来例の可動電極40,41を各々2分割して4つの電極部400,401,410,411を設けることで、実質的に4つの可動電極を利用してx方向,y方向の加速度を検出する構成となっている。而して、新たに可動電極を設ける必要が無いために、センサを大型化することなくy方向の加速度を検出することができる。   Here, the conventional acceleration sensor is configured to detect biaxial acceleration in the x direction and the z direction by using two movable electrodes 40 and 41. However, in order to detect the acceleration in the y direction, it is necessary to further provide a movable electrode having an axis in a direction orthogonal to the axis of oscillation of the two movable electrodes 40 and 41, which increases the size of the sensor. there were. On the other hand, in the present embodiment, the movable electrodes 40 and 41 of the conventional example are each divided into two to provide four electrode portions 400, 401, 410, and 411, so that substantially four movable electrodes are utilized. It is configured to detect acceleration in the x and y directions. Thus, since there is no need to newly provide a movable electrode, acceleration in the y direction can be detected without increasing the size of the sensor.

20a 第1の固定電極
20b 第2の固定電極
30 第1の枠部
40 第1の可動電極
400 第1の電極部
401 第2の電極部
5a,5b 第1のビーム部
20a 1st fixed electrode 20b 2nd fixed electrode 30 1st frame part 40 1st movable electrode 400 1st electrode part 401 2nd electrode part 5a, 5b 1st beam part

Claims (1)

可動電極を2分割して成る第1の電極部及び第2の電極部と、第1の電極部及び第2の電極部を所定の間隔を空けて囲む平面視略矩形状の枠部と、第1の電極部及び第2の電極部と枠部とをそれぞれ連結するとともに第1の電極部及び第2の電極部をそれぞれ枠部に対して揺動自在に支持する1対のビーム部と、第1の電極部及び第2の電極部に対してそれぞれ所定の間隔を空けて対向配置される1対の固定電極とを備え、可動電極の揺動に伴う可動電極と固定電極との間の静電容量の変化から加速度を検出する加速度センサであって、ビーム部は、その軸部が枠部の角部近傍において対角線と直交する方向に略一致し且つ軸方向における両端部が枠部と一体に形成され、各ビーム部の軸方向の略中央部において第1の電極部及び第2の電極部がそれぞれ一体に形成されたことを特徴とする加速度センサ。   A first electrode part and a second electrode part formed by dividing the movable electrode into two parts; a frame part having a substantially rectangular shape in plan view surrounding the first electrode part and the second electrode part with a predetermined interval; A pair of beam portions that connect the first electrode portion, the second electrode portion, and the frame portion, respectively, and support the first electrode portion and the second electrode portion so as to be swingable with respect to the frame portion; A pair of fixed electrodes disposed opposite to each other with a predetermined distance from the first electrode portion and the second electrode portion, and between the movable electrode and the fixed electrode when the movable electrode swings An acceleration sensor that detects acceleration from a change in electrostatic capacitance of the beam portion, and the beam portion substantially coincides with the direction orthogonal to the diagonal line in the vicinity of the corner portion of the frame portion, and both end portions in the axial direction are frame portions. The first electrode portion and the second electrode are formed at a substantially central portion in the axial direction of each beam portion. An acceleration sensor, characterized in that integrally formed but each.
JP2009056953A 2009-03-10 2009-03-10 Acceleration sensor Withdrawn JP2010210428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056953A JP2010210428A (en) 2009-03-10 2009-03-10 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009056953A JP2010210428A (en) 2009-03-10 2009-03-10 Acceleration sensor

Publications (1)

Publication Number Publication Date
JP2010210428A true JP2010210428A (en) 2010-09-24

Family

ID=42970759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056953A Withdrawn JP2010210428A (en) 2009-03-10 2009-03-10 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP2010210428A (en)

Similar Documents

Publication Publication Date Title
US9052334B2 (en) Acceleration sensor
JP2006226770A (en) Mechanical quantity sensor
WO2009090841A1 (en) Electrostatic capacity type acceleration sensor
US9146254B2 (en) Dynamic sensor
JP4965546B2 (en) Acceleration sensor
WO2014057623A1 (en) Acceleration sensor
JP2010210430A (en) Acceleration sensor
JP2010210428A (en) Acceleration sensor
JP5716149B2 (en) Acceleration sensor
JP2006208272A (en) Semiconductor multiaxial acceleration sensor
JP2010210431A (en) Acceleration sensor
JP2010210424A (en) Acceleration sensor
JP2005083972A (en) Capacitance type sensor and its manufacturing method
JP2013024765A (en) Capacitance type sensor
JP2010210427A (en) Acceleration sensor
JP2010210420A (en) Acceleration sensor
JP6074854B2 (en) Acceleration sensor
JP2005098891A (en) Electrostatic capacity type sensor
JP2010210429A (en) Acceleration sensor
JP2013003125A (en) Capacitive sensor
JP2012117972A (en) Capacitance type sensor
JP2012220376A (en) Acceleration sensor
WO2016117290A1 (en) Acceleration sensor and mounting structure for acceleration sensor
JP2009300225A (en) Electrostatic capacity type acceleration sensor
JP6032407B2 (en) Acceleration sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100714

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605